06.05.2013 Views

Quantum Vacuum on the Worldline

Quantum Vacuum on the Worldline

Quantum Vacuum on the Worldline

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

<str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

Holger Gies<br />

Institute for Theoretical Physics<br />

Heidelberg University<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


Outline<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

1 The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

2 <strong>Worldline</strong> Approach<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

3 <strong>Worldline</strong> applicati<strong>on</strong>s<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


Outline<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

1 The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

2 <strong>Worldline</strong> Approach<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

3 <strong>Worldline</strong> applicati<strong>on</strong>s<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


Topography of QFT.<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

(MERIAN 1620)


Topography of QFT.<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

(MERIAN 1620)


Topography of QFT.<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

(MERIAN 1620)


Topography of QFT.<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

(MERIAN 1620)


Topography of QFT.<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

(MERIAN 1620)


Topography of QFT.<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

(MERIAN 1620)


Outline<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

1 The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

2 <strong>Worldline</strong> Approach<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

3 <strong>Worldline</strong> applicati<strong>on</strong>s<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum.<br />

⊲ ρ → 0: “pneumatic vacuum”<br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum.<br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

⊲ QFT: quantum fluctuati<strong>on</strong>s BUT: . . . just a picture !<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum.<br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

⊲ Probing <strong>the</strong> quantum vacuum, e.g., by external fields:<br />

“modified quantum vacuum”<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum.<br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

=⇒ modified light propagati<strong>on</strong>: “QV medium” (PVLAS,BMV,Q&A)<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum.<br />

⊲ Heat bath: quantum & <strong>the</strong>rmal fluctuati<strong>on</strong>s<br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum.<br />

⊲ Boundary c<strong>on</strong>diti<strong>on</strong>s: Casimir effect<br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum.<br />

+<br />

+<br />

+<br />

+<br />

e<br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

⊲ electric fields: Schwinger pair producti<strong>on</strong> “vacuum decay”<br />

−<br />

e<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

+<br />


Outline<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

1 The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

2 <strong>Worldline</strong> Approach<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

3 <strong>Worldline</strong> applicati<strong>on</strong>s<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Universal tool: effective acti<strong>on</strong> Γ.<br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

<str<strong>on</strong>g>Quantum</str<strong>on</strong>g> vacuum with background A<br />

fluctuati<strong>on</strong>s → Γ[A]<br />

Γ[A] =⇒<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

δΓ[A]<br />

δA<br />

= 0, quantum Maxwell equati<strong>on</strong>s → (light prop.)<br />

EQV = Γ[A]<br />

T , FCasimir = − ∂EQV ∂A<br />

, Casimir force<br />

W = 2Im Γ[A]<br />

VT , Schwinger pair producti<strong>on</strong> rate<br />

(HEISENBERG&EULER’36; WEISSKOPF’36; SCHWINGER’51)<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

(CASIMIR’48)


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Universal tool: effective acti<strong>on</strong> Γ.<br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

<str<strong>on</strong>g>Quantum</str<strong>on</strong>g> vacuum with background A, e.g., scalar QED<br />

fluctuati<strong>on</strong>s → Γ[A]<br />

<br />

Γ[A] = − ln<br />

=<br />

<br />

λ<br />

ln<br />

Dφ e − R −|D(A)φ| 2 +m 2 |φ| 2<br />

<br />

λ 2 + m 2<br />

⊲ spectrum of quantum fluctuati<strong>on</strong>s: −D(A) 2 φ = λ 2 φ<br />

=<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Universal tool: effective acti<strong>on</strong> Γ.<br />

Γ[A] = <br />

λ<br />

<br />

ln λ 2 + m 2<br />

Problem solved, “in principle”<br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

find spectrum λ for a given background A<br />

sum over spectrum<br />

=<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Heisenberg-Euler effective acti<strong>on</strong>.<br />

Γ = +<br />

<br />

= − F + 1<br />

<br />

x<br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

(EULER, KOCKEL’35; HEISENBERG, EULER’36;WEISSKOPF’36; SCHWINGER’51; RITUS’76)<br />

8π 2<br />

x<br />

1%<br />

+ + . . .<br />

<br />

ds<br />

s e−im2 <br />

s<br />

(es) 2 <br />

F<br />

|G| cot(es 2 +G2 +F)<br />

<br />

F<br />

<br />

× coth(es 2 +G2 −F) . . .<br />

C<strong>on</strong>venti<strong>on</strong>s: F = 1<br />

4 FµνF µν = 1<br />

2 (B2 − E 2 ), G = 1<br />

4 Fµν ˜ F µν = −B · E<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Heisenberg-Euler effective acti<strong>on</strong>.<br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

(EULER, KOCKEL’35; HEISENBERG, EULER’36;WEISSKOPF’36; SCHWINGER’51; RITUS’76)<br />

⊲ weak-field expansi<strong>on</strong><br />

Γ =<br />

<br />

−F + 8 α<br />

45<br />

2<br />

m4 F 2 + 14 α<br />

45<br />

2<br />

m4 G2 + O(F 6 )<br />

= + + . . .<br />

C<strong>on</strong>venti<strong>on</strong>s: F = 1<br />

4 FµνF µν = 1<br />

2 (B2 − E 2 ), G = 1<br />

4 Fµν ˜ F µν = −B · E<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


Outline<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

1 The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

2 <strong>Worldline</strong> Approach<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

3 <strong>Worldline</strong> applicati<strong>on</strong>s<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Universal tool: effective acti<strong>on</strong> Γ.<br />

Remember . . .<br />

Γ[A] = <br />

λ<br />

<br />

ln λ 2 + m 2<br />

Problem solved, “in principle”<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

find spectrum λ for a given background A<br />

sum over spectrum<br />

=<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Universal tool: effective acti<strong>on</strong> Γ.<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Universal tool: effective acti<strong>on</strong> Γ.<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Universal tool: effective acti<strong>on</strong> Γ.<br />

Γ[A] = <br />

BUT:<br />

λ<br />

<br />

ln λ 2 + m 2<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

=<br />

In general practice:<br />

spectrum {λ} not known<br />

analytically<br />

spectrum {λ} not bounded<br />

<br />

λ → ∞ (regularizati<strong>on</strong>)<br />

renormalizati<strong>on</strong><br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

<strong>Worldline</strong> representati<strong>on</strong> of Γ.<br />

⊲ pedestrian approach<br />

Γ[A] = <br />

λ<br />

= −<br />

<br />

= −<br />

∞<br />

1/Λ 2<br />

∞<br />

1/Λ 2<br />

<br />

ln λ 2 + m 2<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

dT<br />

T e−m2 <br />

T<br />

Tr exp D(A) 2 <br />

T<br />

dT<br />

T e−m2 <br />

T<br />

N<br />

x(T )=x(0)<br />

<br />

= Tr ln −(D(A)) 2 + m 2<br />

<br />

=〈x|e iH(iT ) |x〉<br />

Dx(τ) e −<br />

TR “ ”<br />

˙x 2<br />

dτ 4 +ie ˙x·A(xτ)<br />

0<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

<strong>Worldline</strong> representati<strong>on</strong> of Γ.<br />

⊲ pedestrian approach<br />

Γ[A] = <br />

λ<br />

= −<br />

<br />

= −<br />

∞<br />

1/Λ 2<br />

∞<br />

1/Λ 2<br />

<br />

ln λ 2 + m 2<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

dT<br />

T e−m2 <br />

T<br />

Tr exp D(A) 2 <br />

T<br />

dT<br />

T e−m2 <br />

T<br />

N<br />

x(T )=x(0)<br />

<br />

= Tr ln −(D(A)) 2 + m 2<br />

<br />

=〈x|e iH(iT ) |x〉<br />

Dx(τ) e −<br />

TR “ ”<br />

˙x 2<br />

dτ 4 +ie ˙x·A(xτ)<br />

0<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

<strong>Worldline</strong> representati<strong>on</strong> of Γ.<br />

x(T ) =<br />

<br />

Γ[A] = −<br />

∞<br />

1/Λ 2<br />

dT<br />

T e−m2 <br />

T<br />

N<br />

x(T )=x(0)<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

Dx(τ) e −<br />

TR “ ”<br />

˙x 2<br />

dτ 4 +ie ˙x·A(xτ)<br />

0<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

(FEYNMAN’50)<br />

.<br />

(HALPERN&SIEGEL’77)<br />

(POLYAKOV’87)<br />

.<br />

.<br />

(BERN&KOSOWER’92; STRASSLER’92)<br />

(SCHMIDT&SCHUBERT’93)<br />

(KLEINERT’94)


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

<strong>Worldline</strong> representati<strong>on</strong> of Γ.<br />

<br />

Γ[A] = −<br />

<strong>Worldline</strong> approach:<br />

∞<br />

1/Λ 2<br />

dT<br />

T e−m2 <br />

T<br />

N<br />

x(T ) =<br />

x(T )=x(0)<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

Dx(τ) e −<br />

effective acti<strong>on</strong> Γ ∼ closed worldlines x(τ)<br />

worldline ∼ spacetime trajectory of φ fluctuati<strong>on</strong>s<br />

gauge-field interacti<strong>on</strong> ∼ “Wegner-Wils<strong>on</strong> loop”<br />

TR “ ”<br />

˙x 2<br />

dτ 4 +ie ˙x·A(xτ)<br />

0<br />

finding {λ} and <br />

λ d<strong>on</strong>e in <strong>on</strong>e finite (numerical) step (HG&LANGFELD’01)<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


Outline<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

1 The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

2 <strong>Worldline</strong> Approach<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

3 <strong>Worldline</strong> applicati<strong>on</strong>s<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


<strong>Worldline</strong> Numerics.<br />

<br />

x(1)=x(0)<br />

Dx(t) −→<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

nL <br />

l=1<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

, nL = # of worldlines<br />

x(t) −→ x i, i = 1, . . . , N (ppl)<br />

→ statistical error<br />

→ systematical error<br />

−→ → spacetime remains c<strong>on</strong>tinuous<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

Trajectory of a <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Fluctuati<strong>on</strong>.<br />

⊲ Feynman diagram (c<strong>on</strong>venti<strong>on</strong>ally in momentum space)<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

Trajectory of a <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Fluctuati<strong>on</strong>.<br />

⊲ worldline (artist’s view)<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

Trajectory of a <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Fluctuati<strong>on</strong>.<br />

⊲ worldline numerics: N = 4 points per loop (ppl)<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

Trajectory of a <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Fluctuati<strong>on</strong>.<br />

⊲ worldline numerics: N = 10 points per loop (ppl)<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

Trajectory of a <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Fluctuati<strong>on</strong>.<br />

⊲ worldline numerics: N = 40 points per loop (ppl)<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

Trajectory of a <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Fluctuati<strong>on</strong>.<br />

⊲ worldline numerics: N = 100 points per loop (ppl)<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

Trajectory of a <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Fluctuati<strong>on</strong>.<br />

⊲ worldline numerics: N = 1000 points per loop (ppl)<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

Trajectory of a <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Fluctuati<strong>on</strong>.<br />

⊲ worldline numerics: N = 10000 points per loop (ppl)<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

Trajectory of a <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Fluctuati<strong>on</strong>.<br />

⊲ worldline numerics: N = 100000 points per loop (ppl)<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


Propertime T .<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

T ∼ regulator scale of smeared momentum shells<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


Propertime T .<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

⊲ “Measuring” <strong>the</strong> Wegner-Wils<strong>on</strong> loop exp −ie dx · A in a<br />

background A<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


Outline<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

1 The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

2 <strong>Worldline</strong> Approach<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

3 <strong>Worldline</strong> applicati<strong>on</strong>s<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


Magnetic Step.<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


Magnetic Step.<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


Magnetic Step.<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

=⇒ “<str<strong>on</strong>g>Quantum</str<strong>on</strong>g> diffusi<strong>on</strong>” of B field<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


Magnetic Step.<br />

D = 3<br />

3/2 4π<br />

eB Leff(x)<br />

−0.2<br />

−0.4<br />

−0.6<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

0<br />

m=0, set A<br />

m=0, set B<br />

m=0, set C<br />

1/2<br />

m=0.5 B0 , set A<br />

1/2<br />

m=0.5 B0 , set B<br />

1/2<br />

m=0.5 B0 , set C<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

−0.8<br />

−2 −1 0 1 2<br />

x √ eB<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

(HG,LANGFELD’01)<br />

HE limit


Magnetic Step.<br />

D = 3<br />

3/2 4π<br />

eB Leff(x)<br />

−0.2<br />

−0.4<br />

−0.6<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

0<br />

m=0, set A<br />

m=0, set B<br />

m=0, set C<br />

1/2<br />

m=0.5 B0 , set A<br />

1/2<br />

m=0.5 B0 , set B<br />

1/2<br />

m=0.5 B0 , set C<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

−0.8<br />

−2 −1 0 1 2<br />

x √ eB<br />

⊲ diffusi<strong>on</strong> law: L1 <br />

eff (x) ∼ exp −3.255 m x − 0.7627 √ <br />

eB x<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

(HG,LANGFELD’01)<br />

HE limit


Outline<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

1 The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

2 <strong>Worldline</strong> Approach<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

3 <strong>Worldline</strong> applicati<strong>on</strong>s<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


Casimir Effect.<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

⊲ Hendrik B.G. Casimir 1948:<br />

F π2 c<br />

= −<br />

A 240 a4 ⊲ precisi<strong>on</strong> measurements O(1%)<br />

(LAMOREAUX’97)<br />

(MOHIDEEN ET AL.’98+)<br />

(DECCA ET AL.’03+)<br />

.<br />

.<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


Casimir Effect.<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

⊲ Hendrik B.G. Casimir 1948:<br />

F π2 c<br />

= −<br />

A 240 a4 ⊲ precisi<strong>on</strong> measurements O(1%)<br />

(LAMOREAUX’97)<br />

(MOHIDEEN ET AL.’98+)<br />

(DECCA ET AL.’03+)<br />

.<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


Casimir Effect.<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

⊲ Hendrik B.G. Casimir 1948:<br />

F π2 c<br />

= −<br />

A 240 a4 ⊲ precisi<strong>on</strong> measurements O(1%)<br />

(LAMOREAUX’97)<br />

(MOHIDEEN ET AL.’98+)<br />

(DECCA ET AL.’03+)<br />

.<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


Casimir Effect.<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

⊲ Casimir effect ˆ= “str<strong>on</strong>g-field QFT”<br />

S = 1<br />

2 (∂φ)2 + m2<br />

2 φ2 + V φ 2<br />

V (x) = λ<br />

<br />

S<br />

<br />

<br />

dσ δ(x − xσ) + δ(x − xσ)<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

x σ<br />

x σ<br />

(BORDAG,HENNIG,ROBASCHIK’92; GRAHAM ET AL.’03)<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Benchmark test: parallel plates<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Benchmark test: parallel plates<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Benchmark test: parallel plates<br />

⊲ for finite m, λ, a<br />

-2 (4π) 2 E/m 3<br />

1e+06<br />

10000<br />

100<br />

1<br />

0.01<br />

0.0001<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

exact result, λ=100m<br />

1500 v loops 2048 ppl<br />

massless Dirichlet limit<br />

1e-06<br />

0.01 0.1 1 10<br />

am<br />

(BORDAG,HENNIG, ROBASCHIK ’92) (HG,LANGFELD,MOYAERTS ’03)<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

Casimir Effect: curvature effects <strong>on</strong> <strong>the</strong> worldline<br />

S1<br />

S2<br />

(a) (b) (c)<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

Casimir Effect: curvature effects <strong>on</strong> <strong>the</strong> worldline<br />

0.012<br />

0.01<br />

0.008<br />

0.006<br />

0.004<br />

0.002<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

0<br />

−εR 4


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

Casimir Effect: curvature effects <strong>on</strong> <strong>the</strong> worldline<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

Casimir Effect: sphere above plate.<br />

E Casimir /E PFA (a/R


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Casimir Edge Effects.<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

F = −γ <br />

F1si = ?<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

c<br />

· A<br />

a4 (CF. BRESSI,CARUGNO,ONOFRIO,RUOSO’02)


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Casimir Edge Effects.<br />

Σ1<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

a<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

Σ2


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Casimir Edge Effects.<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

0<br />

-0.002<br />

-0.004<br />

-0.006<br />

-0.008<br />

-0.01<br />

-0.012<br />

-0.014<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

εCasimira 4


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Casimir Edge Effects.<br />

⊲ effective descripti<strong>on</strong> of a finite plate<br />

area A boundary C<br />

F = −γ <br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

c<br />

Aeff,<br />

a4 ⊲ effective area: Aeff A + γ1si<br />

γ aC, γ1si = 5.23(2) × 10 −3<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

(HG,KLINGMULLER’06)


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Casimir Edge Effects.<br />

⊲ effective descripti<strong>on</strong> of a finite plate<br />

area A boundary C<br />

F = −γ <br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

c<br />

Aeff,<br />

a4 ⊲ effective area: Aeff A + γ1si<br />

γ aC, γ1si = 5.23(2) × 10 −3<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

(HG,KLINGMULLER’06)


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Fur<strong>the</strong>r <strong>Worldline</strong> Applicati<strong>on</strong>s.<br />

+<br />

+<br />

+<br />

+<br />

e −<br />

e+<br />

−<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

Heisenberg-Euler effective acti<strong>on</strong>s, spinor QED,<br />

flux tubes, quantum-induced vortex interacti<strong>on</strong>s<br />

<strong>the</strong>rmal fluctuati<strong>on</strong>s, free energies<br />

(HG,LANGFELD’01; LANGFELD,MOYAERTS,HG’02)<br />

“sp<strong>on</strong>taneous vacuum decay”, Schwinger pair<br />

producti<strong>on</strong> in inhomogeneous electric fields<br />

n<strong>on</strong>perturbative effective acti<strong>on</strong>s<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

(HG,LANGFELD’02)<br />

(HG,KLINGMÜLLER’05)<br />

(HG,SÁNCHEZ–GUILLÉN,VÁZQUEZ’05)


Outline<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

1 The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

Topography of QFT<br />

A view <strong>on</strong> <strong>the</strong> quantum vacuum<br />

Effective acti<strong>on</strong><br />

2 <strong>Worldline</strong> Approach<br />

Effective Acti<strong>on</strong> from <strong>Worldline</strong> Techniques<br />

<strong>Worldline</strong> numerics<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

3 <strong>Worldline</strong> applicati<strong>on</strong>s<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Higher loops per pedes<br />

⊲ Feynman diagrammar:<br />

∼<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

D d p1<br />

(2π) D<br />

D d p2<br />

(2π) D<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

<br />

∆i(qi)<br />

i


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Higher loops per pedes<br />

⊲ <strong>Worldline</strong>:<br />

∼<br />

<br />

T<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

<br />

⊲ phot<strong>on</strong> propagator in coordinate space<br />

<br />

∆(x 1, x 2) =<br />

D d p<br />

(2π) D<br />

1<br />

p2 eip(x Γ<br />

1−x 2)<br />

= <br />

D−2<br />

2<br />

4πD/2 <br />

dτ1dτ2 ∆(x(τ1), x(τ2))<br />

x<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

1<br />

|x 1 − x 2| D−2


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Higher loops per pedes<br />

⊲ <strong>Worldline</strong>:<br />

∼<br />

<br />

T<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

<br />

e −ie H dx·A(x)<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

<br />

<br />

dτ1dτ2 ∆(x(τ1), x(τ2))<br />

x


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Higher loops per pedes<br />

⊲ Feynman diagrammar:<br />

+ ∼<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

D d p1<br />

(2π) D<br />

D d p2<br />

(2π) D<br />

D d p3<br />

(2π) D<br />

D d p1<br />

+<br />

(2π) D<br />

D d p2<br />

(2π) D<br />

D d p3<br />

(2π) D<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

<br />

∆i(qi)<br />

i<br />

<br />

∆i(qi)<br />

i


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Higher loops per pedes<br />

⊲ <strong>Worldline</strong>:<br />

∼<br />

<br />

T<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

<br />

⊲ both diagrams in <strong>on</strong>e expressi<strong>on</strong><br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

+<br />

<br />

dτ1dτ2dτ3dτ4 ∆(x(τ1), x(τ2))∆(x(τ3), x(τ4))<br />

x<br />

⎫<br />

⎪⎬<br />

⎪⎭<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Higher loops per pedes<br />

⊲ <strong>Worldline</strong>:<br />

∼<br />

<br />

T<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

<br />

⊲ both diagrams in <strong>on</strong>e expressi<strong>on</strong><br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

+<br />

⎫<br />

⎪⎬<br />

⎪⎭<br />

2 <br />

dτ1dτ2 ∆(x(τ1), x(τ2))<br />

x<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Higher loops per pedes<br />

⊲ <strong>Worldline</strong>, all possible phot<strong>on</strong> inserti<strong>on</strong>s:<br />

<br />

∼<br />

<br />

T<br />

<br />

<br />

exp − e2<br />

<br />

2<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

<br />

dτ1dτ2 ∆(x(τ1), x(τ2))<br />

x<br />

=⇒ “quenched approximati<strong>on</strong>” (fur<strong>the</strong>r charged loops neglegted)<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

(FEYNMAN’50)


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Systematics: small-Nf expansi<strong>on</strong><br />

∼ Nf<br />

<br />

T<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

+ + + . . .<br />

<br />

R R<br />

e2 −<br />

e 2 ∆<br />

+ N 3 f<br />

<br />

T 1,T 2,T 3<br />

x<br />

+ N 2 f<br />

<br />

T 1,T 2<br />

<br />

<br />

F3{x 1, x 2, x 3}<br />

<br />

F2{x 1, x 2}<br />

x 1,x 2,x 3<br />

x 1,x 2<br />

+ . . .<br />

=⇒ “particle- expansi<strong>on</strong>” (HALPERN&SIEGEL’77)<br />

=⇒ arbitrary g, “small” A (. . . but not perturbative in A)<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

A scalar model in quenched approximati<strong>on</strong><br />

φ: “charged” matter field, A: “scalar” phot<strong>on</strong><br />

L(φ, A) = 1<br />

2 (∂µφ) 2 + 1<br />

2 m2 φ 2 + 1<br />

2 (∂µA) 2 − i<br />

2 h A φ2 .<br />

well-defined perturbative expansi<strong>on</strong><br />

well-defined small-Nf expansi<strong>on</strong><br />

∼ h A φ 2 superrenormalizable, [h] = 1, in D = 4<br />

imaginary interacti<strong>on</strong> ∼ QED<br />

(. . . imaginary Wick-Cutkosky model)<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Phot<strong>on</strong> effective acti<strong>on</strong><br />

⊲ quenched approximati<strong>on</strong><br />

ΓQA[A] =<br />

<br />

1<br />

2 (∂µA) 2 −<br />

1<br />

2(4π) 2<br />

∞<br />

x<br />

0<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

dT<br />

T 3 e−m2 <br />

T<br />

e ih R dτA −h<br />

e 2 <br />

V [x]<br />

= , (1)<br />

⊲ <strong>Worldline</strong> self-interacti<strong>on</strong> potential<br />

h 2 V [x] := h2<br />

8π 2<br />

T<br />

0<br />

dτ1dτ2<br />

1<br />

|x 1 − x 2| 2<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

x


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Self-interacti<strong>on</strong> potential<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Self-interacti<strong>on</strong> potential<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Quenched effective acti<strong>on</strong><br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

⊲ soft-phot<strong>on</strong> effective acti<strong>on</strong>, A c<strong>on</strong>st. ( . . . á la Heisenberg-Euler)<br />

1<br />

ΓQA[A] = −<br />

2(4π) D/2<br />

∞<br />

dT<br />

T 1+D/2 e−m2 T ihAT<br />

e<br />

⊲ PDF analysis<br />

<br />

e −h2 <br />

V [x]<br />

x<br />

<br />

= dV Px(V ) e −h2V 0<br />

<br />

e −h2 <br />

V [x]<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

x<br />

=


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Renormalized effective acti<strong>on</strong><br />

ΓQA,R[A] = − 1<br />

32π2 <br />

d 4 x<br />

∞<br />

0<br />

×<br />

<br />

0.5 1 1.5 2 A<br />

Re h1<br />

0.0005<br />

0.001<br />

0.0015<br />

0.002<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

dT<br />

e−m2 R<br />

T 3 T<br />

β<br />

β + h2<br />

8π 2 T<br />

(HG,SANCHEZ-GUILLEN,VAZQUEZ’05)<br />

<br />

e ihAT − 1 − ihAT +<br />

1+α<br />

<br />

(hAT )2<br />

2<br />

, α 0.79, β 13.2<br />

0.5 1 1.5 2 A<br />

Re<br />

0.2<br />

h5<br />

0.4<br />

0.6<br />

0.8<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


Massless Limit?<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

⊲ <strong>on</strong>e-loop small-φ-mass limit: IR divergence<br />

Γ1-loop[A] hA<br />

m2 1<br />

−<br />

≫1 64π R<br />

2<br />

<br />

d 4 x (hA) 2 ln hA<br />

m2 R<br />

⊲ quenched small-φ-mass limit: finite<br />

π<br />

[−Γ(−2 − α)] cos 2 ΓQA,R[A]|mR=0 = − α<br />

25−3απ2(1−α) βα <br />

d 4 x (hA) 2<br />

α A<br />

[1+O((A/h))]<br />

h<br />

=⇒ break-down of massless limit ∼ artifact of perturbati<strong>on</strong> <strong>the</strong>ory<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

. . . large log’s summable


C<strong>on</strong>clusi<strong>on</strong>s.<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Probing <strong>the</strong> quantum vacuum by str<strong>on</strong>g<br />

fields, Casimir boundaries, etc . . .<br />

. . . brings QFT to <strong>the</strong> desktop<br />

“quantum fields meet micro mechanics”<br />

⎧<br />

⎨ efficient tool<br />

<strong>Worldline</strong> numerics :<br />

⎩<br />

intuitive picture<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


C<strong>on</strong>clusi<strong>on</strong>s.<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Probing <strong>the</strong> quantum vacuum by str<strong>on</strong>g<br />

fields, Casimir boundaries, etc . . .<br />

. . . brings QFT to <strong>the</strong> desktop<br />

“quantum fields meet micro mechanics”<br />

⎧<br />

⎨ efficient tool<br />

<strong>Worldline</strong> numerics :<br />

⎩<br />

intuitive picture<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


C<strong>on</strong>clusi<strong>on</strong>s.<br />

The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Probing <strong>the</strong> quantum vacuum by str<strong>on</strong>g<br />

fields, Casimir boundaries, etc . . .<br />

. . . brings QFT to <strong>the</strong> desktop<br />

“quantum fields meet micro mechanics”<br />

⎧<br />

⎨ efficient tool<br />

<strong>Worldline</strong> numerics :<br />

⎩<br />

intuitive picture<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong>


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Fermi<strong>on</strong>s <strong>on</strong> <strong>the</strong> worldline I.<br />

⊲ Grassmann loops<br />

Γ 1 <br />

spin = ln det γ µ ∂µ + ieγ µ <br />

Aµ + m<br />

1<br />

= −<br />

2(4π) D/2<br />

∞<br />

1/Λ 2<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

dT<br />

T 1+D/2 e−m2 <br />

T<br />

Lspin = 1<br />

4 ˙x 2 + ie ˙x µ Aµ+ 1<br />

2 ψµ ˙ψ µ − ieψ µ F µνψ ν<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

P<br />

<br />

Dx Dψ e<br />

A<br />

− R T<br />

0 dτLspin


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Fermi<strong>on</strong>s <strong>on</strong> <strong>the</strong> worldline II.<br />

⊲ spinor QED (parity-even part):<br />

Γ =<br />

1 − 2<br />

(4π) D<br />

<br />

d<br />

2<br />

D xCM<br />

∞<br />

1/Λ 2<br />

dT<br />

Wspin[A] = W [A] × PT exp<br />

σF<br />

σF<br />

σF<br />

σF<br />

σF<br />

σF<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

T D<br />

2 +1 e−m2 T<br />

σF<br />

⎛<br />

⎝ ie<br />

2<br />

σF<br />

σF<br />

σF<br />

T<br />

0<br />

σF<br />

σF<br />

<br />

Wspin[A]<br />

dτ σµνF µν<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

<br />

x<br />

⎞<br />


The <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g><br />

<strong>Worldline</strong> Approach<br />

<strong>Worldline</strong> applicati<strong>on</strong>s<br />

Fermi<strong>on</strong>s <strong>on</strong> <strong>the</strong> worldline III.<br />

Generalized Heisenberg-Euler Effective Acti<strong>on</strong>s<br />

Casimir Effect<br />

N<strong>on</strong>perturbative <strong>Worldline</strong> Dynamics<br />

⊲ Spin factor (STROMINGER’80,POLYAKOV’88)<br />

Γ[A] = 1 1<br />

2 (4π) D/2<br />

∞<br />

0<br />

Φ[x] := trγP : e i<br />

R T<br />

2 0 dτ σω(τ) :<br />

ωµν(τ) = 1<br />

4 lim<br />

ɛ→0<br />

dT<br />

T (1+D/2) e−m2 T <br />

e −ie H <br />

dxA(x)<br />

Φ[x]<br />

x<br />

ɛ<br />

−ɛ<br />

dρρ ¨x µ(τ + ρ<br />

2 )¨x ν(τ − ρ<br />

2 )<br />

Holger Gies <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Vacuum</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Worldline</strong><br />

(HG&HAMMERLING’05)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!