04.05.2013 Views

Isometries of Hermitian symmetric spaces

Isometries of Hermitian symmetric spaces

Isometries of Hermitian symmetric spaces

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Isometries</strong> <strong>of</strong> <strong>Hermitian</strong> <strong>symmetric</strong> <strong>spaces</strong><br />

Makiko Sumi Tanaka<br />

The 6th OCAMI-KNUGRG Joint Differential Geometry<br />

Workshop on Submanifold Theory in Symmetric Spaces<br />

and Lie Theory in Finite and Infinite Dimensions<br />

Osaka City University<br />

February 1–3, 2013<br />

1


Joint with Jost-Hinrich Eschenburg and Peter Quast<br />

Contents<br />

1 Introduction<br />

2 Extrinsically <strong>symmetric</strong> <strong>spaces</strong><br />

3 <strong>Isometries</strong> <strong>of</strong> <strong>Hermitian</strong> <strong>symmetric</strong> <strong>spaces</strong><br />

4 Another result<br />

2


1. Introduction<br />

A Riemannian <strong>symmetric</strong> space M is called a<br />

<strong>symmetric</strong> R-space if M is realized as an orbit <strong>of</strong> a linear<br />

isotropy representation <strong>of</strong> a Riemannian <strong>symmetric</strong> space<br />

<strong>of</strong> compact type.<br />

Every <strong>Hermitian</strong> <strong>symmetric</strong> space M <strong>of</strong> compact type is<br />

a <strong>symmetric</strong> R-space since M is realized as an adjoint<br />

orbit <strong>of</strong> a compact semisimple Lie group.<br />

3


Every <strong>symmetric</strong> R-space is realized as a real form <strong>of</strong> a<br />

<strong>Hermitian</strong> <strong>symmetric</strong> space <strong>of</strong> compact type and vice-<br />

versa (Takeuchi 1984). Here a real form <strong>of</strong> a <strong>Hermitian</strong><br />

<strong>symmetric</strong> space M is the fixed point set <strong>of</strong> an involutive<br />

anti-holomorphic isometry <strong>of</strong> M. Every real form is con-<br />

nected and a totally geodesic Lagrangian submanifold <strong>of</strong><br />

M.<br />

4


M : a Riemannian manifold<br />

τ : an involutive isometry <strong>of</strong> M<br />

A connected component <strong>of</strong> F (τ, M) := {x ∈ M | τ(x) =<br />

x} is called a reflective submanifold.<br />

Reflective submanifolds in simply connected irreducible<br />

Riemannian <strong>symmetric</strong> <strong>spaces</strong> <strong>of</strong> compact type are clas-<br />

sified by Leung (1974, ’75 and ’79).<br />

5


Every <strong>symmetric</strong> R-space is considered as a reflective<br />

submanifold <strong>of</strong> a <strong>Hermitian</strong> <strong>symmetric</strong> space <strong>of</strong> compact<br />

type.<br />

Q. Is every reflective submanifold <strong>of</strong> a <strong>symmetric</strong> R-space<br />

a <strong>symmetric</strong> R-space ?<br />

If a <strong>symmetric</strong> R-space is simply connected and irre-<br />

ducible, we know it is true by Leung’s classification.<br />

6


2. Extrinsically <strong>symmetric</strong> <strong>spaces</strong><br />

M ⊂ R n : a submanifold <strong>of</strong> Euclidean space<br />

M is called extrinsically <strong>symmetric</strong> if it is preserved by<br />

the reflection ρp at the affine normal space p + (TpM) ⊥<br />

for every p ∈ M. Here ρp : R n → R n is the affine isometry<br />

with ρp(p) = p, ρp| TpM = −Id and ρp| (TpM) ⊥ = Id.<br />

Every extrinsically <strong>symmetric</strong> submanifold is a Rieman-<br />

nian <strong>symmetric</strong> space w.r.t. the induced metric. In fact,<br />

the geodesic symmetry sp at p ∈ M is given by sp = ρp| M.<br />

7


Theorem (Ferus 1974, Eschenburg-Heintze 1995)<br />

Every <strong>symmetric</strong> R-space is extrinsically <strong>symmetric</strong> and<br />

every full compact extrinsically <strong>symmetric</strong> submanifold<br />

<strong>of</strong> Euclidean space is a <strong>symmetric</strong> R-space.<br />

8


P = G/K : a Riemannian <strong>symmetric</strong> space <strong>of</strong> compact<br />

type<br />

G = I0(M), K = {g ∈ G | g(o) = o}, o ∈ P<br />

g = k ⊕ p : the canonical decomposition<br />

g = Lie(G), k = Lie(K), p ∼ = ToP<br />

Take ξ(̸= 0) ∈ p with ad(ξ) 3 = −ad(ξ),<br />

then M = Ad G(K)ξ ⊂ p : a <strong>symmetric</strong> R-space<br />

9


τ : an involutive isometry <strong>of</strong> M<br />

L : a reflective submanifold determined by τ<br />

If we assume ∃ T : a linear isometry <strong>of</strong> p with T (M) ⊂ M<br />

s.t. T | M = τ, L is an extrinsically <strong>symmetric</strong> submanifold<br />

in a linear subspace F (T, p) <strong>of</strong> p.<br />

10


I(M) : the group <strong>of</strong> isometries <strong>of</strong> M<br />

T(M) : the transvection group <strong>of</strong> M, i.e., a subgroup <strong>of</strong><br />

I(M) generated by {sp ◦ sq | p, q ∈ M}, which is coincides<br />

with the identity component I0(M) <strong>of</strong> I(M)<br />

If f ∈ T(M), f can be extended to a linear isometry <strong>of</strong> p<br />

since every geodesic symmetry sp has the extension ρp.<br />

But what about arbitrary isometry?<br />

11


Remark<br />

We have a list <strong>of</strong> I(M)/I0(M) for irreducible M in p.156<br />

<strong>of</strong> Loos’s book “Symmetric <strong>spaces</strong> II”.<br />

12


3. <strong>Isometries</strong> <strong>of</strong> <strong>Hermitian</strong> <strong>symmetric</strong> <strong>spaces</strong><br />

P : a semisimple <strong>Hermitian</strong> <strong>symmetric</strong> space (i.e., <strong>of</strong><br />

compact type or noncompact type)<br />

I(P ) : the isometry group <strong>of</strong> P<br />

A(P ) : the holomorphic isometry group <strong>of</strong> P<br />

T(P ) : the transvection group <strong>of</strong> P<br />

G := I0(P ) = A0(P ) = T(P )<br />

g = Lie(G) : semisimple<br />

J : the complex structure <strong>of</strong> P<br />

p ∈ P<br />

13


Isp : G → G, g ↦→ sp ◦ g ◦ s −1<br />

p : an involutive automorphism<br />

<strong>of</strong> G<br />

(Isp)∗ : g → g : an involutive automorphism <strong>of</strong> g<br />

g = kp ⊕ pp, (Isp)∗ = id on kp, (Isp)∗ = −id on pp<br />

kp ∼ = Lie(Kp), Kp = {g ∈ G | g(p) = p}, pp ∼ = TpP<br />

Jp ∈ C(kp), the center C(kp) <strong>of</strong> kp<br />

(If P is irreducible, Jp generates C(kp).)<br />

The action <strong>of</strong> Jp on TpP ∼ = pp is given by ad(Jp)|pp.<br />

Thus ad(Jp) has eigenvalues ±i and 0, so that ad(Jp) 3 =<br />

−ad(Jp).<br />

14


Consider the map ι : P → g, p ↦→ Jp, which is a G-<br />

equivariant embedding <strong>of</strong> P into g with the image Ad(G)Jo,<br />

the adjoint orbit for a chosen base point o ∈ P . ι is called<br />

the canonical embedding <strong>of</strong> P .<br />

15


Theorem 1 (Eschenburg-Quast-T., J. <strong>of</strong> Lie Theory<br />

2013)<br />

Let P ⊂ g be a canonically embedded semisimple Hermi-<br />

tian <strong>symmetric</strong> space and let f be an isometry <strong>of</strong> P , then<br />

there exists a linear isometry F <strong>of</strong> g (w.r.t. a suitable<br />

invariant inner product) whose restriction to P coincides<br />

with f.<br />

16


Pro<strong>of</strong>:<br />

P = P1 × · · · × Pr : a decomposition into irreducible fac-<br />

tors<br />

G = G1 × · · · × Gr : a decomposition <strong>of</strong> the transvection<br />

group G, where Gj is the transvectin group <strong>of</strong> Pj<br />

g = g1 ⊕ · · · ⊕ gr : the direct sum decomposition <strong>of</strong><br />

g = Lie(G), where gj = Lie(Gj) is simple<br />

ι = ι1 × · · · × ιr where ιj : Pj → gj is the canonical em-<br />

bedding <strong>of</strong> Pj.<br />

17


I(P ) is generated by I(P1) × · · · × I(Pr) and by all per-<br />

mutations <strong>of</strong> isometric irreducible factors <strong>of</strong> P .<br />

Since permutations <strong>of</strong> isometric irreducible factors <strong>of</strong> P<br />

extend to permutations <strong>of</strong> the corresponding simple fac-<br />

tors <strong>of</strong> g (possibly up to sign on some factors), we may<br />

assume that P is irreducible.<br />

18


Let f ∈ I(P ).<br />

Let m be the midpoint <strong>of</strong> a geodesic arc between o to<br />

f(o), then sm ◦ f(o) = o.<br />

Since P is an extrinsically <strong>symmetric</strong> submanifold <strong>of</strong> g<br />

and sm has the extension ρm, we may assume that f(o) =<br />

o.<br />

19


I f : G → G, g ↦→ f ◦ g ◦ f −1 is an automorphism <strong>of</strong> G<br />

(I f)∗ : g → g is an automorphism <strong>of</strong> g<br />

⟨ , ⟩ : an inner product on g which is proportional to the<br />

Killing form<br />

⟨(I f)∗(X), (I f)∗(Y )⟩ = ⟨X, Y ⟩ (X, Y ∈ g).<br />

20


Lemma (I f)∗(Jo) ∈ {±Jo}.<br />

Pro<strong>of</strong>. Since Jo ∈ C(ko) and (I f)∗ is a Lie algebra auto-<br />

morphism, we have (I f)∗(Jo) ∈ C(ko) and ad((I f)∗(Jo)) 3 =<br />

−ad((I f)∗(Jo)).<br />

If k ∈ Ko = {g ∈ G | g(o) = o}, I f(k)(o) = f ◦ k ◦ f −1 (o) =<br />

o. Hence I f| Ko : Ko → Ko is an automorphism <strong>of</strong> Ko.<br />

Thus (I f)∗(C(ko)) = C(ko) = RJo. So (I f)∗(Jo) ∈ {±Jo}.<br />

21


Let F := ±(I f)∗ if (I f)∗(Jo) = ±Jo, respectively. To<br />

prove f = F | P , we show ι ◦ f = F ◦ ι. Since we have<br />

(ι ◦ f)(o) = (F ◦ ι)(o) and ι ◦ f ◦ γ = F ◦ ι ◦ γ for arbitrary<br />

geodesic γ starting from o, we obtain the conclusion.<br />

22


Remark It is a known fact that every reflective sub-<br />

manifold <strong>of</strong> a semisimple <strong>Hermitian</strong> <strong>symmetric</strong> space is<br />

a <strong>symmetric</strong> R-space. Because we know every reflective<br />

submanifold <strong>of</strong> a semisimple <strong>Hermitian</strong> <strong>symmetric</strong> space<br />

is either a complex submanifold or a real form from the<br />

next proposition.<br />

23


Proposition (Murakami 1952, Takeuchi 1964)<br />

Let P be an irreducible semisimple <strong>Hermitian</strong> <strong>symmetric</strong><br />

space.<br />

Then I(P )/I0(P ) and A(P )/A0(P ) are given as follows.<br />

(1) If P is isometric to Q2m(C) (m ≥ 2),<br />

Gm(C 2m ) (m ≥ 2) or their noncompact duals,<br />

I(P )/I0(P ) ∼ = Z2 × Z2, A(P )/A0(P ) ∼ = Z2<br />

(2) Otherwise,<br />

I(P )/I0(P ) ∼ = Z2, A(P ) = A0(P ).<br />

Remark I(P )/A(P ) ∼ = Z2.<br />

24


4. Another result<br />

Theorem 2 (Loos 1985)<br />

Let M ⊂ R n be a compact extrinsically <strong>symmetric</strong> space.<br />

Then the maximal torus <strong>of</strong> M is a Riemannian product<br />

<strong>of</strong> round circles.<br />

M : a compact Riemannian <strong>symmetric</strong> space<br />

o ∈ M<br />

A connected component <strong>of</strong> F (so, M) is called a polar.<br />

For p ∈ F (so, M), the connected component <strong>of</strong> F (sp ◦<br />

so, M) through p is called the meridian.<br />

25


Proposition 1 (Chen-Nagano 1978)<br />

If M is a compact Riemannian <strong>symmetric</strong> space <strong>of</strong> rank<br />

k, then any meridian M − ⊂ M has the same rank k.<br />

Proposition 2<br />

A meridian M − in an extrinsically <strong>symmetric</strong> space M is<br />

extrinsically <strong>symmetric</strong>.<br />

26


Proposition 3<br />

Let M be a compact Riemannian <strong>symmetric</strong> space which<br />

satisfies that every polar is a single point. Then M is<br />

the Riemannian product <strong>of</strong> round spheres and possibly a<br />

torus.<br />

Proposition 4<br />

Let P ⊂ R n be a full extrinsically <strong>symmetric</strong> flat torus.<br />

Then P splits extrinsically as a product <strong>of</strong> round circles,<br />

P = S 1 r1 × · · · × S1 rn ⊂ R2n .<br />

27


Pro<strong>of</strong> <strong>of</strong> Theorem 2 (Eschenburg-Quast-T.)<br />

We prove it by induction over the dimension.<br />

The beginning <strong>of</strong> the induction is the observation that<br />

an extrinsically <strong>symmetric</strong> flat torus is a product <strong>of</strong> Eu-<br />

clidean circles (Proposition 4). As induction step, we<br />

show an alternative for arbitrary compact <strong>symmetric</strong> <strong>spaces</strong><br />

X: Either X is a Riemannian product <strong>of</strong> Euclidean spheres<br />

and possibly flat torus or it contains a certain totally<br />

geodesic submanifold , a so called meridian (Proposition<br />

1).<br />

28


Further, a meridian M − <strong>of</strong> X is extrinsically <strong>symmetric</strong>,<br />

then so is M − (Proposition 2). Thus passing to meridi-<br />

ans again and again, we will lower the dimension preserv-<br />

ing preserving the maximal torus unless we reach a space<br />

which is a Riemannian product <strong>of</strong> spheres and possibly a<br />

torus and whose maximal torus is a Riemannian product<br />

<strong>of</strong> circles.<br />

29

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!