27.04.2013 Views

Prof HS Shankar - Chemical Engineering, IIT Bombay

Prof HS Shankar - Chemical Engineering, IIT Bombay

Prof HS Shankar - Chemical Engineering, IIT Bombay

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

SOIL BIOTECHNOLOGY OF <strong>IIT</strong>, BOMBAY<br />

<strong>Prof</strong> H.S.<strong>Shankar</strong> - hss@iitb.ac.in<br />

Department of <strong>Chemical</strong> <strong>Engineering</strong><br />

<strong>IIT</strong>-<strong>Bombay</strong><br />

Tel No 91-22-25767239,25768239


• PRINCIPLES<br />

CONTENTS<br />

• WATER PURIFICATION<br />

• PROCESSING OF SOLID RESIDUES<br />

• AGRICULTURE<br />

• SUMMING UP


A natural water body


A river system once a life line now in in distress due<br />

to to nutrient overload from agriculture


A natural water body in in the process of of decay


A natural water body converted to to land due to to<br />

nutrient overload


6<br />

Photosynthesis<br />

Fossil<br />

Fuels<br />

4,000<br />

110<br />

Plants<br />

500<br />

CO2 in the<br />

Atmosphere<br />

750<br />

(1- 10 y)<br />

50<br />

Dead Organics in<br />

Soil (1 y)<br />

50 18<br />

Dead Organics<br />

Reserve in Soil<br />

1,576<br />

(300 y)<br />

Respiration<br />

Animals<br />

100-150<br />

(50 y) (2 y)<br />

Global Carbon Cycle (Meilli, 1995)<br />

CO 2 Dissolved<br />

4,000<br />

Live 1-5<br />

Quantities in 10 15 g<br />

Source:<br />

Source:<br />

Encyclopedia<br />

Encyclopedia<br />

of<br />

of<br />

Environmental<br />

Environmental<br />

Biology,<br />

Biology,<br />

Vol.1,<br />

Vol.1,<br />

Academy<br />

Academy<br />

press,<br />

press,<br />

1995,<br />

1995,<br />

pp.235-248<br />

pp.235-248<br />

90<br />

50 - 65<br />

(0.2 y)


ENERGY CONSUMPTION IN DIFFERENT HABITATS<br />

1. Water 500 kJ/g live C. yr<br />

2. Land 3 kJ/g live C. yr


SCHEMATIC OF WATER RENOVATION<br />

Recycle (vr )<br />

C 1<br />

Feed (vf )<br />

Reactor<br />

C 2<br />

Discharge (vf )<br />

1.Raw water<br />

2.Raw Water slurry<br />

3. Air scrubbing<br />

4. Leachates of solids<br />

5. Waste water


T1 R1 T2 R2 T3 R3 T4 T 1<br />

SCHEMATIC OF MULTISTAGE PURIFICATION<br />

R 1<br />

T 2<br />

R 2<br />

T 3<br />

R 3<br />

T 4


LARGE SCALE FACILITY FOR SEWAGE RENOVATION


Respiration<br />

MAJOR CHEMICAL REACTIONS AT WORK<br />

(CH 2 ON x P y S z K y Q) n + nO 2 + nH 2 O + Micro-organisms =<br />

Photosynthesis<br />

nCO 2 + 2nH 2 O + Mineral (N, P, S, K,Q) + Energy<br />

nCO 2 + 2nH 2 O + Minerals (N,P, S,K,Q) + Sunlight =<br />

<strong>Chemical</strong> Mineral weathering<br />

CO 2 + H 2 O = HCO 3 - + H +<br />

[CH 2 ON x P y S z K y Q] n + nO 2 + nH 2 O<br />

Primary mineral + CO 2 + H 2 O = M +n + n HCO 3 - + soil/sand/clay


BIOMASS YIELD, MINERAL CONTENT, NITROGEN<br />

CONTENT, WATER CONSUMPTION FOR SOME CROPS<br />

Crop Mineral<br />

% DM<br />

N<br />

% DM<br />

Water<br />

ton / ton DM<br />

Yield<br />

ton DM / ha<br />

Subabul 0.5 – 0.8 Small 50 20<br />

Sugarcane 1.5 – 2.0 Small 400 18<br />

Corn 5.0 – 6.0 0.3 – 0.5 200 14<br />

Wheat 9 – 11 0.3 – 0.5 600 12<br />

paddy 18 - 20 0.3 – 0.5 1000 9<br />

DM – Dry Matter<br />

* *<br />

Yield is total biomass-grain, straw etc.


CHEMISTRY OF SBT<br />

Respiration<br />

(CH 2 ON x P y S z K y ) n + nO 2 + nH 2 O = nCO 2 + 2nH 2 O + Mineral (N, P, S, K) + Energy (1)<br />

Photosynthesis<br />

nCO 2 + 2nH 2 O + Minerals (N,P, S,K) + Sunlight =<br />

[CH 2 ON x P y S z K y ] n + nO 2 + nH 2 O (Photosynthesis) (2)<br />

Nitrogen Fixation<br />

N 2 + 2H 2 O + Energy = NH 3 + O 2 ( in soil) (3)<br />

N 2 + 2H 2 O + Light = NH 3 + O 2 (in water) (4)<br />

Acidogenesis<br />

4C 3 H 7 O 2 NS + 8H 2 0 = 4CH 3 COOH + 4CO 2 + 4NH 3 + 4H 2 S + 8H + + 8e - (5)<br />

Methanogenesis<br />

8H + + 8e - + 3CH 3 COOH + CO 2 = 4CH 4 + 3CO 2 + 2H 2 O (6)<br />

Adding 5 and 6 give overall biomethanation chemistry<br />

4C 3 H 7 O 2 NS + 6H 2 0 = CH 3 COOH + 6CO 2 + 4CH 4 + 4NH 3 + 4H 2 S (7)<br />

Mineral weathering<br />

CO 2 + H 2 O = HCO 3 - + H + (8)<br />

Primary mineral + CO 2 + H 2 O = M +n + n HCO 3 - + soil/clay/sand (9)<br />

Nitrification<br />

NH 3 + CO 2 + 1.5O 2 = Nitrosomonas + NO 2 - + H2 O + H + (10)<br />

NO 2 - + CO2 + 0.5O 2 = Nitrobacter + NO 3 - (11)<br />

Denitrification<br />

4NO 3 - + 2H2 O + energy = 2N 2 + 5O 2 + 4OH - (12a)<br />

NO 2 - + NH4 + = N2 + H 2 O + energy (12b)


The trinity – showing importance of of combining<br />

organics, inorganics & suitable life forms to to derive<br />

value from wastes


Crop<br />

Wheat<br />

(USA)<br />

Wheat<br />

(India)<br />

Rice<br />

(USA)<br />

Rice<br />

(Phil)<br />

Potato<br />

(USA)<br />

Cassava<br />

(Tanga)<br />

ENERGY CONSUMPTION FOR FOOD CROPS<br />

Energy Input<br />

M k cal / ha<br />

Fossil Labour Total<br />

Yield<br />

kg / ha<br />

Output<br />

M cal / ha<br />

Efficiency<br />

(-)<br />

3.77 0.002 3.772 2284 7.5 2.2<br />

0.256 0.1845 0.4405 821 2.7 6.25<br />

15.536 0.009 15.545 5796 21.0 1.35<br />

0.582 0.1728 0.754 1655 6.0 7.69<br />

8.90 0.018 8.92 26208 20.2 2.27<br />

0.016 0.385 0.401 5824 (Dry) 19.2 50.0<br />

Source: Energy in agriculture, Lockeritz (ed.) International Congress energy in agriculture Missouri,<br />

1975-76


Energy efficiency<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Direction of<br />

Increasing biological potential<br />

0<br />

0<br />

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0<br />

Yield , Ton/ha<br />

Wheat,USA<br />

Rice,USA<br />

Potato,USA<br />

Wheat,India<br />

Rice,Phillipines<br />

Cassava,Tanga<br />

Yield -Efficiency correlation for some crops<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10


Organics<br />

Residual<br />

organics<br />

Single-pass<br />

Bioreactor<br />

Gut residence<br />

time: about 5 h<br />

Anaerobic<br />

processing<br />

Biosoil<br />

incubation<br />

Loop<br />

Bioreactor<br />

Organics and rock<br />

particles<br />

Gut residence<br />

time: about 1 h<br />

Aerobic<br />

processing<br />

(Say Red worm) (Say Earthworm)<br />

Bioprocessing by by the the two two types types of of organisms<br />

Source: Bhawalkar (1996) (1996)<br />

Refeeding<br />

Pump is<br />

organism<br />

as mobile<br />

bioreactor


ECO-ENERGETICS OF AN EARTHWORM (Lavell, 1974)<br />

Fresh Weight mg/individual 1025<br />

Ingestion (J/g.d) 1570<br />

Assimilation (J/g.d) 140<br />

Production (J/g.d) 10<br />

Respiration (J/g.d) 130<br />

Egestion (J/g.d) 1430<br />

EXPONENTIAL GROWTH OF BACTERIA IN EARTHWORM GUT<br />

(no. in million) (Parle, 1959)<br />

Forgut Midgut Hindgut<br />

All Bacteria 475 32900 440900<br />

Actinomycetes 26 358 15000


pH<br />

11<br />

9<br />

7<br />

5<br />

3<br />

1<br />

Optimum<br />

Optimum<br />

Earthworm<br />

Termite Cockroach<br />

Rats, ants<br />

Fly Larvae<br />

Potworm<br />

20 40 60<br />

Moisture (%)<br />

80 100<br />

Mosquito<br />

Fly<br />

Redworm<br />

Niches of Earthworms and Pests (Bhawalkar, 1996)


A picture of of red worms – r selected organisms in in<br />

waste environment


E(theta)<br />

0.008<br />

0.007<br />

0.006<br />

0.005<br />

0.004<br />

0.003<br />

0.002<br />

0.001<br />

0<br />

EXPERIMENT<br />

SET -UP<br />

E(theta) vs theta<br />

0 1 2 3<br />

theta<br />

Concentration vs Time Plot


TWO CHANNEL MODEL<br />

α = fraction of holdup in the macrochannel<br />

β = fraction of tracer that enters the macrochannel


E<br />

( θ )<br />

=<br />

2<br />

β<br />

α<br />

τ =<br />

1<br />

2<br />

α<br />

β<br />

1<br />

πθ1<br />

Pe<br />

τ<br />

1<br />

TWO CHANNEL MODEL<br />

⎛<br />

⎜<br />

⎜<br />

exp⎜<br />

−<br />

⎜<br />

⎝<br />

τ<br />

2<br />

Pe<br />

⎛ βθ1<br />

⎞<br />

⎜1−<br />

⎟<br />

⎝ α ⎠<br />

4θ<br />

1<br />

Pe<br />

1<br />

2<br />

⎞<br />

⎟<br />

⎟<br />

⎟ +<br />

⎟<br />

⎠<br />

( )<br />

( ) τ<br />

1−α<br />

− β<br />

= 1<br />

1<br />

=<br />

β<br />

Pe<br />

α<br />

2 ( 1−<br />

β )<br />

( 1−<br />

α )<br />

Pe<br />

2<br />

2<br />

2<br />

⎛<br />

⎜ ⎛ ( 1−<br />

β ) θ 2 ⎞<br />

⎜1−<br />

⎟<br />

1 ⎜ ⎝ ( 1−<br />

α )<br />

exp<br />

⎠<br />

⎜ −<br />

πθ<br />

4θ<br />

2 ⎜<br />

2<br />

Pe ⎜ Pe<br />

2<br />

2<br />

⎝<br />

( )<br />

( ) Pe<br />

1−<br />

β<br />

−α<br />

= 1<br />

θ<br />

1<br />

t<br />

τ<br />

= 2<br />

1<br />

t<br />

θ =<br />

τ<br />

2<br />

⎞<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />


THEORETICALLY CALCULATED PARAMETERS<br />

Diffusivity<br />

Film Thickness<br />

Peclet Number<br />

D<br />

=<br />

δ =<br />

3<br />

RT<br />

F<br />

Pe =<br />

2<br />

λ<br />

z<br />

3μQ<br />

ρgW<br />

uL<br />

D<br />

io<br />

i<br />

= 1.9 * 10 -5 cm/s 2<br />

= 0.1 mm<br />

= 6 - 14


C(theta)<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

C(theta) versus theta<br />

0<br />

0 0.5 1 1.5<br />

theta<br />

2 2.5 3<br />

RTD RTD Plot Plot of of normalized concentration (C/Co) (C/Co) vs. vs. Time Time for for 2m 2m soil soilfilter filter<br />

showing showing fit fit to to Dispersion model model equation equation (8) (8) for for Run Run 2a 2a (22.3 (22.3 cm/h) cm/h)<br />

with with fitted fitted parameters α=0.67, α=0.67, β=0.9, β=0.9, Pe=9 Pe=9<br />

Exp<br />

Model


EXPERIMENT AND THEORETICAL PARAMETERS<br />

Run<br />

No<br />

Run No Q<br />

(ml/min)<br />

Q<br />

(ml/min)<br />

τ<br />

(min)<br />

δ<br />

(mm)<br />

τ<br />

(min)<br />

H<br />

(lit)<br />

A<br />

(m 2 )<br />

α Pe<br />

I 95 155 0.73 12.1<br />

II 100 153 0.69 18.3<br />

V 125 133 0.63 9.7<br />

III 155 102 0.75 10.1<br />

VI 182 91 0.68 12.3<br />

IV 200 90 0.68 11.5<br />

u<br />

(m/s)<br />

I 95 155 0.06 14.72 245 6.46 ×10 -9 6.1<br />

II 100 153 0.06 15.3 255 6.53 ×10 -9 6.2<br />

V 125 133 0.07 16.62 237 8.79 ×10 -9 8.4<br />

III 155 102 0.07 15.81 226 11.4 ×10 -9 10<br />

VI 182 91 0.08 16.56 207 14.6 ×10 -9 13.9<br />

IV 200 90 0.08 18 225 14.8 ×10 -9 14.1<br />

Pe


RTD RTD Plot Plot of of normalized concentration (C/Co) (C/Co) vs. vs. Time Time for for soil soil filter filter<br />

showing showing fit fit to to Dispersion model model equation equation (8) (8) for for Run Run 2a 2a (22.3 (22.3 cm/h) cm/h)<br />

with with fitted fitted parameters α=0.25, α=0.25, β=0.68, β=0.68, Pe=0.83<br />

Pe=0.83


Plot Plot of of normalized concentration (C/Co) and and RTD RTD function E (t) (t) vs. vs.<br />

Time Time for for soil soil filter filter showing fit fit to to Dispersion model model equation (8) (8) for for<br />

Run Run 1a 1a (7.2 (7.2 cm/h) cm/h) with with fitted fitted parameters α=0.09, β=0.40, Pe=0.89


ORP, milivolt<br />

1000<br />

500<br />

0<br />

-500<br />

0<br />

Equipment : Pheretima Biofilter<br />

Intial loading on bed =24.4gmCOD/L<br />

Restoration rate constant I stage =0.2 /h<br />

Restoration rate constant II stage =0.11/h<br />

ORP data (Probe 9, Depth:-2.5cm)<br />

Fit to model Eqn 3.6.13 & 3.6.14<br />

50 100 150 200<br />

Time,h<br />

ORP (Reference calomel electrode+244 mV) restoration<br />

profile showing fit to model Pattanaik, B.R. (2000)


Dissolved O 2 , mg/L.<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

PHYSICAL MASS TRANSFER<br />

Pheretima biofilter<br />

T = 30.2 C<br />

v s = 7.2 cm/h<br />

C I = 1.8mg/L<br />

C e = 6.8 mg/L<br />

Run : OTR 14<br />

Experimental data<br />

Fit to model<br />

0 20 40 60 80 100<br />

Time, min<br />

Variation Variation of of outlet outlet O 2 concentration<br />

2 concentration with with time time as as per per single single cell cell model model<br />

Pattanaik.,(2000)<br />

120


DO (mg/L)<br />

8<br />

6<br />

4<br />

2<br />

0<br />

PHYSICAL MASS TRANSFER<br />

0 20 40 60 80<br />

Time (Mins)<br />

Variation of outlet O2 concentration with time,<br />

Sathyamoorthy(2006) (2006)<br />

120 ml/min<br />

250 ml/min


COD (mg/l)<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

COD REMOVAL<br />

0 2 4 6 8 10<br />

Time (hr)<br />

150 ml/min<br />

COD concentration with Time Kadam.(2005) .(2005)


COMPARISON OF AIR TO WATER OXYGEN<br />

TRANSFER COEFFICIENTS<br />

Agitated & sparged vessels 10 -3 to 10 -2 /sec<br />

This work 5 x 10 -3 /sec<br />

Quiescent fluids 10 -5 /sec


1. Continuity Equation<br />

2. Momentum balance<br />

∂ ρ v<br />

+ ∇ ⋅ ( ρ v v )<br />

∂t<br />

From Darcy’s Law<br />

F =<br />

μ<br />

−<br />

α<br />

3. Species Transport Equation<br />

∂C<br />

∂t<br />

GOVERNING EQUATIONS<br />

( vC<br />

) + ∇.<br />

( D ∇C<br />

) − R 0<br />

i + ∇⋅<br />

i<br />

i,<br />

m i i =<br />

4. conc. balance in holding tank<br />

τ<br />

h<br />

dS<br />

dt<br />

2<br />

∂ ρ<br />

∂ t<br />

= S<br />

1<br />

v<br />

( t)<br />

+<br />

∇<br />

−S<br />

2<br />

⋅ ( ρ v<br />

( ) = −∇ p + ρ g + F<br />

( t)<br />

)<br />

=<br />

0<br />

Rate equations for substrates<br />

Substrate Description Rate Equation<br />

COD Mass Transfer K ac (C 1 -C 1 *)<br />

COD Oxidation K c C s<br />

NH 4 + -N Mass Transfer Kan (C 2 -C 2 *)<br />

NH 4 + -N Nitrification KN N s


C 2 /C 20<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Run Hyd.<br />

Loading rate ka<br />

(m 3 /m 2 .hr ) (hr -1 )<br />

2b 0.6 0.22<br />

3b 0.8 0.53<br />

C 2 /C 20 fit to Eq.3.4.7, Run 2b<br />

Exptl data, C 2 /C 20 , Run 2b<br />

C 2 /C 20 fit to Eq. 3.4.7, Run 3b<br />

Exptl. Data, C 2 /C 20 , Run 3b<br />

0 1 2 3 4 5 6 7 8<br />

Time,hr<br />

Effect Effect of of hydraulic loading on on distribution of of liquid liquid on on biofilter


COD ( mg/L )<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

CFD MODEL VALIDATION:<br />

COMPARISON WITH EXPERIMENTAL DATA<br />

20<br />

0 1 2 3 4 5 6<br />

Time (h)<br />

+<br />

+ −N conc. (mg/L)<br />

−N conc. (mg/L)<br />

NH<br />

NH 4<br />

4<br />

6<br />

6<br />

5<br />

5<br />

4<br />

4<br />

3<br />

3<br />

2<br />

2<br />

1<br />

1<br />

0<br />

0 0<br />

1<br />

1<br />

2<br />

2<br />

3<br />

3<br />

Time (h)<br />

Time (h)<br />

4<br />

4<br />

5<br />

5<br />

6<br />

6<br />

V b =13 L, V l = 30 L, v r = 5x 10 -5 m 3 /m 2 h<br />

k ac = 2.7 h -1 , k C = 0.05 h -1 , k an = 11 h -1 , k N =1.5 h -1 ,


COD ( g / L )<br />

COD ( g / L )<br />

Comparison between Dispersion model prediction<br />

and reactor performance data for sewage<br />

90<br />

90<br />

80<br />

80<br />

70<br />

70<br />

60<br />

60<br />

50<br />

50<br />

40<br />

40<br />

30<br />

30<br />

20<br />

20<br />

10<br />

10<br />

0<br />

0<br />

Model Eq. 9 & 10<br />

Model Eq. 9 & 10<br />

Experimental<br />

Experimental<br />

0<br />

0<br />

2<br />

2<br />

4<br />

4<br />

6<br />

6<br />

8<br />

8<br />

Time<br />

Time<br />

(h)<br />

(h)<br />

Model Parameters: V b =13 L, V l = 30 L, v r = 5.1 m 3 /m 2 h<br />

α = 0.32, β = 0.81, ε d = 0.25,<br />

NH4+<br />

NH4+<br />

-<br />

-<br />

N<br />

N<br />

(mg/<br />

(mg/<br />

L)<br />

L)<br />

8<br />

8<br />

7<br />

7<br />

6<br />

6<br />

5<br />

5<br />

4<br />

4<br />

3<br />

3<br />

2<br />

2<br />

1<br />

1<br />

Pe = 0.18, k ac = 1.5 h -1 , k an = 11 h -1 ,<br />

Model Eq. 9 & 10<br />

Model Eq. 9 & 10<br />

Experimental<br />

Experimental<br />

0<br />

0<br />

0<br />

0<br />

1<br />

1<br />

2<br />

2<br />

3<br />

3<br />

Time ( h)<br />

Time ( h)<br />

4<br />

4<br />

5<br />

5<br />

6<br />

6<br />

7<br />

7


DISTILLERY SPENT WASH<br />

Before SBT Processing<br />

COD: 12,160mg/L<br />

After SBT Processing<br />

COD: 64 mg/L


Coliform (CFU/100 ml)<br />

1.0E+09<br />

1.0E+08<br />

1.0E+07<br />

1.0E+06<br />

1.0E+05<br />

1.0E+04<br />

1.0E+03<br />

1.0E+02<br />

1.0E+01<br />

COLI FORM REMOVAL<br />

Coliform removal<br />

Inf luent E0 E1 E2 E3 E4 E5 E6 E7<br />

Recycling (hr)<br />

Total coliform<br />

fecal coliform<br />

Effect of recycling on micro-organism removal;<br />

E0: Effluent 0 hr, E1: Effluent 1 hr etc Kadam., ., (2005)


ARSENIC REMOVAL BY SOIL FILTER<br />

• As(III) oxidation and removal As(V) via<br />

precipitation as ion complex with Fe(III).<br />

• These results show that


PROCESS DIAGRAM FOR ARSENIC REMOVAL FROM<br />

WATER<br />

As (III)<br />

water As (V) Fe3+ + As<br />

Soil<br />

Filter<br />

Precipitation<br />

Fe 3+ + As<br />

Filter<br />

As Sludge<br />

30 %<br />

%Complex


ARSENIC REMOVAL IN SOIL FILTER SYSTEM<br />

Initial As(III)=500 μg/l; Filter bed volume=17 lit;<br />

Flow rate = 60ml/min,<br />

Total volume of water passed per day = 30 lit, which constitute one run.<br />

Expt. Run No Initial Arsenic Conc.<br />

μg/l<br />

Residual Arsenic<br />

μg/l<br />

1 500 8<br />

2 500 8<br />

3 500 8<br />

4 500 8<br />

5 500 8<br />

6 500 8<br />

7 500 3<br />

8 500 6<br />

9 500 5<br />

10 500 4<br />

11 500 4<br />

12 500 4<br />

13 500 4


COMPARISON OF ARSENIC REMOVAL RATES<br />

• Zero Valent iron 0.85 mg As/lit.hr( Leupin<br />

et al., 2005)<br />

• Iron coated sand 0.75 mg As/lit.hr (Joshi<br />

and Chaudhari, 2004)<br />

• Activated Alumina 0.15 mg As/lit.hr (Pant<br />

and Singh, 2005)<br />

Soil filter process 0.30 mg As/lit.hr


LAY OUT OF SBT MEDIA


Effect of Feed Distribution arrangement<br />

on Fluid distribution<br />

Contours of Velocity Magnitude (m/s)<br />

Fig 4a: Feed From Top surface only<br />

Fig 4b: Feed From Top & Slopes v r = 0.15 m 3 /m 2 h


SBT PLANT<br />

TOP VIEW


PLANT ELEVATION<br />

500 m 3/day BPGC Plant for wastewater treatment


SBT PLANT<br />

3MLD Sewage purification in Corporation Of <strong>Bombay</strong>


WATER QUALITY ANALYSIS OF SBT PLANT<br />

PARAMETERS INFLUENT EFFLUENT<br />

Temp. ( 0 C) 31.4 31.3<br />

pH 6.91 8.26<br />

Conductivity (micro S/cm) 2160 987<br />

DO (mg/l) 0.85 7.01<br />

Turbidity (NTU) 145 5.32<br />

COD (mg/L) 352 64<br />

BOD 211 7.04<br />

Ammonia (mg/L) 33.4 0.010<br />

Phosphate-P (mg/L) 0.474 0.0016<br />

SS(mg/l) 293.3 16<br />

Alkalinity(mg/L) 212 148<br />

Fecal coliform(cfu/100ml) 145*10 5 55<br />

Total coliform(cfu/100ml) 150*10 8 110


PROCESS FEATURES<br />

• Very low energy use intensity due to high<br />

Natural oxygen transfer in process. (0.06<br />

kWh/kL sewage).<br />

• Very low space intensity of 0.8-1.0 sqm/kL<br />

per day sewage.<br />

• An engineered evergreen natural process<br />

with no moving parts except for pumps.<br />

• No sludge due to ecology at work.<br />

• Very high bacteria, BOD, COD, suspended<br />

solids, colour, odour, ammonia removal.<br />

• Practically maintenance free.


SBT PLANT<br />

3MLD Sewage purification in Corporation Of <strong>Bombay</strong>


SBT PLANT<br />

3MLD Sewage purification in Corporation Of <strong>Bombay</strong>


SBT PLANT<br />

3MLD Sewage purification in Corporation Of <strong>Bombay</strong>


SBT PLANT<br />

Renovation of of colony sewage for for irrigation in in sports<br />

complex


REUSABLE WATER FROM WASTEWATER<br />

Wastewater Treated Wastewater


Colony sewage treatment<br />

showing untreated &<br />

treated water<br />

SBT PLANT


SBT PLANT<br />

Renovation of of septic tank waste water for for irrigation in in a<br />

Research Center


SBT PLANT<br />

Retrofitting of of idle activated sludge plant


SUMMARY OF SBT PROCESS FEATURES<br />

FOR SEWAGE TREATMENT<br />

Item Features<br />

Organic loading 150-200 g / sqm.d<br />

Oxygen transfer 150-200 g / sqm.d<br />

Heat generation 600-800 k.cal / sqm.d<br />

Conversion As required<br />

Hydraulic loading 0.05 - 0.25 cum/sqm.h<br />

Shear rate 0.01 – 0.1 per sec.


OPERATING FACILITIES<br />

• <strong>Bombay</strong> Presidency Golf Club<br />

• Naval Housing Colony, <strong>Bombay</strong><br />

• Vazir Sultan Tobacco, Hyderabad<br />

• Jindal Steel, Delhi<br />

• Taj Kiran, Gwalior<br />

• <strong>IIT</strong> <strong>Bombay</strong><br />

• Beru Ashram Badlapur<br />

• Delhi Travel Tourism Dev Corporation<br />

• <strong>Bombay</strong> Municipal Corporation (in progress)<br />

• University of Hyderabad (in progress).


SBT PLANT<br />

Close up of of solid waste processing


ORGANIC<br />

RESIDUE<br />

PROCESSING<br />

1 m<br />

Raw organics<br />

Underdrain<br />

A<br />

10 m<br />

5 m<br />

Semi-processed<br />

organics<br />

ROAD<br />

2<br />

4<br />

6<br />

38<br />

39<br />

100 m<br />

ROAD<br />

Loading Rows<br />

ROAD<br />

Schematic of of organic residue processing.<br />

ROAD<br />

10 m 5 m<br />

300 m


Restoration of of municipal dumping grounds


Processing chicken offals


SUMMARY OF PROCESS FEATURES FOR<br />

ORGANIC SOLID CONVERSION<br />

Item Features<br />

Organic loading 150-200 g / sq.m.d<br />

Oxygen transfer 150-200 g / sq.m.d<br />

Heat generation 600-800 k.cal / sq.m.d<br />

Conversion 20-30%<br />

Product Yield 0.375 – 0.500 kg / kg<br />

Products fertilizer/culture/soil


Chickoo plant affected by by fungal disease


Chickoo plant after restoration of of soil


ECONOMICS FOR SEWAGE TREATMENT<br />

Item Unit<br />

Capacity (m 3 / d)<br />

5 50 100 200 500 3,000 10,000<br />

1. Space m 2 40 250 400 600 1500 3500 10000<br />

2.Civil, mech., Elec. Rs. Mil 0.10 0.5 0.9 1.0 1.5 12 25<br />

3.Bioreactor Rs. Mil 015 0.6 1.0 1.5 2.5 17 50<br />

Total (2 + 3) Rs. Mil 0.25 1.1 1.9 2.5 4.0 29 75<br />

4. Power Rs./d 10 100 200 400 800 1200 4000<br />

5. Additives Rs./d 20 100 250 500 1250 5000 15000<br />

6. Staff Rs./d 250 250 500 500 1000 2500 5000<br />

7. Miscellaneous Rs./d 10 50 50 150 200 300 500<br />

Total (5 to 7) Rs./d 340 600 1000 1550 3250 9000 24500<br />

US $ = Rs. 47.00; Power Rs. 4 per kWh ; Mil – Million; additives – Rs. 5 / kg


ECONOMICS FOR MUNICIPAL ORGANIC SOLIDS<br />

Item Unit Features<br />

Capacity Ton/day 1 10 20 100<br />

Space Sq.m 2000 15000 20000 50000<br />

Civil, mech., elec. Rs. mil 0.5 2.5 4.5 15<br />

bioreactor Rs. mil 0.2 1.0 1.5 5.0<br />

Total (3+4) Rs. mil 0.7 3.5 6.0 20<br />

production Ton/year 150 1500 3000 15000<br />

Labour Rs./day 450 3500 5000 10000<br />

Power fuel Rs./day - - 1000 5000<br />

Additives Rs./day 400 4000 8000 20000<br />

Misc. Rs./day 50 200 500 1000<br />

Total (6-8) Rs./day 850 7500 15500 36000<br />

mil. – million<br />

mech. – mechanical<br />

elec. – electrical<br />

Rs. – Rupees (1US$ = Rs.47)


APPLICATIONS<br />

• Rain water harvesting via storm water conservation<br />

• Primary purification of drinking water<br />

• Primary purification of swimming pool water<br />

• Sewage treatment for reuse in construction, cleaning &<br />

gardening, ground water recharge, make up water for<br />

swimming pools & industries etc<br />

• Industrial wastewater treatment,<br />

• Industrial air purification<br />

• Organic solid waste conversion<br />

• Municipal solid waste processing<br />

• Commercial production of Soil<br />

• Animal House waste processing<br />

• Hospital waste disposal


SUMMING UP<br />

Engineered natural oxygen supply<br />

Evergreen Environment<br />

No moving parts<br />

No biosludge


THANK YOU !


Intensity<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

XRD ANALYSIS<br />

0 20 40 60 80 100<br />

Angle<br />

Partially weathered Rock (Murram)<br />

Murram


Intensity<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

XRD ANALYSIS<br />

0 20 40 60 80 100<br />

Angle<br />

Artificially weathered Rock (Black soil)<br />

Black soil


Intensity<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

XRD ANALYSIS<br />

0 20 40 60 80 100<br />

Angle<br />

Blacksoil<br />

Murram<br />

Comparison of Artificially weathered Rock<br />

(Black soil) with Murram (partially weathered Rock)


Intensity<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

XRD ANALYSIS<br />

0 20 40 60 80 100<br />

Angle<br />

Primary mineral (Rock powder)<br />

Rock Powder


Intensity<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

XRD ANALYSIS<br />

0 20 40 60 80 100<br />

Angle<br />

Naturally weathered Rock (Red soil)<br />

Redsoil


Intensity<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

XRD ANALYSIS<br />

0 20 40 60 80 100<br />

Angle<br />

Rock-Powder<br />

Murram<br />

Comparison of Primary Mineral (Rock powder) with<br />

Murram (Partially weathered Rock)


Intensity<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

XRD ANALYSIS<br />

0 20 40 60 80 100<br />

Angle<br />

REDSOIL<br />

Murram<br />

Comparison of Naturally weathered Rock (Red soil)<br />

with Murram (partially weathered Rock)


Intensity<br />

1350<br />

1250<br />

1150<br />

1050<br />

950<br />

850<br />

750<br />

650<br />

550<br />

XRD ANALYSIS<br />

AW-1<br />

450<br />

25 30 35 40 45 50 55 60 65<br />

Angle<br />

Artificially weathered Rock - 1


Intensity<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

XRD ANALYSIS<br />

AW-2<br />

25 30 35 40 45 50 55 60 65<br />

Angle<br />

Artificially Weathered Rock - 1


Intensity<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

XRD ANALYSIS<br />

AW-3<br />

500<br />

25 30 35 40 45 50 55 60 65<br />

Angle<br />

Artificially Weathered Rock - 2


Intensity<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

XRD ANALYSIS<br />

AW-4<br />

25 35 45 55 65<br />

Angle<br />

Artificially Weathered Rock - 2


Intensity<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

XRD ANALYSIS<br />

Worli pad-5<br />

400<br />

25 30 35 40 45 50 55 60 65<br />

Angle<br />

Artificially Weathered Rock


Intensity<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

XRD ANALYSIS<br />

Garden Soil<br />

25 30 35 40 45 50 55 60 65<br />

Angle<br />

Artificially Weathered Rock


PATENTS AND PUBLICATIONS<br />

1. US Patent No: 6890438 " Process for treatment of organic wastes"<br />

H.S.<strong>Shankar</strong>, B.R.Patnaik, U.S.Bhawalkar, issued 10 May 2005<br />

2. "Process for treatment of Organic residues" India Patent Application<br />

MUM/384/26 April 2002, H.S.<strong>Shankar</strong>, B.R.Patnaik,U.S.Bhawalkar<br />

3. " Process for treatment of waste water" India Patent Application<br />

MUM/383/26 April 2002, H.S.<strong>Shankar</strong>,B.R.Patnaik,U.S.Bhawalkar<br />

4. Patnaik, B.R., Bhawalkar, U.S., Gupta, A., <strong>Shankar</strong>, H.S., “Residence<br />

Time Distribution model for Soil Filters, Water Environment Research,<br />

76(2), 168-174,2004<br />

5. Patnaik, B.R., Bhawalkar, V.S., <strong>Shankar</strong>, H.S., “Waste Processing in<br />

Engineered Ecosystems”, 4th World Congress on <strong>Chemical</strong><br />

<strong>Engineering</strong>, 23-27, September 2001, Melbourne, Australia<br />

6. Patnaik, B.R., Bhawalkar, U.S., Kadam, A, <strong>Shankar</strong>, H.S., “Soil<br />

Biotechnology for Waste Water Treatment and utilization”, 13th ASPAC<br />

2003, International Water Works Association Conference 13-18, October,<br />

2003, Quezon City, Philippines


PATENTS AND PUBLICATIONS<br />

7. Kadam,AM,Ojha,Goldie., <strong>Shankar</strong>,H.S Soil Biotechnology for<br />

Processing of waste waters, 9 th International conference,<br />

Indian Water Works Association, <strong>Bombay</strong> 26-27 Nov2005<br />

8. Yeole,U.R., Patnaik,B.R.,<strong>Shankar</strong>,H.S.," Soil Biotechnology<br />

process simulation using computational fluid dynamics"<br />

Session Advanced Computations for Environmental<br />

9.<br />

Applications II" AIChE Annual Meeting, 7-12 Nov 2005,Austin<br />

Texas, USA<br />

Pattanaik., B.R.(2000),” Processing of Wastewater in Soil<br />

Filters”, Ph.D. Dissertation, Dept of <strong>Chemical</strong> Engg., <strong>IIT</strong><br />

<strong>Bombay</strong><br />

10. Yeole,Umesh Prabhakar"Soil Biotechnology Process<br />

Simulation using Computational Fluid dynamics" 2004<br />

11. Bhuddhiraju,Sudheendra., "Soil Biotechnology Process<br />

simulation using Computational Fluid dynamics" 2005


MEDIA AND CULTURE<br />

US Patent: Process for treatment of organic wastes; US<br />

Patent no: 6890438,<br />

www.uspto.gov; Issue date: 10 May 2005 ;<br />

Underdrain:- Stone rubble of various sizes ranging upto Gravel (200.0-2.0<br />

mm), Very coarse sand (1.0-2.0 mm), Coarse sand (0.5-1.0 mm), Medium<br />

sand (0.25-0.5 mm), Fine sand (0.1-0.25 mm)<br />

Media:- Formulated from soil as required and primary minerals of suitable<br />

particle size and composition<br />

Culture:- Geophagus (Soil living) worm Pheretima elongata and bacterial<br />

culture from natural sources containing bacteria capable of processing<br />

cellulose, lignin, starch, protein, also nitrifying and denitrifying organisms.<br />

Anaerobic organisms for methanogenesis. For industrial wastes,<br />

development of appropriate culture required<br />

Additives:- Formulated from natural materials of suitable particle size and<br />

composition to provide sites for respiration, CO 2 capture<br />

Bioindicators:- Green plants particularly with tap root system


EXTRACT FROM VISION 21 DOCUMENT OF WHO<br />

Current sanitation solutions contribute, either directly or indirectly, to many of the<br />

problems faced by society today: water pollution, scarcity of fresh water, food insecurity,<br />

destruction and loss of soil fertility, global warming, and poor man health as well as loss of<br />

life.<br />

In summary, we divert excreta away from land, consuming a limited resource – fresh water,<br />

into receiving water bodies causing water pollution. We then try to treat the water we drink.<br />

Both processes create health hazards. By diverting nutrients away from land, artificial<br />

fertilizers are added to land, creating even more water pollution, which is difficult and<br />

expensive to treat.<br />

We must find another way. We have to design and build new systems, which promote<br />

waste as a resource and envisage local solutions and cultural attitudes and contribute to the<br />

solving society’s most pressing problems.<br />

Source: Esrey, S. & Anderson, I., Vision 21- Environmental Sanitation Ecosystems Approach, report published by Water Supply<br />

and Sanitation Collaborative Council ( WSSCC) World Health Organization, United Nations, 1993


AS (III) TO AS (V) CONVERSION IN SOIL FILTER SYSTEM<br />

As(III) =1000 µg/l As(III); Flow rate= 130 ml/minute; Filter bed volume = 17 lit;<br />

Precipitation with Fe(III); (FeCl3 ) dose as Fe added 55 mg/l.<br />

Time<br />

minute<br />

Total As<br />

µg/l<br />

As(III) conversion to As(V) in<br />

Soil Filter<br />

As(V)<br />

µg/l<br />

Residual<br />

As(III)<br />

µg/l<br />

Precipitation<br />

of FeCl3 Residual<br />

Total As<br />

µg/l<br />

0 995.50 150.00 640.00 18.5<br />

30 986.67 636.67 350.00 15.65<br />

60 1020.00 783.33 236.67 13.34<br />

90 1003.33 826.67 176.67 11.25<br />

120 1000.00 926.67 73.33 7.75<br />

150 1026.67 973.33 53.33 5.85<br />

180 1016.67 983.33 33.33 7.00<br />

210 1013.33 950.00 63.33 7.42<br />

240 1016.67 933.33 83.33 7.40

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!