04.05.2013 Views

Isometries of Hermitian symmetric spaces

Isometries of Hermitian symmetric spaces

Isometries of Hermitian symmetric spaces

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Isometries</strong> <strong>of</strong> <strong>Hermitian</strong> <strong>symmetric</strong> <strong>spaces</strong><br />

Makiko Sumi Tanaka<br />

The 6th OCAMI-KNUGRG Joint Differential Geometry<br />

Workshop on Submanifold Theory in Symmetric Spaces<br />

and Lie Theory in Finite and Infinite Dimensions<br />

Osaka City University<br />

February 1–3, 2013<br />

1


Joint with Jost-Hinrich Eschenburg and Peter Quast<br />

Contents<br />

1 Introduction<br />

2 Extrinsically <strong>symmetric</strong> <strong>spaces</strong><br />

3 <strong>Isometries</strong> <strong>of</strong> <strong>Hermitian</strong> <strong>symmetric</strong> <strong>spaces</strong><br />

4 Another result<br />

2


1. Introduction<br />

A Riemannian <strong>symmetric</strong> space M is called a<br />

<strong>symmetric</strong> R-space if M is realized as an orbit <strong>of</strong> a linear<br />

isotropy representation <strong>of</strong> a Riemannian <strong>symmetric</strong> space<br />

<strong>of</strong> compact type.<br />

Every <strong>Hermitian</strong> <strong>symmetric</strong> space M <strong>of</strong> compact type is<br />

a <strong>symmetric</strong> R-space since M is realized as an adjoint<br />

orbit <strong>of</strong> a compact semisimple Lie group.<br />

3


Every <strong>symmetric</strong> R-space is realized as a real form <strong>of</strong> a<br />

<strong>Hermitian</strong> <strong>symmetric</strong> space <strong>of</strong> compact type and vice-<br />

versa (Takeuchi 1984). Here a real form <strong>of</strong> a <strong>Hermitian</strong><br />

<strong>symmetric</strong> space M is the fixed point set <strong>of</strong> an involutive<br />

anti-holomorphic isometry <strong>of</strong> M. Every real form is con-<br />

nected and a totally geodesic Lagrangian submanifold <strong>of</strong><br />

M.<br />

4


M : a Riemannian manifold<br />

τ : an involutive isometry <strong>of</strong> M<br />

A connected component <strong>of</strong> F (τ, M) := {x ∈ M | τ(x) =<br />

x} is called a reflective submanifold.<br />

Reflective submanifolds in simply connected irreducible<br />

Riemannian <strong>symmetric</strong> <strong>spaces</strong> <strong>of</strong> compact type are clas-<br />

sified by Leung (1974, ’75 and ’79).<br />

5


Every <strong>symmetric</strong> R-space is considered as a reflective<br />

submanifold <strong>of</strong> a <strong>Hermitian</strong> <strong>symmetric</strong> space <strong>of</strong> compact<br />

type.<br />

Q. Is every reflective submanifold <strong>of</strong> a <strong>symmetric</strong> R-space<br />

a <strong>symmetric</strong> R-space ?<br />

If a <strong>symmetric</strong> R-space is simply connected and irre-<br />

ducible, we know it is true by Leung’s classification.<br />

6


2. Extrinsically <strong>symmetric</strong> <strong>spaces</strong><br />

M ⊂ R n : a submanifold <strong>of</strong> Euclidean space<br />

M is called extrinsically <strong>symmetric</strong> if it is preserved by<br />

the reflection ρp at the affine normal space p + (TpM) ⊥<br />

for every p ∈ M. Here ρp : R n → R n is the affine isometry<br />

with ρp(p) = p, ρp| TpM = −Id and ρp| (TpM) ⊥ = Id.<br />

Every extrinsically <strong>symmetric</strong> submanifold is a Rieman-<br />

nian <strong>symmetric</strong> space w.r.t. the induced metric. In fact,<br />

the geodesic symmetry sp at p ∈ M is given by sp = ρp| M.<br />

7


Theorem (Ferus 1974, Eschenburg-Heintze 1995)<br />

Every <strong>symmetric</strong> R-space is extrinsically <strong>symmetric</strong> and<br />

every full compact extrinsically <strong>symmetric</strong> submanifold<br />

<strong>of</strong> Euclidean space is a <strong>symmetric</strong> R-space.<br />

8


P = G/K : a Riemannian <strong>symmetric</strong> space <strong>of</strong> compact<br />

type<br />

G = I0(M), K = {g ∈ G | g(o) = o}, o ∈ P<br />

g = k ⊕ p : the canonical decomposition<br />

g = Lie(G), k = Lie(K), p ∼ = ToP<br />

Take ξ(̸= 0) ∈ p with ad(ξ) 3 = −ad(ξ),<br />

then M = Ad G(K)ξ ⊂ p : a <strong>symmetric</strong> R-space<br />

9


τ : an involutive isometry <strong>of</strong> M<br />

L : a reflective submanifold determined by τ<br />

If we assume ∃ T : a linear isometry <strong>of</strong> p with T (M) ⊂ M<br />

s.t. T | M = τ, L is an extrinsically <strong>symmetric</strong> submanifold<br />

in a linear subspace F (T, p) <strong>of</strong> p.<br />

10


I(M) : the group <strong>of</strong> isometries <strong>of</strong> M<br />

T(M) : the transvection group <strong>of</strong> M, i.e., a subgroup <strong>of</strong><br />

I(M) generated by {sp ◦ sq | p, q ∈ M}, which is coincides<br />

with the identity component I0(M) <strong>of</strong> I(M)<br />

If f ∈ T(M), f can be extended to a linear isometry <strong>of</strong> p<br />

since every geodesic symmetry sp has the extension ρp.<br />

But what about arbitrary isometry?<br />

11


Remark<br />

We have a list <strong>of</strong> I(M)/I0(M) for irreducible M in p.156<br />

<strong>of</strong> Loos’s book “Symmetric <strong>spaces</strong> II”.<br />

12


3. <strong>Isometries</strong> <strong>of</strong> <strong>Hermitian</strong> <strong>symmetric</strong> <strong>spaces</strong><br />

P : a semisimple <strong>Hermitian</strong> <strong>symmetric</strong> space (i.e., <strong>of</strong><br />

compact type or noncompact type)<br />

I(P ) : the isometry group <strong>of</strong> P<br />

A(P ) : the holomorphic isometry group <strong>of</strong> P<br />

T(P ) : the transvection group <strong>of</strong> P<br />

G := I0(P ) = A0(P ) = T(P )<br />

g = Lie(G) : semisimple<br />

J : the complex structure <strong>of</strong> P<br />

p ∈ P<br />

13


Isp : G → G, g ↦→ sp ◦ g ◦ s −1<br />

p : an involutive automorphism<br />

<strong>of</strong> G<br />

(Isp)∗ : g → g : an involutive automorphism <strong>of</strong> g<br />

g = kp ⊕ pp, (Isp)∗ = id on kp, (Isp)∗ = −id on pp<br />

kp ∼ = Lie(Kp), Kp = {g ∈ G | g(p) = p}, pp ∼ = TpP<br />

Jp ∈ C(kp), the center C(kp) <strong>of</strong> kp<br />

(If P is irreducible, Jp generates C(kp).)<br />

The action <strong>of</strong> Jp on TpP ∼ = pp is given by ad(Jp)|pp.<br />

Thus ad(Jp) has eigenvalues ±i and 0, so that ad(Jp) 3 =<br />

−ad(Jp).<br />

14


Consider the map ι : P → g, p ↦→ Jp, which is a G-<br />

equivariant embedding <strong>of</strong> P into g with the image Ad(G)Jo,<br />

the adjoint orbit for a chosen base point o ∈ P . ι is called<br />

the canonical embedding <strong>of</strong> P .<br />

15


Theorem 1 (Eschenburg-Quast-T., J. <strong>of</strong> Lie Theory<br />

2013)<br />

Let P ⊂ g be a canonically embedded semisimple Hermi-<br />

tian <strong>symmetric</strong> space and let f be an isometry <strong>of</strong> P , then<br />

there exists a linear isometry F <strong>of</strong> g (w.r.t. a suitable<br />

invariant inner product) whose restriction to P coincides<br />

with f.<br />

16


Pro<strong>of</strong>:<br />

P = P1 × · · · × Pr : a decomposition into irreducible fac-<br />

tors<br />

G = G1 × · · · × Gr : a decomposition <strong>of</strong> the transvection<br />

group G, where Gj is the transvectin group <strong>of</strong> Pj<br />

g = g1 ⊕ · · · ⊕ gr : the direct sum decomposition <strong>of</strong><br />

g = Lie(G), where gj = Lie(Gj) is simple<br />

ι = ι1 × · · · × ιr where ιj : Pj → gj is the canonical em-<br />

bedding <strong>of</strong> Pj.<br />

17


I(P ) is generated by I(P1) × · · · × I(Pr) and by all per-<br />

mutations <strong>of</strong> isometric irreducible factors <strong>of</strong> P .<br />

Since permutations <strong>of</strong> isometric irreducible factors <strong>of</strong> P<br />

extend to permutations <strong>of</strong> the corresponding simple fac-<br />

tors <strong>of</strong> g (possibly up to sign on some factors), we may<br />

assume that P is irreducible.<br />

18


Let f ∈ I(P ).<br />

Let m be the midpoint <strong>of</strong> a geodesic arc between o to<br />

f(o), then sm ◦ f(o) = o.<br />

Since P is an extrinsically <strong>symmetric</strong> submanifold <strong>of</strong> g<br />

and sm has the extension ρm, we may assume that f(o) =<br />

o.<br />

19


I f : G → G, g ↦→ f ◦ g ◦ f −1 is an automorphism <strong>of</strong> G<br />

(I f)∗ : g → g is an automorphism <strong>of</strong> g<br />

⟨ , ⟩ : an inner product on g which is proportional to the<br />

Killing form<br />

⟨(I f)∗(X), (I f)∗(Y )⟩ = ⟨X, Y ⟩ (X, Y ∈ g).<br />

20


Lemma (I f)∗(Jo) ∈ {±Jo}.<br />

Pro<strong>of</strong>. Since Jo ∈ C(ko) and (I f)∗ is a Lie algebra auto-<br />

morphism, we have (I f)∗(Jo) ∈ C(ko) and ad((I f)∗(Jo)) 3 =<br />

−ad((I f)∗(Jo)).<br />

If k ∈ Ko = {g ∈ G | g(o) = o}, I f(k)(o) = f ◦ k ◦ f −1 (o) =<br />

o. Hence I f| Ko : Ko → Ko is an automorphism <strong>of</strong> Ko.<br />

Thus (I f)∗(C(ko)) = C(ko) = RJo. So (I f)∗(Jo) ∈ {±Jo}.<br />

21


Let F := ±(I f)∗ if (I f)∗(Jo) = ±Jo, respectively. To<br />

prove f = F | P , we show ι ◦ f = F ◦ ι. Since we have<br />

(ι ◦ f)(o) = (F ◦ ι)(o) and ι ◦ f ◦ γ = F ◦ ι ◦ γ for arbitrary<br />

geodesic γ starting from o, we obtain the conclusion.<br />

22


Remark It is a known fact that every reflective sub-<br />

manifold <strong>of</strong> a semisimple <strong>Hermitian</strong> <strong>symmetric</strong> space is<br />

a <strong>symmetric</strong> R-space. Because we know every reflective<br />

submanifold <strong>of</strong> a semisimple <strong>Hermitian</strong> <strong>symmetric</strong> space<br />

is either a complex submanifold or a real form from the<br />

next proposition.<br />

23


Proposition (Murakami 1952, Takeuchi 1964)<br />

Let P be an irreducible semisimple <strong>Hermitian</strong> <strong>symmetric</strong><br />

space.<br />

Then I(P )/I0(P ) and A(P )/A0(P ) are given as follows.<br />

(1) If P is isometric to Q2m(C) (m ≥ 2),<br />

Gm(C 2m ) (m ≥ 2) or their noncompact duals,<br />

I(P )/I0(P ) ∼ = Z2 × Z2, A(P )/A0(P ) ∼ = Z2<br />

(2) Otherwise,<br />

I(P )/I0(P ) ∼ = Z2, A(P ) = A0(P ).<br />

Remark I(P )/A(P ) ∼ = Z2.<br />

24


4. Another result<br />

Theorem 2 (Loos 1985)<br />

Let M ⊂ R n be a compact extrinsically <strong>symmetric</strong> space.<br />

Then the maximal torus <strong>of</strong> M is a Riemannian product<br />

<strong>of</strong> round circles.<br />

M : a compact Riemannian <strong>symmetric</strong> space<br />

o ∈ M<br />

A connected component <strong>of</strong> F (so, M) is called a polar.<br />

For p ∈ F (so, M), the connected component <strong>of</strong> F (sp ◦<br />

so, M) through p is called the meridian.<br />

25


Proposition 1 (Chen-Nagano 1978)<br />

If M is a compact Riemannian <strong>symmetric</strong> space <strong>of</strong> rank<br />

k, then any meridian M − ⊂ M has the same rank k.<br />

Proposition 2<br />

A meridian M − in an extrinsically <strong>symmetric</strong> space M is<br />

extrinsically <strong>symmetric</strong>.<br />

26


Proposition 3<br />

Let M be a compact Riemannian <strong>symmetric</strong> space which<br />

satisfies that every polar is a single point. Then M is<br />

the Riemannian product <strong>of</strong> round spheres and possibly a<br />

torus.<br />

Proposition 4<br />

Let P ⊂ R n be a full extrinsically <strong>symmetric</strong> flat torus.<br />

Then P splits extrinsically as a product <strong>of</strong> round circles,<br />

P = S 1 r1 × · · · × S1 rn ⊂ R2n .<br />

27


Pro<strong>of</strong> <strong>of</strong> Theorem 2 (Eschenburg-Quast-T.)<br />

We prove it by induction over the dimension.<br />

The beginning <strong>of</strong> the induction is the observation that<br />

an extrinsically <strong>symmetric</strong> flat torus is a product <strong>of</strong> Eu-<br />

clidean circles (Proposition 4). As induction step, we<br />

show an alternative for arbitrary compact <strong>symmetric</strong> <strong>spaces</strong><br />

X: Either X is a Riemannian product <strong>of</strong> Euclidean spheres<br />

and possibly flat torus or it contains a certain totally<br />

geodesic submanifold , a so called meridian (Proposition<br />

1).<br />

28


Further, a meridian M − <strong>of</strong> X is extrinsically <strong>symmetric</strong>,<br />

then so is M − (Proposition 2). Thus passing to meridi-<br />

ans again and again, we will lower the dimension preserv-<br />

ing preserving the maximal torus unless we reach a space<br />

which is a Riemannian product <strong>of</strong> spheres and possibly a<br />

torus and whose maximal torus is a Riemannian product<br />

<strong>of</strong> circles.<br />

29

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!