06.05.2013 Views

Sideritis in mood disorders and ADHD

Sideritis in mood disorders and ADHD

Sideritis in mood disorders and ADHD

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Extracts of <strong>Sideritis</strong> scardica as <strong>in</strong>hibitors of monoam<strong>in</strong>e transporters:<br />

A pharmacological mechanism for efficacy <strong>in</strong> <strong>mood</strong> <strong>disorders</strong> <strong>and</strong> attention-deficit<br />

hyperactivity disorder (<strong>ADHD</strong>)<br />

Ra<strong>in</strong>er Knörle<br />

Aim of the study: <strong>Sideritis</strong> species are traditionally used with<strong>in</strong> the mediterranean area for the cure of cold cough<br />

<strong>and</strong> for the treatment of gastro<strong>in</strong>test<strong>in</strong>al <strong>disorders</strong>. The aim of this study was to <strong>in</strong>vestigate the effects of <strong>Sideritis</strong><br />

scardica extracts on the monoam<strong>in</strong>e transporters <strong>and</strong> to derive possible medic<strong>in</strong>al applications from the<br />

pharmacological profile of the extracts.<br />

Methods: We have studied the effect of various <strong>Sideritis</strong> scardica extracts on seroton<strong>in</strong>, noradrenal<strong>in</strong>e <strong>and</strong><br />

dopam<strong>in</strong>e uptake <strong>in</strong>to rat bra<strong>in</strong> synaptosomes <strong>and</strong> seroton<strong>in</strong> uptake <strong>in</strong>to human JAR cells.<br />

Results: All extracts <strong>in</strong>hibited the uptake of all three monoam<strong>in</strong>es <strong>in</strong>to rat bra<strong>in</strong> synaptosomes by their respective<br />

transporters, the alcoholic extracts be<strong>in</strong>g more effective than the water extract. EC50 values were <strong>in</strong> the range of<br />

30-40 µg/ml. Inhibition of the human seroton<strong>in</strong> transporter by the methanol extract was even more effective<br />

(EC50: 1,4 µg/ml). Comb<strong>in</strong><strong>in</strong>g <strong>Sideritis</strong> ethanol extract <strong>and</strong> fluvoxam<strong>in</strong>e resulted <strong>in</strong> a leftward shift of the<br />

fluvoxam<strong>in</strong>e concentration-response curve.<br />

Conclusions: The pharmacological profile of <strong>Sideritis</strong> scardica extracts suggests their use <strong>in</strong> the phytochemical<br />

therapy of mental <strong>disorders</strong> associated with a malfunction<strong>in</strong>g monoam<strong>in</strong>ergic neurotransmission, like major<br />

depression or the attention-deficit hyperactivity disorder.<br />

1. Introduction<br />

The genus <strong>Sideritis</strong> (Lamiaceae) comprises about<br />

150 species distributed ma<strong>in</strong>ly <strong>in</strong> the mediterranean<br />

area <strong>and</strong> <strong>in</strong> the moderate zones of Asia. The taxa<br />

are attributed to three sections: sect. <strong>Sideritis</strong>, sect.<br />

Empedoclia (Raf<strong>in</strong>.) Bentham. <strong>and</strong> sect. Hesiodora<br />

Bentham. They are grow<strong>in</strong>g <strong>in</strong> low-fertility hilly<br />

<strong>and</strong> mounta<strong>in</strong>ous areas at over 800-1000 m altitude<br />

(1,2).<br />

Plants of the genus <strong>Sideritis</strong> are widely used <strong>in</strong> folk<br />

medic<strong>in</strong>e <strong>in</strong> the eastern mediterranean area for the<br />

cure of cold cough <strong>and</strong> for the treatment of<br />

gastro<strong>in</strong>test<strong>in</strong>al <strong>disorders</strong>. This is due to their anti<strong>in</strong>flammatory<br />

(3,4), antibacterial <strong>and</strong> antifungal<br />

(5,6) activities. Studies on the pharmacological<br />

action of <strong>Sideritis</strong> revealed diuretic (7), antioxidant<br />

(8) <strong>and</strong> analgesic effects (9).<br />

<strong>Sideritis</strong> has become very fashionable <strong>in</strong> Germany<br />

recently <strong>and</strong> is found <strong>in</strong> a variety of shops marketed<br />

as “Bergtee” or “Griechischer Bergtee”. The herb is<br />

sold cut or sometimes even whole, the latter mak<strong>in</strong>g<br />

identification much easier. The majority of species<br />

sold <strong>in</strong> Germany consists of <strong>Sideritis</strong> syriaca,<br />

<strong>Sideritis</strong> dichotoma <strong>and</strong> <strong>Sideritis</strong> scardica. The<br />

important role of the leaves <strong>and</strong> flower<strong>in</strong>g tops of<br />

<strong>Sideritis</strong> as traditional tea <strong>in</strong> the eastern<br />

mediterranean area <strong>and</strong> Spa<strong>in</strong> (mounta<strong>in</strong> tea,<br />

malotira, dag cay, té de puerto) has imposed the<br />

need of cultivation of <strong>Sideritis</strong> s<strong>in</strong>ce the production<br />

from wild-collected plants was <strong>in</strong>sufficient to cover<br />

the dem<strong>and</strong> of market.<br />

The chemical constituents of <strong>Sideritis</strong> have been<br />

<strong>in</strong>vestigated for a long time. The essential oil of all<br />

<strong>Sideritis</strong> species ma<strong>in</strong>ly consists of α-p<strong>in</strong>ene, βp<strong>in</strong>ene,<br />

β-caryophyllene, caryophyllene oxide,<br />

limonene, 1,8-c<strong>in</strong>eole, carvacrol, myrcene,<br />

germacrene D, spathulenol, α-bisabolol, fenchone<br />

<strong>and</strong> sab<strong>in</strong>ene (10,11). The ma<strong>in</strong> components vary<br />

between the species. In addition, 8-hydroxyflavone<br />

allosylglucosides <strong>and</strong> p-coumaroylglucosides are<br />

found <strong>in</strong> several <strong>Sideritis</strong> species (12). For some<br />

species the presence of phenylpropanoid glycosides<br />

(3) or kaurane diterpenoids (13,14) is reported.<br />

Andalusol (ent-6α-8α-18-trihydroxy-13(16),14labdadiene),<br />

a diterpene found <strong>in</strong> <strong>Sideritis</strong> foetens,<br />

has been shown to <strong>in</strong>hibit iNOS expression <strong>in</strong><br />

macrophages. It is supposed that this effect is<br />

caused by a transcriptional mechanism. This<br />

<strong>in</strong>hibition of iNOS by <strong>and</strong>alusol <strong>and</strong> related<br />

substances might be responsible for the anti<strong>in</strong>flammatory<br />

effect of <strong>Sideritis</strong> species, s<strong>in</strong>ce iNOS<br />

is the enzyme responsible for the high-output NO<br />

synthesis (15).<br />

An imbalance <strong>in</strong> monoam<strong>in</strong>ergic neurotransmission<br />

is considered to be responsible for a multitude of<br />

<strong>mood</strong> <strong>disorders</strong>. Mood <strong>disorders</strong> <strong>and</strong> conditions of<br />

impaired or dim<strong>in</strong>ished cognition <strong>and</strong> attention<br />

affect more than one <strong>in</strong> every four persons <strong>in</strong> the<br />

developed world. Representative examples <strong>in</strong>clude<br />

depressive <strong>disorders</strong>, generalised anxiety <strong>disorders</strong><br />

or the attention-deficit hyperactivity disorder. In the<br />

central nervous system, dopam<strong>in</strong>e is <strong>in</strong>volved <strong>in</strong><br />

controll<strong>in</strong>g locomotion, cognition, affect <strong>and</strong> <strong>mood</strong>,<br />

noradrenal<strong>in</strong>e is <strong>in</strong>volved <strong>in</strong> modulat<strong>in</strong>g attention,


work<strong>in</strong>g memory, behavioural <strong>in</strong>hibition, plann<strong>in</strong>g,<br />

alertness, arousal, <strong>mood</strong> <strong>and</strong> vigilance. Seroton<strong>in</strong><br />

plays a role <strong>in</strong> <strong>mood</strong>, aggression, anxiety, appetite,<br />

sleep, cognition, learn<strong>in</strong>g <strong>and</strong> locomotion.<br />

Most antidepressants <strong>in</strong>crease synaptic levels of the<br />

monoam<strong>in</strong>e neurotransmitter seroton<strong>in</strong>. They may<br />

also enhance the levels of two other<br />

neurotransmitters, noradrenal<strong>in</strong>e <strong>and</strong> dopam<strong>in</strong>e.<br />

This observation gave rise to the monoam<strong>in</strong>e<br />

hypothesis of depression. In its contemporary<br />

formulation, the monoam<strong>in</strong>e hypothesis postulates<br />

that the deficit of certa<strong>in</strong> neurotransmitters is<br />

responsible for the correspond<strong>in</strong>g features of<br />

depression. There are several different monoam<strong>in</strong>e<br />

transporters: the dopam<strong>in</strong>e transporter DAT, the<br />

noradrenal<strong>in</strong>e transporter NET <strong>and</strong> the seroton<strong>in</strong><br />

transporter SERT. Modern antidepressants typically<br />

work by b<strong>in</strong>d<strong>in</strong>g to the correspond<strong>in</strong>g transporter<br />

<strong>and</strong> thereby <strong>in</strong>hibit<strong>in</strong>g seroton<strong>in</strong>, noradrenal<strong>in</strong>e or<br />

dopam<strong>in</strong>e reuptake <strong>and</strong> rais<strong>in</strong>g active levels <strong>in</strong> the<br />

synapse (16).<br />

Attention-deficit hyperactivity disorder (<strong>ADHD</strong>) is<br />

a heterogeneous behavioural disorder characterised<br />

by <strong>in</strong>attention or lack of focus, hyperactivity <strong>and</strong><br />

impulsivity. Recent genetic <strong>and</strong> neuroimag<strong>in</strong>g<br />

studies provide evidence for contributions of a<br />

monoam<strong>in</strong>ergic dysfunction <strong>in</strong> <strong>ADHD</strong>. The<br />

efficacy of medications that stimulate the<br />

dopam<strong>in</strong>ergic <strong>and</strong> noradrenergic systems suggests<br />

that normaliz<strong>in</strong>g their activities <strong>in</strong> relevant bra<strong>in</strong><br />

areas is necessary for the treatment of <strong>ADHD</strong> (17).<br />

Especially <strong>in</strong> the case of central nervous system<br />

<strong>disorders</strong>, a large majority of the patients would<br />

prefer nature medic<strong>in</strong>e (18). Example of plants with<br />

central nervous action are Valeriana offic<strong>in</strong>alis<br />

(valerian) <strong>and</strong> Humulus lupulus (hops), both used<br />

for sleep disturbances, or Passiflora <strong>in</strong>carnata<br />

(passion fruit) <strong>and</strong> Hypericum perforatum (St.<br />

John’s wort) used for the treatment of affective<br />

<strong>disorders</strong>.<br />

Although Hypericum extracts are well established<br />

<strong>in</strong> the phytotherapy of depression, it would be<br />

desirable to have other phytopharmaceutical entities<br />

with a proof of action for the therapy of central<br />

nervous <strong>disorders</strong> caused by an imbalance <strong>in</strong><br />

monoam<strong>in</strong>e neurotransmission. The aim of this<br />

study was to <strong>in</strong>vestigate the effects of <strong>Sideritis</strong><br />

scardica extracts on the monoam<strong>in</strong>e transporters<br />

<strong>and</strong> to derive possible medic<strong>in</strong>al applications from<br />

the pharmacological profile of the extracts.<br />

2. Materials <strong>and</strong> methods<br />

2.1 Plant extracts<br />

Farm-cultivated aerial parts of <strong>Sideritis</strong> scardica<br />

were obta<strong>in</strong>ed from Tee Gschwendner,<br />

Meckenheim, Germany (Product No.: 1127, Lot:<br />

PSA07080901). The raw plant material was<br />

analysed <strong>and</strong> characterised at the trader’s<br />

laboratory. Voucher specimens of the crude<br />

botanicals are deposited at the trader’s facilities.<br />

The dry herb was ground <strong>and</strong> extracts were<br />

prepared by boil<strong>in</strong>g the plant material for 1 h under<br />

reflux with the respective solvent (water, methanol,<br />

70% ethanol). The extracts were filtered <strong>and</strong> dried<br />

by rotary evaporation. Yields of the extract was<br />

320-340 mg (water extract), 100-120 mg per g plant<br />

material (methanol extract) <strong>and</strong> 200-240 mg extract<br />

per g plant material (70% ethanol extract).<br />

2.2 Monoam<strong>in</strong>e uptake experiments<br />

2.2.1 Rat bra<strong>in</strong> synaptosome experiments<br />

Male Wistar rats (250-300 g) were decapitated<br />

under CO2 anaesthesia <strong>and</strong> the bra<strong>in</strong> was quickly<br />

removed. Cortex was prepared on ice. The cortical<br />

tissue was homogenised <strong>in</strong> 10 volumes ice cold<br />

0.32 M sucrose/10 mM HEPES pH 7,4. The<br />

homogenate was centrifuged for 10 m<strong>in</strong> at 4° C <strong>and</strong><br />

900*g. The supernatant was centrifuged aga<strong>in</strong> for<br />

10 m<strong>in</strong> at 4° C <strong>and</strong> 11000*g. The supernatant was<br />

discarded <strong>and</strong> the pellet was kept on ice. At the<br />

beg<strong>in</strong>n<strong>in</strong>g of the experiment, the pellet was<br />

resuspended <strong>in</strong> buffer to yield a suspension with a<br />

total prote<strong>in</strong> content of 20-30 µg/ml.<br />

The uptake experiments were performed <strong>in</strong> 96 well<br />

filter plates (GF-C glass fiber filter Multiscreen FB,<br />

Millipore, Schwalbach, Germany). Each well was<br />

washed with 250 µl of buffer conta<strong>in</strong><strong>in</strong>g 121 mM<br />

NaCl, 1.8 mM KCl, 1.3 mM CaCl2, 1.2 mM<br />

MgSO4, 25 mM NaHCO3, 1.2 mM KH2PO4, 11<br />

mM glucose, 0.57 mM ascorbic acid, saturated with<br />

95% O2/5% CO2, f<strong>in</strong>al pH 7.4. 50 µM pargyl<strong>in</strong>e<br />

were added for the <strong>in</strong>hibition of MAO. 50 µl<br />

synaptosome preparation <strong>in</strong> buffer was added to<br />

each well <strong>and</strong> <strong>in</strong>cubated with various<br />

concentrations of extracts dissolved <strong>in</strong> DMSO (f<strong>in</strong>al<br />

concentration of DMSO 10 µl/well, 8 wells per<br />

extract concentration) <strong>in</strong> a total volume of 240 µl<br />

for 10 m<strong>in</strong>. After addition of 10 µl of a 100 nM<br />

seroton<strong>in</strong> solution <strong>in</strong> buffer conta<strong>in</strong><strong>in</strong>g 0.1 µCi of<br />

[³H]-seroton<strong>in</strong> the plates were <strong>in</strong>cubated for 10 m<strong>in</strong><br />

at room temperature, the uptake buffer was then<br />

rapidly filtered off, <strong>and</strong> the filter was washed three<br />

times with 250 µl buffer. The filters were punched<br />

out <strong>and</strong> transferred <strong>in</strong>to sc<strong>in</strong>tillation vials for liquid<br />

sc<strong>in</strong>tillation count<strong>in</strong>g. Nonspecific uptake was<br />

def<strong>in</strong>ed as uptake <strong>in</strong> the presence of 10 µM<br />

fluvoxam<strong>in</strong>e.<br />

Noradrenal<strong>in</strong>e <strong>and</strong> dopam<strong>in</strong>e uptake experiments<br />

were performed as described above. The f<strong>in</strong>al<br />

concentrations of radiolabelled transmitter were 20<br />

nM ([³H]-noradrenal<strong>in</strong>e) or 10 nM ([³H]dopam<strong>in</strong>e).<br />

The plates were <strong>in</strong>cubated for 15 m<strong>in</strong> at<br />

37° C. Unspecific b<strong>in</strong>d<strong>in</strong>g was determ<strong>in</strong>ed <strong>in</strong> the<br />

presence of 10 µM nomifens<strong>in</strong>e.<br />

2


2.2.2 Uptake experiments us<strong>in</strong>g JAR cells<br />

In addition, seroton<strong>in</strong> uptake experiments were<br />

performed with human placental choriocarc<strong>in</strong>oma<br />

cells (JAR) which constitutively express the human<br />

seroton<strong>in</strong> transporter hSERT.<br />

JAR cells (DSMZ, Braunschweig, Germany) were<br />

grown <strong>in</strong> RPMI-1640 medium conta<strong>in</strong><strong>in</strong>g Lglutam<strong>in</strong>e,<br />

10% foetal calf serum, 100 U/ml<br />

penicill<strong>in</strong>, <strong>and</strong> 100 mg/ml streptomyc<strong>in</strong> at 37° C <strong>in</strong><br />

an atmosphere of 5% CO2, 95% air. The uptake<br />

experiments were performed <strong>in</strong> poly-(D-lys<strong>in</strong>e)coated<br />

24-well plates (1 day after plat<strong>in</strong>g; 50000 -<br />

200000 cells/well). Each well was washed twice<br />

with 1 ml of buffer conta<strong>in</strong><strong>in</strong>g 10 mM HEPES, 120<br />

mM NaCl, 3 mM KCl, 2 mM CaCl2, 2 mM MgCl2,<br />

5 mM glucose <strong>and</strong> 0.57 mM ascorbic acid f<strong>in</strong>al pH<br />

7.3 <strong>and</strong> <strong>in</strong>cubated with various concentrations of<br />

extracts dissolved <strong>in</strong> DMSO (f<strong>in</strong>al concentration of<br />

DMSO 10 µl/well, 4 wells per concentration) <strong>in</strong> a<br />

total volume of 1 ml. After addition of 10 µl of a<br />

100 nM seroton<strong>in</strong> solution <strong>in</strong> buffer conta<strong>in</strong><strong>in</strong>g 0.1<br />

µCi of [³H]-seroton<strong>in</strong> the plates were <strong>in</strong>cubated for<br />

10 m<strong>in</strong> at room temperature, the uptake buffer was<br />

then rapidly aspirated, <strong>and</strong> the cells were washed<br />

three times with 1 ml buffer. Cells were lysed with<br />

0.5 ml of 0.5 M NaOH <strong>and</strong> transferred <strong>in</strong>to<br />

sc<strong>in</strong>tillation vials for liquid sc<strong>in</strong>tillation count<strong>in</strong>g.<br />

Nonspecific uptake was def<strong>in</strong>ed as uptake <strong>in</strong> the<br />

presence of 10 µM fluvoxam<strong>in</strong>e.<br />

2.3 Effect of <strong>Sideritis</strong> scardica extracts on<br />

cell viability<br />

The effect of <strong>Sideritis</strong> scardica extracts on cell<br />

viability was <strong>in</strong>vestigated by measur<strong>in</strong>g lactate<br />

dehydrogenase (LDH), an enzyme located<br />

<strong>in</strong>tracellularily which is released <strong>in</strong>to the<br />

extracellular space when the cells are damaged.<br />

<strong>Sideritis</strong> extracts were <strong>in</strong>vestigated <strong>in</strong><br />

concentrations of 50 µg/ml <strong>and</strong> 500 µg/ml. The<br />

JAR cells were <strong>in</strong>cubated at 20° C with the extracts<br />

<strong>in</strong> uptake buffer for 3 h. Assay conditions were<br />

adopted from Bergmeyer <strong>and</strong> Bernt (19). Briefly,<br />

100 µl 69 mM sodium pyruvate <strong>in</strong> 100 mM sodium<br />

phosphate buffer pH 7.5 were added to 2.8 ml 0,13<br />

mM β-NADH solution <strong>in</strong> sodium phosphate buffer.<br />

100 µl of JAR cell supernatant (or 100 µl buffer for<br />

the control experiments) was added <strong>and</strong> the change<br />

<strong>in</strong> absorption at 340 nm was recorded at fixed times<br />

of 15 m<strong>in</strong>, 30 m<strong>in</strong> <strong>and</strong> 45 m<strong>in</strong>.<br />

2.4 Statistics<br />

Radioactivity accumulated <strong>in</strong> the filters was<br />

normalised as “percent of specific uptake” always<br />

referr<strong>in</strong>g to the specific uptake obta<strong>in</strong>ed from total<br />

m<strong>in</strong>us non-specific uptake. EC50 values were<br />

calculated from the normalised data us<strong>in</strong>g iterative<br />

curve fitt<strong>in</strong>g rout<strong>in</strong>es (SigmaPlot® 8.0, SPSS<br />

Science, Chicago, Ill<strong>in</strong>ois, USA). The errors given<br />

<strong>in</strong> this paper represent st<strong>and</strong>ard error of mean<br />

(S.E.M.).<br />

3. Results<br />

3.1 Rat bra<strong>in</strong> synaptosomes<br />

Concentration-response curves were recorded for<br />

the <strong>in</strong>hibition of the monoam<strong>in</strong>e transporters. The<br />

methanol extract of <strong>Sideritis</strong> scardica <strong>in</strong>hibited the<br />

uptake of [³H]-seroton<strong>in</strong>, [³H]-noradrenal<strong>in</strong>e <strong>and</strong><br />

[³H]-dopam<strong>in</strong>e <strong>in</strong>to rat bra<strong>in</strong> synaptosomes with<br />

EC50 values of 31.0 µg/ml [16.4; 58.6] for seroton<strong>in</strong><br />

uptake, 42.3 µg/ml [31.8; 56.4] for noradrenal<strong>in</strong>e<br />

uptake <strong>and</strong> 37.0 µg/ml [27.5; 49.8] for dopam<strong>in</strong>e<br />

uptake (Figure 1). Maximum <strong>in</strong>hibition was 108%<br />

± 6% for seroton<strong>in</strong>, 90% ± 6% for noradrenal<strong>in</strong>e<br />

<strong>and</strong> 89% ± 6% for dopam<strong>in</strong>e uptake.<br />

The water extract of <strong>Sideritis</strong> scardica also<br />

<strong>in</strong>hibited the uptake of the monoam<strong>in</strong>es with<br />

similar EC50 values but mostly lower maximum<br />

effects. EC50 values were 38.5 µg/ml [20.4; 72.8]<br />

for seroton<strong>in</strong> uptake, 30.6 [25.1; 37.5] for<br />

noradrenal<strong>in</strong>e uptake <strong>and</strong> 45.5 [31.4; 66.0] for<br />

dopam<strong>in</strong>e uptake. Maximum <strong>in</strong>hibition was 70% ±<br />

8% for seroton<strong>in</strong>, 122 % ± 13% for noradrenal<strong>in</strong>e<br />

<strong>and</strong> 57% ± 6% for dopam<strong>in</strong>e uptake.<br />

3.2 JAR cells (human seroton<strong>in</strong> transporter<br />

hSERT)<br />

3.2.1 Inhibition of hSERT by <strong>Sideritis</strong> scardica<br />

extract<br />

The concentration-response curve for the uptake of<br />

seroton<strong>in</strong> by the human seroton<strong>in</strong> transporter<br />

hSERT was recorded <strong>in</strong> this set of experiments.<br />

<strong>Sideritis</strong> scardica methanol extract <strong>in</strong>hibited the<br />

uptake of [³H]-seroton<strong>in</strong> <strong>in</strong>to the human JAR cell<br />

l<strong>in</strong>e with a EC50 of 1.4 µg/ml [0.6; 3.5] <strong>and</strong> a<br />

maximum <strong>in</strong>hibition of 70% ± 9%. The 70%<br />

ethanol extract showed <strong>in</strong> this system an EC50 value<br />

of 55.9 µg/ml [31.6; 99.3] <strong>and</strong> a maximum<br />

<strong>in</strong>hibition of 96% ± 12%.<br />

3.2.2. Shift of the fluvoxam<strong>in</strong>e dose-response<br />

curve by <strong>Sideritis</strong> scardica 70% ethanol extract<br />

We <strong>in</strong>vestigated the effect of various concentrations<br />

of <strong>Sideritis</strong> on the <strong>in</strong>hibition of seroton<strong>in</strong> uptake by<br />

fluvoxam<strong>in</strong>e. The concentration-response curve of<br />

fluvoxam<strong>in</strong>e (EC50: 3.8 nM [2.2; 6.4]) was shifted<br />

to the left by add<strong>in</strong>g <strong>Sideritis</strong> ethanol extract.<br />

Addition of 10 µg/ml <strong>Sideritis</strong> extract resulted <strong>in</strong> a<br />

EC50 for the comb<strong>in</strong>ation of <strong>Sideritis</strong> <strong>and</strong><br />

fluvoxam<strong>in</strong>e of 1.5 nM [1.2; 1.8], addition of 50<br />

3


µg/ml <strong>Sideritis</strong> extract yielded an EC50 of 0.5 nM<br />

[0.3; 0.7] (Figure 2).<br />

specific seroton<strong>in</strong> uptake<br />

specific noradrenal<strong>in</strong>e uptake<br />

specific dopam<strong>in</strong>e uptake<br />

1,4<br />

1,2<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0,0<br />

-0,2<br />

-7 -6 -5 -4 -3<br />

1,4<br />

1,2<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0,0<br />

log [µg/ml]<br />

-0,2<br />

-7 -6 -5 -4 -3<br />

1,4<br />

1,2<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0,0<br />

log [µg/ml]<br />

-0,2<br />

-7 -6 -5 -4 -3<br />

log [µg/ml]<br />

Figure 1: Concentration-response curves of <strong>Sideritis</strong> scardica<br />

methanol extract for the uptake of seroton<strong>in</strong> (A), noradrenal<strong>in</strong>e<br />

(B) <strong>and</strong> dopam<strong>in</strong>e (C) <strong>in</strong>to rat bra<strong>in</strong> synaptosomes. Values are<br />

expressed as mean ± S.E.M (n=8).<br />

A<br />

B<br />

C<br />

3.3. Effect of <strong>Sideritis</strong> scardica extracts on<br />

cell viability<br />

The LDH assay did not show differences between<br />

controls <strong>and</strong> cells treated with methanolic <strong>Sideritis</strong><br />

scardica extract. Relative LDH activities <strong>in</strong> the<br />

supernatant of the JAR cells were 107% ± 14%<br />

specific seroton<strong>in</strong> uptake<br />

with 50 µg/ml <strong>and</strong> 97% ± 16% with 500 µg/ml<br />

<strong>Sideritis</strong> scardica extract.<br />

1,6<br />

1,4<br />

1,2<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0,0<br />

-0,2<br />

Shift of the fluvoxam<strong>in</strong>e concentration-response curve<br />

for the uptake of seroton<strong>in</strong> <strong>in</strong>to human JAR cells<br />

<strong>in</strong> presence of <strong>Sideritis</strong> scardica ethanol extract.<br />

-0,4<br />

-12 -10 -8 -6 -4<br />

Figure 2: Shift of the fluvoxam<strong>in</strong>e concentration-response curve<br />

for the uptake of seroton<strong>in</strong> <strong>in</strong>to human JAR cells <strong>in</strong> presence of<br />

10 µg/ml <strong>and</strong> 50 µg/ml <strong>Sideritis</strong> scardica ethanol extract. Values<br />

are expressed as mean ± S.E.M. (n=4).<br />

4. Discussion<br />

log [fluvoxam<strong>in</strong>e]<br />

Values are expressed as mean ± S.E.M. (n=4).<br />

fluvoxam<strong>in</strong>e<br />

+10 µg/ml<br />

+50 µg/ml<br />

Previous pharmacological studies have<br />

demonstrated that plants of the genus <strong>Sideritis</strong> have<br />

anti-<strong>in</strong>flammatory (3,4), diuretic (7), antioxidant<br />

(8), analgesic (9) <strong>and</strong> antibacterial <strong>and</strong> antifungal<br />

(5,6) effects. The herbs are traditionally used<br />

throughout the mediterranean regions for colds <strong>and</strong><br />

respiratory problems. They also are used as an anti<strong>in</strong>flammatory<br />

remedy <strong>and</strong> to reduce fever. Tea from<br />

<strong>Sideritis</strong> species has become very fashionable <strong>in</strong><br />

Germany recently, <strong>and</strong> is to be found <strong>in</strong> a wide<br />

variety of shops. In this study, we have focussed on<br />

the commercially available <strong>and</strong> farm-cultivated<br />

species <strong>Sideritis</strong> scardica, one ma<strong>in</strong> constituent of<br />

“Bergtee” <strong>in</strong> Germany <strong>and</strong> have determ<strong>in</strong>ed its<br />

pharmacological profile with drug-screen<strong>in</strong>g<br />

models for the <strong>in</strong>vestigation of monoam<strong>in</strong>e<br />

transporter target<strong>in</strong>g established <strong>in</strong> our laboratory.<br />

The results of the present study illustrate that<br />

<strong>Sideritis</strong> scardica is a potent <strong>in</strong>hibitor of the<br />

monoam<strong>in</strong>e transporters. The water <strong>and</strong> alcoholic<br />

extracts of <strong>Sideritis</strong> scardica <strong>in</strong>hibited the uptake of<br />

seroton<strong>in</strong>, noradrenal<strong>in</strong>e <strong>and</strong> dopam<strong>in</strong>e by their<br />

respective transporters <strong>in</strong> a concentration-dependent<br />

manner. The <strong>in</strong>hibition of the human seroton<strong>in</strong><br />

transporter hSERT (expressed <strong>in</strong> human JAR cells)<br />

by <strong>Sideritis</strong> scardica methanol extract was even<br />

more pronounced than the <strong>in</strong>hibition of the rat bra<strong>in</strong><br />

seroton<strong>in</strong> transporter.<br />

Comb<strong>in</strong><strong>in</strong>g <strong>Sideritis</strong> scardica 70% ethanol extract<br />

with fluvoxam<strong>in</strong>e leads to a leftward shift of the<br />

4


fluvoxam<strong>in</strong>e concentration-response curve without<br />

chang<strong>in</strong>g the maximum <strong>in</strong>hibition. Less<br />

fluvoxam<strong>in</strong>e is needed <strong>in</strong> the presence of <strong>Sideritis</strong><br />

scardica extract to elicit the same level of<br />

biological response. This <strong>in</strong>crease of drug<br />

sensitivity is to be found even at concentrations of<br />

<strong>Sideritis</strong>, which are per se not active at the<br />

seroton<strong>in</strong> transporter. <strong>Sideritis</strong> extract <strong>in</strong>creases the<br />

apparent potency of fluvoxam<strong>in</strong>e <strong>in</strong> a<br />

concentration-dependent manner more than 8-fold,<br />

which may be expla<strong>in</strong>ed by a concerted <strong>in</strong>teraction<br />

of the two seroton<strong>in</strong> uptake blockers with the<br />

seroton<strong>in</strong> transporter. Other effects than only<br />

<strong>in</strong>hibit<strong>in</strong>g seroton<strong>in</strong> transport like allosteric<br />

modulation of the transporter or alteration of the<br />

transporter activity by <strong>Sideritis</strong> scardica extracts<br />

might also be considered.<br />

The lactate dehydrogenase assay showed that<br />

treatment of the JAR cells with <strong>Sideritis</strong> scardica<br />

methanol extract at concentrations up to 500 µg/ml<br />

did not affect cell viability. This demonstrates that<br />

the <strong>in</strong>hibitory action of the extract on the<br />

monoam<strong>in</strong>e transporters does not appear to be due<br />

to variation of cell viability.<br />

In order to exert their mode of action <strong>in</strong> vivo, the<br />

components of the <strong>Sideritis</strong> scardica extracts must<br />

be able to cross the blood bra<strong>in</strong> barrier to reach<br />

their target site. Most drugs cross the blood bra<strong>in</strong><br />

barrier by transmembrane diffusion. This is a nonsaturable<br />

mechanism that depends on the meld<strong>in</strong>g<br />

of the drug <strong>in</strong>to the cell membrane. A high degree<br />

of lipid solubility <strong>and</strong> low molecular weight favour<br />

cross<strong>in</strong>g by this mechanism. Reviews often quote a<br />

cut-off of 400 to 600 g/mol. Other factors<br />

<strong>in</strong>fluenc<strong>in</strong>g the ability of a drug to partition from<br />

blood <strong>in</strong>to the blood bra<strong>in</strong> barrier <strong>in</strong>clude charge,<br />

tertiary structure <strong>and</strong> degree of prote<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g.<br />

Mechanisms for the cross<strong>in</strong>g of the blood bra<strong>in</strong><br />

barrier also <strong>in</strong>clude saturable transporters,<br />

adsorptive endocytosis <strong>and</strong> the extracellular<br />

pathways (20). Substances which come <strong>in</strong>to<br />

consideration as active elements <strong>in</strong> the <strong>Sideritis</strong><br />

scardica extracts comprise, among others, terpenes,<br />

flavonoids <strong>and</strong> phenols. These substances typically<br />

show molecular weights <strong>in</strong> the range of 200 – 400<br />

g/mol. They are soluble <strong>in</strong> alcohol or aqueous<br />

alcohol <strong>and</strong> therefore are of a lipophilic character.<br />

The <strong>Sideritis</strong> scardica extracts <strong>in</strong>vestigated <strong>in</strong> this<br />

study are therefore likely to cross the blood bra<strong>in</strong><br />

barrier by transmembrane diffusion.<br />

Depressive <strong>disorders</strong> are characterised by an<br />

imbalance <strong>in</strong> monoam<strong>in</strong>ergic neurotransmission.<br />

Based on f<strong>in</strong>d<strong>in</strong>gs from studies of antidepressants<br />

treatment, it may be possible to assign specific<br />

symptoms of depression to specific neurochemical<br />

mechanisms. Seroton<strong>in</strong> may be related to anxiety,<br />

obsessions <strong>and</strong> compulsions; noradrenal<strong>in</strong>e to<br />

alertness <strong>and</strong> energy as well as anxiety, attention<br />

<strong>and</strong> <strong>in</strong>terest <strong>in</strong> life; <strong>and</strong> dopam<strong>in</strong>e to attention,<br />

motivation, pleasure <strong>and</strong> reward as well as <strong>in</strong>terest<br />

<strong>in</strong> life (21). Increas<strong>in</strong>g any of these three<br />

neurotransmitters will elevate <strong>mood</strong>, but the other<br />

elements of depression may be particularly<br />

responsive to elevation of a certa<strong>in</strong><br />

neurotransmitter. It is therefore desirable to have a<br />

remedy which acts on as many monoam<strong>in</strong>ergic<br />

systems as possible.<br />

Extracts of Hypericum perforatum have been used<br />

s<strong>in</strong>ce antiquity for the treatment of depressive<br />

symptoms. The exact mechanisms of action are still<br />

unclear, nevertheless r<strong>and</strong>omised cl<strong>in</strong>ical trials have<br />

shown that Hypericum extracts are more effective<br />

than placebo <strong>and</strong> similarly effective as st<strong>and</strong>ard<br />

antidepressants while hav<strong>in</strong>g better tolerability <strong>in</strong><br />

the acute treatment of major depressive episodes. St<br />

John's wort may rarely cause photosensitivity. This<br />

can lead to visual sensitivity to light <strong>and</strong> to<br />

sunburns <strong>in</strong> situations that would not normally<br />

cause them. The most important risk associated<br />

with Hypericum extracts are <strong>in</strong>teractions with other<br />

drugs. St John's wort has also been shown to cause<br />

multiple drug <strong>in</strong>teractions through <strong>in</strong>duction of the<br />

cytochrome P450 enzyme CYP3A4, but also<br />

CYP2C9. This results <strong>in</strong> the <strong>in</strong>creased metabolism<br />

of those drugs, result<strong>in</strong>g <strong>in</strong> decreased concentration<br />

<strong>and</strong> cl<strong>in</strong>ical effect. Examples of drugs caus<strong>in</strong>g<br />

cl<strong>in</strong>ically-significant <strong>in</strong>teractions with St John's<br />

wort are antiretrovirals, hormonal contraceptives<br />

<strong>and</strong> immunosuppressants (22).<br />

A recent study on the Hypericum perforatum<br />

extract Ze 117 showed that it <strong>in</strong>terferes <strong>in</strong> three<br />

ways with the <strong>in</strong>dividual uptakes of the monoam<strong>in</strong>e<br />

neurotransmitters. EC50 values for this extract were<br />

54 µg/ml for noradrenal<strong>in</strong>e uptake, 350 µg/ml for<br />

dopam<strong>in</strong>e uptake <strong>and</strong> 1600 µg/ml for seroton<strong>in</strong><br />

uptake (23). Therefore, the potency of the<br />

noradrenal<strong>in</strong>e uptake <strong>in</strong>hibition was around 30<br />

times higher than that for seroton<strong>in</strong>, <strong>and</strong> seven<br />

times higher than that of the dopam<strong>in</strong>e uptake<br />

<strong>in</strong>hibition. Comb<strong>in</strong>ation of Hypericum perforatum<br />

with other plant extracts like passion flower of<br />

valerian improve the pharmacological profile of the<br />

phytodrug by synergistic effects, the EC50 of an<br />

ethanolic Hypericum extract for seroton<strong>in</strong> uptake<br />

<strong>in</strong>to rat bra<strong>in</strong> slices was lowered from 177.5 µg/ml<br />

for St. John’s wort extract alone to 37.2 µg/ml <strong>in</strong><br />

the presence of 200 µg/ml of Passiflora extract<br />

(24).<br />

In contrast to St. John’s wort, <strong>Sideritis</strong> scardica<br />

extract has EC50 values for all three types of<br />

monoam<strong>in</strong>e transporters <strong>in</strong> the range of 30-40<br />

µg/ml. With this background, the pharmacological<br />

profile of <strong>Sideritis</strong> scardica extract might be<br />

beneficial for the therapy of depressive <strong>disorders</strong>. It<br />

elevates the extracellular concentration of all three<br />

monoam<strong>in</strong>e neurotransmitters by <strong>in</strong>hibit<strong>in</strong>g their<br />

transporters with similar potency <strong>and</strong> therefore<br />

might ameliorate the symptoms of depression better<br />

5


<strong>and</strong> more powerful than monospecific drugs. In<br />

allopathic pharmacology the debate about the<br />

advantage of dual action antidepressants like<br />

venlafax<strong>in</strong>e <strong>and</strong> duloxet<strong>in</strong>e is still go<strong>in</strong>g on (25,26).<br />

Another possible application of <strong>Sideritis</strong> scardica<br />

extracts as <strong>in</strong>hibitors of the monoam<strong>in</strong>e transporters<br />

consists <strong>in</strong> the therapy of attention-deficit<br />

hyperactivity disorder (<strong>ADHD</strong>). This behavioural<br />

disorder is characterised by <strong>in</strong>attention or lack of<br />

focus, hyperactivity <strong>and</strong> impulsivity. These<br />

symptoms have a childhood onset <strong>and</strong> often persist<br />

<strong>in</strong>to adolescence <strong>and</strong> adulthood. Estimates <strong>in</strong>dicate<br />

that 6- 9% of children <strong>and</strong> adolescents meet<br />

diagnostic criteria for <strong>ADHD</strong> <strong>and</strong> that the<br />

prevalence of <strong>ADHD</strong> <strong>in</strong> adults is around 3-5% (27).<br />

Genetic data <strong>and</strong> collective evidence from<br />

neurobiologic <strong>and</strong> neuropsychologic studies po<strong>in</strong>t<br />

to a predom<strong>in</strong>ant <strong>in</strong>volvement of the<br />

catecholam<strong>in</strong>ergic system <strong>in</strong> <strong>ADHD</strong> (17). Adequate<br />

catecholam<strong>in</strong>ergic modulation of the prefrontal<br />

cortex, the bra<strong>in</strong> region that plays an important role<br />

<strong>in</strong> the physiology of cognition <strong>and</strong> emotion, is<br />

essential for attention <strong>and</strong> vigilance. The<br />

dysfunction of the prefrontal cortex <strong>in</strong> <strong>ADHD</strong> has<br />

been attributed to a decreased catecholam<strong>in</strong>e<br />

function affect<strong>in</strong>g cognition <strong>and</strong> motor <strong>in</strong>hibition.<br />

S<strong>in</strong>ce monoam<strong>in</strong>e transporters are (at least <strong>in</strong> part)<br />

responsible for regulat<strong>in</strong>g extracellular<br />

concentrations of the catecholam<strong>in</strong>es noradrenal<strong>in</strong>e<br />

<strong>and</strong> dopam<strong>in</strong>e, the common treatment of <strong>ADHD</strong><br />

<strong>in</strong>cludes stimulant medications with drugs like<br />

methylphenidate. These stimulants block the<br />

reuptake of noradrenal<strong>in</strong>e <strong>and</strong> dopam<strong>in</strong>e thus ris<strong>in</strong>g<br />

their extracellular levels. Currently, the only<br />

nonstimulant medication approved for the treatment<br />

<strong>ADHD</strong> is atomoxet<strong>in</strong>e, which selectively enhances<br />

extracellular noradrenal<strong>in</strong>e <strong>and</strong> dopam<strong>in</strong>e levels<br />

with<strong>in</strong> the prefrontal cortex (28). Although<br />

noradrenal<strong>in</strong>e <strong>and</strong> dopam<strong>in</strong>e are <strong>in</strong> the ma<strong>in</strong> focus<br />

of pharmacological therapy of <strong>ADHD</strong>, an<br />

additional contribution of the serotonergic system<br />

can not be excluded. Recent genetic <strong>and</strong><br />

neuroimag<strong>in</strong>g studies provide evidence for separate<br />

contributions of altered dopam<strong>in</strong>e <strong>and</strong> seroton<strong>in</strong><br />

function <strong>in</strong> this disorder (29). Most tricyclic<br />

antidepressants act<strong>in</strong>g on seroton<strong>in</strong> <strong>and</strong><br />

noradrenal<strong>in</strong>e transporters are good remedies for<br />

manag<strong>in</strong>g behavioural <strong>and</strong>, to some extent,<br />

cognitive symptoms (30).<br />

Some parents refuse a therapy of their children with<br />

stimulants or chemical drugs due to the possible<br />

side effects of these drugs. Therefore, a large<br />

number of alternative medications of <strong>ADHD</strong> have<br />

been praised. These remedies are often of a<br />

questionable efficacy. Herbal medic<strong>in</strong>es <strong>and</strong> natural<br />

substances which are used for the treatment of<br />

<strong>ADHD</strong> <strong>in</strong>clude G<strong>in</strong>kgo biloba because of the<br />

reputed beneficial effects of this plant upon the<br />

bra<strong>in</strong> (31,32). St. John's wort is also sometimes<br />

used to try to help regulate <strong>mood</strong> <strong>and</strong> behaviour<br />

problems associated with <strong>ADHD</strong> (33). But no one<br />

of these herbal remedies has a proven mechanism<br />

of action which would suggest the use of these<br />

plant extracts for the treatment of <strong>ADHD</strong> or even a<br />

proven efficacy for the treatment of <strong>ADHD</strong> until<br />

today.<br />

<strong>Sideritis</strong> scardica extracts <strong>in</strong>hibit all monoam<strong>in</strong>e<br />

transporters with approximately the same potency.<br />

With this mode of action, they are the first<br />

phytomedical entity with this proven mode of<br />

action. All other remedies used <strong>in</strong> <strong>ADHD</strong> treatment<br />

show selectivity towards only one of the three<br />

transporters. Methylphenidate has higher aff<strong>in</strong>ity to<br />

dopam<strong>in</strong>e transporters than to noradrenal<strong>in</strong>e<br />

transporters <strong>and</strong> very low aff<strong>in</strong>ity for seroton<strong>in</strong><br />

transporters. Atomoxet<strong>in</strong>e on the other h<strong>and</strong><br />

selectively <strong>in</strong>hibits noradrenal<strong>in</strong>e transport, its<br />

action at the seroton<strong>in</strong> transporter is weaker <strong>and</strong> it<br />

shows a low aff<strong>in</strong>ity towards dopam<strong>in</strong>e transporters<br />

(28). <strong>Sideritis</strong> scardica extracts with their ability to<br />

<strong>in</strong>hibit dopam<strong>in</strong>e, noradrenal<strong>in</strong>e <strong>and</strong> seroton<strong>in</strong><br />

uptake to the same extent may turn out to be<br />

beneficial for a phytochemical therapy of <strong>ADHD</strong>.<br />

5. Conclusions<br />

Aqueous <strong>and</strong> alcoholic extracts of <strong>Sideritis</strong> scardica<br />

are able to <strong>in</strong>hibit seroton<strong>in</strong>, noradrenal<strong>in</strong>e <strong>and</strong><br />

dopam<strong>in</strong>e transporters with similar EC50 values. By<br />

<strong>in</strong>hibit<strong>in</strong>g neurotransmitter reuptake the active<br />

levels of the monoam<strong>in</strong>es are elevated with<strong>in</strong> the<br />

synapse. This is a biochemical <strong>and</strong> pharmacological<br />

mode of action which suggests to use <strong>Sideritis</strong><br />

scardica extracts for the treatment of <strong>disorders</strong><br />

associated with an altered or malfunction<strong>in</strong>g<br />

monoam<strong>in</strong>ergic neurotransmission. <strong>Sideritis</strong><br />

scardica extracts may be superior to other plant<br />

extracts <strong>in</strong> the therapy of depressive <strong>disorders</strong>, s<strong>in</strong>ce<br />

the long-term traditional use <strong>in</strong> the mediterranean<br />

area did not reveal side effects of the drug until<br />

now. <strong>Sideritis</strong> scardica extracts also may have a<br />

good potential to get a proof of action as the first<br />

plant extract for the treatment of attention-deficit<br />

hyperactivity disorder (<strong>ADHD</strong>).<br />

Acknowledgements<br />

This study was supported by a grant from the<br />

Bundesm<strong>in</strong>isterium für Wirtschaft und Technologie<br />

(ProInno II; KU 0004501 AJ4).<br />

References<br />

1. Davis PH. Flora of Turkey <strong>and</strong> the east Aegean Isl<strong>and</strong>s, Vol.<br />

7, Ed<strong>in</strong>burgh: Universtity Press, 1982.<br />

2. Strid A. Mounta<strong>in</strong> flora of Greece, Vol 2, Ed<strong>in</strong>burgh:<br />

University Press, 1991.<br />

6


3. Akcos Y et al. Polyphenolic compounds of <strong>Sideritis</strong> lycia <strong>and</strong><br />

their anti-<strong>in</strong>flammatory activitiy. Pharm Biol 1999; 37(2): 118-<br />

122.<br />

4. Alcaraz MJ et al. Anti-<strong>in</strong>flammatory compounds from<br />

<strong>Sideritis</strong> javalambrensis n-hexane extract. J Nat Prod 1989;<br />

52(5): 1088-1091.<br />

5. Dulger B et al. Inhibition of clotrimazole-resistant C<strong>and</strong>ida<br />

albicans by some endemic <strong>Sideritis</strong> species from Turkey.<br />

Fitoterapia 2006; 77(5): 404-405.<br />

6. Kilic T. Isolation <strong>and</strong> biological activity of new <strong>and</strong> known<br />

diterpenoids from <strong>Sideritis</strong> stricta Boiss. & Heldr.. Molecules<br />

2006; 11(4): 257-262.<br />

7. Topcu G et al. Diterpenes from <strong>Sideritis</strong> sipylea <strong>and</strong> S.<br />

dichotoma. Turk J Chem 2002; 26: 189-194.<br />

8. Koleva II et al. Antioxidant activity screen<strong>in</strong>g of extracts from<br />

<strong>Sideritis</strong> species (Labiatae) grown <strong>in</strong> Bulgaria. J Sci Food<br />

Agricult 2003; 83(8): 809-819.<br />

9. Mengh<strong>in</strong>i L et al. Prelim<strong>in</strong>ary evaluation on anti-<strong>in</strong>flammatory<br />

<strong>and</strong> analgesic effects of <strong>Sideritis</strong> syriaca L. herba extracts. J Med<br />

Food 2005; 8(2): 227-231.<br />

10. Chalchat JC, Özcan M. Constituents of the essential oil of<br />

<strong>Sideritis</strong> erythrantha Boiss. & Heldr. var. erythrantha. Gen Appl<br />

Plant Physiology 2005; 31(1-2): 65-70.<br />

11. Schulz H et al. Characterisation of essential oil plants from<br />

Turkey by IR <strong>and</strong> Raman spectroscopy. Vibrational<br />

Spectroscopy 2005; 39: 249-256.<br />

12. Tomas-Barberan FA et al. Flavonoid p-coumaroylglucosides<br />

<strong>and</strong> 8-hydroxyflavone allosylglucosides <strong>in</strong> some labiatae.<br />

Phytochemistry 1992; 31(9): 3097-3102.<br />

13. Bruno M et al. Kaurane Diterpenoids from Three <strong>Sideritis</strong><br />

Species. Turk J Chem 2005; 29: 61-64.<br />

14. Garcia PA et al. Occurrence, biological activities <strong>and</strong><br />

synthesis of kaurane diterpenes <strong>and</strong> their glycosides. Molecules<br />

2007; 12(3): 455-483.<br />

15. De las Heras B et al. Inhibition of NOS-2 expression <strong>in</strong><br />

macrophages through the <strong>in</strong>activation of NF-κB by <strong>and</strong>alusol. Br<br />

J Pharmacol 1999; 128(3): 605-612.<br />

16. Charney DS. Monoam<strong>in</strong>e dysfunction <strong>and</strong> the<br />

pathophysiology <strong>and</strong> treatment of depression. J Cl<strong>in</strong> Psychiatry<br />

1998; 59(Suppl 14): 11-14.<br />

17. Pr<strong>in</strong>ce J. Catecholam<strong>in</strong>e Dysfunction <strong>in</strong> Attention-<br />

Deficit/Hyperactivity Disorder: An Update. J Cl<strong>in</strong><br />

Psychopharmacol 2008; 28(3 Suppl 2): S39–S45.<br />

18. Expert council natural medic<strong>in</strong>e. Pascoe study 2004,<br />

Giessen: Pascoe, 2004.<br />

19. Bergmeyer HU, Bernt E. Lactate dehydrogenase. In:<br />

Bergmeyer HU ed, Methods of enzymatic analysis. New York:<br />

Academic Press, 1974: 574-579.<br />

20. Banks WA. Characteristics of compounds that cross the<br />

blood-bra<strong>in</strong> barrier. BMC Neurol 2009; 9(Suppl 1): S3-S7.<br />

21. Nutt DJ. Relationship of neurotransmitters to the symptoms<br />

of major depressive disorder. J Cl<strong>in</strong> Psychiatry 2008; 69(Suppl<br />

E1): 4-7.<br />

22. L<strong>in</strong>de K. St. John’s wort – An overview. Forsch<br />

Komplementärmed 2009; 16(3): 146–155.<br />

23. Ruedeberg C et al. Hypericum perforatum L. (St. John’s<br />

wort) extract Ze 117 <strong>in</strong>hibits dopam<strong>in</strong>e re-uptake <strong>in</strong> rat striatal<br />

bra<strong>in</strong> slices. An implication for use <strong>in</strong> smok<strong>in</strong>g cessation<br />

treatment? Phytother Res 2010; 24(2): 249-251.<br />

24. McGregor GP et al. Studies of the pharmacological<br />

properties of a comb<strong>in</strong>ation of Hypericum perforatum (St John’s<br />

wort), Passiflora <strong>in</strong>carnata (passion flower) <strong>and</strong> Valeriana<br />

offic<strong>in</strong>alis (valerian) (Neurapas-balance) <strong>in</strong> rat provides evidence<br />

of synergistic effects. Focus Altern Complement Ther 2004;<br />

9:30.<br />

25. Papakostas GI et al. Are antidepressant drugs that comb<strong>in</strong>e<br />

serotonergic <strong>and</strong> noradrenergic mechanisms of action more<br />

effective than the seroton<strong>in</strong> reuptake <strong>in</strong>hibitors <strong>in</strong> treat<strong>in</strong>g major<br />

depressive disorder? A meta-analysis of studies of newer agents.<br />

Biol Psychiatry 2007; 62(11): 1217-1227.<br />

26. Isaac MT. Treat<strong>in</strong>g depression with SNRIs: Who will benefit<br />

most? CNS Spectr 2008; 13(7 Suppl. 11): 15-21.<br />

27. Dopheide JA, Pliszka SR. Attention-deficit-hyperactivity<br />

disorder: an update. Pharmacotherapy 2009; 29(6): 656-679.<br />

28. Bymaster FP et al. Atomoxet<strong>in</strong>e <strong>in</strong>creases extracellular levels<br />

of norep<strong>in</strong>ephr<strong>in</strong>e <strong>and</strong> dopam<strong>in</strong>e <strong>in</strong> prefrontal cortex of rat: a<br />

potential mechanism for efficacy <strong>in</strong> attention<br />

deficit/hyperactivity disorder. Neuropsychopharmacology 2002;<br />

27(5): 699-711.<br />

29. Oades RD. Dopam<strong>in</strong>e-seroton<strong>in</strong> <strong>in</strong>teractions <strong>in</strong> attentiondeficit<br />

hyperactivity disorder<br />

(<strong>ADHD</strong>). Prog Bra<strong>in</strong> Res 2008; 172: 543-565.<br />

30. Popper CW. Pharmacologic alternatives to psychostimulants<br />

for the treatment of<br />

attention-deficit/hyperactivity disorder. Child Adolesc Psychiatr<br />

Cl<strong>in</strong> N Am 2000; 9(3): 605-646.<br />

31. Niederhofer H. G<strong>in</strong>kgo biloba treat<strong>in</strong>g patients with<br />

attention-deficit disorder. Phytother Res 2010; 24(1): 26-27.<br />

32. Salehi B et al. G<strong>in</strong>kgo biloba for attentiondeficit/hyperactivity<br />

disorder <strong>in</strong> children <strong>and</strong> adolescents: a<br />

double bl<strong>in</strong>d, r<strong>and</strong>omized controlled trial. Prog<br />

Neuropsychopharmacol Biol Psychiatry 2010; 34(1): 76-80.<br />

33. Rucklidge JJ et al. Nutrient supplementation approaches <strong>in</strong><br />

the treatment of <strong>ADHD</strong>. Expert Rev Neurother 2009; 9(4): 461-<br />

476.<br />

Contact:<br />

Dr. Ra<strong>in</strong>er Knörle<br />

IBAM GbR Dr. Ra<strong>in</strong>er Knörle & Dr. Peter Schnierle, Ferd<strong>in</strong><strong>and</strong>-Porsche-Strasse 5, D-79211 Denzl<strong>in</strong>gen,<br />

Germany, Tel +49 7666 884 5758; Fax +49 7666 884 5760 ; <strong>in</strong>fo@ibam.de<br />

7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!