03.10.2012 Views

Spm-Add-Maths-Formula-List-Form4

Spm-Add-Maths-Formula-List-Form4

Spm-Add-Maths-Formula-List-Form4

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ONE-SCHOOL.NET<br />

<strong>Add</strong> <strong>Maths</strong> <strong>Formula</strong>e <strong>List</strong>: Form 4 (Update 18/9/08)<br />

http://www.one-school.net/notes.html<br />

01 Functions<br />

Absolute Value Function Inverse Function<br />

f ( x)<br />

General Form<br />

ax 2 + bx + c = 0<br />

where a, b, and c are constants and a ≠ 0.<br />

*Note that the highest power of an unknown of a<br />

quadratic equation is 2.<br />

Forming Quadratic Equation From its Roots:<br />

If α and β are the roots of a quadratic equation<br />

b<br />

α + β =−<br />

a<br />

f( x), if f( x) ≥ 0<br />

− f( x), if f( x)<br />

<<br />

0<br />

αβ =<br />

The Quadratic Equation<br />

2<br />

x − ( α + β) x+<br />

αβ = 0<br />

or<br />

2<br />

x − ( SoR) x + ( PoR)<br />

= 0<br />

SoR = Sum of Roots<br />

PoR = Product of Roots<br />

1<br />

If<br />

02 Quadratic Equations<br />

c<br />

a<br />

y = f( x)<br />

, then<br />

Remember:<br />

Object = the value of x<br />

Image = the value of y or f(x)<br />

f(x) map onto itself means f(x) = x<br />

Quadratic <strong>Formula</strong><br />

−1<br />

f ( y) = x<br />

x = −b ± b2 − 4ac<br />

2a<br />

When the equation can not be factorized.<br />

Nature of Roots<br />

b 2 − 4ac > 0 ⇔ two real and different roots<br />

b 2 − 4ac = 0 ⇔ two real and equal roots<br />

b 2 − 4ac < 0 ⇔ no real roots<br />

b 2 − 4ac ≥ 0 ⇔ the roots are real


General Form<br />

f ( x) = ax + bx+ c<br />

where a, b, and c are constants and a ≠ 0.<br />

*Note that the highest power of an unknown of a<br />

quadratic function is 2.<br />

a > 0 ⇒ minimum ⇒ ∪ (smiling face)<br />

a < 0 ⇒ maximum ⇒ ∩ (sad face)<br />

Quadratic Inequalities<br />

a > 0 and f( x ) > 0 a > 0 and f( x ) < 0<br />

a b<br />

a<br />

b<br />

x < a or x> b<br />

a< x< b<br />

http://www.one-school.net/notes.html<br />

2<br />

03 Quadratic Functions<br />

2<br />

Completing the square:<br />

f ( x) = a( x+ p) + q<br />

ONE-SCHOOL.NET<br />

(i) the value of x, x =− p<br />

(ii) min./max. value = q<br />

(iii) min./max. point = ( − p, q)<br />

(iv) equation of axis of symmetry, x = − p<br />

Alternative method:<br />

f ( x) = ax + bx+ c<br />

(i)<br />

b<br />

the value of x, x =−<br />

2a<br />

(ii)<br />

b<br />

min./max. value = f ( − )<br />

2a<br />

(iii) equation of axis of symmetry,<br />

Nature of Roots<br />

2<br />

2<br />

x =−<br />

b<br />

2a<br />

2<br />

b − 4 ac><br />

0 ⇔ intersects two different points<br />

− =<br />

at x-axis<br />

⇔ touch one point at x-axis<br />

2<br />

b 4 ac 0<br />

04 Simultaneous Equations<br />

To find the intersection point ⇒ solves simultaneous equation.<br />

Remember: substitute linear equation into non- linear equation.<br />

2<br />

b − 4 ac<<br />

0 ⇔ does not meet x-axis


Fundamental if Indices<br />

Zero Index,<br />

Negative Index,<br />

Fractional Index<br />

Fundamental of Logarithm<br />

x<br />

loga<br />

y= x⇔ a = y<br />

loga a = 1<br />

x loga a = x<br />

loga 1= 0<br />

0 a = 1<br />

1 a− =<br />

1<br />

a<br />

a − 1 b<br />

( ) =<br />

b a<br />

1<br />

n n<br />

a<br />

a =<br />

m<br />

n n m<br />

a<br />

a =<br />

http://www.one-school.net/notes.html<br />

05 Indices and Logarithm<br />

3<br />

Laws of Indices<br />

a<br />

a<br />

× a = a<br />

m n m+ n<br />

÷ a = a<br />

m n m−n ( a ) a ×<br />

=<br />

m n m n<br />

( ab) = a b<br />

n n n<br />

a n a<br />

( ) =<br />

b b<br />

Law of Logarithm<br />

n<br />

n<br />

log mn = log m + log n<br />

a a a<br />

m<br />

loga = logam− logan<br />

n<br />

log a m n = n log a m<br />

Changing the Base<br />

log<br />

log<br />

a<br />

a<br />

b =<br />

log<br />

log c b<br />

a<br />

c<br />

1<br />

b =<br />

log a<br />

b<br />

ONE-SCHOOL.NET


Distance and Gradient<br />

When 2 lines are parallel,<br />

Midpoint<br />

Midpoint,<br />

Parallel Lines<br />

M<br />

m = m .<br />

http://www.one-school.net/notes.html<br />

1<br />

2<br />

⎛ x + x y + y ⎞<br />

,<br />

⎝ 2 2 ⎠<br />

1 2 1 2<br />

= ⎜ ⎟<br />

06 Coordinate Geometry<br />

4<br />

ONE-SCHOOL.NET<br />

Distance Between Point A and C =<br />

( ) ( ) 2<br />

2<br />

x − x + x − x<br />

1<br />

2<br />

y2 − y1<br />

Gradient of line AC, m =<br />

x2 − x1<br />

Or<br />

⎛ y − int ercept ⎞<br />

Gradient of a line, m =−⎜ ⎟<br />

⎝ x − int ercept ⎠<br />

Perpendicular Lines<br />

When 2 lines are perpendicular to each other,<br />

1<br />

m1× m2<br />

=− 1<br />

m1 = gradient of line 1<br />

m2 = gradient of line 2<br />

A point dividing a segment of a line<br />

A point dividing a segment of a line<br />

⎛nx1+ mx2 ny1+ my2<br />

⎞<br />

P = ⎜ , ⎟<br />

⎝ m+ n m+ n ⎠<br />

2


Area of triangle:<br />

Area of Triangle<br />

1<br />

=<br />

2<br />

1<br />

A = xy + xy + xy − xy+ xy + xy<br />

2<br />

( 1 2 2 3 3 1) ( 2 1 3 2 1 3)<br />

Equation of Straight Line<br />

Gradient (m) and 1 point (x1, y1)<br />

given<br />

y− y = m( x− x )<br />

1 1<br />

http://www.one-school.net/notes.html<br />

2 points, (x1, y1) and (x2, y2) given<br />

y − y y − y<br />

=<br />

x − x x − x<br />

1 2 1<br />

1 2 1<br />

Equation of perpendicular bisector ⇒ gets midpoint and gradient of perpendicular line.<br />

5<br />

ONE-SCHOOL.NET<br />

Form of Equation of Straight Line<br />

General form Gradient form Intercept form<br />

ax + by + c = 0<br />

Information in a rhombus:<br />

A B<br />

D<br />

C<br />

y = mx+ c<br />

m = gradient<br />

c = y-intercept<br />

x y<br />

+ = 1<br />

a b<br />

a = x-intercept<br />

b = y-intercept<br />

x-intercept and y-intercept given<br />

x y<br />

+ = 1<br />

a b<br />

b<br />

m = −<br />

a<br />

(i) same length ⇒ AB = BC = CD = AD<br />

(ii) parallel lines ⇒ mAB = mCD<br />

or mAD = mBC<br />

(iii) diagonals (perpendicular) ⇒ mAC × mBD<br />

=− 1<br />

(iv) share same midpoint ⇒ midpoint AC = midpoint<br />

BD<br />

(v) any point ⇒ solve the simultaneous equations


Measure of Central Tendency<br />

Mean<br />

Median<br />

Ungrouped Data<br />

Σx<br />

x =<br />

N<br />

x = mean<br />

Σ x = sum of x<br />

x = value of the data<br />

N = total number of the<br />

data<br />

m= T N + 1<br />

2<br />

When N is an odd number.<br />

TN + TN<br />

+ 1<br />

2 2 m =<br />

2<br />

When N is an even<br />

number.<br />

Measure of Dispersion<br />

variance<br />

Standard<br />

Deviation<br />

Ungrouped Data<br />

2<br />

2 ∑ x<br />

σ = − x<br />

N<br />

σ =<br />

variance<br />

( ) 2<br />

x x<br />

σ =<br />

Σ −<br />

N<br />

σ =<br />

2<br />

Σx<br />

− x<br />

N<br />

http://www.one-school.net/notes.html<br />

2<br />

2<br />

07 Statistics<br />

7<br />

ONE-SCHOOL.NET<br />

Grouped Data<br />

Without Class Interval With Class Interval<br />

x<br />

Σ fx<br />

=<br />

Σ f<br />

x = mean<br />

Σ x = sum of x<br />

f = frequency<br />

x = value of the data<br />

m= T N + 1<br />

2<br />

When N is an odd number.<br />

TN + TN<br />

+ 1<br />

2 2 m =<br />

2<br />

When N is an even number.<br />

x<br />

Σ fx<br />

=<br />

Σ f<br />

x = mean<br />

f = frequency<br />

x = class mark<br />

(lower limit+upper limit)<br />

=<br />

2<br />

1 ⎛ N F ⎞<br />

2 −<br />

m = L+<br />

⎜ C<br />

f ⎟<br />

⎝ m ⎠<br />

m = median<br />

L = Lower boundary of median class<br />

N = Number of data<br />

F = Total frequency before median class<br />

fm = Total frequency in median class<br />

c = Size class<br />

= (Upper boundary – lower boundary)<br />

Grouped Data<br />

Without Class Interval With Class Interval<br />

∑<br />

2 fx<br />

σ = − x<br />

∑ f<br />

σ =<br />

2<br />

variance<br />

( ) 2<br />

x x<br />

σ =<br />

Σ −<br />

N<br />

σ =<br />

2<br />

Σx<br />

− x<br />

N<br />

2<br />

2<br />

∑<br />

2 fx<br />

σ = − x<br />

∑ f<br />

σ =<br />

σ =<br />

2<br />

variance<br />

( ) 2<br />

Σ f x−x Σ f<br />

2<br />

Σ fx<br />

σ = −x<br />

Σ<br />

f<br />

2<br />

2


The variance is a measure of the mean for the square of the deviations from the mean.<br />

The standard deviation refers to the square root for the variance.<br />

Effects of data changes on Measures of Central Tendency and Measures of dispersion<br />

Measures of<br />

Central Tendency<br />

Measures of<br />

dispersion<br />

Terminology<br />

Convert degree to radian:<br />

Convert radian to degree:<br />

Remember:<br />

�<br />

180 = π rad<br />

�<br />

360 = 2π rad<br />

180<br />

�<br />

×<br />

π<br />

radians degrees<br />

π<br />

× �<br />

180<br />

http://www.one-school.net/notes.html<br />

08 Circular Measures<br />

8<br />

ONE-SCHOOL.NET<br />

Data are changed uniformly with<br />

+ k − k × k ÷ k<br />

Mean, median, mode + k − k × k ÷ k<br />

Range , Interquartile Range No changes × k ÷ k<br />

Standard Deviation No changes × k ÷ k<br />

Variance No changes × k 2<br />

???<br />

0.7 rad<br />

o π<br />

x = ( x×<br />

)radians<br />

180<br />

180<br />

xradians = ( x×<br />

)degrees<br />

π<br />

O<br />

???<br />

1.2 rad<br />

÷ k 2


Length and Area<br />

Arc Length:<br />

s = rθ<br />

Length of chord:<br />

θ<br />

l = 2rsin 2<br />

Gradient of a tangent of a line (curve or<br />

straight)<br />

Differentiation of Algebraic Function<br />

Differentiation of a Constant<br />

y = a a is a constant<br />

dy<br />

= 0<br />

dx<br />

Example<br />

y = 2<br />

dy<br />

= 0<br />

dx<br />

dy δ y<br />

=<br />

lim ( )<br />

dx δ x→0<br />

δ x<br />

http://www.one-school.net/notes.html<br />

Area of Sector:<br />

1<br />

2<br />

2<br />

A = r θ<br />

09 Differentiation<br />

9<br />

Area of Triangle:<br />

1<br />

2<br />

2<br />

A = r sinθ<br />

Differentiation of a Function I<br />

n<br />

y = x<br />

dy<br />

= nx<br />

dx<br />

n−1<br />

Example<br />

3<br />

y = x<br />

dy 2<br />

= 3x<br />

dx<br />

Differentiation of a Function II<br />

y = ax<br />

dy<br />

=<br />

dx<br />

= =<br />

Example<br />

y = 3x<br />

dy<br />

= 3<br />

dx<br />

11 − 0<br />

ax ax a<br />

ONE-SCHOOL.NET<br />

r = radius<br />

A = area<br />

s = arc length<br />

θ = angle<br />

l = length of chord<br />

Area of Segment:<br />

1<br />

2<br />

2<br />

A = r ( θ −sin<br />

θ )


Differentiation of a Function III<br />

n<br />

y = ax<br />

dy<br />

= anx<br />

dx<br />

n−1<br />

Example<br />

3<br />

y = 2x<br />

dy<br />

= 2(3) x =<br />

6x<br />

dx<br />

2 2<br />

Differentiation of a Fractional Function<br />

1<br />

y = n<br />

x<br />

Rewrite<br />

−n<br />

y = x<br />

dy −n−1 −n<br />

=− nx =<br />

dx x<br />

Example<br />

1<br />

y =<br />

x<br />

−1<br />

y = x<br />

dy −2<br />

−1<br />

=− 1x<br />

= 2<br />

dx x<br />

Law of Differentiation<br />

n+<br />

1<br />

Sum and Difference Rule<br />

y = u± v u and v are functions in x<br />

dy du dv<br />

= ±<br />

dx dx dx<br />

Example<br />

3 2<br />

y = 2x + 5x<br />

dy<br />

2 2<br />

= 2(3) x + 5(2) x= 6x + 10x<br />

dx<br />

http://www.one-school.net/notes.html<br />

10<br />

Chain Rule<br />

ONE-SCHOOL.NET<br />

n<br />

y = u u and v are functions in x<br />

dy dy du<br />

= ×<br />

dx du dx<br />

Example<br />

2 5<br />

y = (2x + 3)<br />

2<br />

du<br />

u = 2x + 3, therefore = 4x<br />

dx<br />

5 dy 4<br />

y = u , therefore = 5u<br />

du<br />

dy dy du<br />

= ×<br />

dx du dx<br />

= ×<br />

= 5(2x + 3) × 4x= 20 x(2x + 3)<br />

4<br />

5u 4x<br />

2 4 2 4<br />

Or differentiate directly<br />

n<br />

y = ( ax+ b)<br />

dy<br />

n−1<br />

= na ..( ax+ b)<br />

dx<br />

2 5<br />

y = (2x + 3)<br />

dy<br />

= 5(2x dx<br />

+ 3) × 4x= 20 x(2x + 3)<br />

2 4 2 4


Product Rule<br />

y = uv u and v are functions in x<br />

dy du dv<br />

= v + u<br />

dx dx dx<br />

Example<br />

3 2<br />

y = (2x+ 3)(3x −2 x −x)<br />

3 2<br />

u = 2x+ 3 v= 3x −2x −x<br />

du dv 2<br />

= 2 = 9x −4x−1 dx dx<br />

dy du dv<br />

= v + u<br />

dx dx dx<br />

3 2 2<br />

=(3x −2 x − x)(2) + (2x+ 3)(9x −4x−1) Or differentiate directly<br />

3 2<br />

y = (2x+ 3)(3x −2 x −x)<br />

dy 3 2 2<br />

= (3x −2 x − x)(2) + (2x+ 3)(9x −4x−1) dx<br />

http://www.one-school.net/notes.html<br />

11<br />

Quotient Rule<br />

ONE-SCHOOL.NET<br />

u<br />

y = u and v are functions in x<br />

v<br />

du dv<br />

v − u<br />

dy<br />

= dx dx<br />

2<br />

dx v<br />

Example<br />

2<br />

x<br />

y =<br />

2x+ 1<br />

2<br />

u = x v= 2x+ 1<br />

du dv<br />

= 2 x<br />

= 2<br />

dx dx<br />

du dv<br />

v − u<br />

dy<br />

= dx dx<br />

2<br />

dx v<br />

2<br />

dy (2x + 1)(2 x) −x(2)<br />

=<br />

2<br />

dx (2x + 1)<br />

2 2 2<br />

4x+ 2x− 2x 2x + 2x<br />

=<br />

= 2 2<br />

(2x+ 1) (2x+ 1)<br />

Or differentiate directly<br />

2<br />

x<br />

y =<br />

2x+ 1<br />

2<br />

dy (2x + 1)(2 x) −x(2)<br />

=<br />

2<br />

dx (2x + 1)<br />

2 2 2<br />

4x+ 2x− 2x 2x + 2x<br />

=<br />

= 2 2<br />

(2x+ 1) (2x+ 1)


Gradients of tangents, Equation of tangent and Normal<br />

If A(x1, y1) is a point on a line y = f(x), the gradient<br />

of the line (for a straight line) or the gradient of the<br />

tangent of the line (for a curve) is the value of dy<br />

dx<br />

when x = x1.<br />

Maximum and Minimum Point<br />

At maximum point,<br />

dy<br />

0<br />

dx =<br />

2<br />

d y<br />

2<br />

0<br />

dx <<br />

http://www.one-school.net/notes.html<br />

dy<br />

Turning point ⇒ 0<br />

dx =<br />

12<br />

Gradient of tangent at A(x1, y1):<br />

dy<br />

dx =<br />

ONE-SCHOOL.NET<br />

gradient of tangent<br />

Equation of tangent: y− y1 = m( x− x1)<br />

Gradient of normal at A(x1, y1):<br />

m<br />

normal<br />

1<br />

=−<br />

m<br />

tangent<br />

1<br />

= gradient of normal<br />

−<br />

dy<br />

dx<br />

Equation of normal : y − y1 = m( x− x1)<br />

At minimum point ,<br />

dy<br />

0<br />

dx =<br />

2<br />

d y<br />

2<br />

0<br />

dx >


Rates of Change Small Changes and Approximation<br />

dA dA dr<br />

Chain rule = ×<br />

dt dr dt<br />

If x changes at the rate of 5 cms -1 dx<br />

⇒ 5<br />

dt =<br />

Small Change:<br />

δ y dy dy<br />

≈ ⇒δy≈ × δ x<br />

δ x dx dx<br />

Approximation:<br />

Decreases/leaks/reduces ⇒ NEGATIVES values!!!<br />

ynew = yoriginal + δ y<br />

dy<br />

= yoriginal + × δ x<br />

dx<br />

http://www.one-school.net/notes.html<br />

13<br />

ONE-SCHOOL.NET<br />

δ x = small changes in x<br />

δ y = small changes in y<br />

If x becomes smaller ⇒ δ x =<br />

NEGATIVE


Sine Rule:<br />

a<br />

sin A<br />

=<br />

b<br />

sin B<br />

c<br />

sin C<br />

Use, when given<br />

� 2 sides and 1 non included<br />

angle<br />

� 2 angles and 1 side<br />

a<br />

b<br />

A<br />

http://www.one-school.net/notes.html<br />

=<br />

a<br />

B<br />

A<br />

180 – (A+B)<br />

10 Solution of Triangle<br />

Cosine Rule:<br />

a 2 = b 2 + c 2 – 2bc cosA<br />

b 2 = a 2 + c 2 – 2ac cosB<br />

c 2 = a 2 + b 2 – 2ab cosC<br />

b<br />

cos A =<br />

2<br />

14<br />

2<br />

+ c − a<br />

2bc<br />

Use, when given<br />

� 2 sides and 1 included angle<br />

� 3 sides<br />

a<br />

b<br />

A<br />

a<br />

b<br />

2<br />

c<br />

Area of triangle:<br />

C<br />

ONE-SCHOOL.NET<br />

a<br />

b<br />

1<br />

A = absin C<br />

2<br />

C is the included angle of sides a<br />

and b.


Case of AMBIGUITY<br />

C B′<br />

B<br />

Case 1: When a< bsin A<br />

CB is too short to reach the side opposite to C.<br />

Outcome:<br />

No solution<br />

Case 3: When a > bsin A but a < b.<br />

CB cuts the side opposite to C at 2 points<br />

Outcome:<br />

2 solution<br />

Useful information:<br />

b<br />

a<br />

c<br />

θ<br />

180 - θ<br />

A<br />

http://www.one-school.net/notes.html<br />

θ<br />

15<br />

ONE-SCHOOL.NET<br />

If ∠C, the length AC and length AB remain unchanged,<br />

the point B can also be at point B′ where ∠ABC = acute<br />

and ∠A B′ C = obtuse.<br />

If ∠ABC = θ, thus ∠AB′C = 180 – θ .<br />

Remember : sinθ = sin (180° – θ)<br />

Case 2: When a = bsin A<br />

CB just touch the side opposite to C<br />

Outcome:<br />

1 solution<br />

Case 4: When a > bsin A and a > b.<br />

CB cuts the side opposite to C at 1 points<br />

Outcome:<br />

1 solution<br />

In a right angled triangle, you may use the following to solve the<br />

problems.<br />

2 2<br />

(i) Phythagoras Theorem: c= a + b<br />

(ii)<br />

Trigonometry ratio:<br />

sin θ = , cos θ = , tanθ<br />

=<br />

b a b<br />

c c a<br />

(iii) Area = ½ (base)(height)


http://www.one-school.net/notes.html<br />

11 Index Number<br />

Price Index Composite index<br />

I<br />

P<br />

1 = ×<br />

P0<br />

100<br />

I = Price index / Index number<br />

P0 = Price at the base time<br />

P1 = Price at a specific time<br />

I I I<br />

AB , × BC , = AC , ×<br />

100<br />

16<br />

ΣWi<br />

I<br />

I =<br />

ΣW<br />

I = Composite Index<br />

W = Weightage<br />

I = Price index<br />

ONE-SCHOOL.NET<br />

i<br />

i

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!