05.05.2013 Views

Unified Osteopathic Field theory - American Academy of Osteopathy

Unified Osteopathic Field theory - American Academy of Osteopathy

Unified Osteopathic Field theory - American Academy of Osteopathy

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Biomechanics <strong>of</strong> the<br />

<strong>Unified</strong> <strong>Osteopathic</strong> <strong>Field</strong> Theory<br />

Clarence L. Nicodemus, D.O., Ph.D.<br />

(with inspiration and contribution by Ken Lossing, D.O.)<br />

AAO Convocation<br />

Louisville, KY<br />

March 22-23, 2012


Examine the components:<br />

“<strong>Osteopathic</strong> <strong>Field</strong>”<br />

“<strong>Unified</strong>”<br />

“Biomechanics”<br />

Biomechanics <strong>of</strong> the <strong>Unified</strong> <strong>Osteopathic</strong> <strong>Field</strong><br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

2


It all starts with Dr. Still. He was:<br />

An original<br />

Unique<br />

Creative<br />

A Visionary<br />

Correct<br />

“_____________________________________”<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

3


The “<strong>Osteopathic</strong> <strong>Field</strong>”<br />

Commonly “Taught”<br />

Approaches<br />

HVLA<br />

Muscle Energy<br />

My<strong>of</strong>ascial Release<br />

Strain/Counterstrain<br />

S<strong>of</strong>t Tissue<br />

Lymphatics<br />

“Other” Common Approaches<br />

• Balanced Ligamentous<br />

Tension and Ligamentous<br />

Articular Strain<br />

• Facilitated Positional<br />

Release<br />

• <strong>Osteopathy</strong> in the Cranial<br />

<strong>Field</strong><br />

• Progressive Inhibition <strong>of</strong><br />

Neuromuscular Structures<br />

• Functional Technique<br />

• Visceral Manipulation<br />

• Still Technique<br />

• Chapman’s Approach<br />

• Fulford Percussion<br />

• Energy<br />

Chila, Anthony. Foundations <strong>of</strong> <strong>Osteopathic</strong> Medicine, 3rd Edition. Lippincott Williams & Wilkins, 2010<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

4


<strong>Unified</strong> <strong>Field</strong> Theory<br />

Einstein's attempt to unify the General Theory <strong>of</strong><br />

Relativity with electromagnetism<br />

Wrong <strong>Field</strong> Theory<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

5


<strong>Unified</strong> <strong>Osteopathic</strong> <strong>Field</strong> Theory<br />

All theories <strong>of</strong> manual medicine are based on<br />

manipulating the same basic human tissues.<br />

Further, all human tissues exhibit the same fundamental<br />

biomechanical property, namely, viscoelasticity.<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

6


Many different aspects/models<br />

Fascial Model- Distensability, tested with motion testing<br />

and fascial pull.<br />

Fluid model- circulation, tested with doppler ultrasound,<br />

perfusion studies, or palpation.<br />

Neurological Model- electrochemical information, tested<br />

with palpation and motion testing, EMG.<br />

Biomechanical Model- Inherent and induced-Tested with<br />

palpation, ROM, sensing<br />

Energetic Model- temperature changes, electricity,<br />

etc….<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

7


What is common among these<br />

approaches?<br />

Commonly “Taught”<br />

Approaches<br />

HVLA<br />

Muscle Energy<br />

My<strong>of</strong>ascial Release<br />

Strain/Counterstrain<br />

S<strong>of</strong>t Tissue<br />

Lymphatics<br />

“Other” Common Approaches<br />

• Balanced Ligamentous<br />

Tension and Ligamentous<br />

Articular Strain<br />

• Facilitated Positional<br />

Release<br />

• <strong>Osteopathy</strong> in the Cranial<br />

<strong>Field</strong><br />

• Progressive Inhibition <strong>of</strong><br />

Neuromuscular Structures<br />

• Functional Technique<br />

• Visceral Manipulation<br />

• Still Technique<br />

• Chapman’s Approach<br />

• Fulford Percussion<br />

• Energy<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

8


Hands and Tissues (and more)<br />

It is called Manipulative Medicine because hands<br />

manipulate tissues<br />

We also engage our mind, energy, intuition, spirit<br />

It is very difficult to measure the latter<br />

So we focus on the former<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

9


Biomechanics<br />

“the application <strong>of</strong> mechanical laws<br />

to living structures.”<br />

Saunders Comprehensive Veterinary<br />

Dictionary, 3 ed. © 2007 Elsevier, Inc.<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

10


Fundamental Biomechanics<br />

Review<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

11


Histology <strong>of</strong> Connective Tissue<br />

Ken Lossing, D.O. personal correspondence<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

12


Origin and Classes <strong>of</strong> Connective<br />

Tissue<br />

http://classes.midlandstech.edu/carterp/Courses/bio210/chap04/<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD 13


Molecular<br />

Structure <strong>of</strong><br />

Collagen<br />

•Elongated<br />

•Linear<br />

March 22-23, 2012<br />

http://classes.midlandstech.edu/carterp/Courses/bio210/chap04/<br />

C. L. Nicodemus, DO, PhD 14


Other Components<br />

March 22-23, 2012<br />

http://classes.midlandstech.edu/carterp/Courses/bio210/chap04/<br />

C. L. Nicodemus, DO, PhD 15


Loose, areolar Connective Tissue<br />

March 22-23, 2012<br />

http://classes.midlandstech.edu/carterp/Courses/bio210/chap04/<br />

C. L. Nicodemus, DO, PhD 16


Loose, adipose Connective Tissue<br />

March 22-23, 2012<br />

http://classes.midlandstech.edu/carterp/Courses/bio210/chap04/<br />

C. L. Nicodemus, DO, PhD 17


Loose, recticular Connective Tissue<br />

March 22-23, 2012<br />

http://classes.midlandstech.edu/carterp/Courses/bio210/chap04/<br />

C. L. Nicodemus, DO, PhD 18


Dense, regular Connective Tissue<br />

March 22-23, 2012<br />

http://classes.midlandstech.edu/carterp/Courses/bio210/chap04/<br />

C. L. Nicodemus, DO, PhD 19


Dense, irregular Connective Tissue<br />

March 22-23, 2012<br />

http://classes.midlandstech.edu/carterp/Courses/bio210/chap04/<br />

C. L. Nicodemus, DO, PhD 20


Types <strong>of</strong> Connective Tissue<br />

Ken Lossing, D.O. personal correspondence<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

21


Fascia<br />

The fascia is a loose, areolar connective tissue<br />

composed <strong>of</strong>:<br />

collagen-( literally glue –making) 14 types , most<br />

common is type 1 (90%)<br />

ground substance<br />

fibrin<br />

Elastin- maintains the tensile strength <strong>of</strong> connective<br />

tissue<br />

The collagen fibers are connected to other collagen<br />

fibers through chemical bonds.<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

22


Effects <strong>of</strong> loading<br />

Chila, Anthony. Foundations <strong>of</strong> <strong>Osteopathic</strong> Medicine, 3rd Edition. Lippincott Williams & Wilkins, 2010<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

23


Collagen Structure<br />

Chila, Anthony. Foundations <strong>of</strong> <strong>Osteopathic</strong> Medicine, 3rd Edition. Lippincott Williams & Wilkins, 2010<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

24


Muscle Fiber Structure<br />

Chila, Anthony. Foundations <strong>of</strong> <strong>Osteopathic</strong> Medicine, 3rd Edition. Lippincott Williams & Wilkins, 2010<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

25


Terminology<br />

terminology [tur-muh-nol-uh-jee]<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

26


Strain and Stress<br />

Strain: is a measure <strong>of</strong> the degree or intensity <strong>of</strong><br />

deformation. Elongation per unit gage length. Units <strong>of</strong><br />

strain – mm/mm, in/in STRAIN = ΔL/L<br />

Stress: force per unit area, may be shear stress, tensile<br />

stress, or compressive stress. Units <strong>of</strong> stress- N/m 2<br />

(pascal), dyn/cm 2 , lbs/in 2 . STRESS=F/A<br />

Shear stress is a “cross fiber” action. Units <strong>of</strong> stress-<br />

N/m 2 (pascal), dyn/cm 2 , lbs/in 2. SHEAR STRESS = F ’ /A<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

27


Elastic Deformation<br />

Stress<br />

loading<br />

1<br />

Strain<br />

E<br />

Strain<br />

unloading<br />

Ken Lossing, DO<br />

IDEAL or PURELY elastic<br />

Stress > PE > KE<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

Think rubber band<br />

E= elastic modulus = Δ<br />

stress/Δ strain<br />

28


Real Deformation<br />

Stress<br />

loading<br />

H<br />

Strain<br />

unloading<br />

Ken Lossing, DO<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

Stress > PE > KE + H<br />

H = Heat loss, fluid motion,<br />

molecule structure<br />

The area in the hysteresis loop<br />

(H) represents the energy<br />

dissipated as heat during<br />

loading and recovery and the<br />

work done in mechanically<br />

altering fibrin and collagen<br />

structures.<br />

29


Actual Data for a Tendon (rat)<br />

http://www.engin.umich.edu/class/bme456/<br />

Repetitive cycles<br />

change the response<br />

10 cycles = stable<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

30


Creep and Hysteresis<br />

? Hysteresis??<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

31


Creep I<br />

http://www.engin.umich.edu/class/bme456/<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

32


Creep II<br />

http://www.engin.umich.edu/class/bme456/<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

33


Viscoelasticity<br />

having viscous as well as elastic<br />

properties<br />

a combination <strong>of</strong> viscous and elastic<br />

properties in a material, with the<br />

relative contribution <strong>of</strong> each being<br />

, ,<br />

, and . [and<br />

]<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

34


Actual Data for a Tendon (rat)<br />

http://www.engin.umich.edu/class/bme456/<br />

Repetitive cycles<br />

change the response<br />

10 cycles = stable<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

35


Fluid - Viscosity<br />

Stress<br />

Strain<br />

N=coefficient<br />

<strong>of</strong> viscosity<br />

1 N<br />

Ken Lossing, DO<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

Stress > HEAT only<br />

Each fluid has a<br />

“coefficient <strong>of</strong><br />

viscosity”.<br />

The higher the<br />

coefficient <strong>of</strong> viscosity,<br />

the thicker the fluid.<br />

36


Viscosity<br />

Peanut<br />

Butter<br />

Catsup<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

OR<br />

37


Viscoelastic change<br />

Stress<br />

Temperature<br />

Strain<br />

Increasing<br />

stiffness<br />

Strain Rate<br />

Ken Lossing, DO<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

Resulting stress is not<br />

only a function <strong>of</strong> strain,<br />

and temperature, but<br />

also the strain rate, in<br />

other words the speed at<br />

which a load ( strain) is<br />

applied will affect the<br />

amount <strong>of</strong> stress in the<br />

tissue. This is called<br />

“time dependant<br />

material behavior”.<br />

Rhythm <strong>of</strong> the tissue!<br />

38


March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

39


Creep and Hysteresis<br />

When a load (stress) is applied to a viscoelastic<br />

material, molecular bonding is re-arranged and thus the<br />

material elongates or “creeps”.<br />

As the re-arrangement occurs, a back-stress develops.<br />

When the back stress matches the applied stress, creep<br />

stops.<br />

When the load is released, the back stress returns, the<br />

original length returns (with losses <strong>of</strong> energy due to the<br />

heat <strong>of</strong> mechanical re-arrangement). This is hysteresis.<br />

Visco = creep; Back stress return = elastic<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

40


Viscoelasticity<br />

having viscous as well as elastic properties<br />

The property <strong>of</strong> a substance <strong>of</strong> exhibiting both elastic<br />

and viscous behavior, the application <strong>of</strong> stress causing<br />

temporary deformation if the stress is quickly removed<br />

but permanent deformation if it is maintained<br />

a combination <strong>of</strong> viscous and elastic properties in a<br />

material, with the relative contribution <strong>of</strong> each being<br />

dependent on time, temperature, stress, and strain<br />

rate. [and electrical field]<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

41


Stress<br />

Full Tendon Stress/Strain Curve<br />

Strain<br />

A = Relaxed (Elastic)<br />

B = Operating (Hysteresis)<br />

C = Overload (Plastic)<br />

D = Failure<br />

E = Rupture<br />

Chila, Anthony. Foundations <strong>of</strong> <strong>Osteopathic</strong> Medicine, 3rd Edition. Lippincott Williams & Wilkins, 2010<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

42


Stress<br />

Elastic Deformation<br />

P<br />

E Y<br />

Strain<br />

PD<br />

unloading<br />

Strain<br />

U<br />

R<br />

Ken Lossing, DO<br />

A strain applied to a tissue will<br />

result in a stress in the tissue<br />

P=Proportionality limit-linear<br />

until then, and loading is<br />

matched with unloading<br />

E=elastic limit<br />

Y= yield strength, considerable<br />

elongation occurs without<br />

corresponding increase <strong>of</strong> stress<br />

PD= Plastic deformation area<br />

U=ultimate strength<br />

R=rupture<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

43


Stress<br />

Plastic Deformation<br />

P<br />

E Y<br />

Strain<br />

PD<br />

Strain<br />

U<br />

R<br />

Ken Lossing, DO<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

A stress load that is<br />

larger than the yield<br />

strength <strong>of</strong> a tissue will<br />

cause a plastic (or<br />

permanent)<br />

deformation.<br />

The whole curve<br />

changes.<br />

The plastic deformation<br />

will remain unless<br />

something changes it.<br />

Sounds like a visceral<br />

dysfunction!<br />

44


Summary<br />

Force Effects in Connective Tissues<br />

•Elastic Deformation<br />

•Plastic Deformation<br />

•Viscosity<br />

•Stress<br />

•Strain<br />

•Creep<br />

•Hysteresis<br />

•Temperature<br />

•Density<br />

Pizoelectricity<br />

Chila, Anthony. Foundations <strong>of</strong> <strong>Osteopathic</strong> Medicine, 3rd Edition. Lippincott Williams & Wilkins, 2010<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

45


Pizoelectric properties <strong>of</strong><br />

Collagen<br />

Transducer (Stress > Current > vibration)<br />

Biphasic signal (- load, + release)<br />

Stress related signal (Current α Stress)<br />

Stimulates osteocytes (- charge)<br />

Stimulates and directs the migration <strong>of</strong> electrically<br />

sensitive cells (chemotaxis)<br />

Activates cells (electro-sensitive cells)<br />

Chila, Anthony. Foundations <strong>of</strong> <strong>Osteopathic</strong> Medicine, 3rd Edition. Lippincott Williams & Wilkins, 2010<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

46


Acupuncture is a pizoelectric<br />

fascial phenomenon.<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

47


Now look at applications<br />

Visceral<br />

Mechanical<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

48


Visceral (Broad) Ligament<br />

VS<br />

Sacral Ligament<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

49


Comparison <strong>of</strong> Young’s Modulus<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

E = 1500 MPa<br />

E = 150 MPa<br />

0 5 10 15<br />

Fascia<br />

Tendon<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD 50


As Applied to Visceral Dysfunction<br />

Constantly applied loads on visceral ligaments and fascia will<br />

have caused them to maximally elongate and to stiffen as a<br />

result <strong>of</strong> the molecular re-arrangement.<br />

Releasing the cause <strong>of</strong> the chronic loading by re-balancing<br />

muscles, reducing joint restrictions, and balancing fascial strain<br />

patterns, internal stress <strong>of</strong> the tissues is reduced.<br />

Reduction <strong>of</strong> the internal stress and stiffness causes release <strong>of</strong><br />

constrained fluids held with in, such a lymph, venus and arteriol<br />

vessels.<br />

Circulation returns, pain is reduced, and function returns.<br />

Temperature changes occur; heat <strong>of</strong> inflammation is reduced,<br />

heat <strong>of</strong> circulation is increased, and heat <strong>of</strong> tissue molecular rearrangement<br />

is increased.<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

51


Visceral Dysfunction<br />

“Impaired or altered mobility or motility <strong>of</strong> the visceral<br />

system and related fascial, neurological, vascular,<br />

skeletal, and lymphatic elements”.<br />

<strong>American</strong> <strong>Osteopathic</strong> Association Glossary, 2011<br />

This is reflected in abnormal motion tests,<br />

showing a change in the distensability <strong>of</strong><br />

the attachments, or a change in their<br />

normal viscoelasticity.<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

52


SO,(to quote Dr. Lossing):<br />

If there is a visceral dysfunction, the ligament has a<br />

certain amount <strong>of</strong> strain stored (potential) energy-<br />

“potency”, in a certain direction, and that tissue has a<br />

certain strain rate (speed) that it will respond to. This<br />

results in an altered viscoelasticity curve for that<br />

ligament. ( The viscosity is more, the elasticity is less).<br />

When the internal strain is exactly matched, by<br />

application <strong>of</strong> force, direction, and speed, the tissue<br />

will change. Increasing the fluid exchange should<br />

accelerate the change. In the process there is a<br />

dissipation <strong>of</strong> heat, movement <strong>of</strong> fluid, and a<br />

restructuring <strong>of</strong> the elasticity curve.<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

53


Multiple strains<br />

50<br />

30<br />

10<br />

20<br />

Ken Lossing, DO<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

The body generally<br />

accumulates many strains<br />

over a life time. The strain<br />

takes a certain amount <strong>of</strong><br />

force to hold it there,<br />

exerting tension into the<br />

fascia. The one with the<br />

most force will have the<br />

biggest effect on the fascia.<br />

Therefore, removing the<br />

biggest strain will have the<br />

largest effect on the body<br />

54


Ken Lossing, DO<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

Lines <strong>of</strong> tension<br />

Liver-superiorly-coronary,<br />

triangular and falciform<br />

ligaments to resp<br />

diaphragm- inferiorly-<br />

right kidney<br />

Right kidney, colon<br />

iliacus and psoas<br />

Pancreas can affect whole<br />

peritoneum, duodenum,<br />

both kidneys, stomach,<br />

etc..<br />

55


Visceral Dysfunction, a Plastic<br />

Deformation<br />

Stress<br />

E Y<br />

P<br />

Potency<br />

Strain<br />

March 22-23, 2012<br />

Strain<br />

U<br />

R<br />

Ken Lossing, DO<br />

A stress load that is<br />

larger than the yield<br />

strength <strong>of</strong> a tissue will<br />

cause a plastic or<br />

permanent deformation.<br />

The area under the<br />

graph represents<br />

therapeutic gold, the<br />

potency <strong>of</strong> the stored<br />

charge.<br />

The distensability <strong>of</strong> the<br />

tissue is changed<br />

C. L. Nicodemus, DO, PhD<br />

56


Ligaments and Fluid Shift<br />

With minimal additional<br />

mechanical tension in ligaments,<br />

the first fluid vessels to be<br />

Neurovascular Bundle<br />

compressed (compromised) will<br />

be those <strong>of</strong> lowest pressure, the<br />

Artery Vein<br />

lymphatic vessels- relative<br />

edema, retention <strong>of</strong> metabolic<br />

byproducts.<br />

Nerve<br />

Lymph vessel<br />

Ken Lossing, DO<br />

With increased tension, comes<br />

venous congestion, increased<br />

retention <strong>of</strong> metabolic<br />

byproducts<br />

and with more tension comes<br />

arterial compression- decreased<br />

nutrition, oxygen, and eventual<br />

death.<br />

“obstructive lymphedema” -<br />

Robbins Pathologic Basis <strong>of</strong><br />

Disease March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

57


Barriers<br />

Physiologic Barrier: the limit <strong>of</strong> active motion.<br />

Anatomic Barrier: The limit <strong>of</strong> motion imposed by anatomic<br />

structure: the limit <strong>of</strong> passive motion.<br />

Neutral: The point <strong>of</strong> balance <strong>of</strong> an articular surface from which<br />

all the motions physiologic to that articulation may take place<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

Ken Lossing, DO<br />

58


Mechanical<br />

End feel<br />

Tightness<br />

Bogginess<br />

Hypertonic<br />

Stiff<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

59


Motion testing<br />

Elastic Barrier:<br />

The range<br />

between the<br />

physiologic<br />

barrier and<br />

anatomic<br />

barrier <strong>of</strong><br />

motion in which<br />

passive<br />

ligamentous<br />

stretching<br />

occurs before<br />

tissue<br />

disruption.<br />

If we move a ligament to its<br />

physiological barrier, it removes any<br />

slack in the ligament and starts to<br />

engage the elasticity <strong>of</strong> the ligament<br />

At this point, we are still below the<br />

elasticity limit <strong>of</strong> that tissue.<br />

When we remove the straining force,<br />

the ligament returns to it’s original<br />

configuration- an elastic deformation.<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

60


This Applies to the whole body<br />

Embryology, Histology , Gross anatomy,<br />

micro anatomy.<br />

Ear, nose and throat<br />

Visceral System<br />

Lymphatic system<br />

Nervous System<br />

Endocrine system, immune system<br />

Musculoskeletal System<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

61


Summary<br />

Therefore, we need to expand our vision <strong>of</strong><br />

osteopathy, to have the same vision as Dr Still.<br />

All problems/symptoms that a patient experiences<br />

may have a functional component that is treatable.<br />

Most <strong>of</strong> how we diagnose and treat is a function <strong>of</strong><br />

its viscoelasticity….<br />

No matter which dysfunction or treatment model<br />

we use.<br />

A very unifying idea!<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

62


Thank you!<br />

Any questions?<br />

Niles, Superdog<br />

March 22-23, 2012 C. L. Nicodemus, DO, PhD<br />

63

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!