09.05.2013 Views

8.5 Use Properties of Trapezoids and Kites

8.5 Use Properties of Trapezoids and Kites

8.5 Use Properties of Trapezoids and Kites

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Your Notes<br />

<strong>8.5</strong> <strong>Use</strong> <strong>Properties</strong> <strong>of</strong> <strong>Trapezoids</strong><br />

<strong>and</strong> <strong>Kites</strong><br />

Goal p <strong>Use</strong> properties <strong>of</strong> trapezoids <strong>and</strong> kites.<br />

VOCABULARY<br />

Trapezoid<br />

Bases <strong>of</strong> a trapezoid<br />

Base angles <strong>of</strong> a trapezoid<br />

Legs <strong>of</strong> a trapezoid<br />

Isosceles trapezoid<br />

Midsegment <strong>of</strong> a trapezoid<br />

Kite<br />

Copyright © Holt McDougal. All rights reserved. Lesson <strong>8.5</strong> Geometry Notetaking Guide 221


Your Notes<br />

<strong>8.5</strong> <strong>Use</strong> <strong>Properties</strong> <strong>of</strong> <strong>Trapezoids</strong><br />

<strong>and</strong> <strong>Kites</strong><br />

Goal p <strong>Use</strong> properties <strong>of</strong> trapezoids <strong>and</strong> kites.<br />

VOCABULARY<br />

Trapezoid A trapezoid is a quadrilateral with exactly<br />

one pair <strong>of</strong> parallel sides.<br />

Bases <strong>of</strong> a trapezoid The parallel sides <strong>of</strong> a<br />

trapezoid are the bases.<br />

Base angles <strong>of</strong> a trapezoid A trapezoid has two pairs<br />

<strong>of</strong> base angles. Each pair shares a base as a side.<br />

Legs <strong>of</strong> a trapezoid The nonparallel sides <strong>of</strong> a<br />

trapezoid are the legs.<br />

Isosceles trapezoid An isosceles trapezoid is a<br />

trapezoid in which the legs are congruent.<br />

Midsegment <strong>of</strong> a trapezoid The midsegment <strong>of</strong><br />

a trapezoid is the segment that connects the<br />

midpoints <strong>of</strong> its legs.<br />

Kite A kite is a quadrilateral that has two pairs <strong>of</strong><br />

consecutive congruent sides, but opposite sides<br />

are not congruent.<br />

Copyright © Holt McDougal. All rights reserved. Lesson <strong>8.5</strong> Geometry Notetaking Guide 221


Your Notes<br />

Example 1 <strong>Use</strong> a coordinate plane<br />

Show that CDEF is a trapezoid.<br />

Solution<br />

Compare the slopes <strong>of</strong> opposite sides.<br />

Slope <strong>of</strong> }<br />

DE 5 5<br />

Slope <strong>of</strong> }<br />

CF 5 5 5<br />

1<br />

y<br />

D(1, 3) E(4, 4)<br />

C(0, 0)<br />

The slopes <strong>of</strong> }<br />

DE <strong>and</strong> }<br />

CF are the same, so }<br />

DE }<br />

CF .<br />

Slope <strong>of</strong> }<br />

EF 5 5 5<br />

Slope <strong>of</strong> }<br />

CD 5 5 5<br />

The slopes <strong>of</strong> }<br />

EF <strong>and</strong> }<br />

CD are not the same, so }<br />

EF is<br />

to }<br />

CD .<br />

Because quadrilateral CDEF has exactly one pair <strong>of</strong><br />

, it is a trapezoid.<br />

THEOREM 8.14<br />

If a trapezoid is isosceles, then each<br />

pair <strong>of</strong> base angles is .<br />

If trapezoid ABCD is isosceles, then<br />

∠A > ∠ <strong>and</strong> ∠ > ∠C.<br />

THEOREM 8.15<br />

If a trapezoid has a pair <strong>of</strong> congruent<br />

, then it is an isosceles<br />

trapezoid.<br />

If ∠A > ∠D (or if ∠B > ∠C), then trapezoid<br />

ABCD is isosceles.<br />

4<br />

B C<br />

F(6, 2)<br />

A D<br />

B C<br />

A D<br />

THEOREM 8.16<br />

A trapezoid is isosceles if <strong>and</strong> only<br />

B C<br />

if its diagonals are .<br />

Trapezoid ABCD is isosceles if <strong>and</strong> only if > .<br />

A D<br />

222 Lesson <strong>8.5</strong> Geometry Notetaking Guide Copyright © Holt McDougal. All rights reserved.<br />

x


Your Notes<br />

Example 1 <strong>Use</strong> a coordinate plane<br />

Show that CDEF is a trapezoid.<br />

y<br />

D(1, 3) E(4, 4)<br />

Solution<br />

Compare the slopes <strong>of</strong> opposite sides. 1<br />

Slope <strong>of</strong> C(0, 0) 4<br />

} 4 2 3 1<br />

DE 5 } 5 }<br />

4 2 1 3<br />

Slope <strong>of</strong> } 2 2 0 2<br />

CF 5 } 5 } 5<br />

6 2 0 6 1<br />

}<br />

3<br />

The slopes <strong>of</strong> }<br />

DE <strong>and</strong> }<br />

CF are the same, so }<br />

DE i }<br />

CF .<br />

Slope <strong>of</strong> } 2 2 4 22<br />

EF 5 } 5 } 5 21<br />

6 2 4 2<br />

Slope <strong>of</strong> }<br />

CD 5<br />

3 2 0<br />

}<br />

1 2 0<br />

5 3<br />

}<br />

1 5 3<br />

The slopes <strong>of</strong> }<br />

EF <strong>and</strong> }<br />

CD are not the same, so }<br />

EF is<br />

not parallel to }<br />

CD .<br />

Because quadrilateral CDEF has exactly one pair <strong>of</strong><br />

parallel sides , it is a trapezoid.<br />

THEOREM 8.14<br />

If a trapezoid is isosceles, then each<br />

pair <strong>of</strong> base angles is congruent .<br />

If trapezoid ABCD is isosceles, then<br />

∠A > ∠ D <strong>and</strong> ∠ B > ∠C.<br />

THEOREM 8.15<br />

If a trapezoid has a pair <strong>of</strong> congruent<br />

base angles , then it is an isosceles<br />

trapezoid.<br />

If ∠A > ∠D (or if ∠B > ∠C), then trapezoid<br />

ABCD is isosceles.<br />

B C<br />

F(6, 2)<br />

A D<br />

B C<br />

A D<br />

THEOREM 8.16<br />

A trapezoid is isosceles if <strong>and</strong> only<br />

B C<br />

if its diagonals are congruent . A D<br />

Trapezoid ABCD is isosceles if <strong>and</strong> only if }<br />

AC > }<br />

BD .<br />

222 Lesson <strong>8.5</strong> Geometry Notetaking Guide Copyright © Holt McDougal. All rights reserved.<br />

x


Your Notes<br />

Example 2 <strong>Use</strong> properties <strong>of</strong> isosceles trapezoids<br />

Kitchen A shelf fitting into a<br />

cupboard in the corner <strong>of</strong> a<br />

L<br />

kitchen is an isosceles trapezoid.<br />

Find m∠N, m∠L, <strong>and</strong> m∠M.<br />

508<br />

M<br />

K N<br />

Solution<br />

Step 1 Find m∠N. KLMN is an , so<br />

∠N <strong>and</strong> ∠ are congruent base angles, <strong>and</strong><br />

m∠N 5 m∠ 5 .<br />

Step 2 Find m∠L. Because ∠K <strong>and</strong> ∠L are consecutive<br />

interior angles formed by @##$ KL intersecting two<br />

parallel lines, they are . So,<br />

m∠L 5 2 5 .<br />

Step 3 Find m∠M. Because ∠M <strong>and</strong> ∠ are a pair<br />

<strong>of</strong> base angles, they are congruent, <strong>and</strong><br />

m∠M 5 m∠ 5 .<br />

So, m∠N 5 , m∠L 5 , <strong>and</strong> m∠M 5 .<br />

Checkpoint Complete the following exercises.<br />

1. In Example 1, suppose the coordinates <strong>of</strong> point E are<br />

(7, 5). What type <strong>of</strong> quadrilateral is CDEF? Explain.<br />

2. Find m∠C, m∠A, <strong>and</strong> m∠D A<br />

in the trapezoid shown.<br />

1358<br />

B C<br />

Copyright © Holt McDougal. All rights reserved. Lesson <strong>8.5</strong> Geometry Notetaking Guide 223<br />

D


Your Notes<br />

Example 2 <strong>Use</strong> properties <strong>of</strong> isosceles trapezoids<br />

Kitchen A shelf fitting into a<br />

cupboard in the corner <strong>of</strong> a<br />

L<br />

kitchen is an isosceles trapezoid.<br />

Find m∠N, m∠L, <strong>and</strong> m∠M.<br />

508<br />

M<br />

K N<br />

Solution<br />

Step 1 Find m∠N. KLMN is an isosceles trapezoid , so<br />

∠N <strong>and</strong> ∠ K are congruent base angles, <strong>and</strong><br />

m∠N 5 m∠ K 5 508 .<br />

Step 2 Find m∠L. Because ∠K <strong>and</strong> ∠L are consecutive<br />

interior angles formed by @##$ KL intersecting two<br />

parallel lines, they are supplementary . So,<br />

m∠L 5 1808 2 508 5 1308 .<br />

Step 3 Find m∠M. Because ∠M <strong>and</strong> ∠ L are a pair<br />

<strong>of</strong> base angles, they are congruent, <strong>and</strong><br />

m∠M 5 m∠ L 5 1308 .<br />

So, m∠N 5 508 , m∠L 5 1308 , <strong>and</strong> m∠M 5 1308 .<br />

Checkpoint Complete the following exercises.<br />

1. In Example 1, suppose the coordinates <strong>of</strong> point E are<br />

(7, 5). What type <strong>of</strong> quadrilateral is CDEF? Explain.<br />

Parallelogram; opposite pairs <strong>of</strong> sides are<br />

parallel.<br />

2. Find m∠C, m∠A, <strong>and</strong> m∠D A<br />

in the trapezoid shown.<br />

m∠C 5 1358, m∠A 5 458,<br />

m∠D 5 458<br />

1358<br />

B C<br />

Copyright © Holt McDougal. All rights reserved. Lesson <strong>8.5</strong> Geometry Notetaking Guide 223<br />

D


Your Notes<br />

THEOREM 8.17: MIDSEGMENT THEOREM FOR<br />

TRAPEZOIDS<br />

The midsegment <strong>of</strong> a trapezoid is A B<br />

parallel to each base <strong>and</strong> its length<br />

is one half the sum <strong>of</strong> the lengths<br />

M N<br />

<strong>of</strong> the bases.<br />

C<br />

If }<br />

MN is the midsegment <strong>of</strong> trapezoid ABCD, then<br />

}<br />

MN i , }<br />

MN i } , <strong>and</strong> MN 5 ( 1 ).<br />

In the diagram, }<br />

Example 3 <strong>Use</strong> the midsegment <strong>of</strong> a trapezoid<br />

<strong>of</strong> trapezoid PQRS. Find MN.<br />

Solution<br />

<strong>Use</strong> Theorem 8.17 to find MN.<br />

MN is the midsegment 16 in.<br />

P Q<br />

MN 5 ( 1 ) Apply Theorem 8.17.<br />

Checkpoint Complete the following exercise.<br />

3. Find MN in the trapezoid at P<br />

the right.<br />

30 ft<br />

S<br />

M<br />

N<br />

M<br />

Q<br />

12 ft<br />

R<br />

D<br />

S R<br />

9 in.<br />

5 ( 1 ) Substitute for PQ <strong>and</strong><br />

for SR.<br />

5 Simplify.<br />

The length MN is inches.<br />

224 Lesson <strong>8.5</strong> Geometry Notetaking Guide Copyright © Holt McDougal. All rights reserved.<br />

N


Your Notes<br />

THEOREM 8.17: MIDSEGMENT THEOREM FOR<br />

TRAPEZOIDS<br />

The midsegment <strong>of</strong> a trapezoid is A B<br />

parallel to each base <strong>and</strong> its length<br />

is one half the sum <strong>of</strong> the lengths<br />

M N<br />

<strong>of</strong> the bases.<br />

C<br />

If }<br />

MN is the midsegment <strong>of</strong> trapezoid ABCD, then<br />

}<br />

MN i }<br />

AB , }<br />

MN i }<br />

DC , <strong>and</strong> MN 5 1<br />

} ( AB 1 CD ).<br />

2<br />

In the diagram, }<br />

Example 3 <strong>Use</strong> the midsegment <strong>of</strong> a trapezoid<br />

<strong>of</strong> trapezoid PQRS. Find MN.<br />

Solution<br />

<strong>Use</strong> Theorem 8.17 to find MN.<br />

Checkpoint Complete the following exercise.<br />

3. Find MN in the trapezoid at P<br />

the right.<br />

MN 5 21 ft<br />

MN is the midsegment 16 in.<br />

P Q<br />

MN 5 1<br />

}<br />

2 ( PQ 1 SR ) Apply Theorem 8.17.<br />

30 ft<br />

S<br />

M<br />

N<br />

M<br />

Q<br />

12 ft<br />

R<br />

D<br />

S R<br />

9 in.<br />

5 1<br />

}<br />

2 ( 16 1 9 ) Substitute 16 for PQ <strong>and</strong><br />

9 for SR.<br />

5 12.5 Simplify.<br />

The length MN is 12.5 inches.<br />

224 Lesson <strong>8.5</strong> Geometry Notetaking Guide Copyright © Holt McDougal. All rights reserved.<br />

N


Your Notes<br />

Homework<br />

THEOREM 8.18<br />

If a quadrilateral is a kite, then its<br />

diagonals are . B<br />

If quadrilateral ABCD is a kite,<br />

then ⊥ .<br />

THEOREM 8.19<br />

If a quadrilateral is a kite, then<br />

exactly one pair <strong>of</strong> opposite angles<br />

are congruent.<br />

B<br />

If quadrilateral ABCD is a kite <strong>and</strong> }<br />

BC > }<br />

BA ,<br />

then ∠A ∠C <strong>and</strong> ∠B ∠D.<br />

Example 4 Apply Theorem 8.19<br />

Find m∠T in the kite shown at the right.<br />

Solution<br />

Copyright © Holt McDougal. All rights reserved. Lesson <strong>8.5</strong> Geometry Notetaking Guide 225<br />

C<br />

A<br />

C<br />

A<br />

Q 708<br />

By Theorem 8.19, QRST has exactly one<br />

pair <strong>of</strong> opposite angles.<br />

T<br />

888<br />

S<br />

Because ∠Q À ∠S, ∠ <strong>and</strong> ∠T must be<br />

congruent. So, m∠ 5 m∠T. Write <strong>and</strong> solve<br />

an equation to find m∠T.<br />

m∠T 1 m∠R 1 1 5 Corollary to<br />

Theorem 8.1<br />

m∠T 1 m∠T 1 1 5 Substitute m∠T<br />

for m∠R.<br />

(m∠T) 1 5 Combine like<br />

terms.<br />

m∠T 5 Solve for m∠T.<br />

Checkpoint Complete the following exercise.<br />

4. Find m∠G in the kite shown G H<br />

858<br />

at the right.<br />

J<br />

758<br />

I<br />

D<br />

D<br />

R


Your Notes<br />

Homework<br />

THEOREM 8.18<br />

If a quadrilateral is a kite, then its<br />

diagonals are perpendicular . B<br />

If quadrilateral ABCD is a kite,<br />

then }<br />

AC ⊥ }<br />

BD .<br />

THEOREM 8.19<br />

If a quadrilateral is a kite, then<br />

B<br />

exactly one pair <strong>of</strong> opposite angles<br />

are congruent.<br />

If quadrilateral ABCD is a kite <strong>and</strong> }<br />

BC > }<br />

BA ,<br />

then ∠A > ∠C <strong>and</strong> ∠B À ∠D.<br />

Example 4 Apply Theorem 8.19<br />

Find m∠T in the kite shown at the right.<br />

Solution<br />

Copyright © Holt McDougal. All rights reserved. Lesson <strong>8.5</strong> Geometry Notetaking Guide 225<br />

C<br />

A<br />

C<br />

A<br />

Q 708<br />

By Theorem 8.19, QRST has exactly one<br />

pair <strong>of</strong> congruent opposite angles.<br />

Because ∠Q À ∠S, ∠ R <strong>and</strong> ∠T must be<br />

T<br />

888<br />

S<br />

congruent. So, m∠ R 5 m∠T. Write <strong>and</strong> solve<br />

an equation to find m∠T.<br />

m∠T 1 m∠R 1 708 1 888 5 3608 Corollary to<br />

Theorem 8.1<br />

m∠T 1 m∠T 1 708 1 888 5 3608 Substitute m∠T<br />

for m∠R.<br />

2 (m∠T) 1 1588 5 3608 Combine like<br />

terms.<br />

m∠T 5 1018 Solve for m∠T.<br />

Checkpoint Complete the following exercise.<br />

4. Find m∠G in the kite shown<br />

at the right.<br />

m∠G 5 1008<br />

G<br />

858<br />

H<br />

J<br />

758<br />

I<br />

D<br />

D<br />

R

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!