08.05.2013 Views

improving performance in furnace melt treatment process - Pyrotek

improving performance in furnace melt treatment process - Pyrotek

improving performance in furnace melt treatment process - Pyrotek

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

In-Furnace Melt Treatment Process<br />

PYROTEK<br />

SUPPLEMENT


Jonathan Prebble,<br />

<strong>Pyrotek</strong>’s Manager of<br />

Alum<strong>in</strong>ium Process<br />

Technology<br />

In-Furnace Melt Treatment Process<br />

<strong>Pyrotek</strong> has<br />

the expertise,<br />

technology,<br />

experience<br />

and the<br />

global<br />

resources to<br />

maximize the<br />

<strong>performance</strong><br />

of your<br />

alum<strong>in</strong>ium<br />

<strong>melt</strong><br />

<strong>treatment</strong><br />

systems.<br />

Page 2<br />

PYROTEK<br />

SUPPLEMENT<br />

IMPROVING PERFORMANCE IN<br />

FURNACE MELT TREATMENT PROCESS<br />

ANALYZING THE MELT<br />

TREATMENT PROCESS<br />

Quality is generally def<strong>in</strong>ed as<br />

conformance to mutually agreed upon<br />

customer specifications. This def<strong>in</strong>ition<br />

matches well with any discussion around<br />

alum<strong>in</strong>ium <strong>melt</strong> quality and the related<br />

molten metal <strong>treatment</strong> <strong>process</strong>. The <strong>melt</strong><br />

<strong>treatment</strong> <strong>process</strong>es addressed <strong>in</strong> this<br />

article <strong>in</strong>clude alloy<strong>in</strong>g and <strong>furnace</strong> <strong>melt</strong><br />

ref<strong>in</strong><strong>in</strong>g. In-l<strong>in</strong>e degass<strong>in</strong>g and filtration,<br />

which are important components <strong>in</strong><br />

achiev<strong>in</strong>g f<strong>in</strong>al <strong>melt</strong> quality, will be<br />

addressed separately <strong>in</strong> the next article <strong>in</strong><br />

this series titled, “Improv<strong>in</strong>g Performance –<br />

Degass<strong>in</strong>g and Filtration Processes.”<br />

The five ma<strong>in</strong> <strong>melt</strong> quality culprits for the<br />

casthouse are the follow<strong>in</strong>g:<br />

Trace elements, caus<strong>in</strong>g off specification<br />

or <strong>in</strong>consistent casts.<br />

Alkali metals, caus<strong>in</strong>g crack<strong>in</strong>g and<br />

missed specifications.<br />

Hydrogen, caus<strong>in</strong>g porosity and density<br />

compla<strong>in</strong>ts.<br />

Inclusions, caus<strong>in</strong>g downstream<br />

<strong>process</strong><strong>in</strong>g complications.<br />

Product <strong>in</strong>consistency due to either<br />

chemical or thermal variations dur<strong>in</strong>g<br />

cast<strong>in</strong>g.<br />

The <strong>process</strong> of <strong>melt</strong> <strong>treatment</strong> starts with the<br />

requirements of the f<strong>in</strong>ished product’s enduser.<br />

These requirements vary widely and<br />

need to be understood, agreed upon and<br />

documented so that <strong>melt</strong> quality <strong>process</strong>es<br />

can be managed to deliver this specification<br />

with zero defects at the lowest possible<br />

cost. While it starts with consistently<br />

meet<strong>in</strong>g customer specifications, it does not<br />

end there. Other critical factors <strong>in</strong> manag<strong>in</strong>g<br />

<strong>melt</strong> quality <strong>process</strong>es <strong>in</strong>clude operational<br />

costs/cycle times, operational health and<br />

safety, and environmental impact/<br />

compliance.<br />

To maximize casthouse <strong>performance</strong> <strong>in</strong> all<br />

these critical areas, it is important that the<br />

production team clearly understands the<br />

market<strong>in</strong>g and operational objectives<br />

<strong>in</strong>volved. These def<strong>in</strong>ed objectives measure<br />

the effectiveness of the <strong>melt</strong> quality<br />

<strong>process</strong>es and practices upon the f<strong>in</strong>al cast<br />

product. Typical challenges <strong>in</strong>clude, but are<br />

not limited to, how to achieve the same<br />

level of product quality consistency time <strong>in</strong><br />

and time out, comb<strong>in</strong>ed with how to achieve<br />

optimum <strong>performance</strong> <strong>in</strong> a practical<br />

manner while, at the same time, m<strong>in</strong>imiz<strong>in</strong>g<br />

costs and maximiz<strong>in</strong>g productivity.<br />

These challenges and issues vary greatly<br />

depend<strong>in</strong>g upon whether <strong>process</strong><strong>in</strong>g<br />

primary or secondary metals. It is important<br />

to understand the <strong>melt</strong> quality and source<br />

of impurities at the beg<strong>in</strong>n<strong>in</strong>g of the cast<strong>in</strong>g<br />

<strong>process</strong> <strong>in</strong> order to establish successful<br />

operational <strong>process</strong>es that will deliver<br />

consistent metal quality to the cast<strong>in</strong>g<br />

station.<br />

<strong>Pyrotek</strong>’s mission is to work with casthouse<br />

managers to develop a coord<strong>in</strong>ated, holistic<br />

approach to a susta<strong>in</strong>able operations plan<br />

for <strong>melt</strong> <strong>treatment</strong>. We br<strong>in</strong>g all these<br />

operational elements together <strong>in</strong> a<br />

synergistic way that maximizes the<br />

<strong>performance</strong> of each step of the <strong>melt</strong><br />

<strong>treatment</strong> <strong>process</strong>. <strong>Pyrotek</strong>’s approach<br />

<strong>in</strong>cludes a <strong>process</strong> audit and situation<br />

analysis with the customer to jo<strong>in</strong>tly<br />

understand and document the customer’s<br />

operational objectives, historical operat<strong>in</strong>g<br />

<strong>performance</strong>, cast<strong>in</strong>g pit capabilities, end<br />

user requirements, environmental<br />

objectives and safety. Once these are<br />

understood and agreed upon, a prioritized<br />

list of <strong>performance</strong> improvement projects<br />

(PIP’s) are identified. A <strong>Pyrotek</strong> technical<br />

team is then organized to work with the<br />

customer to execute, track and evaluate<br />

each project’s results aga<strong>in</strong>st preestablished<br />

targets and world-class<br />

operational norms for similar operations,<br />

target<strong>in</strong>g similar <strong>melt</strong> quality specifications.


In-Furnace Melt Treatment Process<br />

PRIMARY VS. SECONDARY<br />

What are the different impurities?<br />

Primary s<strong>melt</strong><strong>in</strong>g can <strong>in</strong>troduce the<br />

follow<strong>in</strong>g impurities:<br />

From the ref<strong>in</strong>ed alum<strong>in</strong>a we obta<strong>in</strong><br />

elements such as Si, Fe, and traces of Ti,<br />

Ca, V, B, etc.<br />

From the coke blend used to make the<br />

anodes we pick up further traces of Ti, V,<br />

Ca, Si, Fe, etc.<br />

From the carbon plant operations, we<br />

attract traces of Si, P, Fe, Mn – ma<strong>in</strong>ly from<br />

the anode but also from the cast iron<br />

thimbles and the steel stubs on the anode<br />

rod assemblies.<br />

Recycled Secondary Ingot (RSI)<br />

Dissolution of these impurities takes place<br />

<strong>in</strong> the cell/pot at ~ 960°C. The chemical bath<br />

also contributes alkali metals from the salts<br />

used – K, Na, Ca and Li. Some cells operate<br />

a high Li bath chemistry for added current<br />

efficiency. Carbides and oxides are also<br />

generated by the turbulent electro-magnetic<br />

and chemical activity <strong>in</strong> the cells and the<br />

reactions with the cell l<strong>in</strong><strong>in</strong>g materials. The<br />

bath is frequently tapped along with the<br />

metal <strong>in</strong> the crucible delivered to the cast<br />

house. Turbulence dur<strong>in</strong>g the transfer leads<br />

to oxide and dross <strong>in</strong>clusions <strong>in</strong> the metal.<br />

Refractory wear <strong>in</strong> transfer ladles also leads<br />

to a risk of <strong>in</strong>creased <strong>in</strong>clusions.<br />

Feed stock from secondary <strong>melt</strong><strong>in</strong>g can<br />

<strong>in</strong>troduce an even wider range of impurities<br />

depend<strong>in</strong>g on the material comb<strong>in</strong>ation<br />

used to charge the <strong>furnace</strong>. Recycled<br />

Secondary Ingot (RSI) cast from metal<br />

recovered from dross, saw chips, saw f<strong>in</strong>es<br />

and thermal fill scrap, can contribute alkali<br />

metals as well as TiB and alum<strong>in</strong>ium<br />

2<br />

oxides. Recycled scrap from <strong>in</strong>ternal or<br />

external sources is an additional source of<br />

hydrocarbons, pa<strong>in</strong>ts, lacquers,<br />

surface <strong>treatment</strong>s, oils and<br />

lubricants. Fumes, diox<strong>in</strong>s and<br />

furans can be produced <strong>in</strong> large<br />

amounts depend<strong>in</strong>g on the quality<br />

and quantity of recycled material<br />

that is <strong>melt</strong>ed. Customer returns<br />

and <strong>in</strong>-house scrap can add Li and<br />

Zn <strong>in</strong> 7000 series, Cu <strong>in</strong> 2000<br />

series, Mn <strong>in</strong> 3000 series, Si <strong>in</strong><br />

4000 series, Mg <strong>in</strong> 5000 series and<br />

Fe <strong>in</strong> 8000 series.<br />

Alloy<strong>in</strong>g elements such as silicon<br />

can <strong>in</strong>troduce dusts, as well as<br />

high levels of iron and calcium.<br />

These can be slowly absorbed <strong>in</strong>to<br />

the solution. Magnesium additions<br />

can contribute magnesium oxide,<br />

Fe and Ca. Boron waffle, when<br />

added to the <strong>furnace</strong> for EC<br />

grades, fades <strong>in</strong> as little as 90<br />

m<strong>in</strong>utes develop<strong>in</strong>g <strong>in</strong>to TiB , 2<br />

which settles and turns the<br />

<strong>furnace</strong> bottom <strong>in</strong>to a sticky<br />

sludge. Tibor rod, when added to<br />

the trough outside the <strong>furnace</strong> <strong>in</strong><br />

route to the cast<strong>in</strong>g table, can<br />

have a tendency not to mix well<br />

<strong>in</strong> the trough, develop<strong>in</strong>g <strong>in</strong>to<br />

coarse TiB particles, which can<br />

2<br />

affect degass<strong>in</strong>g efficiency and/or<br />

clog the downstream filtration<br />

systems <strong>in</strong> use.<br />

PYROTEK<br />

SUPPLEMENT<br />

SECONDARY SOURCES<br />

OF IMPURITIES<br />

Recycled Scrap<br />

Purchased Scrap<br />

Uncoated Metal Tools<br />

Process<strong>in</strong>g practices are a<br />

constant source of contam<strong>in</strong>ates.<br />

Poor handl<strong>in</strong>g and metal flow Inefficient or Poorly Adjusted<br />

arrangements generate metal Burners<br />

turbulence, which <strong>in</strong> turn,<br />

generates dross and oxides. Iron pick up can<br />

come from uncoated metal tools. Poor<br />

housekeep<strong>in</strong>g allows dirt, <strong>in</strong>clusions and<br />

dusts to become entra<strong>in</strong>ed <strong>in</strong> the metal flow<br />

as <strong>in</strong>clusions to the next cast. Waste burner<br />

gases and poor burner efficiency allow<br />

hydrogen to be absorbed. Open doors and/<br />

or improper burner adjustments can<br />

contribute to hydrogen pickup and to <strong>melt</strong><br />

loss due to direct flame imp<strong>in</strong>gement. In-l<strong>in</strong>e<br />

degass<strong>in</strong>g can be an un<strong>in</strong>tentional source<br />

of contam<strong>in</strong>ates from rotor speed too slow<br />

(large bubbles), rotor speed too fast<br />

(vortex<strong>in</strong>g), rotor particulate, oxide build up<br />

and broken baffle plates.<br />

Page 3


Alan Peel,<br />

Manag<strong>in</strong>g Director<br />

EMP Division<br />

Page 4<br />

In-Furnace Melt Treatment Process<br />

Purchas<strong>in</strong>g<br />

pure<br />

alloy elements<br />

<strong>in</strong> a form<br />

that can be<br />

charged<br />

directly<br />

<strong>in</strong>to the<br />

vortex of an<br />

EMP System<br />

also can give<br />

some<br />

f<strong>in</strong>ancial<br />

benefits.<br />

ALLOYING - A Critical First Step<br />

In Improv<strong>in</strong>g Melt Treatment<br />

Performance<br />

Alloy<strong>in</strong>g is the modification of <strong>melt</strong><br />

chemistry to meet cast<strong>in</strong>g specifications. It<br />

is typically done <strong>in</strong> the <strong>melt</strong><strong>in</strong>g <strong>furnace</strong> and<br />

adjusted <strong>in</strong> the hold<strong>in</strong>g <strong>furnace</strong>s or dur<strong>in</strong>g<br />

transfer. Alloy<strong>in</strong>g elements <strong>in</strong>clude, but are<br />

not limited to: silicon, iron, magnesium,<br />

manganese, copper and chromium. Stirr<strong>in</strong>g<br />

and <strong>melt</strong> homogenization are key<br />

components of the alloy<strong>in</strong>g <strong>process</strong>.<br />

Alloy<strong>in</strong>g cycle times must allow for<br />

adequate dissolution time as well as for the<br />

time required to complete proper <strong>furnace</strong><br />

skimm<strong>in</strong>g, ref<strong>in</strong><strong>in</strong>g and settl<strong>in</strong>g. For certa<strong>in</strong><br />

applications, there is a need to select highgrade<br />

alloys (for example, low Fe and Ca<br />

silicon metal for wheel/rim alloys).<br />

To maximize efficiency, operat<strong>in</strong>g practices<br />

must measure alloy<strong>in</strong>g recoveries, adjust<br />

<strong>furnace</strong> temperatures and <strong>process</strong><strong>in</strong>g<br />

techniques to optimise alloy additions. If<br />

operat<strong>in</strong>g <strong>in</strong> conjunction with a primary<br />

s<strong>melt</strong>er, it is often possible to utilise the hot<br />

metal superheat – a potential source of free<br />

<strong>furnace</strong> energy. Use powders, flakes and<br />

tablets rather than <strong>in</strong>got or waffle to reduce<br />

energy costs and to accelerate dissolution<br />

rates when they can be efficiently stirred<br />

<strong>in</strong>to the metal.<br />

The use of effective techniques to facilitate<br />

forced circulation of the <strong>melt</strong> dur<strong>in</strong>g the<br />

<strong>melt</strong><strong>in</strong>g and alloy<strong>in</strong>g phases of the <strong>process</strong><br />

demonstrates improvements <strong>in</strong> cycle times<br />

and more efficient use of expensive alloy<strong>in</strong>g<br />

materials.<br />

The EMP and Metaullics division both offer<br />

the LOTUSS vortex system which is a<br />

highly effective method of submergence for<br />

both scrap and alloy<strong>in</strong>g materials.<br />

Traditional methods for alloy<strong>in</strong>g <strong>in</strong> the cast<br />

house utilized pre-prepared master alloys.<br />

These are charged directly <strong>in</strong>to the <strong>melt</strong><strong>in</strong>g<br />

or hold<strong>in</strong>g <strong>furnace</strong> and ‘stirred <strong>in</strong>’ with the<br />

assistance of the dross rake. The problem<br />

associated with this technique is that it tends<br />

to take longer for the alloy addition to<br />

become fully mixed <strong>in</strong>to the <strong>melt</strong> as the<br />

mix<strong>in</strong>g is reliant upon the dross<strong>in</strong>g tool to<br />

PYROTEK<br />

SUPPLEMENT<br />

fully mix the bath and master alloys. In an<br />

attempt to overcome this problem of<br />

effective mix<strong>in</strong>g, the master alloys are<br />

usually made with a special flux that<br />

accelerates the mix<strong>in</strong>g of the alloy addition<br />

<strong>in</strong>to the <strong>melt</strong>.<br />

The EMP and Metaullics pump<strong>in</strong>g systems<br />

for light gauge scrap additions have the<br />

advantage of the unique vortex well as a<br />

medium for the addition of alloys <strong>in</strong>to the<br />

<strong>furnace</strong>. The <strong>furnace</strong> door is kept closed<br />

dur<strong>in</strong>g the entire <strong>process</strong>, with the follow<strong>in</strong>g<br />

three operat<strong>in</strong>g benefits:<br />

Ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the heat transfer efficiency<br />

of the <strong>furnace</strong>,<br />

M<strong>in</strong>imis<strong>in</strong>g energy losses, and<br />

M<strong>in</strong>imis<strong>in</strong>g environmental emissions to<br />

the casthouse and operators.<br />

The LOTUSS vortex system elim<strong>in</strong>ates the<br />

need to alloy directly through the <strong>furnace</strong><br />

doors or by us<strong>in</strong>g specially made alloy<br />

tablets. The pure elemental additions Mn<br />

flake, Fe splatter, Cu cutt<strong>in</strong>gs/swarf and Mg<br />

bars can now be used <strong>in</strong> an effective way<br />

by charg<strong>in</strong>g directly through the EMP<br />

Vortex.<br />

Fig. 1 Magnesium Ingots Charged Directly Into<br />

the EMP Vortex<br />

Economic Benefits to Alloy<strong>in</strong>g Through<br />

The Vortex<br />

With the appropriate feed<strong>in</strong>g equipment,<br />

alloys from lump silicon to magnesium have<br />

been effectively charged <strong>in</strong>to a <strong>furnace</strong> with<br />

significant reductions <strong>in</strong> alloy losses and an<br />

improved dissolution time of the alloy <strong>in</strong>to<br />

the <strong>melt</strong>.<br />

The follow<strong>in</strong>g graph demonstrates the fast<br />

dissolution of magnesium <strong>in</strong>gots through a<br />

vortex.


In-Furnace Melt Treatment Process<br />

Fig. 2 Chemical Homogeneity<br />

Yield Improvement<br />

This reduction <strong>in</strong> alloy losses results from the<br />

fact that the alloy addition is immediately<br />

submerged sub-surface, m<strong>in</strong>imis<strong>in</strong>g any<br />

exposure to the air and to the burners <strong>in</strong> the<br />

<strong>furnace</strong>. Typical yields on pure alloy additions<br />

charged <strong>in</strong> this manner are shown below:<br />

Alloy Yield By Yield When<br />

Addition Charg<strong>in</strong>g Charged Directly<br />

Through EMP To Furnace<br />

Lump Silicon 97% 94%<br />

Magnesium 98% 90%<br />

10 Kg Ingot<br />

Manganese Flake 98% 94%<br />

Iron Splatter 98% 90%<br />

(Powder/Tablet)<br />

Copper 99% Only Tablets<br />

Yield Improvement by Charg<strong>in</strong>g Pure<br />

Alloys Directly Into EMP Vortex<br />

Reduced Mix<strong>in</strong>g Time<br />

By charg<strong>in</strong>g the alloy additions <strong>in</strong> this<br />

manner, they are immediately mixed <strong>in</strong> the<br />

sub-surface alum<strong>in</strong>ium movement with<strong>in</strong> the<br />

vortex. They quickly dissolve and are easily<br />

mixed <strong>in</strong>to the full alum<strong>in</strong>ium bath by the<br />

rapid sub-surface flow from the<br />

electromagnetic pump.<br />

Alloy Purchase Costs<br />

Purchas<strong>in</strong>g pure alloy elements <strong>in</strong> a form that<br />

can be charged directly <strong>in</strong>to the vortex of an<br />

EMP System also can give some f<strong>in</strong>ancial<br />

benefits. Normally it is not possible to use<br />

pure additions when charg<strong>in</strong>g directly <strong>in</strong>to<br />

the <strong>furnace</strong> due to their ability to go <strong>in</strong>to<br />

solution. The yield can also be a concern as<br />

they tend to be small <strong>in</strong> size and oxidise<br />

easily.<br />

By us<strong>in</strong>g the LOTUSS vortex well, it<br />

becomes practical to charge these pure<br />

elemental additions directly through the<br />

vortex. The result is a yield that is much<br />

higher (depend<strong>in</strong>g upon the quality of the<br />

alloy oil, moisture levels etc.) than when<br />

charg<strong>in</strong>g through the ma<strong>in</strong> <strong>furnace</strong> door.<br />

The use of pure elements offers additional<br />

sav<strong>in</strong>gs <strong>in</strong> the reduced cost of master<br />

alloys and tablets.<br />

Additional Benefits of EMP Systems<br />

EMP now offers complete solutions to<br />

<strong>melt</strong><strong>in</strong>g <strong>furnace</strong> problems. EMP’s use of a<br />

LOTUSS charge well offers casthouse<br />

operations the follow<strong>in</strong>g opportunities:<br />

Reduced alloy<strong>in</strong>g costs<br />

Ability to transfer from <strong>furnace</strong> to<br />

<strong>furnace</strong> or to cast<strong>in</strong>g l<strong>in</strong>es<br />

Option to raise metal levels for transfer<br />

Add flux additions directly <strong>in</strong>to the <strong>melt</strong><br />

Reduced emissions when flux<strong>in</strong>g<br />

Improved flux efficiency for Na and Ca<br />

removal<br />

Capability to <strong>in</strong>corporate gas <strong>in</strong>jection<br />

for hydrogen removal.<br />

LOTUSS (Low Turbulence<br />

Scrap Submergence System)<br />

The LOTUSS (Low Turbulence Scrap<br />

Submergence System) <strong>in</strong> conjunction with<br />

a Metaullics mechanical pump or EMP<br />

electromagnetic pump, has proven<br />

especially effective for submerg<strong>in</strong>g and<br />

blend<strong>in</strong>g silicon alloy additions and light<br />

gauge scrap such as mach<strong>in</strong><strong>in</strong>g chips,<br />

turn<strong>in</strong>gs, bor<strong>in</strong>gs or “swarf” exhibit<strong>in</strong>g a<br />

high surface-area-to-weight ratio.<br />

Typically, these types of materials <strong>in</strong>clude<br />

oxides, lubricants and debris created<br />

dur<strong>in</strong>g the production <strong>process</strong>. The<br />

propensity for alum<strong>in</strong>ium to oxidise<br />

<strong>in</strong>creases the metal surface tension,<br />

caus<strong>in</strong>g light gauge charge materials to<br />

rema<strong>in</strong> on the surface of the molten metal.<br />

This causes further oxidation and<br />

subsequent <strong>melt</strong> loss. The use of a forced<br />

submergence technology, like<br />

the LOTUSS system,<br />

greatly reduces this effect,<br />

permitt<strong>in</strong>g high metal<br />

yield rates and <strong>in</strong>creased<br />

productivity.<br />

Metaullics Tensor ® Circulation Pump <strong>in</strong> Comb<strong>in</strong>ation<br />

With a LOTUSS Charg<strong>in</strong>g System<br />

PYROTEK<br />

SUPPLEMENT<br />

Dave Plant,<br />

Project Eng<strong>in</strong>eer<br />

EMP Division<br />

<strong>Pyrotek</strong>’s<br />

EMP,<br />

Metaullics<br />

and<br />

SNIF ®<br />

divisions<br />

offer a<br />

complete<br />

l<strong>in</strong>e of<br />

circulation<br />

equipment.<br />

Page 5


Paul Campbell<br />

Market<strong>in</strong>g Manager<br />

Metaullics Systems<br />

Division<br />

In-Furnace Melt Treatment Process<br />

The<br />

Metaullics<br />

gas <strong>in</strong>jection<br />

pump is the<br />

product of<br />

choice<br />

where<br />

demagg<strong>in</strong>g is<br />

required.<br />

Page 6<br />

DEMAGGING WITH CHLORINE<br />

In order to produce foundry alloys,<br />

secondary s<strong>melt</strong>ers often use chlor<strong>in</strong>e gas<br />

to demag, degas, or both. Foundry alloys<br />

for sand, permanent mold, and die cast<strong>in</strong>g<br />

require low magnesium levels. Wrought<br />

alloys such as build<strong>in</strong>g materials,<br />

extrusions, beverage conta<strong>in</strong>ers,<br />

and a wide variety of other<br />

commonly recycled consumer<br />

products conta<strong>in</strong> substantially high<br />

levels of magnesium. To the extent<br />

possible, scrap is often blended<br />

based on pric<strong>in</strong>g, availability, and<br />

composition to meet or approach<br />

the magnesium specification for<br />

the material be<strong>in</strong>g produced. In<br />

many cases, however, the<br />

specification cannot be met by<br />

blend<strong>in</strong>g alone and s<strong>melt</strong>ers have<br />

found that gas <strong>in</strong>jection pumps are<br />

an effective tool to achieve the<br />

required result.<br />

Demagg<strong>in</strong>g efficiencies are<br />

dependent on thermodynamic and k<strong>in</strong>etic<br />

considerations. Under favorable<br />

conditions, magnesium can be removed<br />

from molten alum<strong>in</strong>ium alloys by add<strong>in</strong>g<br />

halogen compounds such as chlor<strong>in</strong>e. The<br />

reaction between magnesium and chlor<strong>in</strong>e<br />

occurs because there is a preferred<br />

chemical aff<strong>in</strong>ity at normal molten<br />

alum<strong>in</strong>ium operat<strong>in</strong>g temperatures.<br />

In accordance with the follow<strong>in</strong>g reactions,<br />

when gaseous chlor<strong>in</strong>e is <strong>in</strong>troduced <strong>in</strong>to<br />

molten alum<strong>in</strong>ium, alum<strong>in</strong>ium chloride is<br />

produced as a gaseous product (see<br />

equation below). When magnesium is<br />

present, the alum<strong>in</strong>ium chloride reactively<br />

decomposes to form magnesium chloride<br />

which rises to the surface where it can be<br />

removed by skimm<strong>in</strong>g. Favorable<br />

thermodynamics alone do not guarantee<br />

efficient magnesium removal. K<strong>in</strong>etic<br />

factors such as rate of mix<strong>in</strong>g, contact area,<br />

and concentrations will all have dramatic<br />

effects.<br />

2Al + 3Cl 2AlCl (1)<br />

2 3<br />

2AlCl + 3Mg 3MgCl + 2Al (2)<br />

3 2<br />

The follow<strong>in</strong>g graph represents typical<br />

demagg<strong>in</strong>g results <strong>in</strong> the production of<br />

foundry <strong>in</strong>got <strong>in</strong> a 75 ton <strong>furnace</strong> with a 38<br />

ton heel from the previous heat. Scrap<br />

conta<strong>in</strong><strong>in</strong>g high percentages of magnesium<br />

was charged <strong>in</strong>to the <strong>furnace</strong> while the<br />

pump was operat<strong>in</strong>g. The gas <strong>in</strong>jection<br />

pump was able to remove the magnesium<br />

at essentially the same rate that it was<br />

added to the <strong>furnace</strong>, ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the alloy<br />

▲ ▲<br />

PYROTEK<br />

SUPPLEMENT<br />

with<strong>in</strong> the specification limit for the alloy<br />

be<strong>in</strong>g produced.<br />

It has always been necessary for chlor<strong>in</strong>ation<br />

technology <strong>in</strong> alum<strong>in</strong>ium recycl<strong>in</strong>g to meet<br />

rigorous environmental standards. Current<br />

MACT (Maximum Achievable Control<br />

Technology) standards <strong>in</strong> the U.S. have<br />

taken this requirement to an even higher<br />

level. Compared to other chlor<strong>in</strong>ation<br />

technologies, gas <strong>in</strong>jection pumps provide<br />

the safest and most efficient technology for<br />

accomplish<strong>in</strong>g this aspect of <strong>melt</strong><strong>in</strong>g and<br />

ref<strong>in</strong><strong>in</strong>g.<br />

When demagg<strong>in</strong>g is required, the Metaullics<br />

gas <strong>in</strong>jection pump is the product of choice<br />

due to its proven operat<strong>in</strong>g efficiency, low<br />

ma<strong>in</strong>tenance, rugged construction and<br />

reliability.<br />

METAULLICS GAS INJECTION<br />

PUMPS<br />

Advanced technology, with the<br />

revolutionary 6-barrel impeller design,<br />

achieves longer life, higher efficiencies,<br />

and reduced ma<strong>in</strong>tenance requirements.


PHD-50<br />

In-Furnace Melt Treatment Process<br />

Furnace Mounted HD2000 <strong>in</strong> the<br />

Treatment Position Utiliz<strong>in</strong>g a<br />

Sp<strong>in</strong>n<strong>in</strong>g Rotor<br />

STAR FIM5<br />

EMP Charge Well With Gas Injection<br />

IN-FURNACE REFINING - The Correct<br />

North<br />

America<br />

Methods Can Benefit Your Melt Quality<br />

<strong>Pyrotek</strong>’s early <strong>in</strong>volvement <strong>in</strong> research programs<br />

and technical partnerships with the major alum<strong>in</strong>ium<br />

companies aimed at elim<strong>in</strong>at<strong>in</strong>g chlor<strong>in</strong>e usage has<br />

improved the efficiency of fused ref<strong>in</strong><strong>in</strong>g agents <strong>in</strong><br />

<strong>in</strong>-<strong>furnace</strong> <strong>treatment</strong>s. We have ga<strong>in</strong>ed the<br />

knowledge, products and practical expertise to<br />

resolve most metallurgical problems related to the<br />

presence of hydrogen, non-metallic <strong>in</strong>clusions and<br />

alkali metals <strong>in</strong> alum<strong>in</strong>ium cast products. <strong>Pyrotek</strong><br />

has proven over recent years that the use of<br />

environmentally friendly ref<strong>in</strong><strong>in</strong>g agent <strong>in</strong>jection<br />

technology is a truly viable alternative to both<br />

chlor<strong>in</strong>e flux<strong>in</strong>g and fluoride based fluxes.<br />

Fluxes and ref<strong>in</strong><strong>in</strong>g agents can<br />

improve the quality of alum<strong>in</strong>ium<br />

alloys if they are treated while still<br />

molten <strong>in</strong> the <strong>furnace</strong>. Orig<strong>in</strong>ally,<br />

this type of <strong>treatment</strong> was<br />

restricted to dross reduction and<br />

<strong>furnace</strong> clean<strong>in</strong>g. However, it<br />

usually contributed to magnesium<br />

loss <strong>in</strong> certa<strong>in</strong> alloys (due to<br />

chemical and thermal reduction)<br />

as well as an <strong>in</strong>crease <strong>in</strong> alkali<br />

Fused Ref<strong>in</strong><strong>in</strong>g Agents<br />

metals (from the salts used <strong>in</strong> the<br />

products supplied <strong>in</strong> previous<br />

years). Magnesium is an expensive addition to make<br />

to any alloy, thus any <strong>treatment</strong>s by salts or chlor<strong>in</strong>e<br />

gas, both of which remove magnesium, are therefore<br />

expensive <strong>in</strong> terms of “hidden” costs. Alkali metals<br />

(Na, Ca, Li) are also undesirable <strong>in</strong> certa<strong>in</strong> foundry<br />

alloys (for example, A356.2) due to the problems they<br />

can cause <strong>in</strong> subsequent <strong>process</strong><strong>in</strong>g of the cast<br />

products, as well as the undesirable effects that they<br />

can have upon their gra<strong>in</strong> structure (such as,<br />

modification).<br />

A range of fused ref<strong>in</strong><strong>in</strong>g agents has been developed<br />

by <strong>Pyrotek</strong> to counter act these undesirable side<br />

effects. They are a blend of fused, anhydrous MgCl 2<br />

and KCl which allow them to be <strong>in</strong>jected or<br />

immerged, either through a lance, rotor or a vortex,<br />

below the surface of the <strong>melt</strong>, where they <strong>melt</strong> before<br />

com<strong>in</strong>g <strong>in</strong>to <strong>in</strong>timate contact with the molten<br />

alum<strong>in</strong>ium <strong>in</strong> f<strong>in</strong>ely-dispersed liquid droplet form.<br />

Ref<strong>in</strong><strong>in</strong>g agents are particularly effective when<br />

<strong>in</strong>troduced below the <strong>melt</strong> surface because the<br />

ref<strong>in</strong><strong>in</strong>g agent materials <strong>melt</strong> below 480°C (880°F).<br />

The ref<strong>in</strong><strong>in</strong>g agent quickly becomes a liquid phase<br />

<strong>in</strong> molten alum<strong>in</strong>ium, facilitat<strong>in</strong>g the reaction which<br />

(Cont<strong>in</strong>ued on page 8)<br />

PYROTEK<br />

SUPPLEMENT<br />

Robert Bridi<br />

<strong>Pyrotek</strong>’s Global<br />

Product Manager,<br />

Fluxes, Ref<strong>in</strong><strong>in</strong>g Agents<br />

& Lubricants<br />

Ref<strong>in</strong><strong>in</strong>g<br />

agents are<br />

particularly<br />

effective<br />

when<br />

<strong>in</strong>troduced<br />

below the<br />

<strong>melt</strong><br />

surface.<br />

Page 7


Proper <strong>furnace</strong><br />

ref<strong>in</strong><strong>in</strong>g with<br />

<strong>Pyrotek</strong>’s ref<strong>in</strong><strong>in</strong>g<br />

systems can<br />

deliver<br />

measurable,<br />

repeatable<br />

improvements <strong>in</strong><br />

metal quality by:<br />

Reduc<strong>in</strong>g Alkali<br />

Metals<br />

Page 8<br />

In-Furnace Melt Treatment Process<br />

Reduc<strong>in</strong>g<br />

Hydrogen Levels<br />

– enabl<strong>in</strong>g the<br />

downstream<br />

degasser to<br />

achieve a better<br />

exit result<br />

Reduc<strong>in</strong>g<br />

Inclusion Levels<br />

– better filtration<br />

efficiencies and<br />

product quality<br />

downstream<br />

Us<strong>in</strong>g the correct<br />

<strong>in</strong>jection method<br />

to ref<strong>in</strong>e the <strong>melt</strong><br />

Optimises flux<br />

consumption<br />

Speeds up scrap<br />

and hardener<br />

<strong>melt</strong><strong>in</strong>g<br />

M<strong>in</strong>imises<br />

variations <strong>in</strong><br />

chemistry and<br />

temperature<br />

through the <strong>melt</strong><br />

Reduces or<br />

elim<strong>in</strong>ates the<br />

use of chlor<strong>in</strong>e<br />

gas or degasser<br />

tablets.<br />

removes the alkali metals. Reactions and<br />

impurities removal take place <strong>in</strong> the liquidliquid<br />

contact areas (Collision Theory). The<br />

density of the liquid phase of the ref<strong>in</strong><strong>in</strong>g<br />

agent is 2.17 and that of the liquid<br />

alum<strong>in</strong>ium is 2.35. Be<strong>in</strong>g relatively similar<br />

<strong>in</strong> density, the droplets of ref<strong>in</strong><strong>in</strong>g agent can<br />

rema<strong>in</strong> with<strong>in</strong> the liquid metal for some time<br />

before float<strong>in</strong>g out. Dur<strong>in</strong>g their period of<br />

suspension, the droplets of the ref<strong>in</strong><strong>in</strong>g<br />

agent react with Na, Li and Ca, while also<br />

absorb<strong>in</strong>g some of the <strong>in</strong>clusions and<br />

hydrogen present <strong>in</strong> the <strong>melt</strong>.<br />

This <strong>process</strong> also has valuable secondary<br />

benefits. Dur<strong>in</strong>g and after the alkali metal<br />

reaction stage, a fall <strong>in</strong> both hydrogen and<br />

<strong>in</strong>clusion levels has been measured. This<br />

<strong>in</strong>dicates that dur<strong>in</strong>g ref<strong>in</strong><strong>in</strong>g, degass<strong>in</strong>g and<br />

cleans<strong>in</strong>g of the <strong>melt</strong> is also tak<strong>in</strong>g place.<br />

These ref<strong>in</strong><strong>in</strong>g agents also assist <strong>in</strong> keep<strong>in</strong>g<br />

the <strong>furnace</strong> walls clean (thereby reta<strong>in</strong><strong>in</strong>g<br />

<strong>furnace</strong> capacity – often without the need<br />

for additional clean<strong>in</strong>g fluxes), <strong>improv<strong>in</strong>g</strong><br />

the recovery of alloy<strong>in</strong>g additions. The<br />

physical mix<strong>in</strong>g <strong>process</strong> also promotes<br />

chemical homogeneity and reduced<br />

PYROTEK<br />

SUPPLEMENT<br />

thermal stratification with<strong>in</strong> the body of the<br />

<strong>melt</strong>.<br />

The reaction efficiency of impurity removal<br />

is enhanced by <strong>improv<strong>in</strong>g</strong> the metal<br />

circulation with<strong>in</strong> the <strong>furnace</strong> dur<strong>in</strong>g<br />

<strong>in</strong>jection rather than add<strong>in</strong>g the ref<strong>in</strong><strong>in</strong>g<br />

agent flux <strong>in</strong> excess and/or on the <strong>melt</strong><br />

surface.<br />

<strong>Pyrotek</strong> offers a wide range of flux <strong>in</strong>jection<br />

and circulation equipment to maximize the<br />

efficiency of the flux ref<strong>in</strong><strong>in</strong>g agents. This<br />

m<strong>in</strong>imizes consumable costs, cycle times,<br />

and environmental issues associated with<br />

proper <strong>melt</strong> <strong>treatment</strong>. The product mix of a<br />

particular casthouse and its related quality<br />

specifications drive the correct choice and<br />

comb<strong>in</strong>ation of <strong>melt</strong> <strong>treatment</strong> technology.<br />

The good news is that this type of flux<br />

<strong>in</strong>jection equipment, comb<strong>in</strong>ed with the<br />

proper ref<strong>in</strong><strong>in</strong>g agent and operat<strong>in</strong>g<br />

practices, almost always has a rapid pay<br />

back (typically 6 – 18 months) and adds<br />

significantly to <strong>melt</strong> quality consistency,<br />

operator safety and environmental<br />

objectives with the use of PLC controlled<br />

operat<strong>in</strong>g procedures.<br />

NA REDUCTION IN A PRIMARY SMELTER CASTING HIGH MG<br />

ALLOYS<br />

The table below depicts a primary s<strong>melt</strong>er that replaced 100-150 Kg MgCl2/KCl powder<br />

blended flux with 30-50 Kg <strong>Pyrotek</strong> Promag RI fused ref<strong>in</strong><strong>in</strong>g agent addition <strong>in</strong> the <strong>furnace</strong>.<br />

The objective was to br<strong>in</strong>g the Na below 1ppm <strong>in</strong> cast<strong>in</strong>g, to reduce the <strong>treatment</strong> cost, to<br />

reduce fume emissions associated with the excess of powder flux and to elim<strong>in</strong>ate edgecracks<br />

due to Na dur<strong>in</strong>g hot roll<strong>in</strong>g of high Mg alloys. Promag RI is the ref<strong>in</strong><strong>in</strong>g agent used<br />

<strong>in</strong> all casthouses of this alum<strong>in</strong>ium company. In a large number of primary plants the Promag<br />

RI is be<strong>in</strong>g <strong>in</strong>jected via a sp<strong>in</strong>n<strong>in</strong>g nozzle system <strong>in</strong> the <strong>furnace</strong>. In 2006, tests of Promag<br />

addition <strong>in</strong> the vortex of the EMP system will be performed at a primary s<strong>melt</strong>er.<br />

Product Quantity Na Before Furnace Na After Furnace F<strong>in</strong>al Na In The<br />

Treatment, ppm Treatment, ppm Cast<strong>in</strong>g Table, ppm<br />

Powder Blend 150kg 6.6 2.3 0.4<br />

Powder Blend 100kg 15.8 2.2 0.6<br />

Promag RI 50kg 9.6 1.6 0.3<br />

Promag RI 50kg 16.4 3.2 0.6<br />

Promag RI 50kg 14.5 5.0 0.6<br />

Promag RI 50kg 14.0 2.4 0.3<br />

Promag RI 50kg 22.9 3.1 0.3<br />

Promag RI 30kg 16.7 3.0 1.0<br />

Promag RI 30kg 5.5 1.5 0.2<br />

Promag RI 30kg 24.6 1.5 0.5<br />

Promag RI 30kg 38.1 3.0 0.4


In-Furnace Melt Treatment Process<br />

REDUCTION OF<br />

HYDROGEN,<br />

CALCIUM AND<br />

INCLUSIONS IN<br />

SECONDARY<br />

PROCESSING<br />

In 2004, <strong>Pyrotek</strong> presented<br />

a technical paper at TMS<br />

on the effective removal of<br />

calcium and hydrogen <strong>in</strong> a<br />

secondary re<strong>melt</strong> cast<strong>in</strong>g<br />

billet for <strong>in</strong>ternal<br />

consumption. The case<br />

study was based on<br />

susta<strong>in</strong>ed sampl<strong>in</strong>g and<br />

test<strong>in</strong>g. It clearly<br />

demonstrated that the<br />

comb<strong>in</strong>ation of <strong>Pyrotek</strong>’s<br />

HD-2000 with <strong>Pyrotek</strong>’s<br />

FIF-50 can be used for<br />

<strong>in</strong>ject<strong>in</strong>g solid fluxes and<br />

ref<strong>in</strong><strong>in</strong>g agents along with<br />

the standard <strong>process</strong> gas.<br />

This <strong>process</strong> produced<br />

significant reductions <strong>in</strong><br />

hydrogen, calcium, and<br />

<strong>in</strong>clusion levels with<strong>in</strong> the<br />

<strong>furnace</strong>. It also<br />

demonstrated that these<br />

levels could be ma<strong>in</strong>ta<strong>in</strong>ed<br />

<strong>in</strong>to the cast metal if proper<br />

<strong>furnace</strong> controls were<br />

ma<strong>in</strong>ta<strong>in</strong>ed.<br />

The <strong>Pyrotek</strong> system was<br />

simple and reliable<br />

perform<strong>in</strong>g with a m<strong>in</strong>imum<br />

of dross formation and<br />

<strong>furnace</strong> disruption while<br />

operat<strong>in</strong>g with<strong>in</strong> current<br />

environmental standards.<br />

The system had the effect of<br />

consistently <strong>improv<strong>in</strong>g</strong><br />

metal quality <strong>in</strong> the billet<br />

with the unquantified<br />

benefits of <strong>in</strong>creased<br />

extrusion speeds, extended<br />

die life, reduced breaks and<br />

defects.<br />

Calcium & Inclusion Data Versus Time for Holder and<br />

Cast<strong>in</strong>g L<strong>in</strong>e Dur<strong>in</strong>g and After HD 2000 Treatment<br />

Calcium Content (ppm)<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0.0<br />

-20 0 20 40 60 80 100 120 140<br />

Calcium Removal Results<br />

Removal (%)<br />

Relative Time (m<strong>in</strong>utes)<br />

Total Inclusion Removal<br />

Removal (%)<br />

Hydrogen Removal Results<br />

Removal (%)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

100<br />

80<br />

60<br />

40<br />

20<br />

-20<br />

-40<br />

-60<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

Mix Flux Mix Idle Cast<br />

Calcium Inclusions<br />

0<br />

1a 3a 5a 7a 9a 11a 13a 15a 17a 19 23 27 31 35 39 43<br />

Test #<br />

OK M<strong>in</strong>imum Detection Limit Reached<br />

0<br />

1a 3a 5a 7a 9a 11a 13a 15a 17a 19 23 27 31 35 39 43<br />

5<br />

Test #<br />

0<br />

1a 3a 5a 7a 9a 11a 13a 15a 17a 19 23 27 31 35 39 43<br />

Test #<br />

AlSCAN 1 AlSCAN 2<br />

-137<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Total Inclusions (mm2/kg)<br />

PYROTEK<br />

SUPPLEMENT<br />

Dr. Robert Frank<br />

<strong>Pyrotek</strong>’s Manager of<br />

Technology for<br />

SNIF ® Systems<br />

Pete Flisakowski<br />

<strong>Pyrotek</strong>’s Alum<strong>in</strong>ium<br />

Metallurgical Eng<strong>in</strong>eer<br />

PYROTEK’S<br />

MISSION<br />

“Provid<strong>in</strong>g<br />

<strong>in</strong>novative<br />

solutions<br />

to customer<br />

needs<br />

utiliz<strong>in</strong>g<br />

our global<br />

resources.”<br />

Page 9


Page 10<br />

In-Furnace Melt Treatment Process<br />

Dr. Neil Keegan<br />

<strong>Pyrotek</strong>’s Metallurgical<br />

Services Group<br />

Manager<br />

Dr. Dave Neff<br />

Metaullics Molten<br />

Metal Treatment<br />

Manager<br />

<strong>Pyrotek</strong><br />

is the<br />

alum<strong>in</strong>ium<br />

<strong>in</strong>dustry’s<br />

most<br />

comprehensive<br />

resource<br />

for <strong>improv<strong>in</strong>g</strong><br />

<strong>in</strong>-<strong>furnace</strong><br />

<strong>melt</strong> <strong>treatment</strong><br />

<strong>performance</strong>.<br />

PYROTEK<br />

SUPPLEMENT<br />

ELIMINATION OF CHLORINE IN THE FURNACE MELT TREATMENT<br />

In 2002, a major producer <strong>in</strong> South America, recognized <strong>Pyrotek</strong> as “Supplier of the Year”<br />

largely for its contribution to the elim<strong>in</strong>ation of chlor<strong>in</strong>e <strong>in</strong> their <strong>melt</strong> <strong>treatment</strong> <strong>process</strong>es.<br />

<strong>Pyrotek</strong>’s service after the sale, timely deliveries and fast, <strong>in</strong>novative solutions to their<br />

technical needs, were also factors <strong>in</strong> <strong>Pyrotek</strong> receiv<strong>in</strong>g this dist<strong>in</strong>guished award.<br />

In North America, numerous primary and secondary <strong>process</strong>ors have also been able to<br />

improve their <strong>melt</strong> quality while significantly reduc<strong>in</strong>g or elim<strong>in</strong>at<strong>in</strong>g chlor<strong>in</strong>e <strong>treatment</strong>s,<br />

<strong>in</strong>clud<strong>in</strong>g the ability to meet the MACT (Maximum Achievable Control Technology) standards.<br />

The use of <strong>Pyrotek</strong>’s various ref<strong>in</strong><strong>in</strong>g agent <strong>in</strong>jection techniques has allowed many facilities<br />

<strong>in</strong> the U.S. to cont<strong>in</strong>ue us<strong>in</strong>g dirty and pa<strong>in</strong>ted scrap and to comply with the new MACT<br />

standards for new and exist<strong>in</strong>g group 1 <strong>furnace</strong>s (dirty scrap or reactive agent <strong>in</strong> the <strong>furnace</strong>).<br />

The follow<strong>in</strong>g table shows the stack emissions achieved by a billet caster <strong>in</strong> the U.S. that<br />

successfully switched from chlor<strong>in</strong>e lance flux<strong>in</strong>g to the use of a ref<strong>in</strong><strong>in</strong>g agent with a<br />

<strong>Pyrotek</strong> FIF-50 flux <strong>in</strong>jection system (lance). Actual test results below demonstrate that<br />

when the <strong>furnace</strong> <strong>treatment</strong> is performed with <strong>Pyrotek</strong>’s ref<strong>in</strong><strong>in</strong>g agent <strong>in</strong>jection system, the<br />

levels of HCl particulates and diox<strong>in</strong>/furans fall well below the new MACT standards despite<br />

the dirty and pa<strong>in</strong>ted scrap added to the charge.<br />

Run # Run #1 Run #2 Run #3 Three run avg.<br />

Run time (sample time) 507 m<strong>in</strong>utes 473 m<strong>in</strong>utes 442 m<strong>in</strong>utes 474 m<strong>in</strong>utes<br />

Molten metal, tons/hr 2.73 2.97 3.01 2.90<br />

Particulate PM MACT Limit 0.4 lb/ton of feed<br />

Concentration, gr/DSCF 0.00607 0.00754 0.00622 0.00661<br />

Emission rate, lb/hr 0.819 1.13 1.07 1.01<br />

Emission rate,<br />

lb/ton of molten metal<br />

0.300 0.380 0.355 0.345<br />

Hydrogen Chloride MACT Limit 0.4 lb/ton of feed<br />

Concentration, ppm 8.14 8.15 8.21 8.17<br />

Emission rate, lb/hr 0.727 0.811 0.934 0.824<br />

Emission rate,<br />

lb/ton of molten metal<br />

0.266 0.273 0.310 0.283<br />

TEQ Three run average MACT Limit 15.0 μg/ton of feed<br />

Total CDD/CDF lb/ton 1.56E-08<br />

Total CDD/CDF μg/ton 7.07<br />

CONCLUSION<br />

From its early <strong>in</strong>volvement <strong>in</strong> research programs and technical partnerships with major<br />

alum<strong>in</strong>ium companies to elim<strong>in</strong>ate chlor<strong>in</strong>e usage and to improve the efficiency of fused<br />

ref<strong>in</strong><strong>in</strong>g agents <strong>in</strong> <strong>in</strong>-<strong>furnace</strong> <strong>treatment</strong>s, <strong>Pyrotek</strong> has ga<strong>in</strong>ed the knowledge to resolve<br />

metallurgical problems related to the presence of hydrogen, non-metallic <strong>in</strong>clusions and<br />

alkali and alkal<strong>in</strong>e earth metals <strong>in</strong> alum<strong>in</strong>ium cast<strong>in</strong>gs. <strong>Pyrotek</strong> has proven <strong>in</strong> recent years<br />

that the environmentally friendly ref<strong>in</strong><strong>in</strong>g agent <strong>in</strong>jection technology is a viable alternative<br />

to chlor<strong>in</strong>e flux<strong>in</strong>g and to fluoride based fluxes.<br />

As a partner to the <strong>in</strong>dustry, <strong>Pyrotek</strong> has worked with alum<strong>in</strong>ium companies world-wide to<br />

review and improve their <strong>melt</strong> <strong>treatment</strong> <strong>performance</strong>. From <strong>melt</strong><strong>in</strong>g to cast<strong>in</strong>g and everyth<strong>in</strong>g<br />

<strong>in</strong> between, <strong>Pyrotek</strong> has experienced personnel to help <strong>in</strong>crease productivity while meet<strong>in</strong>g<br />

customer driven quality goals.<br />

<strong>Pyrotek</strong> is the alum<strong>in</strong>ium <strong>in</strong>dustry’s most comprehensive resource for <strong>improv<strong>in</strong>g</strong> <strong>in</strong>-<strong>furnace</strong><br />

<strong>melt</strong> <strong>treatment</strong> <strong>performance</strong>. <strong>Pyrotek</strong> is unique <strong>in</strong> its ability to provide the <strong>in</strong>tegration of<br />

<strong>in</strong>novative technologies, <strong>process</strong> expertise and a global perspective, all dedicated to assist<strong>in</strong>g<br />

customers <strong>in</strong> the optimization of their casthouse <strong>process</strong>es and practices.


In-Furnace Melt Treatment Process<br />

PYROTEK’S MAJOR LOCATIONS<br />

ASIA<br />

CHINA, Shenzhen<br />

Phone: (86) 755-26632324<br />

e-mail: shenzhen@pyrotek.<strong>in</strong>fo<br />

INDIA, Pune<br />

Phone: (91) 21-375-6800<br />

e-mail: pune@pyrotek.<strong>in</strong>fo<br />

INDONESIA, Jakarta<br />

Phone: (62) 21-563-8507<br />

e-mail: jakarta@pyrotek.<strong>in</strong>fo<br />

JAPAN, Kobe<br />

Phone: (81) (0)78-265-5590<br />

e-mail: kobe@pyrotek.<strong>in</strong>fo<br />

KOREA, Daegu<br />

Phone: 82 (0)53-523-5202<br />

e-mail: korea@pyrotek.<strong>in</strong>fo<br />

MALAYSIA, Kuala-Lumpur<br />

Phone: (603) 5631-3096<br />

e-mail: kualalumpur@pyrotek.<strong>in</strong>fo<br />

TAIWAN, Kaohsiung City<br />

Phone: (886) 7-224-8222<br />

e-mail: taiwan@pyrotek.<strong>in</strong>fo<br />

THAILAND, Bangkok<br />

Phone: (66) (0) 2 361-4870<br />

e-mail: bangkok@pyrotek.<strong>in</strong>fo<br />

AUSTRALIA<br />

AUSTRALIA (ANZ HEADQUARTERS)<br />

Phone: (61) (0)2 9631-1333<br />

e-mail: sydney@pyrotek.<strong>in</strong>fo<br />

CANADA<br />

QUEBEC, Drummondville<br />

Phone: (819) 477-0734<br />

e-mail: drummondville@pyrotek.<strong>in</strong>fo<br />

EUROPE<br />

CZECH REPUBLIC, Blansko<br />

Phone: (420) (0) 516-527-111<br />

e-mail: blansko@pyrotek.<strong>in</strong>fo<br />

GERMANY, Grevenbroich<br />

Phone: (49) (0)2182-8-10-20<br />

e-mail: grevenbroich@pyrotek.<strong>in</strong>fo<br />

SWEDEN, Ed<br />

Phone: (46) (0) 534-62000<br />

e-mail: ed@pyrotek.<strong>in</strong>fo<br />

SWITZERLAND, Sierre<br />

Phone: (41) (0)27-455-82-64<br />

e-mail: sierre@pyrotek.<strong>in</strong>fo<br />

UNITED KINGDOM, Milton<br />

Keynes<br />

Phone: (44) (0)1 908-561155<br />

e-mail: miltonkeynes@pyrotek.<strong>in</strong>fo<br />

MEXICO<br />

MEXICO, Santa Catar<strong>in</strong>a<br />

Phone: (52) 81-8336-9117<br />

e-mail: mexico@pyrotek.<strong>in</strong>fo<br />

MIDDLE EAST<br />

UNITED ARAB EMIRATES, Dubai<br />

Phone: (971) (0)4-883-77-00<br />

e-mail: dubai@pyrotek.<strong>in</strong>fo<br />

NEW ZEALAND<br />

NEW ZEALAND, Auckland<br />

Phone: (64) (0)9 272-2056<br />

e-mail: auckland@pyrotek.<strong>in</strong>fo<br />

RUSSIA/CIS<br />

RUSSIA/CIS, Moscow<br />

Phone: (7) 095-230-71-63<br />

e-mail: moscow@pyrotek.<strong>in</strong>fo<br />

SOUTH AFRICA<br />

REPUBLIC OF SOUTH AFRICA,<br />

Richards Bay<br />

Phone: (27) (0)35 7974039<br />

e-mail: richardsbay@pyrotek.<strong>in</strong>fo<br />

SOUTH AMERICA<br />

BRASIL, São Paulo<br />

Phone: (55) (0)11-4786-5233<br />

e-mail: saopaulo@pyrotek.<strong>in</strong>fo<br />

VENEZUELA, Puerto Ordaz<br />

Phone: (58) 286-994 1894<br />

e-mail: puertoordaz@pyrotek.<strong>in</strong>fo<br />

U.S.A.<br />

CALIFORNIA, Cerritos<br />

Phone: (562) 623-0085<br />

e-mail: cerritos@pyrotek.<strong>in</strong>fo<br />

INDIANA, Columbia City<br />

Phone: (260) 248-4141<br />

e-mail: columbiacity@pyrotek.<strong>in</strong>fo<br />

INDIANA, Evansville<br />

Phone: (812) 867-6343<br />

e-mail: evansville@pyrotek.<strong>in</strong>fo<br />

NEW YORK, Canastota<br />

Phone: (315) 697-8410<br />

e-mail: canastota@pyrotek.<strong>in</strong>fo<br />

NEW YORK, Elmsford<br />

Phone: (914) 345-4740<br />

e-mail: elmsford@pyrotek.<strong>in</strong>fo<br />

NORTH CAROLINA, Salisbury<br />

Phone: (704) 642-1993<br />

e-mail: salisbury@pyrotek.<strong>in</strong>fo<br />

OHIO, Solon<br />

Phone: (440) 349-8800<br />

e-mail: solon@pyrotek.<strong>in</strong>fo<br />

PENNSYLVANIA, Carlisle<br />

Phone: (717) 249-2075<br />

e-mail: carlisle@pyrotek.<strong>in</strong>fo<br />

WASHINGTON, Spokane Valley<br />

Phone: (509) 926-6211<br />

e-mail: spokane@pyrotek.<strong>in</strong>fo<br />

WISCONSIN, Waukesha<br />

Phone: (262) 524-9095<br />

e-mail: waukesha@pyrotek.<strong>in</strong>fo<br />

This supplement can also be viewed at www.pyrotek.<strong>in</strong>fo/<strong>melt</strong>_<strong>treatment</strong><br />

See the previous supplement at www.pyrotek.<strong>in</strong>fo/<strong>furnace</strong>_operations<br />

PYROTEK<br />

SUPPLEMENT<br />

<strong>Pyrotek</strong> is<br />

unique <strong>in</strong> its<br />

ability to<br />

provide the<br />

<strong>in</strong>tegration of<br />

<strong>in</strong>novative<br />

technologies,<br />

<strong>process</strong><br />

expertise and a<br />

global<br />

perspective.<br />

CORPORATE OFFICE<br />

9503 E. Montgomery Avenue<br />

Spokane Valley, WA 99206<br />

Phone: (509) 926-6212<br />

Fax: (509) 927-2408<br />

e-mail: <strong>in</strong>fo@pyrotek.<strong>in</strong>fo<br />

Visit<br />

<strong>Pyrotek</strong><br />

at<br />

www.pyrotek.<strong>in</strong>fo<br />

Page 11


In-Furnace Melt Treatment Process<br />

PYROTEK<br />

SUPPLEMENT

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!