09.05.2013 Views

BMC Evolutionary Biology

BMC Evolutionary Biology

BMC Evolutionary Biology

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>BMC</strong> <strong>Evolutionary</strong> <strong>Biology</strong><br />

This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted<br />

PDF and full text (HTML) versions will be made available soon.<br />

A phylogeny and revised classification of Squamata, including 4161 species of<br />

lizards and snakes<br />

<strong>BMC</strong> <strong>Evolutionary</strong> <strong>Biology</strong> 2013, 13:93 doi:10.1186/1471-2148-13-93<br />

Robert Alexander Pyron (rpyron@colubroid.org)<br />

Frank T Burbrink (frank.burbrink@csi.cuny.edu)<br />

John J Wiens (wiensj@email.arizona.edu)<br />

ISSN 1471-2148<br />

Article type Research article<br />

Submission date 30 January 2013<br />

Acceptance date 19 March 2013<br />

Publication date 29 April 2013<br />

Article URL http://www.biomedcentral.com/1471-2148/13/93<br />

Like all articles in <strong>BMC</strong> journals, this peer-reviewed article can be downloaded, printed and<br />

distributed freely for any purposes (see copyright notice below).<br />

Articles in <strong>BMC</strong> journals are listed in PubMed and archived at PubMed Central.<br />

For information about publishing your research in <strong>BMC</strong> journals or any BioMed Central journal, go to<br />

http://www.biomedcentral.com/info/authors/<br />

© 2013 Pyron et al.<br />

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),<br />

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A phylogeny and revised classification of Squamata,<br />

including 4161 species of lizards and snakes<br />

Abstract<br />

Background<br />

Robert Alexander Pyron 1*<br />

* Corresponding author<br />

Email: rpyron@colubroid.org<br />

Frank T Burbrink 2,3<br />

Email: frank.burbrink@csi.cuny.edu<br />

John J Wiens 4<br />

Email: wiensj@email.arizona.edu<br />

1 Department of Biological Sciences, The George Washington University, 2023 G<br />

St. NW, Washington, DC 20052, USA<br />

2 Department of <strong>Biology</strong>, The Graduate School and University Center, The City<br />

University of New York, 365 5th Ave., New York, NY 10016, USA<br />

3 Department of <strong>Biology</strong>, The College of Staten Island, The City University of<br />

New York, 2800 Victory Blvd., Staten Island, NY 10314, USA<br />

4 Department of Ecology and <strong>Evolutionary</strong> <strong>Biology</strong>, University of Arizona,<br />

Tucson, AZ 85721-0088, USA<br />

The extant squamates (>9400 known species of lizards and snakes) are one of the most<br />

diverse and conspicuous radiations of terrestrial vertebrates, but no studies have attempted to<br />

reconstruct a phylogeny for the group with large-scale taxon sampling. Such an estimate is<br />

invaluable for comparative evolutionary studies, and to address their classification. Here, we<br />

present the first large-scale phylogenetic estimate for Squamata.<br />

Results<br />

The estimated phylogeny contains 4161 species, representing all currently recognized<br />

families and subfamilies. The analysis is based on up to 12896 base pairs of sequence data<br />

per species (average = 2497 bp) from 12 genes, including seven nuclear loci (BDNF, c-mos,<br />

NT3, PDC, R35, RAG-1, and RAG-2), and five mitochondrial genes (12S, 16S, cytochrome<br />

b, ND2, and ND4). The tree provides important confirmation for recent estimates of higherlevel<br />

squamate phylogeny based on molecular data (but with more limited taxon sampling),<br />

estimates that are very different from previous morphology-based hypotheses. The tree also<br />

includes many relationships that differ from previous molecular estimates and many that<br />

differ from traditional taxonomy.


Conclusions<br />

We present a new large-scale phylogeny of squamate reptiles that should be a valuable<br />

resource for future comparative studies. We also present a revised classification of squamates<br />

at the family and subfamily level to bring the taxonomy more in line with the new<br />

phylogenetic hypothesis. This classification includes new, resurrected, and modified<br />

subfamilies within gymnophthalmid and scincid lizards and boid, colubrid, and lamprophiid<br />

snakes.<br />

Keywords<br />

Amphisbaenia, Lacertilia, Likelihood support measures, Missing data, Serpentes, Squamata,<br />

Phylogenetics, Reptiles, Supermatrices, Systematics<br />

Background<br />

Squamate reptiles (lizards, snakes, and amphisbaenians ["worm lizards"]) are among the most<br />

diverse radiations of terrestrial vertebrates. Squamata includes more than 9400 species as of<br />

December 2012 [1]. The rate of new species descriptions shows no signs of slowing, with a<br />

record 168 new species described in 2012 [1], greater than the highest yearly rates of the 18th<br />

and 19th centuries (e.g. 1758, 118 species; 1854, 144 species [1]). Squamates are presently<br />

found on every continent except Antarctica, and in the Indian and Pacific Oceans, and span<br />

many diverse ecologies and body forms, from limbless burrowers to arboreal gliders<br />

(summarized in [2-4]).<br />

Squamates are key study organisms in numerous fields, from evolution, ecology, and<br />

behavior [3] to medicine [5,6] and applied physics [7]. They have also been the focus of<br />

many pioneering studies using phylogenies to address questions about trait evolution (e.g.<br />

[8,9]). Phylogenies are now recognized as being integral to all comparative studies of<br />

squamate biology (e.g. [10,11]). However, hypotheses about squamate phylogeny have<br />

changed radically in recent years [12], especially when comparing trees generated from<br />

morphological [13-15] and molecular data [16-20]. Furthermore, despite extensive work on<br />

squamate phylogeny at all taxonomic levels, a large-scale phylogeny (i.e. including thousands<br />

of species and multiple genes) has never been attempted using morphological or molecular<br />

data.<br />

Squamate phylogenetics has changed radically in the last 10 years, revealing major conflicts<br />

between the results of morphological and molecular analyses [12]. Early estimates of<br />

squamate phylogeny [21] and recent studies based on morphological data [13-15,22]<br />

consistently supported a basal division between Iguania (including chameleons, agamids, and<br />

iguanids, sensu lato), and Scleroglossa, which comprises all other squamates (including<br />

skinks, geckos, snakes, and amphisbaenians). Within Scleroglossa, many phylogenetic<br />

analyses of morphological data have also supported a clade containing limb-reduced taxa,<br />

including various combinations of snakes, dibamids, amphisbaenians, and (in some analyses)<br />

limb-reduced skinks and anguids [13-15,19,22], though some of these authors also<br />

acknowledged that this clade was likely erroneous.


In contrast, recent molecular analyses have estimated very different relationships. Novel<br />

arrangements include placement of dibamids and gekkotans near the root of the squamate<br />

tree, a sister-group relationship between amphisbaenians and lacertids, and a clade<br />

(Toxicofera) uniting Iguania with snakes and anguimorphs within Scleroglossa [16-20,23,24].<br />

These molecular results (and the results of combined morphological and molecular analyses)<br />

suggest that some estimates of squamate phylogeny based on morphology may have been<br />

misled, especially by convergence associated with adaptations to burrowing [19]. However,<br />

there have also been disagreements among molecular studies, such as placement of dibamids<br />

relative to gekkotans and other squamates and relationships among snakes, iguanians, and<br />

anguimorphs (e.g. [17,20]).<br />

Analyses of higher-level squamate relationships based on molecular data have so far included<br />

relatively few (less than 200) species, and none have included representatives from all<br />

described families and subfamilies [17-20,23,24]. This limited taxon sampling makes existing<br />

molecular phylogenies difficult to use for broad-scale comparative studies, with some<br />

exceptions based on supertrees [10,11]. In addition, limited taxon sampling is potentially a<br />

serious issue for phylogenetic accuracy [25-28]. Thus, an analysis with extensive taxon<br />

sampling is critically important to test hypotheses based on molecular datasets with more<br />

limited sampling and to provide a framework for comparative analyses.<br />

Despite the lack of a large-scale phylogeny across squamates, recent molecular studies have<br />

produced phylogenetic estimates for many of the major groups of squamates, including<br />

iguanian lizards [29-34], higher-level snake groups [35-37], typhlopoid snakes [38,39],<br />

colubroid snakes [40-46], booid snakes [47,48], scincid lizards [49-52], gekkotan lizards [53-<br />

60], teiioid lizards [61-64], lacertid lizards [65-69], and amphisbaenians [70,71]. These<br />

studies have done an outstanding job of clarifying the phylogeny and taxonomy of these<br />

groups, but many were limited in some ways by the number of characters and taxa that they<br />

sampled (and which were available at the time for sequencing).<br />

Here, we present a phylogenetic estimate for Squamata based on combining much of the<br />

existing sequence data for squamate reptiles, using the increasingly well-established<br />

supermatrix approach [41,72-77]. We present a new phylogenetic estimate including 4161<br />

squamate species. The dataset includes up to 12896 bp per species from 12 loci (7 nuclear, 5<br />

mitochondrial). We include species from all currently described families and subfamilies. In<br />

terms of species sampled, this is 5 times larger than any previous phylogeny for any one<br />

squamate group [30,41], 3 times larger than the largest supertree estimate [11], and 25 times<br />

larger than the largest molecular study of higher-level squamate relationships [20]. While we<br />

did not sequence any new taxa specifically for this project, much of the data in the combined<br />

matrix were generated in our labs or from our previous collaborative projects<br />

[16,19,20,34,36,37,41,44,78-82], including thousands of gene sequences from hundreds of<br />

species (>550 species; ~13% of the total).<br />

The supermatrix approach can provide a relatively comprehensive phylogeny, and uncover<br />

novel relationships not seen in any of the separate analyses in which the data were generated.<br />

Such novel relationships can be revealed via three primary mechanisms. First, different<br />

studies may have each sampled different species from a given group for the same genes, and<br />

combining these data may reveal novel relationships not apparent in the separate analyses.<br />

Second, different studies may have used different genetic markers for the same taxa, and<br />

combining these markers can dramatically increase character sampling, potentially revealing<br />

new relationships and providing stronger support for previous hypotheses. Third, even for


clades that were previously studied using complete taxon sampling and multiple loci, novel<br />

relationships may be revealed by including these lineages with other related groups in a largescale<br />

phylogeny.<br />

The estimated tree and branch-lengths should be useful for comparative studies of squamate<br />

biology. However, this phylogeny is based on a supermatrix with extensive missing data<br />

(mean = 81% per species). Some authors have suggested that matrices with missing cells may<br />

yield misleading estimates of topology, support, and branch lengths [83]. Nevertheless, most<br />

empirical and simulation studies have not found this to be the case, at least for topology and<br />

support [41,73,84,85]. Though fewer studies have examined the effects of missing data on<br />

branch lengths [44,86,87], these also suggest that missing data do not strongly impact<br />

estimates. Here, we test whether branch lengths for terminal taxa are related to their<br />

completeness.<br />

In general, our results corroborate those of many recent molecular studies with regard to<br />

higher-level relationships, species-level relationships, and the monophyly, composition, and<br />

relationships of most families, subfamilies, and genera. However, our results differ from<br />

previous estimates for some groups, and reveal (or corroborate) numerous problems in the<br />

existing classification of squamates. We therefore provide a conservative, updated<br />

classification of extant squamates at the family and subfamily level based on the new<br />

phylogeny, while highlighting problematic taxonomy at the genus level, without making<br />

changes. The generic composition of all families and subfamilies under our revised taxonomy<br />

are provided in Appendix I.<br />

We note dozens of problems in the genus-level taxonomy suggested by our tree, but we<br />

acknowledge in advance that we do not provide a comprehensive review of the previous<br />

literature dealing with all these taxonomic issues (this would require a monographic<br />

treatment). Similarly, we do not attempt to fix these genus-level problems here, as most will<br />

require more extensive taxon (and potentially character) sampling to adequately resolve.<br />

Throughout the paper, we address only extant squamates. Squamata also includes numerous<br />

extinct species classified in both extant and extinct families, subfamilies, and genera.<br />

Relationships and classification of extinct squamates based on morphological data from<br />

fossils have been addressed by numerous authors (e.g. [14,15,19,22,88-93]). A classification<br />

based only on living taxa may create some problems for classifying fossil taxa, but these can<br />

be addressed in future studies that integrate molecular and fossil data [19,86].<br />

Results<br />

Supermatrix phylogeny<br />

We generated the final tree (lnL = −2609551.07) using Maximum Likelihood (ML) in<br />

RAxMLv7.2.8. Support was assessed using the non-parametric Shimodaira-Hasegawa-Like<br />

(SHL) implementation of the approximate likelihood-ratio test (aLRT; see [94]). The tree and<br />

data matrix are available in NEXUS format in DataDryad repository 10.5061/dryad.82h0m<br />

and as Additional file 1: Data File S1. A skeletal representation of the tree (excluding several<br />

species which are incertae sedis) is shown in Figure 1. The full species-level phylogeny<br />

(minus the outgroup Sphenodon) is shown in Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,<br />

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28. The analysis yields a generally well-


supported phylogenetic estimate for squamates (i.e. 70% of nodes have SHL values >85,<br />

indicating they are strongly supported). There is no relationship between proportional<br />

completeness (bp of non-missing data in species / 12896 bp of complete data) and branch<br />

length (r = −0.29, P = 0.14) for terminal taxa, strongly suggesting that the estimated branch<br />

lengths are not consistently biased by missing data.<br />

Figure 1 Higher-level squamate phylogeny. Skeletal representation of the 4161-species tree<br />

from maximum-likelihood analysis of 12 genes, with tips representing families and<br />

subfamilies (following our taxonomic revision; species considered incertae sedis are not<br />

shown). Numbers at nodes are SHL values greater than 50%. The full tree is presented in<br />

Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,<br />

27, 28, with panels indicated by bold italic letters.<br />

Figure 2 Species-level squamate phylogeny. Large-scale maximum likelihood estimate of<br />

squamate phylogeny, containing 4161 species. Numbers at nodes are SHL values greater than<br />

50%. A skeletal version of this tree is presented in Figure 1. Bold italic letters indicate figure<br />

panels (A). Within panels, branch lengths are proportional to expected substitutions per site,<br />

but the relative scale differs between panels.<br />

Figure 3 Species-level squamate phylogeny continued (B).<br />

Figure 4 Figure 5 Species-level squamate phylogeny continued (D)<br />

Species-level squamate phylogeny continued (D).<br />

Figure 6 Species-level squamate phylogeny continued (E).<br />

Figure 7 Species-level squamate phylogeny continued (F).<br />

Figure 8 Species-level squamate phylogeny continued (G).<br />

Figure 9 Species-level squamate phylogeny continued (H).<br />

Figure 10 Species-level squamate phylogeny continued (I).<br />

Figure 11 Species-level squamate phylogeny continued (J).<br />

Figure 12 Species-level squamate phylogeny continued (K)<br />

Species-level squamate phylogeny continued (K).<br />

Figure 13 Species-level squamate phylogeny continued (L).<br />

Figure 14 Species-level squamate phylogeny continued (M).<br />

Figure 15 Species-level squamate phylogeny continued (N).<br />

Figure 16 Species-level squamate phylogeny continued (O).<br />

Figure 17 Species-level squamate phylogeny continued (P).<br />

Figure 18 Species-level squamate phylogeny continued (Q).


Figure 19 Species-level squamate phylogeny continued (R).<br />

Figure 20 Species-level squamate phylogeny continued (S).<br />

Figure 21 Species-level squamate phylogeny continued (T).<br />

Figure 22 Species-level squamate phylogeny continued (U).<br />

Figure 23 Species-level squamate phylogeny continued (V).<br />

Figure 24 Species-level squamate phylogeny continued (W).<br />

Figure 25 Species-level squamate phylogeny continued (X).<br />

Figure 26 Species-level squamate phylogeny continued (Y).<br />

Figure 27 Species-level squamate phylogeny continued (Z).<br />

Figure 28 Species-level squamate phylogeny continued (AA).<br />

Higher-level relationships<br />

Our tree (Figure 1) is broadly congruent with most previous molecular studies of higher-level<br />

squamate phylogeny using both nuclear data and combined nuclear and mitochondrial data<br />

(e.g. [16-20]), providing important confirmation of previous molecular studies based on more<br />

limited taxon sampling. Specifically we support (Figure 1): (i) the placement of dibamids and<br />

gekkotans near the base of the tree (Figure 1A); (ii) a sister-group relationship between<br />

Scincoidea (scincids, cordylids, gerrhosaurids, and xantusiids; Figure 1B) and a clade<br />

(Episquamata; Figure 1C) containing the rest of the squamates excluding dibamids and<br />

gekkotans; (iii) Lacertoidea (lacertids, amphisbaenians, teiids, and gymnophthalmids; Figure<br />

1D), and (iv) a clade (Toxicofera; Figure 1E) containing anguimorphs (Figure 1F), iguanians<br />

(Figure 1G), and snakes (Figure 1H) as the sister taxon to Lacertoidea.<br />

These relationships are strongly supported in general (Figure 1), but differ sharply from most<br />

trees based on morphological data [13-15,19,22,95]. Nevertheless, many clades found in<br />

previous morphological taxonomies and phylogenies are also present in this tree in some<br />

form, including Amphisbaenia, Anguimorpha, Gekkota, Iguania, Lacertoidea (but including<br />

amphisbaenians), Scincoidea, Serpentes, and many families and subfamilies. In contrast, the<br />

relationships among these groups differ strongly between molecular analyses [17-20] and<br />

morphological analyses [14,15]. Our results demonstrate that this incongruence is not<br />

explained by limited taxon sampling in the molecular data sets. In fact, our species-level<br />

sampling is far more extensive than in any morphological analyses (e.g. [14,15]), by an order<br />

of magnitude.<br />

We find that the basal squamate relationships are strongly supported in our tree. The family<br />

Dibamidae is the sister group to all other squamates, and Gekkota is the sister group to all<br />

squamates excluding Dibamidae (Figure 1), as in some previous studies (e.g. [16,18]). Other<br />

recent molecular analyses have also placed Dibamidae near the squamate root, but differed in<br />

placing it as either the sister taxon to all squamates excluding Gekkota [17], or the sistergroup<br />

of Gekkota [19,20]. Our results also corroborate that the New World genus


Anelytropsis is nested within the Old World genus Dibamus [96], but the associated branches<br />

are weakly supported (Figure 2).<br />

Gekkota<br />

Within Gekkota, we corroborate both earlier morphological [97] and recent molecular<br />

estimates [55,56,59,98] in supporting a clade containing the Australian radiation of<br />

"diplodactylid" geckos (Carphodactylidae and Diplodactylidae) and the snakelike pygopodids<br />

(Figures 1, 2). As in previous studies [55], Carphodactylidae is the weakly supported sister<br />

group to Pygopodidae, and this strongly supported clade is the sister group to Diplodactylidae<br />

(Figures 1, 2). We recover clades within the former Gekkonidae that correspond to the<br />

strongly supported families Eublepharidae, Sphaerodactylidae, Phyllodactylidae, and<br />

Gekkonidae as in previous studies, and similar relationships among these groups [55-<br />

57,59,60,98-100].<br />

Within Gekkota, we find evidence for non-monophyly of many genera. Many relationships<br />

among the New Caledonian diplodactylids are weakly supported (Figure 2), and there is<br />

apparent non-monophyly of the genera Rhacodactylus, Bavayia, and Eurydactylodes with<br />

respect to each other and Oedodera, Dierogekko, Paniegekko, Correlophus, and Mniarogekko<br />

[101]. In the Australian diplodactylids, Strophurus taenicauda is strongly supported as<br />

belonging to a clade that is only distantly related to the other sampled Strophurus species<br />

(Figure 2). The two species of the North African sphaerodactylid genus Saurodactylus are<br />

divided between the two major sphaerodactylid clades (Figure 3), but the associated branches<br />

are weakly supported. The South American phyllodactylid genus Homonota is strongly<br />

supported as being paraphyletic with respect to Phyllodactylus (Figure 3).<br />

A number of gekkonid genera (Figure 4) also appear to be non-monophyletic, including the<br />

Asian genera Cnemaspis (sampled species divided into two non-sister clades),<br />

Lepidodactylus (with respect to Pseudogekko and some Luperosaurus), Gekko (with respect<br />

to Ptychozoon and Lu. iskandari), Luperosaurus (with respect to Lepidodactylus and Gekko),<br />

Mediodactylus (with respect to Pseudoceramodactylus, Tropiocolotes, Stenodactylus,<br />

Cyrtopodion, Bunopus, Crossobamon, and Agamura), and Bunopus (with respect to<br />

Crossobamon), and the African Afrogecko (with respect to Afroedura, Christinus,<br />

Cryptactites, and Matoatoa), Afroedura (with respect to Afrogecko, Blaesodactylus,<br />

Christinus, Geckolepis, Pachydactylus, Rhoptropus, and numerous other genera),<br />

Chondrodactylus (with respect to Pachydactylus laevigatus), and Pachydactylus (with respect<br />

to Chondrodactylus and Colopus). Many of these taxonomic problems in gekkotan families<br />

have been identified in previous studies (e.g. [59,99,102]), and extensive changes will likely<br />

be required to fix them.<br />

Scincoidea<br />

We strongly support (SHL = 100; Figures 1, 5, 6, 7, 8, 9, 10) the monophyly of Scincoidea<br />

(Scincidae, Xantusiidae, Gerrhosauridae, and Cordylidae), as in other recent studies [16-20].<br />

All four families are strongly supported (Figures 5, 6, 7, 8, 9, 10). A similar clade is also<br />

recognized in morphological phylogenies [14], though without Xantusiidae in some [13].<br />

Within the New World family Xantusiidae, we corroborate previous analyses [103,104] that<br />

found strong support for a sister-group relationship between Xantusia and Lepidophyma,<br />

excluding Cricosaura (Figure 5). These relationships support the subfamily Cricosaurinae for


Cricosaura [105]. We also recognize Xantusiinae for the North American genus Xantusia<br />

and Lepidophyminae for the Central American genus Lepidophyma [106,107].<br />

Within the African and Madagascan family Gerrhosauridae (Figure 5), the genus<br />

Gerrhosaurus is weakly supported as being paraphyletic with respect to the clade comprising<br />

Tetradactylus + Cordylosaurus, with G. major placed as the sister group to all other<br />

gerrhosaurids. Within Cordylidae (Figure 5), we use the generic taxonomy from a recent<br />

phylogenetic analysis and re-classification based on multiple nuclear and mitochondrial genes<br />

[108]. This classification broke up the non-monophyletic Cordylus [109] into several smaller<br />

genera, and we corroborate the non-monophyly of the former Cordylus and support the<br />

monophyly of the newly recognized genera (Figure 5). We find support the distinctiveness of<br />

Platysaurus (Figure 5) and recognition of the subfamily Platysaurinae [108].<br />

We find strong support (SHL = 100) for the monophyly of Scincidae (Figure 6) as in previous<br />

studies (e.g. [20,50,51]). We find strong support for the basal placement of the monophyletic<br />

subfamily Acontiinae (Figure 6), as found in some previous studies (e.g. [20,51]) but not<br />

others (e.g. [50]). Similar to earlier studies, we find that the subfamily Scincinae sensu [110]<br />

is non-monophyletic, as Feylininae is nested within Scincinae (also found in [20,50,51,111]).<br />

Based on these results, synonymizing Feylininae with Scincinae produces a monophyletic<br />

Scincinae (SHL = 97), which is then sister to a monophyletic Lygosominae (SHL = 100<br />

excluding Ateuchosaurus; see below) with 94% SHL support (Figures 6, 7, 8, 9, 10). This<br />

yields a new classification in which all three subfamilies (Acontiinae, Lygosominae,<br />

Scincinae) are strongly supported. Importantly, these definitions approximate the traditional<br />

content of the three subfamilies [50,110], except for recognition of Feylininae.<br />

We note that a recent revision of the New World genus Mabuya introduced a nontraditional<br />

family-level classification for Scincidae [112]. These authors divided Scincidae into seven<br />

families: Acontiidae, Egerniidae, Eugongylidae, Lygosomidae, Mabuyidae, Scincidae and<br />

Sphenomorphidae. However, there was no phylogenetic need for considering these clades as<br />

families (or another rank below family), since the family Scincidae is clearly monophyletic,<br />

based on our results and others (see above). Thus, their new taxonomy changes the longstanding<br />

definition of Scincidae unnecessarily (see [113]). Furthermore, these changes were<br />

done without defining the full content (beyond a type genus) of any of these families other<br />

than Scincidae (the former Scincinae + Feylininae), and Acontiidae (the former Acontiinae).<br />

Most importantly, the new taxonomy proposed by these authors [112] is at odds with the<br />

phylogeny estimated here, with respect to the familial and subfamilial classification of >1000<br />

skink species (Figures 6, 7, 8, 9, 10). For instance, Sphenomorphus stellatus is found in a<br />

strongly supported clade containing Lygosoma (presumably Lygosomidae; Figure 10), which<br />

is separate from the other clade (presumably Sphenomorphidae) containing the other sampled<br />

Sphenomorphus species (Figure 7; but note that these Sphenomorphus species are divided<br />

among several subclades within this latter clade). An additional problem is that Egernia,<br />

Lygosoma, and Sphenomorphus are the type genera of Egerniidae, Lygosomidae, and<br />

Sphenomorphidae, but are paraphyletic as currently defined (Figures 7, 8, 9, 10), leading to<br />

further uncertainty in the content and definition of these putative families.<br />

Furthermore, Mabuyidae apparently refers to the clade (Figure 9) containing Chioninia,<br />

Dasia, Mabuya, Trachylepis, with each of these genera placed in its own subfamily<br />

(Chioniniinae, Dasiinae, Mabuyinae, and Trachylepidinae). However, several other genera<br />

are strongly placed in this group, such as Eumecia, Eutropis, Lankaskincus, and Ristella


(Figure 9). These other genera cannot be readily fit into these subfamilial groups (i.e. they are<br />

not the sister group of any genera in those subfamilies), and Trachylepis is paraphyletic with<br />

respect to Eumecia, Chioninia, and Mabuya (Figure 9). Also, we find that Emoia is divided<br />

between clades containing Lygosoma (Lygosomidae) and Eugongylus (Eugongylidae), and<br />

many of these relationships have strong support (Figure 10). Finally, Ateuchosaurus is<br />

apparently not accounted for in their classification, and here is weakly placed as the sistergroup<br />

to a clade comprising their Sphenomorphidae, Egerniidae, Mabuyidae, and<br />

Lygosomidae (i.e. Lygosominae as recognized here; Figures 7, 8, 9, 10).<br />

These authors [112] argued that a more heavily subdivided classification for skinks may be<br />

desirable for facilitating future taxonomic revisions and species descriptions. However, this<br />

classification seems likely to only exacerbate existing taxonomic problems (e.g. placing<br />

congeneric species in different families without revising the genus-level taxonomy). Here, we<br />

retain the previous definition of Mabuya (restricted to the New World clade; sensu [114]),<br />

and we support the traditional definitions of Scincidae, Acontiinae, Scincinae (but including<br />

Feylininae), and Lygosominae (Figures 6, 7, 8, 9, 10; note that we leave Ateuchosaurus as<br />

incertae sedis). The other taxonomic issues in Scincidae identified here and elsewhere should<br />

be resolved in future studies. Our phylogeny provides a framework in which these analyses<br />

can take place (i.e. identifying major subclades within skinks), which we think may be more<br />

useful than a classification lacking clear taxon definitions.<br />

Of the 133 scincid genera [1], we can assign the 113 sampled in our tree to one of the three<br />

subfamilies in our classification (Acontiinae, Lygosominae, and Scincinae; Appendix I). We<br />

place 19 of the remaining genera into one of the three subfamilies based on previous<br />

classifications (e.g. [110]), with Ateuchosaurus as incertae sedis in Scincidae. Below, we<br />

review the non-monophyletic genera in our tree. Many of these problems have been reported<br />

by previous authors [51,111,115-118], and for brevity we do not distinguish between cases<br />

reported in previous studies, and potentially new instances found here.<br />

Within Acontiinae, we find that the two genera are both strongly supported as monophyletic<br />

(Figure 6). Within Scincinae, many genera are now strongly monophyletic (thanks in part to<br />

the dismantling of Eumeces; [49,50,119]), but some problems remain (Figure 6). The genera<br />

Scincus and Scincopus are strongly supported as being nested inside of the remaining<br />

Eumeces. Among Malagasy scincines (see [49,120]), Pseudacontias is nested inside<br />

Madascincus, and the genera Androngo, Pygomeles, and Voeltzkowia are all nested in<br />

Amphiglossus (Figure 6).<br />

We also find numerous taxonomic problems with lygosomines (Figures 7, 8, 9, 10). Species<br />

of Sphenomorphus are widely dispersed among other lygosomine genera. The genus<br />

Tropidophorus is paraphyletic with respect to a clade containing many other genera (Figure<br />

7). The sampled species of Asymblepharus are only distantly related to each other, including<br />

one species (A. sikimmensis) nested inside of Scincella (Figure 7). The genus Lipinia is<br />

polyphyletic, with one species (L. vittigera) strongly placed as the sister taxon to Isopachys,<br />

and with two other species (L. pulchella and L. noctua) forming a well-supported clade that<br />

also includes Papuascincus (Figure 7).<br />

Among Australian skinks, the genus Eulamprus is polyphyletic with respect to Nangura,<br />

Calyptotis, Gnypetoscincus, Coggeria, Coeranoscincus, Ophioscincus, Saiphos, Anomalopus,<br />

Eremiascincus, Hemiergis, Glaphyromorphus, Notoscincus, Ctenotus, and Lerista, and most<br />

of the relevant nodes are strongly supported (Figure 8). The genera Coeranoscincus and


Ophioscincus are polyphyletic with respect to each other and to Saiphos and Coggeria<br />

(Figure 8). The genus Glaphyromorphus is paraphyletic with respect to a clade of Eulamprus<br />

(Figure 8). The genus Egernia is paraphyletic with respect to Bellatorias (which is<br />

paraphyletic with respect to Egernia and Lissolepis) and Lissolepis, although many of the<br />

relevant nodes are not strongly supported (Figure 9). The genera Cyclodomorphus and<br />

Tiliqua are paraphyletic with respect to each other (Figure 9).<br />

Among other lygosomines, Trachylepis is non-monophyletic [121], with two species (T.<br />

aurata and T. vittata) that fall outside the strongly supported clade containing the other<br />

species (Figure 9). The latter clade is weakly supported as the sister group to a clade<br />

containing Chioninia, Eumecia, and Mabuya. In Mabuya, a few species (M. altamazonica, M.<br />

bistriata, and M. nigropuncata) have unorthodox placements within a monophyletic Mabuya,<br />

potentially due to uncertain taxonomic assignment of specimens by previous authors<br />

[51,122]. The genus Lygosoma is paraphyletic with respect to Lepidothyris and Mochlus, and<br />

many of the relevant nodes are strongly supported (Figure 10). Among New Caledonian<br />

skinks, the genus Lioscincus is polyphyletic with respect to Marmorosphax, Celatiscincus,<br />

and Tropidoscincus, and both Lioscincus and Tropidoscincus are paraphyletic with respect to,<br />

Kanakysaurus, Lacertoides, Phoboscincus, Sigaloseps, Tropidoscincus, Graciliscincus,<br />

Simiscincus, and Caledoniscincus, with strong support for most relevant nodes (Figure 10).<br />

The genera Emoia and Bassiana are massively polyphyletic and divided across multiple<br />

lygosomine clades (Figure 10). The genus Lygisaurus appears to be nested inside of Carlia,<br />

although many of the relevant branches are only weakly supported (Figure 10).<br />

Lacertoidea<br />

Within Lacertoidea (Figure 1), we corroborate recent molecular analyses (e.g. [16,17,19,20])<br />

and morphology-based phylogenies and classifications (e.g. [13,15]) in supporting the clade<br />

including the New World families Gymnophthalmidae and Teiidae (Figure 11). Within a<br />

weakly supported Teiidae (Figure 11), the subfamilies Tupinambinae and Teiinae are each<br />

strongly supported as monophyletic, as in previous studies [61]. In Tupinambinae,<br />

Callopistes is the sister group to a clade containing Tupinambis, Dracaena, and<br />

Crocodilurus. The clade Dracaena + Crocodilurus is nested within Tupinambis, and the<br />

associated clades have strong support (Figure 11). We find that the teiine genera Ameiva and<br />

Cnemidophorus are non-monophyletic (Figure 11), interdigitating with each other and the<br />

monophyletic genera Aspidoscelis, Dicrodon (monotypic), and Kentropyx, as in previous<br />

phylogenies [62].<br />

A recent study [123] proposed a re-classification of the family Teiidae based on analysis of<br />

137 morphological characters for 101 terminal species (with ~150 species in the family).<br />

Those authors erected several new genera and subfamilies in an attempt to deal with the<br />

apparent non-monophyly of currently recognized taxa in their tree. However, in our tree,<br />

some of these new taxa conflict strongly with the phylogeny or are rendered unnecessary.<br />

First, they recognize Callopistinae as a distinct subfamily for Callopistes, arguing that failure<br />

to do so would produce a taxonomy inconsistent with teiid phylogeny. However, we find<br />

strong support for Callopistes in its traditional placement as part of Tupinambinae (Figure<br />

11), and this change is thus not needed based on our results. The genus Ameiva is<br />

paraphyletic under traditional definitions [62]. In our tree, their conception of Ameiva is also<br />

non-monophyletic, with species found in three distinct clades (Figure 11). We also find nonmonophyly<br />

of many of their species groups within Ameiva, including the ameiva, bifrontata,<br />

dorsalis, and erythrocephala groups (Figure 11). Their genera Aurivela (Cnemidophorus


longicaudus) and Contomastyx (Cnemidophorus lacertoides) are strongly supported as sister<br />

taxa in our tree, and are nested within Ameiva in their erythrocephala species group, along<br />

with Dicrodon (Figure 11).<br />

On the positive side, many of the genera they recognize are monophyletic and are not nested<br />

in other genera in our tree, including their Ameivula (Cnemidophorus ocellifer), Aspidoscelis<br />

(unchanged from previous definitions), Cnemidophorus (excluding C. ocellifer, C.<br />

lacertoides, and C. longicaudus), Holcosus (Ameiva undulata, A. festiva, and A.<br />

quadrilineatus), Kentropyx (unchanged from previous definitions), Salvator (Tupinambis<br />

rufescens, T. duseni, and T. merianae), and Teius (unchanged from previous definitions). We<br />

did not sample Ameiva edracantha (their Medopheos).<br />

Given our results, major taxonomic rearrangements within Teiidae seem problematic at<br />

present, especially with the extensive paraphyly of many traditional and re-defined teiid<br />

genera, the lack of strong resolution of many of these relationships based on molecular and<br />

morphological data, and incomplete taxon sampling in all studies so far. Thus, we<br />

provisionally retain the traditional taxonomy of Teiidae, pending additional data and<br />

analyses. However, we note that Ameiva, Cnemidophorus, and Tupinambis are clearly nonmonophyletic<br />

based on both our results and those of recent authors [123], and will require<br />

taxonomic changes in the future. We anticipate that many of these newly proposed genera<br />

[123] will be useful in such revisions.<br />

We find strong support (SHL = 100) for monophyly of Gymnophthalmidae (Figure 11).<br />

Within Gymnophthalmidae, we find strong support for the monophyly of the previously<br />

recognized subfamilies [63,64,124], with the exception of Cercosaurinae (Figure 11).<br />

Previous researchers considered the genus Bachia a distinct tribe (Bachiini) within<br />

Cercosaurinae, based on a poorly supported sister-group relationship with the tribe<br />

Cercosaurini [63,64]. Here, we find a moderately well supported relationship (SHL = 84)<br />

between Bachia and Gymnophthalminae + Rhachisaurinae, and we find that this clade is only<br />

distantly related to other Cercosaurinae. Therefore, we restrict Cercosaurinae to the tribe<br />

Cercosaurini, and elevate the tribe Bachiini [64] to the subfamily level. The subfamily<br />

Bachiinae contains only the genus Bachia (Figure 11), identical in content to the previously<br />

recognized tribe [64]. Within Cercosaurinae, we find that the genus Petracola is nested<br />

within Proctoporus (Figure 11). In Ecpleopinae, Leposoma is divided into two clades,<br />

separated by Anotosaura, Colobosauroides, and Arthrosaura (Figure 11), and many of the<br />

relevant nodes are very strongly supported. These issues should be addressed in future<br />

studies.<br />

Our results show strong support for a clade uniting Lacertidae and Amphisbaenia<br />

(Lacertoidea; Figure 1), as in many previous studies [16-20,23]. We also find strong support<br />

for monophyly of amphisbaenians (SHL = 99), in contrast to some molecular analyses<br />

[19,20]. Relationships among amphisbaenian families (Figure 12) are generally strongly<br />

supported and similar to those in earlier molecular studies (Figure 12), including the<br />

placement of the New World family Rhineuridae as sister group to all other amphisbaenians<br />

[70,71,125]. The family Cadeidae is placed as the sister-group to Amphisbaenidae +<br />

Trogonophiidae (Figures 1 and Figure 12) with weak support, but has been placed with<br />

Blanidae in previous studies, with strong support but less extensive taxon sampling<br />

[125,126].


We find strong support for monophyly of the Old World family Lacertidae (Figure 13).<br />

Within Lacertidae, branch support for the monophyly of most genera and for the subfamilies<br />

Gallotiinae and Lacertinae is very high (Figure 13). However, we find that relationships<br />

among many genera are poorly supported, as in previous studies [65,67,68]. Our results<br />

(Figure 13) also indicate that several lacertid genera are non-monophyletic with strong<br />

support for the associated nodes, including Algyroides (paraphyletic with respect to<br />

Dinarolacerta), Ichnotropis (paraphyletic with respect to Meroles), Meroles (paraphyletic<br />

with respect to Ichnotropis), Nucras (polyphyletic with respect to several genera, including<br />

Pedioplanis, Poromera, Latastia, Philocortus, Pseuderemias, and Heliobolus), and<br />

Pedioplanis (paraphyletic with respect to Nucras).<br />

Higher-level phylogeny of Toxicofera<br />

We find strong support (SHL = 96) for monophyly of Toxicofera (Anguimorpha, Iguania,<br />

and Serpentes; Figure 1), and moderate support for a sister-group relationship between<br />

Iguania and Anguimorpha (SHL = 79). Relationships among Anguimorpha, Iguania, and<br />

Serpentes were weakly supported in some Bayesian and likelihood analyses [16-19], but<br />

strongly supported in others [20]. We further corroborate previous studies in also placing<br />

Anguimorpha with Iguania [16-20]. In contrast, some other studies have placed anguimorphs<br />

with snakes as the sister group to iguanians [127,128].<br />

Anguimorpha<br />

Our hypothesis for family-level anguimorphan relationships (Figures 1, 14) is generally<br />

similar to that of other recent studies [17,19,20,129], and is strongly supported. Our results<br />

differ from some analyses based only on morphology, which place Anguidae near the base of<br />

Anguimorpha [130]. Here, Shinisauridae is strongly supported as the sister taxon to a wellsupported<br />

clade of Varanidae + Lanthanotidae (Figures 1, 14). Varanid relationships are<br />

similar to previous estimates (e.g. [131]). Xenosauridae is here strongly supported as the<br />

sister-group to a strongly supported clade containing Helodermatidae and the strongly<br />

supported Anniellidae + Anguidae clade (Figures 1, 14). However, previous molecular<br />

analyses have placed Helodermatidae as the sister to Xenosauridae (Anniellidae + Anguidae),<br />

typically with strong support [16,17,19,20].<br />

Within Anguidae (Figure 14), our phylogeny indicates non-monophyly of genera within<br />

every subfamily, including Diploglossinae (Diploglossus and Celestus are strongly supported<br />

as paraphyletic with respect to each other and to Ophiodes), Anguinae (Ophisaurus is<br />

strongly supported as paraphyletic with respect to Anguis, Dopasia, and Pseudopus), and<br />

Gerrhonotinae (Abronia and Mesaspis are non-monophyletic, and Coloptychon is nested<br />

inside Gerrhonotus). Some of these problems were not reported previously (e.g.<br />

Coloptychon, Abronia, and Mesaspis), due to incomplete taxon sampling in previous studies<br />

[129,132,133], but relationships within Gerrhonotinae are under detailed investigation by<br />

other researchers, so these issues are likely to be resolved in the near future.<br />

Iguania<br />

We find strong support (SHL = 100) for the monophyly of Iguania (Figure 1). This clade is<br />

strongly supported by nuclear data [16,17,19,20], but an apparent episode of convergent<br />

molecular evolution in several mitochondrial genes has seemingly misled some analyses of<br />

mtDNA, leading to weak support for Iguania [134], or even separation of the acrodonts and


pleurodonts [17,135] in previous studies. Within Iguania (Figure 1), we find strong support<br />

(SHL = 100) for a sister-group relationship between Chamaeleonidae and Agamidae<br />

(Acrodonta), and for a clade of mostly New World families (Pleurodonta; SHL = 100).<br />

We find strong support for the monophyly of Chamaeleonidae and the subfamily<br />

Chamaeleoninae, and weak support for the paraphyly of Brookesiinae (Figures 1, 15). The<br />

sampled species of the Brookesia nasus group appear as the sister group to all other<br />

chamaeleonids (the latter clade weakly supported) as found by some previous authors [136],<br />

though other studies have recovered a monophyletic Brookesia [137,138]. Within<br />

Chamaeleoninae (Figure 15), we find strong support for the monophyly of most genera and<br />

species-level relationships. However, we find strong support for the non-monophyly of<br />

Calumma, with some species strongly placed with Chamaeleo, others strongly placed with<br />

Rieppeleon, and a third set weakly placed with Nadzikambia + Rhampoleon. While nonmonophly<br />

of Calumma has also been found in previous studies [138], a recent study strongly<br />

supports monophyly of Brookesia and weakly supports monophyly of Calumma [139].<br />

Monophyly of Agamidae is strongly supported (Figure 16; SHL = 100), contrary to some<br />

previous estimates [15,31]. Most relationships among agamid subfamilies and genera are<br />

strongly supported (Figure 16), and largely congruent with earlier studies [17,29,34,140].<br />

There are some differences with earlier studies. For example, previous studies based on 29–<br />

44 loci [20,29,34] placed Hydrosaurinae as sister to Amphibolurinae + (Agaminae +<br />

Draconinae) with strong support, whereas we place Hydrosaurinae as the sister-group to<br />

Amphibolurinae with weak support. Other authors [140] placed Leiolepiedinae with<br />

Uromastycinae, but we (and most other studies) place Uromastycinae as the sister group to all<br />

other agamids.<br />

Our phylogeny indicates several taxonomic problems within amphibolurine agamids (Figure<br />

16). The genera Moloch and Chelosania render Hypsilurus paraphyletic, although the support<br />

for the relevant clades is weak. The species Lophognathus gilberti is placed in a strongly<br />

supported clade with Chlamydosaurus and some Amphibolurus (including the type species,<br />

A. muricatus), a clade that is not closely related to the other Lophognathus. Many of these<br />

taxonomic problems were also noted by previous authors [141].<br />

Within agamine agamids (Figure 16), most relationships are well supported and monophyly<br />

of all sampled genera is strongly supported. In contrast, within draconine agamids (Figure<br />

16), many intergeneric relationships are weakly supported, and some genera are nonmonophyletic<br />

(Figure 16; see also [142]), including Gonocephalus (G. robinsonii is only<br />

distantly related to other Gonocephalus) and Japalura (with species distributed among three<br />

distantly related clades, including one allied with Ptyctolaemus, another with G. robinsonii,<br />

and a third with Pseudocalotes).<br />

Recent authors suggested dividing Laudakia into three genera (Stellagama, Paralaudakia,<br />

and Laudakia) based on a non-phylogenetic analysis of morphology [143]. Here, Laudakia<br />

(as previously defined) is strongly supported as monophyletic (Figure 16), and this change is<br />

not necessitated by the phylogeny. Similarly, based on genetic and morphological data, recent<br />

authors [144] suggested resurrecting the genus Saara for the basal clade of Uromastyx (U.<br />

asmussi, U. hardwickii, and U. loricata). However, Uromastyx (as previously defined) is<br />

strongly supported as monophyletic in our results (Figure 16) and in those of the recent<br />

revision [144], and this change is not needed. We therefore retain Laudakia and Uromastyx as<br />

previously defined, to preserve taxonomic stability in these groups [113]. We note that recent


studies have also begun to revise species limits in other groups such as Trapelus [145], and<br />

taxa such as T. pallidus (Figure 16) may represent populations within other species.<br />

Within Pleurodonta we generally confirm the monophyly and composition of the clades that<br />

were ranked as families (or subfamilies) within the group (e.g. Phrynosomatidae, Opluridae,<br />

Leiosauridae, Leiocephalidae, and Corytophanidae; Figures 1, 17, 18, 19) based on previous<br />

molecular studies [31,33,34] and earlier morphological studies [146,147].<br />

One important exception is the previously recognized Polychrotidae. Our results confirm that<br />

Anolis and Polychrus are not sister taxa (Figures 1, 18, 19), as also found in some previous<br />

molecular studies [31,33,34], but not others [20,29]. Our results provide strong support for<br />

non-monophyly of Polychrotidae, placing Polychrus with Hoplocercidae (SHL = 99) and<br />

Anolis with Corytophanidae (SHL = 99; the latter also found by [34]). Recent analyses<br />

placing Anolis with Polychrus showed only weak support for this relationship [20,29], despite<br />

many loci (30–44). We support continued recognition of Dactyloidae for Anolis and<br />

Polychrotidae for Polychrus [34], based on a limited number of loci but extensive taxon<br />

sampling. We note that these families are still monophlyetic, even if they prove to be sister<br />

taxa.<br />

Interestingly, our results for relationships among pleurodont families differ from most<br />

previous studies, and are surprisingly well-supported in some cases by SHL values (but see<br />

below). In previous studies, many relationships among pleurodont families were poorly<br />

supported by Bayesian posterior probabilities and by parsimony and likelihood bootstrap<br />

values, though typically sampling fewer taxa or characters [17,31,33,148-151]. Studies<br />

including 29 nuclear loci found strong concatenated Bayesian support for many relationships<br />

but weak support from ML bootstrap analyses for many of the same relationships [34]. The<br />

latter pattern (typically weak ML support) was also found in an analysis including those same<br />

29 loci and mitochondrial data for >150 species [29]. We also find a mixture of strongly and<br />

weakly supported clades, but with many relationships that are incongruent with these<br />

previous studies. First, we find that Tropiduridae is weakly supported as the sister group to all<br />

other pleurodonts (also found by [29]), followed successively (Figures 1, 17, 18, 19) by<br />

Iguanidae, Leiocephalidae, Crotaphytidae + Phrynosomatidae, Polychrotidae +<br />

Hoplocercidae, and Corytophanidae + Dactyloidae.<br />

The relatively strong support for the clades Crotaphytidae + Phrynosomatidae (SHL = 87),<br />

Polychrotidae + Hoplocercidae (SHL = 99), and Corytophanidae + Dactyloidae (SHL = 99) is<br />

largely unprecedented in previous studies (although Corytophanidae + Dactyloidae is<br />

strongly supported in some Bayesian analyses [34]). As in many previous analyses, deeper<br />

relationships among the families remain weakly supported. We also find a strongly supported<br />

clade containing Liolaemidae, Opluridae, and Leiosauridae (SHL = 95), with Opluridae +<br />

Leiosauridae also strongly supported (SHL = 99). Both clades have also been found in<br />

previous studies [149,151], including studies based on 29 or more nuclear loci [20,29,34].<br />

We note that previous studies have shown strong support for some pleurodont relationships<br />

(e.g. basal placement of phrynosomatids; see [34]), only to be strongly overturned with<br />

additional data [20,29]. Therefore, the relationships found here should be taken with some<br />

caution (even if strongly supported), with the possible exception of the recurring clade of<br />

Liolaemidae + (Opluridae + Leiosauridae).


All pleurodont families are strongly supported as monophyletic (SHL > 85). Within the<br />

pleurodont families, our results generally support the current generic-level taxonomy (Figures<br />

17, 18, 19). However, there are some exceptions. Within Tropiduridae (Figure 17),<br />

Tropidurus is paraphyletic with respect to Eurolophosaurus, Strobilurus, Uracentron, and<br />

Plica. Within Opluridae (Figure 18), the monotypic genus Chalarodon renders Oplurus<br />

paraphyletic. Two leiosaurid genera are also problematic (Figure 18). In Enyaliinae,<br />

Anisolepis is paraphyletic with respect to Urostrophus, and this clade is nested within<br />

Enyalius. In Leiosaurinae, Pristidactylus is rendered paraphyletic by Leiosaurus and<br />

Diplolaemus (Figure 18).<br />

Within Dactyloidae, a recent study re-introduced a more subdivided classification of anoles<br />

[152], an issue that has been debated extensively in the past [153-156]. Our results support<br />

the monophyly of all the genera recognized by recent authors [152], including Anolis,<br />

Audantia, Chamaelinorops, Dactyloa, Deiroptyx, Norops, and Xiphosurus (see Figure 19).<br />

However, since Anolis is monophyletic as previously defined, we retain that definition here<br />

(including the seven listed genera) for continuity with the recent literature [113,157].<br />

Serpentes<br />

Relationships among the major serpent groups (Figure 1) are generally similar to other recent<br />

studies [20,35,36,38,41,44,47,158-160]. We find that the blindsnakes, Scolecophidia (Figures<br />

1, 20) are not monophyletic, as in previous studies [19,20,36,44,159,160]. Similar to some<br />

previous studies [44,159], our data weakly place Anomalepididae as the sister taxon to all<br />

snakes, and the scolecophidian families Gerrhopilidae, Leptotyphlopidae, Typhlopidae, and<br />

Xenotyphlopidae as the sister-group to all other snakes excluding Anomalepididae (Figures 1,<br />

20). Previous studies have also placed Anomalepididae as the sister-group to all nonscolecophidian<br />

snakes [19,20,35,36,158,160], in some cases with strong support [20].<br />

Although it might appear that recent analyses of scolecophidian relationships [38] support<br />

monophyly of Scolecophidia (e.g. Figure 1 of [38]), the tree including non-snake outgroups<br />

from that study shows weak support for placing anomalepidids with alethinophidians, as in<br />

other studies [19,20,36,160].<br />

We follow recent authors [38] in recognizing Xenotyphlopidae (strongly placed as the sister<br />

taxon of Typhlopidae) and Gerrhopilidae (strongly placed as the sister group of<br />

Xenotyphlopidae + Typhlopidae) as distinct families (Figure 20). Leptotyphlopidae is<br />

strongly supported as the sister group of a clade comprising Gerrhopilidae, Xenotyphlopidae,<br />

and Typhlopidae (Figure 20). As in previous studies [38,44], we find strong support for nonmonophyly<br />

of several typhlopid genera (Afrotyphlops, Austrotyphlops, Ramphotyphlops,<br />

Letheobia, and Typhlops; Figure 20). There are also undescribed taxa (e.g. Typhlopidae sp.<br />

from Sri Lanka; [44]) of uncertain placement within this group (Figure 20). The systematics<br />

of typhlopoid snakes will thus require extensive revision in the future, with additional taxon<br />

and character sampling.<br />

Within Alethinophidia (SHL = 100), Aniliidae is strongly supported (SHL = 98) as the sister<br />

taxon of Tropidophiidae (together comprising Anilioidea), and all other alethinophidians<br />

form a strongly supported sister group to this clade (SHL = 97; Figures 1, 21). The enigmatic<br />

family Xenophidiidae is weakly placed as the sister-group to all alethinophidians exclusive of<br />

Anilioidea (Figures 1, 21). The family Bolyeriidae is weakly placed as the sister-group to<br />

pythons, boas, and relatives (Booidea), which are strongly supported (SHL = 88).


Relationships in this group are generally consistent with other recent molecular studies<br />

[20,35-37,47,159].<br />

Relationships among other alethinophidians are a mixture of strongly and weakly supported<br />

nodes (Figures 1, 21). We find strong support (SHL = 100) for a clade containing<br />

Anomochilidae + Cylindrophiidae + Uropeltidae. This clade of three families is strongly<br />

supported (SHL = 89) as the sister taxon to Xenopeltidae + (Loxocemidae + Pythonidae).<br />

Together, these six families form a strongly supported clade (SHL = 89; Figures 1, 21) that is<br />

weakly supported as the sister group to the strongly supported clade of Boidae +<br />

Calabariidae. Within the clade of Anomochilidae, Cylindrophiidae, and Uropeltidae (Figure<br />

21), we weakly place Anomochilus as the sister group to Cylindrophiidae [44], in contrast to<br />

previous studies which placed Anomochilus within Cylindrophis [161]. However, support for<br />

monophyly of Cylindrophis excluding Anomochilus is weak (Figure 21). As in previous<br />

studies [44,162], we find several taxonomic problems within Uropeltidae (Figure 21).<br />

Specifically, Rhinophis and Uropeltis are paraphyletic with respect to each other and to<br />

Pseudotyphlops. The problematic taxa are primarily Sri Lankan [44], and forthcoming<br />

analyses will address these issues.<br />

Within Pythonidae (Figure 21), the genus Python is the sister group to all other genera. Some<br />

species that were traditionally referred to as Python (P. reticulatus and P. timoriensis) are<br />

instead sister to an Australasian clade consisting of Antaresia, Apodora, Aspidites,<br />

Bothrochilus, Leiopython, Liasis, and Morelia (Figure 21). These taxa (P. reticulatus and P.<br />

timoriensis) have been referred to as Broghammerus, a name originating from an act of<br />

"taxonomic vandalism" (i.e. an apparently intentional attempt to disrupt stable taxonomy) in a<br />

non-peer reviewed organ without data or analyses [163,164]. However, this name was,<br />

perhaps inadvertently, subsequently used by researchers in peer-reviewed work [165] and has<br />

entered into somewhat widespread usage [1]. This name should be ignored and replaced with<br />

a suitable substitute. Within the Australasian clade (Figure 21), Morelia is paraphyletic with<br />

respect to all other genera, and Liasis is non-monophyletic with respect to Apodora, although<br />

many of the relevant relationships are weakly supported.<br />

Within Boidae (Figure 21), our results and those of other recent studies<br />

[20,36,47,48,150,166] have converged on estimated relationships that are generally similar to<br />

each other but which differ from traditional taxonomy [167]. However, the classification has<br />

yet to be modified to reflect this, and we rectify this situation here. We find that Calabariidae<br />

is nested within Boidae [150], but this is poorly supported, and contrary to most previous<br />

studies [47,48]. While Calabaria has been classified as an erycine boid in the past, this<br />

placement is strongly rejected here and in other studies [47,48]. If the current placement of<br />

Calabaria is supported in the future, it would require recognition as the subfamily<br />

Calabariinae.<br />

The Malagasy boine genera Acrantophis and Sanzinia are placed as the sister taxa to a<br />

weakly-supported clade containing Calabariidae and a strongly supported clade (SHL = 99)<br />

comprising the currently recognized subfamilies Erycinae, Ungaliophiinae, and other boines<br />

(Figure 21). Regardless of the position of Calabariidae, this placement of Malagasy boines<br />

renders Boinae paraphyletic. We therefore resurrect the subfamily Sanziniinae [168] for<br />

Acrantophis and Sanzinia. This subfamily could be recognized as a distinct family if future<br />

studies also support placement of this clade as distinct from other Boidae + Calabariidae.


The genera Lichanura and Charina are currently classified as erycines [1], but are strongly<br />

supported as the sister group to Ungaliophiinae, as in previous studies [20,36,47,166]. We<br />

expand Ungaliophiinae to include these two genera (Figure 21), rather than erect a new<br />

subfamily for these taxa. The subfamily Ungaliophiinae is placed as the sister group to a<br />

well-supported clade (SHL = 87) containing the rest of the traditionally recognized Erycinae<br />

and Boinae. We restrict Erycinae to the Old World genus Eryx.<br />

The genus Candoia (Boinae) from Oceania and New Guinea [1], is placed as the sister taxon<br />

to a moderately supported clade (SHL = 83) consisting of Erycinae (Eryx) and the remaining<br />

genera of Boinae (Boa, Corallus, Epicrates, and Eunectes). To solve the non-monophyly of<br />

Boinae with respect to Erycinae (due to Candoia), we place Candoia in a new subfamily<br />

(Candoiinae, subfam. nov.; see Appendix I). Boinae then comprises the four Neotropical<br />

genera that have traditionally been classified in this group (Boa, Corallus, Epicrates, and<br />

Eunectes). We acknowledge that non-monophyly of Boinae could be resolved in other ways<br />

(e.g. expanding it to include Erycinae). However, our taxonomy maintains the traditionally<br />

used subfamilies Boinae, Erycinae, and Ungaliophiinae, modifies them to reflect the<br />

phylogeny, and recognizes the phylogenetically distinct boine clades as separate subfamilies<br />

(Candoiinae, Sanziniinae). Within Boinae, Eunectes renders Epicrates paraphyletic, but this<br />

is not strongly supported see also ([48]).<br />

Our results for advanced snakes (Caenophidia) are generally similar to those of other recent<br />

studies [41,42,169], and will only be briefly described. However, in contrast to most recent<br />

studies [20,36,41,42,81,159,160], Acrochordidae is here strongly placed (SHL = 95) as the<br />

sister group to Xenodermatidae. This clade is then the sister group to the remaining<br />

Colubroidea, which form a strongly supported clade (SHL = 100; Figures 1, 22). This<br />

relationship has been found in some previous studies [169,170], and was hypothesized by<br />

early authors [171]. Further evidence will be required to resolve this conclusively. Analyses<br />

based on concatenation of 20–44 loci do not support this grouping [20,36], though<br />

preliminary species-tree analyses of >400 loci do (Pyron et al., in prep.). Relationships in<br />

Pareatidae are similar to recent studies [172], and the group is strongly placed as the sister<br />

taxon to colubroids excluding xenodermatids (SHL = 100; Figures 1 , 22), as in most recent<br />

analyses (e.g. [41,43,44]).<br />

The family Viperidae is the sister group to all colubroids excluding xenodermatids and<br />

pareatids (Figure 1), as in other recent studies. The family Viperidae is strongly supported<br />

(Figure 22), as is the subfamily Viperinae, and the sister-group relationship between<br />

Azemiopinae and Crotalinae (SHL = 100). Our results generally support the existing genericlevel<br />

taxonomy within Viperinae (Figure 22). However, we recover a strongly supported<br />

clade within Viperinae consisting of Daboia russelii, D. palaestinae, Macrovipera<br />

mauritanica, and M. deserti (Figure 22), as in previous studies [173]. We corroborate<br />

previous suggestions that these taxa be included in Daboia [174], though this has not been<br />

widely adopted [1]. The other Macrovipera species (including the type species) remain in that<br />

genus (Figure 22).<br />

Within Crotalinae (Figure 22), a number of genera appear to be non-monophyletic. The<br />

species Trimeresurus gracilis is strongly supported as the sister taxon to Ovophis okinavensis<br />

and distantly related to other Trimeresurus, whereas the other Ovophis are strongly placed as<br />

the sister group to Protobothrops. A well-supported clade (SHL = 90) containing Atropoides<br />

picadoi, Cerrophidion, and Porthidium renders Atropoides paraphyletic (see also [175]). The<br />

species Bothrops pictus, considered incertae sedis in previous studies [176], is here strongly


supported as the sister taxon to a clade containing Rhinocerophis, Bothropoides, Bothriopsis,<br />

and Bothrops (Figure 22). Most of these relationships are strongly supported.<br />

Viperidae is strongly placed (SHL = 95) as the sister taxon to a well-supported clade (SHL =<br />

100) containing Colubridae, Elapidae, Homalopsidae, and Lamprophiidae (Figure 1).<br />

Monophyly of Homalopsidae is also strongly supported (Figure 23). Within Homalopsidae,<br />

the non-monophyly of the genus Enhydris is strongly supported (Figure 23), and should<br />

likely be split into multiple genera. Homalopsidae is weakly supported (SHL = 58) as the<br />

sister group of Elapidae + Lamprophiidae (Figure 1). This same relationship was also weakly<br />

supported by previous analyses [41,44], but other studies have found strong support for<br />

placing Homalopsidae as the sister group of a strongly supported clade including Elapidae,<br />

Lamprophiidae, and Colubridae [20,36], including data from >400 loci (Pyron et al., in<br />

prep.).<br />

Support for the monophyly of Lamprophiidae is strong (but excluding Micrelaps; see below),<br />

and most of its subfamilies are well-supported [40,41,177,178] including Atractaspidinae,<br />

Aparallactinae, Lamprophiinae, Prosymninae (weakly placed as the sister-group to<br />

Oxyrhabdium), Pseudaspidinae, Psammophiinae, and Pseudoxyrhophiinae (Figure 23). In<br />

Lamprophiidae, most genera are monophyletic based on our sampling (Figure 23). However,<br />

within Aparallactinae, Xenocalamus is strongly placed within Amblyodipsas, and in<br />

Atractaspidinae, Homoroselaps is weakly placed in Atractaspis. In Lamprophiinae,<br />

Lamprophis is paraphyletic with respect to Lycodonomorphus but support for the relevant<br />

clades is weak.<br />

The enigmatic genera Buhoma from Africa and Psammodynastes from Asia were both<br />

previously considered incertae sedis within Lamprophiidae [41]. Here they are weakly placed<br />

as sister taxa, and more importantly, they form a strongly supported clade with the African<br />

genus Pseudaspis (Pseudaspidinae; SHL = 95; Figure 23). Therefore, we expand<br />

Pseudaspidinae to include these two genera.<br />

The genus Micrelaps (putatively an aparallactine; [1]) is weakly placed as the sister taxon to<br />

Lamprophiidae + Elapidae. Along with Oxyrhabdium (see above) and Montaspis [40], this<br />

genus is treated as incertae sedis in our classification (Appendix I). If future studies strongly<br />

support these relationships, they may require a new family for Micrelaps and possibly a new<br />

subfamily for Oxyrhabdium, though placement of these taxa has been highly variable in<br />

previous studies [40,41,44,81].<br />

Monophyly of Elapidae is strongly supported (Figure 24), and Calliophis melanurus is<br />

strongly supported as the sister group to all other elapids (see also [44]). Within Elapidae<br />

(Figure 24), relationships are generally concordant with previous taxonomy, with some<br />

exceptions. The genera Toxicocalamus, Simoselaps, and Echiopsis are all divided across<br />

multiple clades, with strong support for many of the relevant branches. A recent study has<br />

provided a generic re-classification of the sea snakes (Hydrophis group) to resolve the<br />

extensive paraphyly of genera found in previous studies (e.g. [46,179,180]). Our results<br />

support this classification.<br />

Monophyly of Colubridae and most of its subfamilies (sensu [41,44]) are strongly supported<br />

(Figures 1, 25, 26, 27, 28). However, relationships among many of these subfamilies are<br />

weakly supported (Figure 1), as in most previous studies [41,43,45,181]. The subfamilies<br />

Calamariinae and Pseudoxenodontinae are strongly supported as sister taxa, and weakly


placed as the sister-group to the rest of Colubridae (Figure 25). There is a weakly supported<br />

clade (Figure 1) comprising Natricinae + (Dipsadinae + Thermophis), but the clade uniting<br />

the New World Dipsadinae with the Asian genus Thermophis is strongly supported (SHL =<br />

100; Figure 28). Here, we place Thermophis (recently in Pseudoxenodontinae [41]) in<br />

Dipsadinae (following [182]), making it the first and only Asian member of this otherwise<br />

exclusively New World subfamily. However, despite the strong support for its placement<br />

here, placement of this taxon has been variable in previous analyses [41,182,183], and we<br />

acknowledge that future analyses may support recognition of a distinct subfamily<br />

(Thermophiinae).<br />

The clade of Natricinae and Dipsadinae is weakly supported as the sister group (Figures 1,<br />

25, 26, 27, 28) to a clade containing Sibynophiinae [181] + (Colubrinae + Grayiinae). The<br />

subfamily Colubrinae is weakly supported; we find that the colubrine genera Ahaetulla,<br />

Chrysopelea, and Dendrelaphis form a strongly supported clade that is weakly placed as the<br />

sister group to the rest of Colubrinae, which form a strongly supported clade (Figure 25).<br />

This clade was also placed with Grayiinae or Sibynophiinae in many preliminary analyses,<br />

rendering Colubrinae paraphyletic. This group of three genera has been strongly supported in<br />

the past, and only weakly placed with Colubrinae [41,44]. It is possible that future analyses<br />

will reveal that the clade of Ahaetulla, Chrysopelea, and Dendrelaphis is placed elsewhere in<br />

Colubridae with strong support, and thus merits recognition as a distinct subfamily<br />

(Ahaetuliinae). A notable feature of this clade is the presence of gliding flight in most species<br />

of Chrysopelea, less-developed non-flight jumping with similar locomotor origins in<br />

Dendrelaphis, and homologous glide-related traits in Ahaetulla [184].<br />

Numerous colubroid genera are not included in our tree and are not clearly placed in<br />

subfamilies based on previous morphological evidence. In our classification, these genera are<br />

also considered incertae sedis within Colubridae, including Blythia, Cyclocorus, Elapoidis,<br />

Gongylosoma, Helophis, Myersophis, Oreocalamus, Poecilopholis, Rhabdops, and<br />

Tetralepis, as in previous classifications [1].<br />

Our phylogeny reveals numerous taxonomic problems within Colubrinae (Figures 25, 26).<br />

The genus Boiga is paraphyletic with respect to Crotaphopeltis, Dipsadoboa, Telescopus,<br />

Toxicodryas, and Dasypeltis, with strong support (Figure 25). The genus Philothamnus is<br />

paraphyletic with respect to Hapsidophrys (Figure 25). The genus Coluber is split between<br />

Old World and New World clades (Figures 25, 26). The species Hierophis spinalis is sister to<br />

Eirenis to the exclusion of the other Hierophis species (Figure 25). The genus Dryocalamus<br />

is nested within Lycodon (Figure 26). The species Chironius carinatus and C.<br />

quadricarinatus are weakly placed in a clade of Neotropical colubrines only distantly related<br />

to the other Chironius species (Figure 26). The genus Drymobius renders Dendrophidion<br />

paraphyletic (Figure 26). The monotypic genus Rhynchophis renders the two species of<br />

Rhadinophis paraphyletic (Figure 26). The genus Coronella is rendered paraphyletic (Figure<br />

26) by Oocatochus with weak support see also [185]. Finally, the genus Rhinechis is nested<br />

within Zamenis (Figure 26).<br />

We find numerous non-monophyletic genera within Natricinae (Figure 27), as in previous<br />

studies [41,44,78,186]. These non-monophyletic genera include the Asian genera<br />

Amphiesma, Atretium, and Xenocrophis. Among New World genera, we find Regina to be<br />

non-monophyletic with respect to most other genera, as in previous phylogenetic studies (e.g.<br />

[41,186]). Also, as in previous studies (e.g. [41,187]), we find that Adelophis [188] is nested<br />

deep within Thamnophis [189].


Finally, within a weakly supported Dipsadinae (Figure 28), we find non-monophyly of<br />

numerous genera, as in many earlier studies (e.g. [41-43,190]). These problems of nonmonophyly<br />

include Leptodeira (with respect to Imantodes), Geophis (with respect to<br />

Atractus), Atractus (with respect to Geophis), Sibynomorphus (with respect to Dipsas),<br />

Dipsas (with respect to Sibynomorphus), Taeniophallus (with respect to Echinanthera), and<br />

Echinanthera (with respect to Taeniophallus). Recent revisions have begun to tackle these<br />

problems [42,43,190], but additional taxon and character sampling will be crucial to resolve<br />

relationships and taxonomy.<br />

Discussion<br />

In this study, we provide a phylogenetic estimate for 4161 species of squamates based on<br />

molecular data from up to 12 genes per species, combining much of the relevant data used in<br />

previous molecular phylogenetic analyses. This tree provides a framework for future<br />

evolutionary studies, spanning from the species level to relationships among families,<br />

utilizing a common set of branch lengths. These estimated branch lengths are critically<br />

important for most phylogenetic comparative methods. To further facilitate use of this<br />

phylogeny in comparative studies, we provide the Newick version of this tree (with estimated<br />

branch lengths) in DataDryad repository 10.5061/dryad.82h0m and Additional file 1 Data<br />

File S1. Our results also suggest that the branch lengths in this tree should not generally be<br />

compromised by missing data for some genes in some taxa.<br />

Our results also reveal many problems in squamate classification at nearly all phylogenetic<br />

levels. We make several changes to higher-level taxonomy based on this phylogeny,<br />

including changes to the traditionally recognized subfamilies of boid snakes (i.e. resurrecting<br />

Sanziniinae for the boine genera Acrantophis and Sanzinia, erecting Candoiinae for the boine<br />

genus Candoia, and moving Lichanura and Charina from Erycinae to Ungaliophiinae),<br />

lamprophiid snakes (expansion of Pseudaspidinae to include the formerly incertae sedis<br />

genera Buhoma and Psammodynastes), colubrid snakes (expansion of Dipsadinae to include<br />

the Asian pseudoxenodontine genus Thermophis), and gymnophthalmid lizards (recognition<br />

of Bachiinae for the tribe cercosaurine Bachiini, containing Bachia) and scincid lizards<br />

(synonymizing Feylininae with Scincinae to yield a total of three scincid subfamilies:<br />

Acontiinae, Lygosominae, and Scincinae). In Appendix I, we list the generic content of all<br />

families and subfamilies. We also find dozens of problems at the genus level, many of which<br />

have been identified previously, and which we defer the resolution of to future studies. Our<br />

results also highlight potential problems in recent proposals to modify the classification of<br />

scincid [112] and teiid lizards [123].<br />

In addition to synthesizing existing molecular data for squamate phylogeny, our analyses also<br />

reveal several apparently novel findings (Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,<br />

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28). Given space constraints, we cannot detail<br />

every deviation from previous phylogenetic hypotheses (especially pre-molecular studies).<br />

Nevertheless, we focus on three sets of examples. First, we find some relatively novel,<br />

strongly-supported relationships at the family level. These include the placement of<br />

Helodermatidae (as sister to Xenosauridae, Anguidae, and Anniellidae) and the placement of<br />

Xenodermatidae as the sister taxon to Acrochordidae (rendering Colubroidea paraphyletic),<br />

in contrast to most recent analyses of anguimorphs and snakes (see above). We also find<br />

some novel, strongly supported relationships among pleurodont families, but we<br />

acknowledge that these may be overturned in future studies.


The second example is the higher-level relationships within Scincidae, the largest family of<br />

lizards [1]. No previous studies examining higher-level relationships within the group<br />

included more than ~50 species [50,51]. In this study, we sample 683 skink species (Figures<br />

6, 7, 8, 9, 10), and our phylogeny provides a unique resolution of higher-level skink<br />

relationships. Previous researchers [51] placed acontiines as the sister group to all other<br />

skinks, but suggested that scincines and lygosomines were paraphyletic with respect to each<br />

other (with feyliniines placed with scincines). In contrast, others [50] suggested that<br />

acontiines, feyliniines, and lygosomines were all nested inside scincines (but with each of<br />

those three subfamilies as monophyletic), although many clades were only weakly supported.<br />

Here (Figures 1, 6, 7, 8, 9, 10), we find that acontiines are the sister group to a strongly<br />

supported clade consisting of a monophyletic Scincinae and a monophyletic Lygosominae<br />

(excepting the weakly supported placement of Ateuchosaurus and placement of Feyliniinae in<br />

Scincinae).<br />

Third, our phylogeny reveals numerous genera that appear to be non-monophyletic, with<br />

many of these cases having strong support for the associated nodes. Our examples include<br />

genera in many families, including dibamids, diplodactylids, gekkonids, phyllodactylids,<br />

gerrhosaurids, scincids, teiids, gymnophthalmids, lacertids, anguids, chamaeleonids, agamids,<br />

tropidurids, oplurids, leiosaurids, typhlopids, pythonids, uropeltids, boids, viperids,<br />

lamprophiids, elapids, and colubrids (see Results). Although many problems noted here were<br />

found in previous studies, some seem to be new, such as placement of Crocodilurus and<br />

Draceana within Tupinambis (in Teiidae; Figure 11) and Coloptychon within Gerrhonotus<br />

(in Anguidae; Figure 14).<br />

Our study also offers an important test of higher-level squamate relationships using a very<br />

different sampling strategy than that used in most previous analyses. Squamates have<br />

traditionally been divided into two clades based on morphology, Iguania and Scleroglossa<br />

(e.g. [13,21]). Despite considerable disagreement among morphology-based hypotheses, this<br />

basic division is supported by nearly all phylogenetic analyses based on morphological data<br />

[13-15,19,22,95,191]. In contrast, our results and those of most previous molecular analyses<br />

strongly support placement of iguanians with anguimorphs and snakes [16-20,23,24]. The<br />

causes of this conflict remain unclear, but may be related to morphological traits associated<br />

with different feeding strategies of iguanian and (traditional) scleroglossan squamates [3,17].<br />

Additionally, analyses of morphology often place dibamids, amphisbaenians, snakes, and (in<br />

some cases) some scincids and anguids in a single clade [13-15]. Our analyses do not support<br />

such a clade (Figure 1), nor do other analyses of molecular data alone [17-20], or analyses of<br />

combined molecular and morphological data [19]. Instead, these morphological results seem<br />

to be explained by convergence associated with burrowing (e.g. [19]). Overall, molecular<br />

datasets have shown overwhelmingly strong support for placement of dibamids and<br />

gekkonids at the base of the tree, amphisbaenians with lacertoids, and iguanians with snakes<br />

and anguimorphs [17-20,23]. These results have now been corroborated with up to 22 genes<br />

(15794 bp) for 45 taxa [19], 25 genes (19020 bp) for 64 taxa [16], and 44 genes (33717 bp)<br />

for 161 taxa [20]. We now support this basic topology with 4161 species sampled for up to 12<br />

genes each (up to 12896 bp).<br />

Nevertheless, despite the overall strong support for most of the tree (i.e. 70% of all nodes<br />

have SHL > 85), certain clades remain poorly supported (e.g. relationships among many<br />

pleurodont iguanian families; Figures 1, 17, 18, 19). A potential criticism of the supermatrix<br />

approach used here is that this weak support may occur due to missing data. However,


previous studies of 8 datasets have shown explicitly that there is typically little relationship<br />

between branch support for terminal taxa and the amount of missing data [85]. Instead, these<br />

patterns of weak support are more likely to reflect short underlying branch lengths [20,36,41],<br />

and may be difficult to resolve even with more complete taxonomic and genomic sampling.<br />

Indeed, as noted above, many of the weakly supported nodes in our phylogeny are also<br />

weakly supported in analyses with little missing data (


Even though we did find some subfamilies and genera to be non-monophyletic, similar<br />

relationships were often found in previous studies based on data matrices with only limited<br />

missing data (e.g. non-monophyly of boid snake subfamilies [47], lacertid and scincid lizard<br />

genera [67,111], and scolecophidian, dipsadine, and natricine snake genera [38,43,186]). We<br />

suggest that further resolution of the squamate tree will be greatly facilitated if researchers<br />

deliberately sample mitochondrial genes and nuclear genes that include the set of genes used<br />

here and in recent phylogenomic studies (e.g. [20]), to increase overlap between genes and<br />

taxa, and decrease missing data.<br />

With over 5000 species remaining to be included and only 12 genes sampled, our study is far<br />

from the last word on squamate phylogeny. We note that new data can easily be added to this<br />

matrix, in terms of both new taxa and new genes. Increased sampling of other nuclear genes<br />

is likely to be advantageous as well. Next-generation sequencing strategies and phylogenomic<br />

methods should help resolve difficult nodes [16,20,36,198-200], as should application of<br />

species-tree methods [201,202]. Species-tree analyses of 44 nuclear loci support many of<br />

these same clades across squamates [20], and data from >400 nuclear loci reinforces many of<br />

the relationships found here among the colubroid snake subfamilies (Pyron et al., in prep.). In<br />

addition, it would be useful to incorporate fossil taxa in future studies [15,19,22,86], utilizing<br />

the large morphological datasets that are now available [14,15]. Despite these areas for future<br />

studies, the present tree provides a framework for researchers analyzing patterns of squamate<br />

evolution at both lower and higher taxonomic levels (e.g. [10,11,203,204]), and for building a<br />

more complete picture of squamate phylogeny.<br />

Conclusions<br />

In this study, we provide a phylogenetic estimate for 4161 squamate species, based on a<br />

supermatrix approach. Our results provide important confirmation for previous studies based<br />

on more limited taxon sampling, and reveal new relationships at the level of families, genera,<br />

and species. We also provide a phylogenetic framework for future comparative studies, with<br />

a large-scale tree including a common set of estimated branch lengths. Finally, we provide a<br />

revised classification for squamates based on this tree, including changes in the higher-level<br />

taxonomy of gymnophthalmid and scincid lizards and boid, colubrid, and lamprophiid<br />

snakes.<br />

Methods<br />

Initial classification<br />

Our initial squamate classification is based on the June 2009 version of the Reptile Database<br />

(http://www.reptile-database.org/), accessed in September of 2009 when this research was<br />

begun. Minor modifications to this scheme were made, primarily to update changes in<br />

colubroid snake taxonomy [41-44,205]. This initial taxonomic database consists of 8650<br />

species (169 amphisbaenians, 5270 lizards, 3209 snakes, and 2 tuataras), against which the<br />

classification of species in the molecular sequence database was fixed. While modifications<br />

and updates (i.e. new species, revisions) have been made to squamate taxonomy<br />

subsequently, these are minor and should have no impact on our phylogenetic results. This<br />

database represents ~92% of the current estimated diversity of squamates (~9400 species as<br />

of December 2012).


Throughout the paper, we refer to the updated version of squamate taxonomy from the<br />

December 2012 update of the Reptile Database, incorporating major, well-accepted changes<br />

from recent studies (summarized in [1]). However, for large, taxonomic groups that have<br />

recently been broken up for reasons other than resolving paraphyly or matters of priority (e.g.<br />

in dactyloid and scincid lizards; see Results), we generally retain the older, more inclusive<br />

name in the interest of clarity, while providing references to the recent revision. We attempt<br />

to alter existing classifications as little as possible (see also [113]). Therefore, we generally<br />

only make changes when there is strong support for non-monophyly of currently recognized<br />

taxa and our proposed changes yield strongly supported monophyletic groups. Similarly, we<br />

only erect new taxa if they are strongly supported. Finally, although numerous genera are<br />

identified as being non-monophyletic in our tree, we refrain from changing genus-level<br />

taxonomy, given that our taxon sampling within many genera is limited.<br />

Molecular data<br />

Preliminary literature searches were conducted to identify candidate genes for which a<br />

substantial number of squamate species were sequenced and available on GenBank (with the<br />

sampled species spread across multiple families), and which were demonstrably useful in<br />

previous phylogenetic studies of squamates (see Introduction for references). Twelve genes<br />

were identified as meeting these criteria: seven nuclear genes (brain-derived neurotrophic<br />

factor [BDNF], oocyte maturation factor [c-mos], neurotrophin-3 [NT3], phosducin [PDC], G<br />

protein-coupled receptor 35 [R35], and recombination-activating genes 1 [RAG-1] and 2<br />

[RAG-2]), and five mitochondrial genes (12S/16S long and short subunit RNAs, cytochrome<br />

b [cyt-b], and nicotinamide adenine dehydrogenase subunits 2 [ND2] and 4 [ND4]). This<br />

sampling of genes does not include all available markers. For example, we omitted several<br />

nuclear and mitochondrial genes because they were available only for a limited subset of<br />

taxa. We also excluded tRNAs associated with the protein-coding sequences, given their<br />

short lengths and difficulty in alignment across the large time scales considered here.<br />

To ensure maximal taxonomic coverage from the available data, searches were conducted on<br />

GenBank by family (stopping in October 2012), and the longest sequence for every species<br />

was gathered. Sequences totaling less than 250 bp for any species were not included. Only<br />

species in the taxonomic database were included in the sequence matrix, which resulted in the<br />

exclusion of numerous named taxa of ambiguous status, a few taxa described very recently,<br />

and many sequences labeled 'sp.' Some recently described phylogeographic lineages were<br />

also omitted. Species and GenBank accession numbers are available in Additional file 2<br />

Table S1.<br />

With respect to the December 2012 update of the Reptile Database, we sampled 52 of 183<br />

amphisbaenian species (28%) from 11 of 19 (58%) genera; 2847 of 5799 lizard species (49%)<br />

from 448 of 499 genera (90%); and 1262 of 3434 snake species (39%) in 396 of 500 genera<br />

(80%). This yielded a total of 4161 species in 855 genera in the final matrix, 44% of the 9416<br />

known, extant squamate species in 84% of 1018 genera [1]. The species-level classification<br />

of squamates is in constant flux, and the numbers of species and genera changed even as this<br />

paper was under review. The extant species of tuatara (Sphenodon punctatus) was included as<br />

a non-squamate outgroup taxon (see below). We acknowledge that our sampling of outgroup<br />

taxa is not extensive. However, placement of Sphenodon as the sister group to squamates is<br />

well-established by molecular analyses with extensive taxon sampling (e.g. [16,128,206]) and<br />

morphological data (e.g. [13]).


Alignment for protein-coding sequences was relatively straightforward. We converted them<br />

to amino acids, and then used the translation alignment algorithm in the program Geneious<br />

v4.8.4 (GeneMatters Corp.), with the default cost matrix (Blosum62) and gap penalties<br />

(open=12, extension=3). Alignments were relatively unambiguous after being trimmed for<br />

quality and maximum coverage (i.e. ambiguous end regions were removed, and most<br />

sequences began and ended at the same point).<br />

For the ribosomal RNA sequences (12S and 16S sequences), alignment was more<br />

challenging. Preliminary global alignments using the algorithms MUSCLE [207] and<br />

CLUSTAL [208] under a variety of gap-cost parameters yielded low-quality results (i.e.<br />

alignments with large numbers of gaps and little overlap of potentially homologous<br />

characters). We subsequently employed a two-step strategy for these data. We first grouped<br />

sequences by higher taxa (i.e. Amphisbaenia, Anguimorpha, Gekkota, Iguania,<br />

Scincomorpha, and Serpentes, though these are not all monophyletic as previously defined),<br />

for which alignments were relatively straightforward under the default MUSCLE parameters.<br />

These were then combined using the profile alignment feature of MUSCLE, and the global<br />

alignment was subsequently updated using the "refine alignment" option. Minor adjustments<br />

were then made by eye, and ambiguously aligned end-regions were trimmed for maximum<br />

coverage and quality. We did not include partitions for stems and loops for the ribosomal<br />

sequences, although this has been shown to improve model fit in previous squamate studies<br />

(e.g. [82]). Although it is possible to assign individual nucleotide positions to these partitions,<br />

this would have been challenging given the large number of sequences, and the potential for<br />

stems and loops to shift across the many species and large time scales involved.<br />

Each species was represented by a single terminal taxon in the matrix. In many cases,<br />

sequences from multiple individuals of the same species were combined, to allow us to<br />

combine data from different genes for the same species. We acknowledge the possibility that<br />

in some cases this approach may cause us to combine genes from different species in the<br />

same terminal taxon (e.g. due to changing taxonomy or incorrect identifications).<br />

Additionally, many sequences are not from vouchered specimens, and it is possible that<br />

misidentified species are present on GenBank and in our matrix. However, most of our data<br />

came from lower-level phylogenetic studies, in which the identification of species by<br />

previous authors should be highly accurate. In addition, any such mistakes should be among<br />

closely related species, and lead to minimal phylogenetic distortion, as the grossest errors are<br />

easily identified.<br />

Some species were removed after preliminary analyses, due either to obvious sequencing<br />

errors (e.g. high BLAST homology with unrelated families or non-squamates, excessive<br />

ambiguities) or a lack of overlap in genes sampled with other members of the same genus<br />

(leading to seemingly artificial paraphyly). We also excluded species with identical<br />

sequences between taxa across all genes, arbitrarily choosing the first taxon in alphabetical<br />

order to remain in the matrix. Additionally, we also removed a few apparent "rogue taxa"<br />

[75,77]. These were identified by their poor support and suspect placement (e.g. in a clearly<br />

incorrect family), and were typically represented in the matrix by short fragments of single<br />

genes (e.g. an ND4 fragment from the enigmatic colubroid snake Oreocalamus hanitchsi).<br />

The final combined matrix contained sequence data for: 2335 species for 12S (including 56%<br />

of all 4162 taxa, 1395 bp), 2377 for 16S (57%, 1970 bp), 730 for BDNF (18%, 714 bp), 1671<br />

for c-mos (40%, 903 bp), 1985 for cyt-b (48%, 1000 bp), 437 for NT3 (10%, 675 bp), 1860


for ND2 (45%, 960 bp), 1556 for ND4 (37%, 696 bp), 393 for PDC (9%, 395 bp), 401 for<br />

R35 (10%, 768 bp), 1379 for RAG-1 (33%, 2700 bp), and 471 for RAG2 (11%, 720 bp). The<br />

total alignment consists of 12896 bp for 4162 taxa (4161 squamates and 1 outgroup). The<br />

mean length is 2497 bp of sequence data present per species from 3.75 genes (19% of the<br />

total matrix length of 12896 bp, or 81% missing data), and ranges from 270–11153 bp (2–<br />

86% complete). The matrix and phylogeny (see below) are available in DataDryad repository<br />

10.5061/dryad.82h0m.<br />

Clearly, many taxa had large amounts of missing data (some >95%), and on average each<br />

species had 81% missing cells. However, several lines of evidence suggest that these missing<br />

data are not generally problematic. First, a large body of empirical and theoretical studies has<br />

shown that highly incomplete taxa can be accurately placed in model-based phylogenetic<br />

analyses (and with high levels of branch support), especially if a large number of characters<br />

have been sampled (recent reviews in [84,85]). Second, several recent empirical studies have<br />

shown that the supermatrix approach (with extensive missing data in some taxa) yields<br />

generally well-supported large-scale trees that are generally congruent with previous<br />

taxonomies and phylogenetic estimates (e.g. [41,48,72,73,75,76,197]). Third, recent studies<br />

have also shown that there is generally little relationship between the amount of missing data<br />

in individual taxa and the support for their placement on the tree [41,73,85]. Finally, we note<br />

that some highly incomplete taxa were unstable in their placement (“rogue taxa”;[ 75]), but<br />

these were removed prior to the analysis of the final matrix (see above).<br />

Our sampling design should be especially robust to the impacts of missing data for several<br />

reasons. Most importantly, most terminal taxon (species) had substantial data present (mean<br />

of 2497 bp per species) regardless of the number of missing data cells. Simulations (see<br />

reviews in [84,85]) suggest that the amount of data present is a key parameter in determining<br />

the accuracy with which incomplete taxa are placed in phylogenies, not the amount of data<br />

absent. Additionally, several genes (e.g. 12S/16S, cyt-b, and c-mos) were shared by many<br />

(>40%) of taxa. Thus, there was typically extensive overlap among the genes present for each<br />

taxon (as also indicated by the mean bp per species being much greater than the length of<br />

most genes). Limited overlap in gene sampling among taxa could be highly problematic,<br />

irrespective of the amount of missing data per se, but this does not appear to be a problem in<br />

our dataset. Finally, several nuclear genes (e.g. BDNF, c-mos, R35, and RAG-1) were<br />

congruently sampled in previous studies to represent most (>80%) squamate families and<br />

subfamilies (e.g. [20]), providing a scaffold of well-sampled taxa spanning all major clades,<br />

as recommended by recent authors [84].<br />

Phylogenetic analyses<br />

We performed phylogenetic analyses of the 12-gene concatenated matrix using Maximum<br />

Likelihood (ML). We assessed node support using the non-parametric Shimodaira-<br />

Hasegawa-Like (SHL) implementation of the approximate likelihood-ratio test (aLRT; [94]).<br />

This involved a two-stage strategy. We first performed initial ML tree inference using the<br />

program RAxML-Light v1.0.7 [209], a modification of the original RAxML algorithm [210].<br />

This program uses the GTRCAT strategy for all genes and partitions, a high-speed<br />

approximation of the GTR+Γ model (general time-reversible with gamma-distribution of rate<br />

heterogeneity among sites). The GTR model is the only substitution model implemented in<br />

RAxML [210], and all other substitution models are simply special cases of the GTR model<br />

[211]. Previous analyses suggest that GTR is generally the best-fitting model for these genes<br />

and that they should be partitioned by gene and codon position [16,17,19,20,36,81].


To generate an initial ML estimate for final optimization and support estimation, we<br />

performed 11 ML searches from 11 parsimony starting trees generated under the default<br />

parsimony model in RAxMLv7.2.8. This number is likely to be sufficient when datasets<br />

contain many characters that have strong phylogenetic signal (A. Stamatakis, pers. comm.).<br />

Additionally, the dataset was analyzed with these settings (GTRCAT search from a<br />

randomized parsimony starting tree) numerous times (>20) as the final matrix was assembled<br />

and tested, representing hundreds of independent searches from random starting points. All of<br />

the estimated trees from these various analyses showed high overall congruence with the final<br />

topology. The concordance between the preliminary and final results suggests that the tree<br />

was not strongly impacted by searches stuck on local optima, and that it should be a good<br />

approximation of the ML tree.<br />

We then performed a final topology optimization and assessed support. We passed our best<br />

ML estimate of the phylogeny (based on GTRCAT) from RAxML-Light to RAxMLv7.2.8,<br />

which does an additional search (using the GTRGAMMA model) to produce a nearestneighbor<br />

interchange (NNI)-optimized estimate of the ML tree. This optimization is needed<br />

to calculate the SHL version of the aLRT for estimating support values [94]. The SHL-aLRT<br />

strategy approximates a test of the null hypothesis that the branch length subtending each<br />

node equals 0 (i.e. that the node can be resolved, rather than estimated as a polytomy) with a<br />

test of the more general null hypothesis that "the branch is incorrect" relative to the four next<br />

suboptimal arrangements of that node relative to the NNI-optimal arrangement [94]. Based<br />

on initial analyses, generating sufficient ML bootstrap replicates for a tree of this size proved<br />

computationally intractable, so we rely on SHL values alone to assess support.<br />

The SHL approach has at least two major advantages over non-parametric bootstrapping for<br />

large ML trees: (i) values are apparently robust to many potential model violations and have<br />

the same properties as bootstrap proportions for all but the shortest branches [41,94,212], and<br />

(ii) values for short branches may be more accurate than bootstrap proportions, as support is<br />

evaluated based on whole-alignment likelihoods, rather than the frequency of re-sampled<br />

characters [94,213]. Additionally, the SHL approach is orders of magnitude faster than<br />

traditional bootstrapping [94,212,213], and it appears to be similarly robust to matrices with<br />

extensive missing data [41]. As in previous studies, we take a conservative view, considering<br />

SHL values of 85 or greater (i.e. a 15% chance that a branch is "incorrect") as strong support<br />

[41,212,213].<br />

These analyses were performed on a 360-core SGI ICE supercomputing system ("ANDY") at<br />

the High Performance Computing Center at the City University of New York (CUNY). The<br />

final analysis was completed in 8.8 days of computer time using 188 nodes of the CUNY<br />

supercomputing cluster.<br />

Finally, we assessed the potential impact of missing data on our branch-length estimates. We<br />

performed linear regression (in R) of the proportional completeness of each terminal taxa<br />

(non-missing data in bp / maximum amount of non-missing data, 12896 bp) against the<br />

length of its terminal branch. This test addresses whether incomplete taxa have branch-length<br />

estimates that are consistently biased in one direction (shorter vs. longer) relative to more<br />

complete terminals. However, it does not directly test whether branch length estimates are<br />

correct or not, nor how branch length estimates are impacted by replacing non-missing data<br />

with missing data (see [87] for results suggesting that such replacements have little effect in<br />

real data sets).


Authors' contributions<br />

RAP and JJW conceived the study. RAP, FTB, and JJW conducted analyses and checked<br />

results. RAP, FTB, and JJW wrote the MS. All authors read and approved the final<br />

manuscript.<br />

Acknowledgements<br />

We thank the many researchers who made this study possible through their detailed studies of<br />

squamate phylogeny with a (mostly) shared set of molecular markers, and uploading their<br />

sequence data to GenBank. We thank E. Paradis, J. Lombardo T. Guiher, R. Walsh, and P.<br />

Muzio for computational assistance, T. Gamble, D. Frost, D. Cannatella, H. Zaher, F.<br />

Grazziotin, P. Uetz, T. Jackman, and A. Bauer for taxonomic advice, and A. Larson, M.<br />

Vences, and five anonymous reviewers for comments on this manuscript. The research was<br />

supported in part by the U.S. National Science Foundation, including a Bioinformatics<br />

Postdoctoral grant to R.A.P. (DBI-0905765), an AToL grant to J.J.W. (EF-0334923), and<br />

grants to the CUNY HPCC (CNS-0958379 and CNS-0855217).<br />

Appendix I<br />

Note that we only provide here an account for the one subfamily newly erected in this study.<br />

We do not provide accounts for subfamilies with changes in content (Boinae, Erycinae,<br />

Dipsadinae, Pseudaspidinae, Scincinae, Ungaliophiinae), that have been resurrrected<br />

(Sanziniinae), or that represent elevation of lower-ranked taxa (tribe Bachiini here recognized<br />

as Bachiinae).<br />

Candoiinae subfam. nov. (family Boidae)<br />

Type: genus and species Candoia carinata [214].<br />

Content: one genus, 4 species; C. aspera, C. bibroni, C. carinata, C. paulsoni.<br />

Definition: this subfamily consists of the most recent common ancestor of the extant species<br />

of Candoia, and all its descendants. These species are morphologically distinguished in part<br />

from other boid snakes by a flattened rostrum leading to an angular snout [215] and a wide<br />

premaxillary floor [167].<br />

Distribution: these snakes are primarily restricted to the South Pacific islands of New Guinea<br />

and Melanesia, and the eastern Indonesian archipelago [150].<br />

Remarks: the three species from this subfamily that are sampled in our tree are strongly<br />

supported as monophyletic (SHL = 100), and are well supported (SHL = 87) as the sister<br />

taxon to a moderately supported clade consisting of Erycinae + Boinae (SHL = 83).<br />

Proposed Generic Composition of Higher Taxa<br />

Below, we list the familial and subfamilial assignment of all squamate genera from the<br />

December, 2012 update of the Reptile Database, updated to reflect some recent changes and


the proposed subfamily level changes listed above. As this classification includes numerous<br />

taxa not sampled in our tree, we deal with this conservatively. For traditionally recognized<br />

families and subfamilies that we found to be monophyletic, we include all taxa traditionally<br />

assigned to them. Taxa are denoted incertae sedis if they are of ambiguous familial or<br />

subfamilial assignment due to uncertain placement in our tree, or due to absence from our<br />

tree and lack of assignment by previous authors. This classification includes 67 families and<br />

56 subfamilies, and accounts for >9400 squamate species in 1018 genera [1]. Higher taxa are<br />

listed (more-or-less) phylogenetically (starting closest to the root; Figure 1), families are<br />

listed alphabetically within higher taxa, and subfamilies and genera are listed alphabetically<br />

within families.<br />

Dibamidae (Anelytropsis, Dibamus)<br />

Gekkota<br />

Carphodactylidae (Carphodactylus, Nephrurus, Orraya, Phyllurus, Saltuarius,<br />

Underwoodisaurus, Uvidicolus); Diplodactylidae (Amalosia, Bavayia, Correlophus,<br />

Crenadactylus, Dactylocnemis, Dierogekko, Diplodactylus, Eurydactylodes, Hesperoedura,<br />

Hoplodactylus, Lucasium, Mniarogekko, Mokopirirakau, Naultinus, Nebulifera, Oedodera,<br />

Oedura, Paniegekko, Pseudothecadactylus, Rhacodactylus, Rhynchoedura, Strophurus,<br />

Toropuku, Tukutuku, Woodworthia); Eublepharidae (Aeluroscalabotes, Coleonyx,<br />

Eublepharis, Goniurosaurus, Hemitheconyx, Holodactylus); Gekkonidae (Afroedura,<br />

Afrogecko, Agamura, Ailuronyx, Alsophylax, Asiocolotes, Blaesodactylus, Bunopus,<br />

Calodactylodes, Chondrodactylus, Christinus, Cnemaspis, Colopus, Crossobamon,<br />

Cryptactites, Cyrtodactylus, Cyrtopodion, Dixonius, Ebenavia, Elasmodactylus, Geckolepis,<br />

Gehyra, Gekko, Goggia, Hemidactylus, Hemiphyllodactylus, Heteronotia, Homopholis,<br />

Lepidodactylus, Luperosaurus, Lygodactylus, Matoatoa, Mediodactylus, Nactus, Narudasia,<br />

Pachydactylus, Paragehyra, Paroedura, Perochirus, Phelsuma, Pseudoceramodactylus,<br />

Pseudogekko, Ptenopus, Ptychozoon, Rhinogecko, Rhoptropella, Rhoptropus, Stenodactylus,<br />

Tropiocolotes, Urocotyledon, Uroplatus); Phyllodactylidae (Asaccus, Gymnodactylus,<br />

Haemodracon, Homonota, Phyllodactylus, Phyllopezus, Ptyodactylus, Tarentola,<br />

Thecadactylus); Pygopodidae (Aprasia, Delma, Lialis, Ophidiocephalus, Paradelma,<br />

Pletholax, Pygopus); Spha (Aristelliger, Chatogekko, Coleodactylus, Euleptes, Gonatodes,<br />

Lepidoblepharis, Pristurus, Pseudogonatodes, Quedenfeldtia, Saurodactylus,<br />

Sphaerodactylus, Teratoscincus)<br />

Scincoidea<br />

Cordylidae, Cordylinae (Chamaesaura, Cordylus, Hemicordylus, Karusasaurus,<br />

Namazonurus, Ninurta, Ouroborus, Pseudocordylus, Smaug), Platysaurinae (Platysaurus);<br />

Gerrhosauridae, Gerrhosaurinae (Cordylosaurus, Gerrhosaurus, Tetradactylus),<br />

Zonosaurinae (Tracheloptychus, Zonosaurus); Scincidae, Acontiinae (Acontias,<br />

Typhlosaurus), Lygosominae (Ablepharus, Afroablepharus, Anomalopus, Asymblepharus,<br />

Ateuchosaurus, Bartleia, Bassiana, Bellatorias, Caledoniscincus, Calyptotis, Carlia,<br />

Cautula, Celatiscincus, Chioninia, Coeranoscincus, Coggeria, Cophoscincopus, Corucia,<br />

Cryptoblepharus, Ctenotus, Cyclodomorphus, Dasia, Egernia, Emoia, Eremiascincus,<br />

Eroticoscincus, Eugongylus, Eulamprus, Eumecia, Eutropis, Fojia, Geomyersia, Geoscincus,<br />

Glaphyromorphus, Gnypetoscincus, Graciliscincus, Haackgreerius, Hemiergis,<br />

Hemisphaeriodon, Insulasaurus, Isopachys, Kaestlea, Kanakysaurus, Lacertaspis,


Lacertoides, Lamprolepis, Lampropholis, Lankascincus, Larutia, Leiolopisma, Lepidothyris,<br />

Leptoseps, Leptosiaphos, Lerista, Liburnascincus, Liopholis, Lioscincus, Lipinia, Lissolepis,<br />

Lobulia, Lygisaurus, Lygosoma, Mabuya, Marmorosphax, Menetia, Mochlus, Morethia,<br />

Nangura, Nannoscincus, Niveoscincus, Notoscincus, Oligosoma, Ophioscincus, Otosaurus,<br />

Panaspis, Papuascincus, Parvoscincus, Phoboscincus, Pinoyscincus, Prasinohaema,<br />

Proablepharus, Pseudemoia, Ristella, Saiphos, Saproscincus, Scincella, Sigaloseps,<br />

Simiscincus, Sphenomorphus, Tachygyia, Tiliqua, Trachylepis, Tribolonotus, Tropidophorus,<br />

Tropidoscincus, Tytthoscincus, Vietnascincus), Scincinae (Amphiglossus, Androngo,<br />

Barkudia, Brachymeles, Chabanaudia, Chalcides, Chalcidoseps, Eumeces, Eurylepis,<br />

Feylinia, Gongylomorphus, Hakaria, Janetaescincus, Jarujinia, Madascincus, Melanoseps,<br />

Mesoscincus, Nessia, Ophiomorus, Pamelaescincus, Paracontias, Plestiodon, Proscelotes,<br />

Pseudoacontias, Pygomeles, Scelotes, Scincopus, Scincus, Scolecoseps, Sepsina, Sepsophis,<br />

Sirenoscincus, Typhlacontias, Voeltzkowia); Xantusiidae, Cricosaurinae (Cricosaura),<br />

Lepidophyminae (Lepidophyma), Xantusiinae (Xantusia)<br />

Lacertoidea (including Amphisbaenia)<br />

Amphisbaenidae (Amphisbaena, Ancylocranium, Baikia, Chirindia, Cynisca, Dalophia,<br />

Geocalamus, Loveridgea, Mesobaena, Monopeltis, Zygaspis); Bipedidae (Bipes); Blanidae<br />

(Blanus); Cadeidae (Cadea); Gymnophthalmidae, Alopoglossinae (Alopoglossus,<br />

Ptychoglossus), Bachiinae (Bachia), Cercosaurinae (Anadia, Cercosaura, Echinosaura,<br />

Euspondylus, Macropholidus, Neusticurus, Opipeuter, Petracola, Pholidobolus, Placosoma,<br />

Potamites, Proctoporus, Riama, Riolama, Teuchocercus), Ecpleopinae (Adercosaurus,<br />

Amapasaurus, Anotosaura, Arthrosaura, Colobosauroides, Dryadosaura, Ecpleopus,<br />

Kaieteurosaurus, Leposoma, Marinussaurus, Pantepuisaurus), Gymnophthalminae<br />

(Acratosaura, Alexandresaurus, Calyptommatus, Caparaonia, Colobodactylus, Colobosaura,<br />

Gymnophthalmus, Heterodactylus, Iphisa, Micrablepharus, Nothobachia, Procellosaurinus,<br />

Psilophthalmus, Scriptosaura, Stenolepis, Tretioscincus, Vanzosaura), Rhachisaurinae<br />

(Rhachisaurus); Lacertidae, Gallotiinae (Gallotia, Psammodromus), Lacertinae<br />

(Acanthodactylus, Adolfus, Algyroides, Anatololacerta, Apathya, Archaeolacerta,<br />

Atlantolacerta, Australolacerta, Congolacerta, Dalmatolacerta, Darevskia, Dinarolacerta,<br />

Eremias, Gastropholis, Heliobolus, Hellenolacerta, Holaspis, Iberolacerta, Ichnotropis,<br />

Iranolacerta, Lacerta, Latastia, Meroles, Mesalina, Nucras, Omanosaura, Ophisops,<br />

Parvilacerta, Pedioplanis, Philochortus, Phoenicolacerta, Podarcis, Poromera,<br />

Pseuderemias, Scelarcis, Takydromus, Teira, Timon, Tropidosaura, Zootoca); Rhineuridae<br />

(Rhineura); Teiidae, Teiinae (Ameiva, Aspidoscelis, Cnemidophorus, Dicrodon, Kentropyx,<br />

Teius), Tupinambinae (Callopistes, Crocodilurus, Dracaena, Tupinambis); Trogonophiidae<br />

(Agamodon, Diplometopon, Pachycalamus, Trogonophis)<br />

Iguania<br />

Agamidae, Agaminae (Acanthocercus, Agama, Brachysaura, Bufoniceps, Laudakia,<br />

Phrynocephalus, Pseudotrapelus, Trapelus, Xenagama), Amphibolurinae (Amphibolurus,<br />

Chelosania, Chlamydosaurus, Cryptagama, Ctenophorus, Diporiphora, Hypsilurus,<br />

Intellagama, Lophognathus, Moloch, Physignathus, Pogona, Rankinia, Tympanocryptis),<br />

Draconinae (Acanthosaura, Aphaniotis, Bronchocela, Calotes, Ceratophora, Complicitus,<br />

Cophotis, Coryphophylax, Dendragama, Draco, Gonocephalus, Harpesaurus, Hypsicalotes,<br />

Japalura, Lophocalotes, Lyriocephalus, Mantheyus, Oriocalotes, Otocryptis, Phoxophrys,<br />

Psammophilus, Pseudocalotes, Pseudocophotis, Ptyctolaemus, Salea, Sitana,<br />

Thaumatorhynchus), Hydrosaurinae (Hydrosaurus), Leiolepidinae (Leiolepis),


Uromastycinae (Uromastyx); Chamaeleonidae, Brookesiinae (Brookesia), Chamaeleoninae<br />

(Archaius, Bradypodion, Calumma, Chamaeleo, Furcifer, Kinyongia, Nadzikambia,<br />

Rhampholeon, Rieppeleon, Trioceros); Corytophanidae (Basiliscus, Corytophanes,<br />

Laemanctus); Crotaphytidae (Crotaphytus, Gambelia); Dactyloidae (Anolis);<br />

Hoplocercidae (Enyalioides, Hoplocercus, Morunasaurus); Iguanidae (Amblyrhynchus,<br />

Brachylophus, Conolophus, Ctenosaura, Cyclura, Dipsosaurus, Iguana, Sauromalus);<br />

Leiocephalidae (Leiocephalus); Leiosauridae, Enyaliinae (Anisolepis, Enyalius,<br />

Urostrophus), Leiosaurinae (Diplolaemus, Leiosaurus, Pristidactylus); Liolaemidae<br />

(Ctenoblepharys, Liolaemus, Phymaturus); Opluridae (Chalarodon, Oplurus);<br />

Phrynosomatidae (Callisaurus, Cophosaurus, Holbrookia, Petrosaurus, Phrynosoma,<br />

Sceloporus, Uma, Urosaurus, Uta); Polychrotidae (Polychrus); Tropiduridae<br />

(Eurolophosaurus, Microlophus, Plica, Stenocercus, Strobilurus, Tropidurus, Uracentron,<br />

Uranoscodon)<br />

Anguimorpha<br />

Anguidae, Anguinae (Anguis, Dopasia, Ophisaurus, Pseudopus), Diploglossinae (Celestus,<br />

Diploglossus, Ophiodes), Gerrhonotinae (Abronia, Barisia, Coloptychon, Elgaria,<br />

Gerrhonotus, Mesaspis); Anniellidae (Anniella); Helodermatidae (Heloderma);<br />

Lanthanotidae (Lanthanotus); Shinisauridae (Shinisaurus); Varanidae (Varanus);<br />

Xenosauridae (Xenosaurus)<br />

Serpentes<br />

Acrochordidae (Acrochordus); Aniliidae (Anilius); Anomalepididae (Anomalepis,<br />

Helminthophis, Liotyphlops, Typhlophis); Anomochilidae (Anomochilus); Boidae, Boinae<br />

(Boa, Corallus, Epicrates, Eunectes), Candoiinae (Candoia), Erycinae (Eryx), Sanziniinae<br />

(Acrantophis, Sanzinia), Ungaliophiinae (Charina, Exiliboa, Lichanura, Ungaliophis);<br />

Bolyeriidae (Bolyeria, Casarea); Calabariidae (Calabaria); Colubridae incertae sedis<br />

(Blythia, Cyclocorus, Elapoidis, Gongylosoma, Helophis, Myersophis, Oreocalamus,<br />

Poecilopholis, Rhabdops, Tetralepis), Calamariinae (Calamaria, Calamorhabdium,<br />

Collorhabdium, Etheridgeum, Macrocalamus, Pseudorabdion, Rabdion), Colubrinae<br />

(Aeluroglena, Ahaetulla, Aprosdoketophis, Archelaphe, Argyrogena, Arizona, Bamanophis,<br />

Bogertophis, Boiga, Cemophora, Chilomeniscus, Chionactis, Chironius, Chrysopelea,<br />

Coelognathus, Coluber, Colubroelaps, Conopsis, Coronella, Crotaphopeltis, Cyclophiops,<br />

Dasypeltis, Dendrelaphis, Dendrophidion, Dipsadoboa, Dispholidus, Dolichophis,<br />

Drymarchon, Drymobius, Drymoluber, Dryocalamus, Dryophiops, Eirenis, Elachistodon,<br />

Elaphe, Euprepiophis, Ficimia, Geagras, Gonyophis, Gonyosoma, Gyalopion, Hapsidophrys,<br />

Hemerophis, Hemorrhois, Hierophis, Lampropeltis, Leptodrymus, Leptophis, Lepturophis,<br />

Limnophis, Liopeltis, Lycodon, Lytorhynchus, Macroprotodon, Mastigodryas, Meizodon,<br />

Oligodon, Oocatochus, Opheodrys, Oreocryptophis, Orthriophis, Oxybelis, Pantherophis,<br />

Philothamnus, Phyllorhynchus, Pituophis, Platyceps, Pseudelaphe, Pseudoficimia, Pseustes,<br />

Ptyas, Rhadinophis, Rhamnophis, Rhinechis, Rhinobothryum, Rhinocheilus,<br />

Rhynchocalamus, Rhynchophis, Salvadora, Scaphiophis, Scolecophis, Senticolis, Simophis,<br />

Sonora, Spalerosophis, Spilotes, Stegonotus, Stenorrhina, Symphimus, Sympholis, Tantilla,<br />

Tantillita, Telescopus, Thelotornis, Thrasops, Toxicodryas, Trimorphodon, Xenelaphis,<br />

Xyelodontophis, Zamenis), Dipsadinae (Adelphicos, Alsophis, Amastridium, Amnesteophis,<br />

Antillophis, Apostolepis, Arrhyton, Atractus, Boiruna, Borikenophis, Caaeteboia,<br />

Calamodontophis, Caraiba, Carphophis, Cercophis, Chapinophis, Chersodromus, Clelia,<br />

Coniophanes, Conophis, Contia, Coronelaps, Crisantophis, Cryophis, Cubophis,


Darlingtonia, Diadophis, Diaphorolepis, Dipsas, Ditaxodon, Drepanoides, Echinanthera,<br />

Elapomorphus, Emmochliophis, Enuliophis, Enulius, Erythrolamprus, Farancia, Geophis,<br />

Gomesophis, Haitiophis, Helicops, Heterodon, Hydrodynastes, Hydromorphus, Hydrops,<br />

Hypsiglena, Hypsirhynchus, Ialtris, Imantodes, Leptodeira, Lioheterophis, Lygophis,<br />

Magliophis, Manolepis, Mussurana, Ninia, Nothopsis, Ocyophis, Omoadiphas, Oxyrhopus,<br />

Paraphimophis, Phalotris, Philodryas, Phimophis, Plesiodipsas, Pliocercus, Pseudalsophis,<br />

Pseudoboa, Pseudoeryx, Pseudoleptodeira, Pseudotomodon, Psomophis, Ptychophis,<br />

Rhachidelus, Rhadinaea, Rhadinella, Rhadinophanes, Rodriguesophis, Saphenophis,<br />

Schwartzophis, Sibon, Sibynomorphus, Siphlophis, Sordellina, Synophis, Tachymenis,<br />

Taeniophallus, Tantalophis, Thamnodynastes, Thermophis, Tomodon, Tretanorhinus,<br />

Trimetopon, Tropidodipsas, Tropidodryas, Uromacer, Uromacerina, Urotheca, Xenodon,<br />

Xenopholis), Grayiinae (Grayia), Natricinae (Adelophis, Afronatrix, Amphiesma,<br />

Amphiesmoides, Anoplohydrus, Aspidura, Atretium, Balanophis, Clonophis, Hologerrhum,<br />

Hydrablabes, Hydraethiops, Iguanognathus, Lycognathophis, Macropisthodon, Natriciteres,<br />

Natrix, Nerodia, Opisthotropis, Parahelicops, Pararhabdophis, Paratapinophis, Regina,<br />

Rhabdophis, Seminatrix, Sinonatrix, Storeria, Thamnophis, Trachischium, Tropidoclonion,<br />

Tropidonophis, Virginia, Xenochrophis), Pseudoxenodontinae (Plagiopholis,<br />

Pseudoxenodon), Sibynophiinae (Scaphiodontophis, Sibynophis); Cylindrophiidae<br />

(Cylindrophis); Elapidae (Acanthophis, Aipysurus, Aspidelaps, Aspidomorphus, Austrelaps,<br />

Bungarus, Cacophis, Calliophis, Cryptophis, Demansia, Dendroaspis, Denisonia, Drysdalia,<br />

Echiopsis, Elapognathus, Elapsoidea, Emydocephalus, Ephalophis, Furina, Hemachatus,<br />

Hemiaspis, Hemibungarus, Hoplocephalus, Hydrelaps, Hydrophis, Kolpophis, Laticauda,<br />

Loveridgelaps, Maticora, Micropechis, Micruroides, Micrurus, Naja, Notechis, Ogmodon,<br />

Ophiophagus, Oxyuranus, Parahydrophis, Parapistocalamus, Parasuta, Pseudechis,<br />

Pseudohaje, Pseudolaticauda, Pseudonaja, Rhinoplocephalus, Salomonelaps, Simoselaps,<br />

Sinomicrurus, Suta, Thalassophis, Toxicocalamus, Tropidechis, Vermicella, Walterinnesia);<br />

Gerrhopilidae (Gerrhopilus); Homalopsidae (Bitia, Brachyorrhos, Cantoria, Cerberus,<br />

Djokoiskandarus, Enhydris, Erpeton, Fordonia, Gerarda, Heurnia, Homalopsis, Myron,<br />

Pseudoferania); Lamprophiidae incertae sedis (Micrelaps, Montaspis, Oxyrhabdium),<br />

Aparallactinae (Amblyodipsas, Aparallactus, Brachyophis, Chilorhinophis, Elapotinus,<br />

Hypoptophis, Macrelaps, Polemon, Xenocalamus), Atractaspidinae (Atractaspis,<br />

Homoroselaps), Lamprophiinae (Boaedon, Bothrophthalmus, Chamaelycus, Dendrolycus,<br />

Gonionotophis, Hormonotus, Inyoka, Lamprophis, Lycodonomorphus, Lycophidion,<br />

Pseudoboodon), Prosymninae (Prosymna), Psammophiinae (Dipsina, Hemirhagerrhis,<br />

Malpolon, Mimophis, Psammophis, Psammophylax, Rhagerhis, Rhamphiophis),<br />

Pseudaspidinae (Buhoma, Psammodynastes, Pseudaspis, Pythonodipsas), Pseudoxyrhophiine<br />

(Alluaudina, Amplorhinus, Bothrolycus, Brygophis, Compsophis, Ditypophis, Dromicodryas,<br />

Duberria, Exallodontophis, Heteroliodon, Ithycyphus, Langaha, Leioheterodon, Liophidium,<br />

Liopholidophis, Lycodryas, Madagascarophis, Micropisthodon, Pararhadinaea,<br />

Parastenophis, Phisalixella, Pseudoxyrhopus, Thamnosophis); Leptotyphlopidae<br />

(Epacrophis, Epictia, Leptotyphlops, Mitophis, Myriopholis, Namibiana, Rena, Rhinoleptus,<br />

Siagonodon, Tetracheilostoma, Tricheilostoma, Trilepida); Loxocemidae (Loxocemus);<br />

Pareatidae (Aplopeltura, Asthenodipsas, Pareas); Pythonidae (Antaresia, Apodora,<br />

Aspidites, Bothrochilus, Broghammerus, Leiopython, Liasis, Morelia, Python);<br />

Tropidophiidae (Trachyboa, Tropidophis); Typhlopidae (Acutotyphlops, Afrotyphlops,<br />

Austrotyphlops, Cyclotyphlops, Grypotyphlops, Letheobia, Megatyphlops, Ramphotyphlops,<br />

Rhinotyphlops, Typhlops); Uropeltidae (Brachyophidium, Melanophidium, Platyplectrurus,<br />

Plectrurus, Pseudotyphlops, Rhinophis, Teretrurus, Uropeltis); Viperidae, Azemiopinae<br />

(Azemiops), Crotalinae (Agkistrodon, Atropoides, Bothriechis, Bothriopsis, Bothrocophias,<br />

Bothropoides, Bothrops, Calloselasma, Cerrophidion, Crotalus, Deinagkistrodon, Garthius,


Gloydius, Hypnale, Lachesis, Mixcoatlus, Ophryacus, Ovophis, Porthidium, Protobothrops,<br />

Rhinocerophis, Sistrurus, Trimeresurus, Tropidolaemus), Viperinae (Atheris, Bitis, Causus,<br />

Cerastes, Daboia, Echis, Eristicophis, Macrovipera, Montatheris, Montivipera, Proatheris,<br />

Pseudocerastes, Vipera); Xenodermatidae (Achalinus, Fimbrios, Stoliczkia, Xenodermus,<br />

Xylophis); Xenopeltidae (Xenopeltis); Xenophidiidae (Xenophidion); Xenotyphlopidae<br />

(Xenotyphlops)<br />

Additional files<br />

Additional_file_1 as TXT<br />

Additional file 1: Data File S1 The 4162-species ML phylogeny in Newick format;<br />

taxonomic changes are given in Additional file 2: Table S1.<br />

Additional_file_2 as DOCX<br />

Additional file 2: Table S1 GenBank accession numbers for all taxa included in this<br />

analysis.<br />

References<br />

1. Uetz P: The Reptile Database. http://www.reptile-database.org/ Accessed December, 2012.<br />

2. Greene HW: Snakes: the Evolution of Mystery in Nature. Berkeley: University of<br />

California Press; 1997.<br />

3. Vitt LJ, Caldwell JP: Herpetology. 4th edition. Burlington: Elsevier; 2009.<br />

4. Pianka ER, Vitt LJ: Lizards: Windows to the Evolution of Diversity. Berkeley: University<br />

of California Press; 2003.<br />

5. Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A,<br />

Premaratna R, Savioli L, Lalloo DG, de Silva HJ: The global burden of snakebite: a<br />

literature analysis and modelling based on regional estimates of envenoming and deaths.<br />

PLoS Med 2008, 5:1591–1604.<br />

6. Mahdavi A, Ferreira L, Sundback C, Nichol JW, Chan EP, Carter DJD, Bettinger CJ,<br />

Patanavanich S, Chignozha L, Ben-Joseph E, et al: A biodegradable and biocompatible<br />

gecko-inspired tissue adhesive. Proc Natl Acad Sci USA 2008, 105:2307–2312.<br />

7. Geim AK, Dubonos SV, Grigorieva IV, Novoselov KS, Zhukov AA, Shapoval SY:<br />

Microfabricated adhesive mimicking gecko foot-hair. Nat Mater 2003, 2:461–463.<br />

8. Huey RB, Bennett AF: Phylogenetic studies of coadaptation: preferred temperatures<br />

versus optimal performance temperatures of lizards. Evolution 1987, 41:1098–1115.<br />

9. Losos JB: The evolution of form and function: morphology and locomotor<br />

performance in West-Indian Anolis lizards. Evolution 1990, 44:1189–1203.


10. Wiens JJ, Brandley MC, Reeder TW: Why does a trait evolve multiple times within a<br />

clade? Repeated evolution of snakelike body form in squamate reptiles. Evolution 2006,<br />

60:123–141.<br />

11. Bergmann PJ, Irschick DJ: Vertebral evolution and the diversification of squamate<br />

reptiles. Evolution 2012, 66:1044–1058.<br />

12. Losos JB, Hillis DM, Greene HW: Who speaks with a forked tongue? Science 2012,<br />

338:1428–1429.<br />

13. Estes R, de Queiroz K, Gauthier J: Phylogenetic relationships within Squamata. In<br />

Phylogenetic Relationships of the Lizard Families. Edited by Estes R, Pregill G. Stanford:<br />

Stanford University Press; 1988:119–281.<br />

14. Gauthier JA, Kearney M, Maisano JA, Rieppel O, Behike ADB: Assembling the<br />

Squamate Tree of Life: perspectives from the phenotype and the fossil record. Bull<br />

Peabody Mus Nat Hist 2012, 53:3–308.<br />

15. Conrad JL: Phylogeny and systematics of Squamata (Reptilia) based on morphology.<br />

Bull Am Mus Nat Hist 2008, 310:1–182.<br />

16. Mulcahy DG, Noonan BP, Moss T, Townsend TM, Reeder TW, Sites JW Jr, Wiens JJ:<br />

Estimating divergence times and evaluating dating methods using phylogenomic and<br />

mitochondrial data in squamate reptiles. Mol Phylogenet Evol 2012, 65:974–991.<br />

17. Townsend TM, Larson A, Louis E, Macey JR: Molecular phylogenetics of Squamata:<br />

the position of snakes, amphisbaenians, and dibamids, and the root of the squamate<br />

tree. Syst Biol 2004, 53:735–757.<br />

18. Vidal N, Hedges SB: The phylogeny of squamate reptiles (lizards, snakes, and<br />

amphisbaenians) inferred from nine nuclear protein-coding genes. CR Biol 2005,<br />

328:1000–1008.<br />

19. Wiens JJ, Kuczynski CA, Townsend T, Reeder TW, Mulcahy DG, Sites JW: Combining<br />

phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data<br />

change the placement of fossil taxa. Syst Biol 2010, 59:674–688.<br />

20. Wiens JJ, Hutter CR, Mulcahy DG, Noonan BP, Townsend TM, Sites JW, Reeder TW:<br />

Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of<br />

genes and species. Biol Lett 2012, 8:1043–1046.<br />

21. Camp CL: Classification of the lizards. Bull Am Mus Nat Hist 1923, 48:289–480.<br />

22. Lee MSY: Convergent evolution and character correlation in burrowing reptiles:<br />

towards a resolution of squamate relationships. Biol J Linn Soc 1998, 65:369–453.<br />

23. Vidal N, Hedges SB: Molecular evidence for a terrestrial origin of snakes. Proc R Soc<br />

B 2004, 271:S226–S229.


24. Fry BG, Vidal N, Norman JA, Vonk FJ, Scheib H, Ramjan SFR, Kuruppu S, Fung K,<br />

Hedges SB, Richardson MK, et al: Early evolution of the venom system in lizards and<br />

snakes. Nature 2006, 439:584–588.<br />

25. Zwickl DJ, Hillis DM: Increased taxon sampling greatly reduces phylogenetic error.<br />

Syst Biol 2002, 51:588–598.<br />

26. Poe S: Evaluation of the strategy of long-branch subdivision to improve the accuracy<br />

of phylogenetic methods. Syst Biol 2003, 52:423–428.<br />

27. Heath TA, Zwickl DJ, Kim J, Hillis DM: Taxon sampling affects inferences of<br />

macroevolutionary processes from phylogenetic trees. Syst Biol 2008, 57:160–166.<br />

28. Graybeal A: Is it better to add taxa or characters to a difficult phylogenetic problem?<br />

Syst Biol 1998, 47:9–17.<br />

29. Blankers T, Townsend TM, Pepe K, Reeder TW, Wiens JJ: Contrasting global-scale<br />

evolutionary radiations: phylogeny, diversification, and morphological evolution in the<br />

major clades of iguanian lizards. Biol J Linn Soc 2013, 108:127–143.<br />

30. Schulte JA, Moreno-Roark F: Live birth among iguanian lizards predates Pliocene-<br />

Pleistocene glaciations. Biol Lett 2010, 6:216–218.<br />

31. Frost DR, Etheridge RE, Janies D, Titus TA: Total evidence, sequence alignment,<br />

evolution of polychrotid lizards, and a reclassification of the Iguania (Squamata:<br />

Iguania). Am Mus Novit 2001, 3343:38.<br />

32. Macey JR, Schulte JA, Larson A, Ananjeva NB, Wang YZ, Pethiyagoda R, Rastegar-<br />

Pouyani N, Papenfuss TJ: Evaluating trans-Tethys migration: an example using acrodont<br />

lizard phylogenetics. Syst Biol 2000, 49:233–256.<br />

33. Schulte JA, Valladares JP, Larson A: Phylogenetic relationships within Iguanidae<br />

inferred using molecular and morphological data and a phylogenetic taxonomy of<br />

iguanian lizards. Herpetologica 2003, 59:399–419.<br />

34. Townsend TM, Mulcahy DG, Noonan BP, Sites JW, Kuczynski CA, Wiens JJ, Reeder<br />

TW: Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of<br />

concatenated and species-tree approaches for an ancient, rapid radiation. Mol<br />

Phylogenet Evol 2011, 61:363–380.<br />

35. Slowinski JB, Lawson R: Snake phylogeny: evidence from nuclear and mitochondrial<br />

genes. Mol Phylogenet Evol 2002, 24:194–202.<br />

36. Wiens JJ, Kuczynski CA, Smith SA, Mulcahy DG, Sites JW, Townsend TM, Reeder TW:<br />

Branch lengths, support, and congruence: testing the phylogenomic approach with 20<br />

nuclear loci in snakes. Syst Biol 2008, 57:420–431.<br />

37. Lawson R, Slowinski JB, Burbrink FT: A molecular approach to discerning the<br />

phylogenetic placement of the enigmatic snake Xenophidion schaeferi among the<br />

Alethinophidia. J Zool 2004, 263:285–294.


38. Vidal N, Marin J, Morini M, Donnellan S, Branch WR, Thomas R, Vences M, Wynn A,<br />

Cruaud C, Hedges SB: Blindsnake evolutionary tree reveals long history on Gondwana.<br />

Biol Lett 2010, 6:558–561.<br />

39. Adalsteinsson SA, Branch WR, Trape S, Vitt LJ, Hedges SB: Molecular phylogeny,<br />

classification, and biogeography of snakes of the family Leptotyphlopidae (Reptilia,<br />

Squamata). Zootaxa 2009, 2244:1–50.<br />

40. Kelly CMR, Barker NP, Villet MH, Broadley DG: Phylogeny, biogeography and<br />

classification of the snake superfamily Elapoidea: a rapid radiation in the late Eocene.<br />

Cladistics 2009, 25:38–63.<br />

41. Pyron RA, Burbrink FT, Colli GR, de Oca ANM, Vitt LJ, Kuczynski CA, Wiens JJ: The<br />

phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and<br />

comparison of support methods for likelihood trees. Mol Phylogenet Evol 2011, 58:329–<br />

342.<br />

42. Zaher H, Grazziotin FG, Cadle JE, Murphy RW, de Moura JC, Bonatto SL: Molecular<br />

phylogeny of advanced snakes (Serpentes, Caenophidia) with an emphasis on South<br />

American xenodontines: a revised classification and descriptions of new taxa. Pap Av<br />

Zool 2009, 49:115–153.<br />

43. Grazziotin FG, Zaher H, Murphy RW, Scrocchi G, Benavides MA, Zhang Y-P, Bonatto<br />

SL: Molecular phylogeny of the New World Dipsadidae (Serpentes: Colubroidea): a<br />

reappraisal. Cladistics 2012, 28:437–459.<br />

44. Pyron RA, Kandambi HKDK, Hendry CR, Pushpamal V, Burbrink FT, Somaweera R:<br />

Genus-level phylogeny of snakes reveals the origins of species richness in Sri Lanka. Mol<br />

Phylogenet Evol 2013, 66:969–978.<br />

45. Vidal N, Delmas AS, David P, Cruaud C, Coujoux A, Hedges SB: The phylogeny and<br />

classification of caenophidian snakes inferred from seven nuclear protein-coding genes.<br />

CR Biol 2007, 330:182–187.<br />

46. Sanders KL, Lee MSY, Bertozzi T, Rasmussen AR: Multilocus phylogeny and recent<br />

rapid radiation of the viviparous sea snakes (Elapidae: Hydrophiinae). Mol Phylogenet<br />

Evol 2012, 66:575–591.<br />

47. Noonan BP, Chippindale PT: Dispersal and vicariance: the complex evolutionary<br />

history of boid snakes. Mol Phylogenet Evol 2006, 40:347–358.<br />

48. Lynch VJ, Wagner GP: Did egg-laying boas break Dollo's law? Phylogenetic evidence<br />

for reversal to oviparity in sand boas (Eryx: Boidae). Evolution 2010, 64:207–216.<br />

49. Schmitz A, Brandley MC, Mausfeld P, Vences M, Glaw F, Nussbaum RA, Reeder TW:<br />

Opening the black box: phylogenetics and morphological evolution of the Malagasy<br />

fossorial lizards of the subfamily "Scincinae". Mol Phylogenet Evol 2005, 34:118–133.<br />

50. Brandley MC, Schmitz A, Reeder TW: Partitioned Bayesian analyses, partition choice,<br />

and the phylogenetic relationships of scincid lizards. Syst Biol 2005, 54:373–390.


51. Whiting AS, Bauer AM, Sites JW: Phylogenetic relationships and limb loss in sub-<br />

Saharan African scincine lizards (Squamata: Scincidae). Mol Phylogenet Evol 2003,<br />

29:582–598.<br />

52. Skinner A, Lee MSY, Hutchinson MN: Rapid and repeated limb loss in a clade of<br />

scincid lizards. <strong>BMC</strong> Evol Biol 2008, 8:310.<br />

53. Gamble T, Colli GR, Rodrigues MT, Werneck FP, Simons AM: Phylogeny and cryptic<br />

diversity in geckos (Phyllopezus; Phyllodactylidae; Gekkota) from South America's<br />

open biomes. Mol Phylogenet Evol 2012, 62:943–953.<br />

54. Gamble T, Daza JD, Colli GR, Vitt LJ, Bauer AM: A new genus of miniaturized and<br />

pug-nosed gecko from South America (Sphaerodactylidae: Gekkota). Zool J Linn Soc<br />

2011, 163:1244–1266.<br />

55. Gamble T, Bauer AM, Colli GR, Greenbaum E, Jackman TR, Vitt LJ, Simons AM:<br />

Coming to America: multiple origins of New World geckos. J Evol Biol 2011, 24:231–<br />

244.<br />

56. Gamble T, Bauer AM, Greenbaum W, Jackman TR: Out of the blue: a novel, trans-<br />

Atlantic clade of geckos (Gekkota, Squamata). Zool Scripta 2008, 37:355–366.<br />

57. Oliver PM, Bauer AM, Greenbaum E, Jackman T, Hobbie T: Molecular phylogenetics<br />

of the arboreal Australian gecko genus Oedura Gray 1842 (Gekkota: Diplodactylidae):<br />

another plesiomorphic grade? Mol Phylogenet Evol 2012, 63:255–264.<br />

58. Nielsen SV, Bauer AM, Jackman TR, Hitchmough RA, Daugherty CH: New Zealand<br />

geckos (Diplodactylidae): cryptic diversity in a post-Gondwanan lineage with trans-<br />

Tasman affinities. Mol Phylogenet Evol 2011, 59:1–22.<br />

59. Gamble T, Greenbaum E, Jackman TR, Russell AP, Bauer AM: Repeated origin and<br />

loss of adhesive toepads in geckos. PLoS One 2012, 7:e39429.<br />

60. Wood PL Jr, Heinicke MP, Jackman TR, Bauer AM: Phylogeny of bent-toed geckos<br />

(Cyrtodactylus) reveals a west to east pattern of diversification. Mol Phylogenet Evol<br />

2012, 65:992–1003.<br />

61. Giugliano LG, Collevatti RG, Colli GR: Molecular dating and phylogenetic<br />

relationships among Teiidae (Squamata) inferred by molecular and morphological data.<br />

Mol Phylogenet Evol 2007, 45:168–179.<br />

62. Reeder TW, Cole CJ, Dessauer HC: Phylogenetic relationships of whiptail lizards of<br />

the genus Cnemidophorus (Squamata: Teiidae): a test of monophyly, reevalution of<br />

karyotypic evolution, and review of hybrid origins. Am Mus Novit 2002, 3365:1–61.<br />

63. Pellegrino KCM, Rodrigues MT, Yonenaga-Yassuda Y, Sites JW: A molecular<br />

perspective on the evolution of microteiid lizards (Squamata, Gymnophthalmidae), and<br />

a new classification for the family. Biol J Linn Soc 2001, 74:315–338.


64. Castoe TA, Doan TM, Parkinson CL: Data partitions and complex models in Bayesian<br />

analysis: the phylogeny of gymnophthalmid lizards. Syst Biol 2004, 53:448–469.<br />

65. Pavlicev M, Mayer W: Fast radiation of the subfamily Lacertinae (Reptilia:<br />

Lacertidae): history or methodical artefact? Mol Phylogenet Evol 2009, 52:727–734.<br />

66. Mayer W, Pavilcev M: The phylogeny of the family Lacertidae (Reptilia) based on<br />

nuclear DNA sequences: convergent adaptations to arid habitats within the subfamily<br />

Eremiainae. Mol Phylogenet Evol 2007, 44:1155–1163.<br />

67. Fu JZ: Toward the phylogeny of the family Lacertidae: why 4708 base pairs of<br />

mtDNA sequences cannot draw the picture. Biol J Linn Soc 2000, 71:203–217.<br />

68. Arnold EN, Arribas O, Carranza S: Systematics of the Palaearctic and Oriental lizard<br />

tribe Lacertini (Squamata: Lacertidae: Lacertinae), with descriptions of eight new<br />

genera. Zootaxa 2007, 1430:1–86.<br />

69. Greenbaum E, Villanueva CO, Kusamba C, Aristote MM, Branch WR: A molecular<br />

phylogeny of equatorial African Lacertidae, with the description of a new genus and<br />

species from eastern Democratic Republic of the Congo. Zool J Linn Soc 2011, 163:913–<br />

942.<br />

70. Mott T, Vieites DR: Molecular phylogenetics reveals extreme morphological<br />

homoplasy in Brazilian worm lizards challenging current taxonomy. Mol Phylogenet<br />

Evol 2009, 51:190–200.<br />

71. Kearney M, Stuart BL: Repeated evolution of limblessness and digging heads in worm<br />

lizards revealed by DNA from old bones. Proc R Soc B 2004, 271:1677–1683.<br />

72. Driskell AC, Ane C, Burleigh JG, McMahon MM, O'Meara BC, Sanderson MJ:<br />

Prospects for building the tree of life from large sequence databases. Science 2004,<br />

306:1172–1174.<br />

73. Wiens JJ, Fetzner JW, Parkinson CL, Reeder TW: Hylid frog phylogeny and sampling<br />

strategies for speciose clades. Syst Biol 2005, 54:719–748.<br />

74. de Queiroz A, Gatesy J: The supermatrix approach to systematics. Trends Ecol Evol<br />

2007, 22:34–41.<br />

75. Thomson RC, Shaffer HB: Sparse supermatrices for phylogenetic inference:<br />

taxonomy, alignment, rogue taxa, and the phylogeny of living turtles. Syst Biol 2010,<br />

59:42–58.<br />

76. Pyron RA, Wiens JJ: A large-scale phylogeny of Amphibia including over 2,800<br />

species, and a revised classification of extant frogs, salamanders, and caecilians. Mol<br />

Phylogenet Evol 2011, 61:543–583.<br />

77. Hinchcliff CE, Roalson EH: Using supermatrices for phylogenetic inquiry: an<br />

example using the sedges. Syst Biol 2013, 62:205–219.


78. Guo P, Liu Q, Xu Y, Jiang K, Hou M, Ding L, Pyron RA, Burbrink FT: Out of Asia:<br />

natricine snakes support the Cenozoic Beringian Dispersal Hypothesis. Mol Phylogenet<br />

Evol 2012, 63:825–833.<br />

79. Pyron RA, Burbrink FT: Neogene diversification and taxonomic stability in the snake<br />

tribe Lampropeltini (Serpentes: Colubridae). Mol Phylogenet Evol 2009, 52:524–529.<br />

80. Burbrink FT, Lawson R: How and when did Old World ratsnakes disperse into the<br />

New World? Mol Phylogenet Evol 2007, 43:173–189.<br />

81. Lawson R, Slowinski JB, Crother BI, Burbrink FT: Phylogeny of the Colubroidea<br />

(Serpentes): new evidence from mitochondrial and nuclear genes. Mol Phylogenet Evol<br />

2005, 37:581–601.<br />

82. Wiens JJ, Kuczynski CA, Arif S, Reeder TW: Phylogenetic relationships of<br />

phrynosomatid lizards based on nuclear and mitochondrial data, and a revised<br />

phylogeny for Sceloporus. Mol Phylogenet Evol 2010, 54:150–161.<br />

83. Lemmon AR, Brown JM, Stanger-Hall K, Lemmon EM: The effect of ambiguous data<br />

on phylogenetic estimates obtained by maximum likelihood and Bayesian inference. Syst<br />

Biol 2009, 58:130–145.<br />

84. Roure B, Baurain D, Philippe H: Impact of missing data on phylogenies inferred from<br />

empirical phylogenomic datasets. Mol Biol Evol 2013, 30:197–214.<br />

85. Wiens JJ, Morrill MC: Missing data in phylogenetic analysis: reconciling results from<br />

simulations and empirical data. Syst Biol 2011, 60:719–731.<br />

86. Pyron RA: Divergence time estimation using fossils as terminal taxa and the origins<br />

of Lissamphibia. Syst Biol 2011, 60:466–481.<br />

87. Wiens JJ, Tiu J: Highly incomplete taxa can rescue phylogenetic analyses from the<br />

negative impacts of limited taxon sampling. PLoS One 2012, 7:e42925.<br />

88. Scanlon JD, Lee MSY: The Pleistocene serpent Wonambi and the early evolution of<br />

snakes. Nature 2000, 403:416–420.<br />

89. Tchernov E, Rieppel O, Zaher H, Polcyn MJ, Jacobs LL: A fossil snake with limbs.<br />

Science 2000, 287:2010–2012.<br />

90. Rage J-C: Serpentes. Stuttgart: Gustav Fischer Verlag; 1984.<br />

91. Estes R: Sauria terrestria, Amphisbaenia. Stuttgart: Gustav Fischer Verlag; 1983.<br />

92. Holman JA: Fossil Snakes of North America: Origin, Evolution, Distribution,<br />

Paleoecology. Bloomington: Indiana University Press; 2000.<br />

93. Rage J-C: Fossil history. In Snakes: Ecology and <strong>Evolutionary</strong> <strong>Biology</strong>. Edited by Seigel<br />

RA, Collins JT, Novak SS. New York: McMillan; 1987:51–76.


94. Anisimova M, Gascuel O: Approximate likelihood-ratio test for branches: a fast,<br />

accurate, and powerful alternative. Syst Biol 2006, 55:539–552.<br />

95. Lee MSY: Squamate phylogeny, taxon sampling, and data congruence. Org Div Evol<br />

2005, 5:25–45.<br />

96. Townsend TM, Leavitt DH, Reeder TW: Intercontinental dispersal by a microendemic<br />

burrowing reptile (Dibamidae). Proc R Soc B 2011, 278:2568–2574.<br />

97. Kluge AG: Cladistic relationships in the Gekkonoidea (Squamata, Sauria). Misc Pub<br />

Mus Zool Univ Mich 1987, 173:1–54.<br />

98. Gamble T, Bauer AM, Greenbaum E, Jackman TR: Evidence for Gondwanan<br />

vicariance in an ancient clade of gecko lizards. J Biogeogr 2008, 35:88–104.<br />

99. Melville J, Schulte JA, Larson A: A molecular study of phylogenetic relationships and<br />

evolution of antipredator strategies in Australian Diplodactylus geckos, subgenus<br />

Strophurus. Biol J Linn Soc 2004, 82:123–138.<br />

100. Jennings WB, Pianka ER, Donnellan S: Systematics of the lizard family Pygopodidae<br />

with implications for the diversification of Australian temperate biotas. Syst Biol 2003,<br />

52:757–780.<br />

101. Bauer AM, Jackman TR, Sadlier RA, Whitaker AH: Revision of the giant geckos of<br />

New Caledonia (Reptilia: Diplodactylidae: Rhacodactylus). Zootaxa 2012, 3404:1–52.<br />

102. Brown RM, Siler CD, Das I, Min Y: Testing the phylogenetic affinities of Southeast<br />

Asia's rarest geckos: flap-legged geckos (Luperosaurus), flying geckos (Ptychozoon) and<br />

their relationship to the pan-Asian genus Gekko. Mol Phylogenet Evol 2012, 63:915–921.<br />

103. Vicario S, Caccone A, Gauthier J: Xantusiid "night" lizards: a puzzling phylogenetic<br />

problem revisited using likelihood-based Bayesian methods on mtDNA sequences. Mol<br />

Phylogenet Evol 2003, 26:243–261.<br />

104. Hedges SB, Bezy RL, Maxson LR: Phylogenetic relationships and biogeography of<br />

xantusiid lizards, inferred from mitochondrial DNA sequences. Mol Biol Evol 1991,<br />

8:767–780.<br />

105. Smith HM: The name of the non-nominotypical subfamily of the lizard family<br />

Xantusiidae. Syst Zool 1987, 36:326–328.<br />

106. Savage JM: The Amphibians and Reptiles of Costa Rica: a Herpetofauna between Two<br />

Continents, between Two Seas. Chicago: University of Chicago Press; 2002.<br />

107. Crother BI, Miyamoto MM, Presch WF: Phylogeny and biogeography of the lizard<br />

family Xantusiidae. Syst Zool 1986, 35:37–45.<br />

108. Stanley EL, Bauer AM, Jackman TR, Branch WR, Mouton PLFN: Between a rock and<br />

a hard polytomy: rapid radiation in the rupicolous girdled lizards (Squamata:<br />

Cordylidae). Mol Phylogenet Evol 2011, 58:53–70.


109. Frost DR, Janies D, Mouton PIN, Titus TA: A molecular perspective on the<br />

phylogeny of the girdled lizards (Cordylidae, Squamata). Am Mus Novit 2001, 3310:1–10.<br />

110. Greer AE: A subfamilial classification of scincid lizards. Bull Mus Comp Zool 1970,<br />

139:151–183.<br />

111. Smith SA, Sadlier RA, Bauer AM, Austin CC, Jackman T: Molecular phylogeny of the<br />

scincid lizards of New Caledonia and adjacent areas: evidence for a single origin of the<br />

endemic skinks of Tasmantis. Mol Phylogenet Evol 2007, 43:1151–1166.<br />

112. Hedges SB, Conn CE: A new skink fauna from Caribbean islands (Squamata,<br />

Mabuyidae, Mabuyinae). Zootaxa 2012, 3288:1–244.<br />

113. Vences M, Guayasamin JM, Miralles A, de La Riva I: To name or not to name:<br />

criteria to promote economy of change in supraspecific Linnaean classification schemes.<br />

Zootaxa 2013, 3636:201–244. in press.<br />

114. Bauer AM: On the identity of Lacerta punctata Linnaeus, 1758, the type species of<br />

the genus Euprepis Wagler, 1830, and the generic assignment of Afro-Malagasy skinks.<br />

Afr J Herpetol 2003, 52:1–7.<br />

115. Austin JJ, Arnold EN: Using ancient and recent DNA to explore relationships of<br />

extinct and endangered Leiolopisma skinks (Reptilia: Scincidae) in the Mascarene<br />

islands. Mol Phylogenet Evol 2006, 39:503–511.<br />

116. Skinner A: Phylogenetic relationships and rate of early diversification of Australian<br />

Sphenomorphus group scincids (Scincoidea, Squamata). Biol J Linn Soc 2007, 92:347–<br />

366.<br />

117. Linkem CW, Diesmos AC, Brown RM: Molecular systematics of the Philippine<br />

forest skinks (Squamata: Scincidae: Sphenomorphus): testing morphological hypotheses<br />

of interspecific relationships. Zool J Linn Soc 2011, 163:1217–1243.<br />

118. Siler CD, Diesmos AC, Alcala AC, Brown RM: Phylogeny of Philippine slender<br />

skinks (Scincidae: Brachymeles) reveals underestimated species diversity, complex<br />

biogeographical relationships, and cryptic patterns of lineage diversification. Mol<br />

Phylogenet Evol 2011, 59:53–65.<br />

119. Brandley MC, Ota H, Hikida T, de Oca ANM, Feria-Ortiz M, Guo XG, Wang YZ: The<br />

phylogenetic systematics of blue-tailed skinks (Plestiodon) and the family Scincidae.<br />

Zool J Linn Soc-Lond 2012, 165:163–189.<br />

120. Crottini A, Dordel J, Kohler J, Glaw F, Schmitz A, Vences M: A multilocus phylogeny<br />

of Malagasy scincid lizards elucidates the relationships of the fossorial genera Androngo<br />

and Cryptoscincus. Mol Phylogenet Evol 2009, 53:345–350.<br />

121. Sindaco R, Metallinou M, Pupin F, Fasola M, Carranza S: Forgotten in the ocean:<br />

systematics, biogeography and evolution of the Trachylepis skinks of the Socotra<br />

Archipelago. Zool Scripta 2012, 41:346–362.


122. Miralles A, Fuenmayor GR, Bonillo C, Schargel WE, Barros T, Garcia-Perez JE, Barrio-<br />

Amoros CL: Molecular systematics of Caribbean skinks of the genus Mabuya (Reptilia,<br />

Scincidae), with descriptions of two new species from Venezuela. Zool J Linn Soc 2009,<br />

156:598–616.<br />

123. Harvey MB, Ugueto GN, Gutberlet RL: Review of teiid morphology with a revised<br />

taxonomy and phylogeny of the Teiidae (Lepidosauria: Squamata). Zootaxa 2012,<br />

3459:1–156.<br />

124. Doan TM, Castoe TA: Phylogenetic taxonomy of the Cercosaurini (Squamata:<br />

Gymnophthalmidae), with new genera for species of Neusticurus and Proctoporus. Zool<br />

J Linn Soc 2005, 143:405–416.<br />

125. Vidal N, Azvolinsky A, Cruaud C, Hedges SB: Origin of tropical American<br />

burrowing reptiles by transatlantic rafting. Biol Lett 2008, 4:115–118.<br />

126. Vidal N, Hedges SB: The molecular evolutionary tree of lizards, snakes, and<br />

amphisbaenians. CR Biol 2009, 332:129–139.<br />

127. Lee MSY: Hidden support from unpromising data sets strongly unites snakes with<br />

anguimorph 'lizards'. J Evol Biol 2009, 22:1308–1316.<br />

128. Hugall AF, Foster R, Lee MSY: Calibration choice, rate smoothing, and the pattern<br />

of tetrapod diversification according to the long nuclear gene RAG-1. Syst Biol 2007,<br />

56:543–563.<br />

129. Macey JR, Schulte JA, Larson A, Tuniyev BS, Orlov N, Papenfuss TJ: Molecular<br />

phylogenetics, tRNA evolution, and historical biogeography in anguid lizards and<br />

related taxonomic families. Mol Phylogenet Evol 1999, 12:250–272.<br />

130. Conrad JL, Ast JC, Montanari S, Norell MA: A combined evidence phylogenetic<br />

analysis of Anguimorpha (Reptilia: Squamata). Cladistics 2011, 27:230–277.<br />

131. Collar DC, Schulte JA, Losos JB: Evolution of extreme body size disparity in<br />

monitor lizards (Varanus). Evolution 2011, 65:2664–2680.<br />

132. Chippindale PT, Ammerman LK, Campbell JA: Molecular approaches to phylogeny<br />

of Abronia (Anguidae: Gerrhonotinae), with emphasis on relationships in subgenus<br />

Auriculabronia. Copeia 1998, 4:883–892.<br />

133. Conroy CJ, Bryson RW, Lazcano D, Knight A: Phylogenetic placement of the pygmy<br />

alligator lizard based on mitochondrial DNA. J Herp 2005, 39:142–147.<br />

134. Okajima Y, Kumazawa Y: Mitochondrial genomes of acrodont lizards: timing of<br />

gene rearrangements and phylogenetic and biogeographic implications. <strong>BMC</strong> Evol Biol<br />

2010, 10:141.<br />

135. Castoe TA, de Koning APJ, Kim HM, Gu WJ, Noonan BP, Naylor G, Jiang ZJ,<br />

Parkinson CL, Pollock DD: Evidence for an ancient adaptive episode of convergent<br />

molecular evolution. Proc Natl Acad Sci USA 2009, 106:8986–8991.


136. Raxworthy CJ, Forstner MRJ, Nussbaum RA: Chameleon radiation by oceanic<br />

dispersal. Nature 2002, 415:784–787.<br />

137. Townsend TM, Vieites DR, Glaw F, Vences M: Testing species-level diversification<br />

hypotheses in Madagascar: the case of microendemic Brookesia leaf chameleons. Syst<br />

Biol 2009, 58:641–656.<br />

138. Townsend TM, Tolley KA, Glaw F, Bohme W, Vences M: Eastward from Africa:<br />

palaeocurrent-mediated chameleon dispersal to the Seychelles islands. Biol Lett 2011,<br />

7:225–228.<br />

139. Tolley KA, Townsend TM, Vences M: Large-scale phylogeny of chameleons suggests<br />

African origins and Eocene diversification. Proc R Soc B 2013, 280:20130184. in press.<br />

140. Honda M, Ota H, Kobayashi M, Nabhitabhata J, Yong H-S, Sengoku S, Hikida T:<br />

Phylogenetic relationships of the family Agamidae (Reptilia: Iguania) inferred from<br />

mitochondrial DNA sequences. Zool Sci 2000, 17:527–537.<br />

141. Hugall AF, Foster R, Hutchinson M, Lee MSY: Phylogeny of Australasian agamid<br />

lizards based on nuclear and mitochondrial genes: implications for morphological<br />

evolution and biogeography. Biol J Linn Soc 2008, 93:343–358.<br />

142. Honda M, Ota H, Sengoku S, Yong HS, Hikida T: Molecular evaluation of<br />

phylogenetic significances in the highly divergent karyotypes of the genus Gonocephalus<br />

(Reptilia: Agamidae) from tropical Asia. Zool Sci 2002, 19:129–133.<br />

143. Baig KJ, Wagner P, Ananjeva NB, Bohme W: A morphology-based taxonomic<br />

revision of Laudakia Gray, 1845 (Squamata: Agamidae). Vertebr Zool 2012, 62:213–260.<br />

144. Wilms TM, Bohme W, Wagner P, Lutzmann N, Schmitz A: On the phylogeny and<br />

taxonomy of the genus Uromastyx Merrem, 1820 (Reptilia: Squamata: Agamidae:<br />

Uromastycinae): resurrection of the genus Saara Gray, 1845. Bonner zoologische<br />

Beiträge 2009, 56:55–99.<br />

145. Wagner P, Melville J, Wilms TM, Schmitz A: Opening a box of cryptic taxa: the first<br />

review of the North African desert lizards in the Trapelus mutabilis Merrem, 1820<br />

complex (Squamata: Agamidae) with descriptions of new taxa. Zool J Linn Soc 2011,<br />

163:884–912.<br />

146. Etheridge R, de Queiroz K: A phylogeny of Iguanidae. In Phylogenetic Relationships<br />

of the Lizard Families: Essays Commemorating Charles L Camp. Edited by Estes RD, Pregill<br />

GK. Stanford: Stanford University Press; 1988:283–367.<br />

147. Frost DR, Etheridge R: A phylogenetic analysis and taxonomy of iguanian lizards<br />

(Reptilia: Squamata). Misc Publ Univ Kansas 1989, 81:1–65.<br />

148. Macey JR, Larson A, Ananjeva NB, Papenfuss TJ: <strong>Evolutionary</strong> shifts in three major<br />

structural features of the mitochondrial genome among iguanian lizards. J Mol Evol<br />

1997, 44:660–674.


149. Noonan BP, Chippindale PT: Vicariant origin of Malagasy reptiles supports late<br />

Cretaceous antarctic land bridge. Am Nat 2006, 168:730–741.<br />

150. Noonan BP, Sites JW: Tracing the origins of iguanid lizards and boine snakes of the<br />

Pacific. Am Nat 2010, 175:61–72.<br />

151. Schulte JA, Cartwright EM: Phylogenetic relationships among iguanian lizards using<br />

alternative partitioning methods and TSHZ1: a new phylogenetic marker for reptiles.<br />

Mol Phylogenet Evol 2009, 50:391–396.<br />

152. Nicholson KE, Crother BI, Guyer C, Savage JM: It is time for a new classification of<br />

anoles (Squamata: Dactyloidae). Zootaxa 2012, 3477:1–108.<br />

153. Poe S: Phylogeny of anoles. Herp Monogr 2004, 18:37–89.<br />

154. Guyer C, Savage JM: Cladistic relationships among anoles (Sauria, Iguanidae). Syst<br />

Zool 1986, 35:509–531.<br />

155. Losos JB: Lizards in an <strong>Evolutionary</strong> Tree: the Ecology of Adaptive Radiation in<br />

Anoles. Berkeley: University of California Press; 2009.<br />

156. Cannatella DC, de Queiroz K: Phylogenetic systematics of the anoles: is a new<br />

taxonomy warranted. Syst Zool 1989, 38:57–69.<br />

157. Poe S: 1986 redux: new genera of anoles (Squamata: Dactyloidae) are<br />

unwarranted. Zootaxa 2013, 3626:295–299.<br />

158. Heise PJ, Maxson LR, Dowling HG, Hedges SB: Higher-level snake phylogeny<br />

inferred from mitochondrial DNA sequences of 12S rRNA and 16S rRNA genes. Mol<br />

Biol Evol 1995, 12:259–265.<br />

159. Burbrink FT, Pyron RA: The taming of the skew: estimating proper confidence<br />

intervals for divergence dates. Syst Biol 2008, 57:317–328.<br />

160. Pyron RA, Burbrink FT: Extinction, ecological opportunity, and the origins of global<br />

snake diversity. Evolution 2012, 66:163–178.<br />

161. Gower DJ, Vidal N, Spinks JN, McCarthy CJ: The phylogenetic position of<br />

Anomochilidae (Reptilia: Serpentes): first evidence from DNA sequences. J Zool Syst<br />

Evol Res 2005, 43:315–320.<br />

162. Cadle JE, Dessauer HC, Gans C, Gartside DF: Phylogenetic relationships and<br />

molecular evolution in uropeltid snakes (Serpentes, Uropeltidae): allozymes and<br />

albumin immunology. Biol J Linn Soc 1990, 40:293–320.<br />

163. Wallach V, Wuster W, Broadley DG: In praise of subgenera: taxonomic status of<br />

cobras of the genus Naja Laurenti (Serpentes: Elapidae). Zootaxa 2009, 2236:26–36.


164. Williams D, Wuster W, Fry BG: The good, the bad and the ugly: Australian snake<br />

taxonomists and a history of the taxonomy of Australia's venomous snakes. Toxicon<br />

2006, 48:919–930.<br />

165. Rawlings LH, Rabosky DL, Donnellan SC, Hutchinson MN: Python phylogenetics:<br />

inference from morphology and mitochondrial DNA. Biol J Linn Soc 2008, 93:603–619.<br />

166. Burbrink FT: Inferring the phylogenetic position of Boa constrictor among the<br />

Boinae. Mol Phylogenet Evol 2005, 34:167–180.<br />

167. Kluge AG: Boine snake phylogeny and research cycles. Misc Publ Mus Zool Univ<br />

Mich 1991, 178:1–58.<br />

168. Romer AS: Osteology of the Reptiles. Chicago: University of Chicago Press; 1956.<br />

169. Kelly CMR, Barker NP, Villet MH: Phylogenetics of advanced snakes (Caenophidia)<br />

based on four mitochondrial genes. Syst Biol 2003, 52:439–459.<br />

170. Kraus F, Brown WM: Phylogenetic relationships of colubroid snakes based on<br />

mitochondrial DNA sequences. Zool J Linn Soc 1998, 122:455–487.<br />

171. Boulenger GA: Catalogue of snakes in the British Museum. London: British Museum of<br />

Natural History; 1894.<br />

172. Guo P, Wu Y, He S, Shi H, Zhao E: Systematics and molecular phylogenetics of<br />

Asian snail-eating snakes (Pareatidae). Zootaxa 2011, 3001:57–64.<br />

173. Garrigues T, Dauga C, Ferquel E, Choumet V, Failloux AB: Molecular phylogeny of<br />

Vipera Laurenti, 1768 and the related genera Macrovipera (Reuss, 1927) and Daboia<br />

(Gray, 1842), with comments about neurotoxic Vipera aspis aspis populations. Mol<br />

Phylogenet Evol 2005, 35:35–47.<br />

174. Lenk P, Kalyabina S, Wink M, Joger U: <strong>Evolutionary</strong> relationships among the true<br />

vipers (Reptilia: Viperidae) inferred from mitochondrial DNA sequences. Mol<br />

Phylogenet Evol 2001, 19:94–104.<br />

175. Castoe TA, Parkinson CL: Bayesian mixed models and the phylogeny of pitvipers<br />

(Viperidae: Serpentes). Mol Phylogenet Evol 2006, 39:91–110.<br />

176. Fenwick AM, Gutberlet RL, Evans JA, Parkinson CL: Morphological and molecular<br />

evidence for phylogeny and classification of South American pitvipers, genera Bothrops,<br />

Bothriopsis, and Bothrocophias (Serpentes: Viperidae). Zool J Linn Soc 2009, 156:617–<br />

640.<br />

177. Kelly CMR, Branch WR, Broadley DG, Barker NP, Villet MH: Molecular systematics<br />

of the African snake family Lamprophiidae Fitzinger, 1843 (Serpentes: Elapoidea), with<br />

particular focus on the genera Lamprophis Fitzinger 1843 and Mehelya Csiki 1903. Mol<br />

Phylogenet Evol 2011, 58:415–426.


178. Vidal N, Branch WR, Pauwels OSG, Hedges SB, Broadley DG, Wink M, Cruaud C,<br />

Joger U, Nagy ZT: Dissecting the major African snake radiation: a molecular phylogeny<br />

of the Lamprophiidae Fitzinger (Serpentes, Caenophidia). Zootaxa 2008, 1945:51–66.<br />

179. Sanders KL, Lee MSY, Leys R, Foster R, Keogh JS: Molecular phylogeny and<br />

divergence dates for Australasian elapids and sea snakes (Hydrophiinae): evidence from<br />

seven genes for rapid evolutionary radiations. J Evol Biol 2008, 21:682–695.<br />

180. Sanders KL, Lee MSY: Molecular evidence for a rapid late-Miocene radiation of<br />

Australasian venomous snakes (Elapidae, Colubroidea). Mol Phylogenet Evol 2008,<br />

46:1165–1173.<br />

181. Chen X, Huang S, Guo P, Colli GR, de Oca AN M, Vitt LJ, Pyron RA, Burbrink FT:<br />

Understanding the formation of ancient intertropical disjunct distributions using Asian<br />

and Neotropical hinged-teeth snakes (Sibynophis and Scaphiodontophis: Serpentes:<br />

Colubridae). Mol Phylogenet Evol 2012, 66:254–261.<br />

182. Huang S, Liu SY, Guo P, Zhang YP, Zhao EM: What are the closest relatives of the<br />

hot-spring snakes (Colubridae, Thermophis), the relict species endemic to the Tibetan<br />

Plateau? Mol Phylogenet Evol 2009, 51:438–446.<br />

183. He M, Feng JC, Liu SY, Guo P, Zhao EM: The phylogenetic position of Thermophis<br />

(Serpentes: Colubridae), an endemic snake from the Qinghai-Xizang Plateau, China. J<br />

Nat Hist 2009, 43:479–488.<br />

184. Socha JJ: Gliding flight in Chrysopelea: turning a snake into a wing. Integr Comp<br />

Biol 2011, 51:969–982.<br />

185. Helfenberger N: Phylogenetic relationship of Old World ratsnakes based on visceral<br />

organ topography, osteology, and allozyme variation. Russ J Herp 2001, 8:1–56.<br />

186. Alfaro ME, Arnold SJ: Molecular systematics and evolution of Regina and the<br />

Thamnophiine snakes. Mol Phylogenet Evol 2001, 21:408–423.<br />

187. de Queiroz A, Lawson R, Lemos-Espinal JA: Phylogenetic relationships of North<br />

American garter snakes (Thamnophis) based on four mitochondrial genes: How much<br />

DNA sequence is enough? Mol Phylogenet Evol 2002, 22:315–329.<br />

188. Cope ED: Eleventh contribution to the herpetology of tropical America: Dugés, A.<br />

Proc Amer Philos Soc 1879, 18:261–277.<br />

189. Fitzinger L: Systema Reptilium. Fasciculus Primus, Amblyglossae. Vienna: Apud<br />

Braumüller and Seidel Bibliopolas; 1843.<br />

190. Vidal N, Dewynter M, Gower DJ: Dissecting the major American snake radiation: a<br />

molecular phylogeny of the Dipsadidae Bonaparte (Serpentes, Caenophidia). CR Biol<br />

2010, 333:48–55.<br />

191. Caldwell MW: Squamate phylogeny and the relationships of snakes and<br />

mosasauroids. Zool J Linn Soc 1999, 125:115–147.


192. Heath TA, Hedtke SM, Hillis DM: Taxon sampling and the accuracy of phylogenetic<br />

analyses. J Syst Evol 2008, 46:239–257.<br />

193. Hedtke SM, Townsend TM, Hillis DM: Resolution of phylogenetic conflict in large<br />

data sets by increased taxon sampling. Syst Biol 2006, 55:522–529.<br />

194. Rannala B, Huelsenbeck JP, Yang ZH, Nielsen R: Taxon sampling and the accuracy<br />

of large phylogenies. Syst Biol 1998, 47:702–710.<br />

195. Poe S, Swofford DL: Taxon sampling revisited. Nature 1999, 398:299–300.<br />

196. Fisher-Reid MC, Wiens JJ: What are the consequences of combining nuclear and<br />

mitochondrial data for phylogenetic analysis? Lessons from Plethodon salamanders and<br />

13 other vertebrate clades. <strong>BMC</strong> Evol Biol 2011, 11:300.<br />

197. McMahon MM, Sanderson MJ: Phylogenetic supermatrix analysis of GenBank<br />

sequences from 2228 papilionoid legumes. Syst Biol 2006, 55:818–836.<br />

198. Lemmon AR, Emme SA, Lemmon EM: Anchored hybrid enrichment for massively<br />

high-throughput phylogenomics. Syst Biol 2012, 61:727–744.<br />

199. Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT, Glenn TC:<br />

Ultraconserved elements anchor thousands of genetic markers spanning multiple<br />

evolutionary timescales. Syst Biol 2012, 61:717–726.<br />

200. Crawford NG, Faircloth BC, McCormack JE, Brumfield D, Winker K, Glenn TC: More<br />

than 1000 ultraconserved elements provide evidence that turtles are the sister group of<br />

archosaurs. Biol Lett 2012, 8:783–786.<br />

201. Edwards SV, Liu L, Pearl DK: High-resolution species trees without concatenation.<br />

Proc Natl Acad Sci USA 2007, 104:5936–5941.<br />

202. Heled J, Drummond AJ: Bayesian inference of species trees from multilocus data.<br />

Mol Biol Evol 2010, 27:570–580.<br />

203. Ricklefs RE, Losos JB, Townsend TM: <strong>Evolutionary</strong> diversification of clades of<br />

squamate reptiles. J Evol Biol 2007, 20:1751–1762.<br />

204. Brandley MC, Huelsenbeck JP, Wiens JJ: Rates and patterns in the evolution of<br />

snake-like body form in squamate reptiles: evidence for repeated re-evolution of lost<br />

digits and long-term persistence of intermediate body forms. Evolution 2008, 62:2042–<br />

2064.<br />

205. Pyron RA, Burbrink FT: Systematics of the Common Kingsnake (Lampropeltis<br />

getula; Serpentes: Colubridae) and the burden of heritage in taxonomy. Zootaxa 2009,<br />

2241:22–32.<br />

206. Pyron RA: A likelihood method for assessing molecular divergence time estimates<br />

and the placement of fossil calibrations. Syst Biol 2010, 59:185–194.


207. Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high<br />

throughput. Nucleic Acids Res 2004, 32:1792–1797.<br />

208. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H,<br />

Valentin F, Wallace IM, Wilm A, Lopez R, et al: Clustal W and Clustal X version 2.0.<br />

Bioinformatics 2007, 23:2947–2948.<br />

209. Stamatakis A, Aberer AJ, Goll C, Smith SA, Berger SA, Izquierdo-Carrasco F:<br />

RAxML-Light: a tool for computing terabyte phylogenies. Bioinformatics 2012, 28:2064–<br />

2066.<br />

210. Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses<br />

with thousands of taxa and mixed models. Bioinformatics 2006, 22:2688–2690.<br />

211. Felsenstein J: Inferring Phylogenies. Sunderland: Sinauer Associates; 2004.<br />

212. Anisimova M, Gil M, Dufayard JF, Dessimoz C, Gascuel O: Survey of branch support<br />

methods demonstrates accuracy, power, and robustness of fast likelihood-based<br />

approximation schemes. Syst Biol 2011, 60:685–699.<br />

213. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: New<br />

algorithms and methods to estimate maximum-likelihood phylogenies: assessing the<br />

performance of PhyML 3.0. Syst Biol 2010, 59:307–321.<br />

214. Schneider JG: Historiae Amphibiorum Naturalis et Literariae. Fasciculus Secundus<br />

continens Crocodilos, Scincos, Chamaesauras, Boas, Pseudoboas, Elapes, Angues,<br />

Amphisbaenas et Caecilias. Jena: Frommani; 1801.<br />

215. Mcdowell SB: A catalog of the snakes of New Guinea and the Solomons, with<br />

special reference to those in the Bernice P. Bishop museum. Part III. Boinae and<br />

Acrochordoidea (Reptilia, Serpentes). J Herp 1979, 13:1–92.


0.2 subst./site<br />

Scincidae<br />

Xantusiidae<br />

Gerrhosauridae<br />

Teiidae<br />

Gymnophthalmidae<br />

Lacertidae<br />

Anguidae<br />

Chamaeleonidae<br />

Agamidae<br />

Leiosauridae<br />

Boidae<br />

Viperidae<br />

Colubridae<br />

Lamprophiidae<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

G<br />

A) Gekkota<br />

B) Scincoidea<br />

C) Episquamata<br />

D) Lacertoidea<br />

E) Toxicofera<br />

F) Anguimorpha<br />

G) Iguania<br />

H) Serpentes<br />

H<br />

Dipsadinae<br />

Gekkonidae<br />

Cercosaurinae<br />

Acontiinae<br />

Lacertinae<br />

Hydrosaurinae<br />

Xenodermatidae<br />

Anniellidae<br />

Crotaphytidae<br />

Hoplocercidae<br />

Sphenodontidae<br />

Leiolepidinae<br />

Polychrotidae<br />

Pseudoxyrhophiinae<br />

Loxocemidae<br />

Dibamidae<br />

Prosymninae<br />

Lygosominae<br />

Natricinae<br />

Xantusiinae<br />

Tropiduridae<br />

Corytophanidae<br />

Ecpleopinae<br />

Anomochilidae<br />

Amphisbaenidae<br />

Leiosaurinae<br />

Xenophiidae<br />

Scincinae<br />

Draconinae<br />

Bipedidae<br />

Gerrhosaurinae<br />

Rhineuridae<br />

Anomalepididae<br />

Trogonophiidae<br />

Aniliidae<br />

Azemiopinae<br />

Alopoglossinae<br />

Lanthanotidae<br />

Pseudaspidinae<br />

Tupinambinae<br />

Xenotyphlopidae<br />

Blanidae<br />

Gerrhopilidae<br />

Liolaemidae<br />

Candoiinae<br />

Gallotiinae<br />

Leptotyphlopidae<br />

Platysaurinae<br />

Pythonidae<br />

Boinae<br />

Colubrinae<br />

Opluridae<br />

Elapidae<br />

Typhlopidae<br />

Pareatidae<br />

Cadeidae<br />

Crotalinae<br />

Sibynophiinae<br />

Chamaeleoninae<br />

Rhachisaurinae<br />

Grayiinae<br />

Ungaliophiinae<br />

Erycinae<br />

Phyllodactylidae<br />

Anguinae<br />

Helodermatidae<br />

Phrynosomatidae<br />

Sanziniinae<br />

Tropidophiidae<br />

Viperinae<br />

Cricosaurinae<br />

Shinisauridae<br />

Teiinae<br />

Diplodactylidae<br />

Cylindrophiidae<br />

Brookesiinae<br />

Lepidophyminae<br />

Enyaliinae<br />

Varanidae<br />

Bachiinae<br />

Aparallactinae<br />

Sphaerodactylidae<br />

Atractaspidinae<br />

Uropeltidae<br />

Leiocephalidae<br />

Iguanidae<br />

Homalopsidae<br />

Amphibolurinae<br />

Xenopeltidae<br />

Diploglossinae<br />

Calamariinae<br />

Xenosauridae<br />

Uromasticinae<br />

Agaminae<br />

Acrochordidae<br />

Pygopodidae<br />

Calabariidae<br />

Psammophiinae<br />

Carphodactylidae<br />

Cordylinae<br />

Gymnophthalminae<br />

Pseudoxenodontinae<br />

Bolyeriidae<br />

Dactyloidae<br />

Gerrhonotinae<br />

Eublepharidae<br />

Lamprophiinae<br />

Zonosaurinae<br />

83<br />

98<br />

100<br />

100<br />

98<br />

99<br />

100<br />

99<br />

100<br />

99<br />

83<br />

54<br />

98<br />

99<br />

84<br />

100<br />

68<br />

100<br />

100<br />

95<br />

100<br />

94<br />

63<br />

84<br />

71<br />

90<br />

100<br />

100<br />

100<br />

100<br />

100<br />

81<br />

100<br />

100<br />

100<br />

100<br />

87<br />

99<br />

69<br />

90<br />

100<br />

100<br />

88<br />

65<br />

97<br />

72<br />

89<br />

100<br />

90<br />

100<br />

100<br />

100<br />

100<br />

96<br />

100<br />

100<br />

96<br />

100<br />

94<br />

100<br />

95<br />

100<br />

97<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

58<br />

100<br />

77<br />

100<br />

74<br />

100<br />

95<br />

95<br />

100<br />

99<br />

95<br />

54<br />

100<br />

95<br />

96<br />

79<br />

95<br />

100<br />

99<br />

87<br />

100<br />

100<br />

100<br />

Squamata<br />

Cordylidae<br />

Figure 1


Figure 2<br />

<br />

<br />

<br />

&∃ &##%<br />

&∃ %&∃<br />

&∃##<br />

∗%# !∃∃!! ∃&∃<br />

&∃% ∃∃<br />

&∃ ∋&<br />

&∃∃#∃∃<br />

&∃∃∃<br />

∗&#&∃<br />

∗&#&∃!%&#&∃<br />

∗&#&∃ <br />

%&#&∃ #&%&∃<br />

%&#&∃∃# ∃&∃<br />

%&#&∃(∗#<br />

%&#&∃%<br />

<br />

%&#&∃∃(<br />

%&#&∃ #%+<br />

##∗ &%&∃<br />

#! %∗&∃∋∃<br />

<br />

∋ &∃∃!∗#&#&∃<br />

#( ∃&#&∃<br />

!#&#&∃(#<br />

<br />

!#&#&∃∃!#<br />

!#&#&∃∗<br />

<br />

!#&#&∃∃<br />

<br />

!#&#&∃∋∃<br />

!#&#&∃∃%%&∃<br />

<br />

<br />

!#&#&∃∋#%#∃<br />

!#&#&∃∋∃∃&∃<br />

!#&#&∃<br />

% #∀&%<br />

&∃%#∃<br />

<br />

∃<br />

<br />

#<br />

!)<br />

%%<br />

%<br />

<br />

#<br />

!#<br />

∃&%<br />

<br />

<br />

&%#<br />

<br />

#%<br />

#∃#<br />

#∗<br />

! !&∃%%&∃<br />

∃&#% ∃<br />

∃#<br />

% )#∃<br />

# #%∃<br />

∗ !&∃#!∃<br />

∗ !&∃! ! &∃<br />

!#∃&#%<br />

<br />

!#∃∃%# %<br />

!#∃&#%<br />

<br />

!#∃!#!&<br />

!#∃!∃& !&<br />

!#∃!%&#%<br />

!#∃!&<br />

!#∃&∃<br />

!#∃∃%<br />

!#∃#!∃<br />

∃& %%∗&∃#<br />

<br />

%∗&∃%#∗#∗&∃<br />

## #%<br />

# ! &∃∃<br />

# )!%%&∃<br />

# ∋∋∃<br />

# &∃∃<br />

<br />

# ∃&#∃<br />

# <br />

# % ∃(%<br />

# ∃∃<br />

<br />

∋∗!&<br />

∋∗∃&∋<br />

∋∗%<br />

<br />

<br />

%∗&∃&∃<br />

<br />

∋∗ #%<br />

∋∗ # ∃∃<br />

∋∗ %<br />

∋∗∗&#<br />

<br />

<br />

%∗&∃&#&%&∃<br />

## !&∃%&∃<br />

## !&∃∃#∃ #&<br />

# &<br />

&#∗%∗ ∃∃∗%#&∃<br />

&#∗%∗ ∃ %∃<br />

&#∗%∗ ∃∋#<br />

&#∗%∗ ∃# <br />

#%∗&∃ %&∃<br />

! %∗&∃&∋&<br />

( #%&%&∃<br />

<br />

( #%#∗∃ ∃#%&∃<br />

%∗ ∃!&∃<br />

# !&&∃%!∃<br />

!##&&%#<br />

!##&#&%&∃<br />

!##&& ∃&∃<br />

<br />

!##&#∗!% + &∃<br />

&&%&&#&#<br />

&%&∃&∃<br />

&%&∃#∗<br />

&%&∃∃<br />

&%&∃∃%%&∃<br />

&%&∃%&#&%&∃<br />

&%&∃&&∃<br />

<br />

&%&∃#&∃<br />

&%&∃! #&∃<br />

&## &∃%<br />

%# !&#&∃%&<br />

∃∃&&#<br />

∃ ∃&#<br />

∃# #<br />

∃!# &##%&%<br />

&# ∃<br />

&#%#∗ <br />

<br />

&# #<br />

&#∃%&<br />

&##∃<br />

&#! <br />

<br />

<br />

&## #%<br />

&#%<br />

%# !&#&∃<br />

<br />

%# !&#&∃%%&∃<br />

<br />

%# !&#&∃<br />

%# !&#&∃#<br />

%# !&#&∃∃∃∃<br />

<br />

%# !&#&∃∃%# !&#&∃<br />

<br />

%# !&#&∃#∃∗∃<br />

%# !&#&∃(% <br />

%# !&#&∃#∃<br />

%# !&#&∃(∃<br />

<br />

<br />

%# !&#&∃%#&∃<br />

%# !&#&∃∃!#&∃<br />

%# !&#&∃#<br />

∗ &# #%<br />

<br />

&∃&∗#<br />

&∃& &%%%&<br />

<br />

&∃&&<br />

&∃&<br />

<br />

<br />

&∃&∃%#<br />

&∃&&%&<br />

&∃&( ∗<br />

<br />

&∃&∃∀&## ∃&<br />

&∃&∃% %∗&<br />

! %∗&∃##∃∃<br />

! %∗&∃&#<br />

! %∗&∃∋%%%&∃<br />

! %∗&∃%∃∃%&∃<br />

<br />

! %∗&∃%&∃<br />

! %∗&∃! ∗ !%&∃<br />

! %∗&∃ #%&∃<br />

<br />

! %∗&∃ ∃!%&∃<br />

! %∗&∃!∃∃<br />

<br />

! %∗&∃%<br />

! %∗&∃∃∋<br />

! %∗&∃!&#<br />

! %∗&∃&


B<br />

Figure 3<br />

Sphaerodactylidae<br />

Eublepharidae<br />

79<br />

Aeluroscalabotes felinus<br />

100<br />

Coleonyx brevis<br />

Coleonyx variegatus<br />

100<br />

Coleonyx mitratus<br />

100<br />

Coleonyx elegans<br />

100 Eublepharis macularius<br />

100<br />

100<br />

Eublepharis turcmenicus<br />

Holodactylus africanus<br />

Hemitheconyx caudicinctus<br />

100<br />

100<br />

100<br />

Hemitheconyx taylori<br />

Goniurosaurus kuroiwae<br />

Goniurosaurus lichtenfelderi<br />

97<br />

100<br />

Goniurosaurus catbaensis<br />

96<br />

Goniurosaurus luii<br />

90 Goniurosaurus araneus<br />

Pristurus celerrimus<br />

100<br />

Pristurus insignis<br />

100<br />

Pristurus sokotranus<br />

Pristurus guichardi<br />

76<br />

92 Pristurus abdelkuri<br />

100<br />

Pristurus flavipunctatus<br />

Pristurus rupestris<br />

60<br />

100<br />

Pristurus minimus<br />

Pristurus carteri<br />

63 98<br />

85<br />

Pristurus crucifer<br />

Pristurus somalicus<br />

100 Quedenfeldtia trachyblepharus<br />

100<br />

Quedenfeldtia moerens<br />

100 Aristelliger lar<br />

Aristelliger praesignis<br />

91 Aristelliger georgeensis<br />

75<br />

Saurodactylus fasciatus<br />

100<br />

Euleptes europaea<br />

78<br />

Teratoscincus microlepis<br />

100<br />

Teratoscincus scincus<br />

97<br />

Teratoscincus przewalskii<br />

98 Teratoscincus roborowskii<br />

Saurodactylus mauritanicus<br />

Chatogekko amazonicus<br />

100<br />

Lepidoblepharis xanthostigma<br />

Lepidoblepharis festae<br />

99<br />

97<br />

Gonatodes eladioi<br />

83<br />

Gonatodes caudiscutatus<br />

89<br />

Gonatodes daudini<br />

100<br />

Gonatodes albogularis<br />

100<br />

96 Gonatodes petersi<br />

Gonatodes vittatus<br />

100<br />

98<br />

Gonatodes infernalis<br />

Gonatodes hasemani<br />

70<br />

Gonatodes annularis<br />

60<br />

Gonatodes superciliaris<br />

100 Gonatodes alexandermendesi<br />

60<br />

Gonatodes purpurogularis<br />

100<br />

Gonatodes taniae<br />

Gonatodes falconensis<br />

79<br />

95<br />

Gonatodes humeralis<br />

97<br />

100<br />

Gonatodes antillensis<br />

93<br />

Gonatodes concinnatus<br />

89<br />

Gonatodes seigliei<br />

100<br />

99<br />

Gonatodes ceciliae<br />

Gonatodes ocellatus<br />

Coleodactylus septentrionalis<br />

100<br />

Coleodactylus brachystoma<br />

99<br />

Coleodactylus meridionalis<br />

100<br />

Coleodactylus natalensis<br />

100<br />

Pseudogonatodes manessi<br />

96<br />

Pseudogonatodes lunulatus<br />

82<br />

Pseudogonatodes guianensis<br />

Sphaerodactylus fantasticus<br />

98<br />

Sphaerodactylus sputator<br />

87 Sphaerodactylus elegantulus<br />

87<br />

Sphaerodactylus sabanus<br />

81<br />

Sphaerodactylus parvus<br />

Sphaerodactylus microlepis<br />

Sphaerodactylus vincenti<br />

100 82<br />

100 Sphaerodactylus kirbyi<br />

100<br />

Sphaerodactylus schwartzi<br />

Sphaerodactylus ramsdeni<br />

84 84<br />

Sphaerodactylus cricoderus<br />

83<br />

Sphaerodactylus richardi<br />

Sphaerodactylus oliveri<br />

91<br />

100<br />

Sphaerodactylus molei<br />

84<br />

Sphaerodactylus glaucus<br />

Sphaerodactylus thompsoni<br />

69 81 Sphaerodactylus cinereus<br />

Sphaerodactylus torrei<br />

100<br />

Sphaerodactylus intermedius<br />

100 Sphaerodactylus nigropunctatus<br />

93<br />

Sphaerodactylus copei<br />

83<br />

Sphaerodactylus leucaster<br />

Sphaerodactylus elegans<br />

Sphaerodactylus shrevei<br />

85 99 Sphaerodactylus cryphius<br />

90<br />

Sphaerodactylus darlingtoni<br />

Sphaerodactylus notatus<br />

Sphaerodactylus altavelensis<br />

52<br />

Sphaerodactylus roosevelti<br />

85<br />

Sphaerodactylus argus<br />

93<br />

Sphaerodactylus macrolepis<br />

Sphaerodactylus armstrongi<br />

848366 Sphaerodactylus townsendi<br />

79 Sphaerodactylus goniorhynchus<br />

Sphaerodactylus semasiops<br />

Sphaerodactylus klauberi<br />

Phyllodactylidae<br />

94 Sphaerodactylus gaigeae<br />

Sphaerodactylus ocoae<br />

100<br />

99 Sphaerodactylus nicholsi<br />

Thecadactylus solimoensis<br />

Thecadactylus rapicauda<br />

98<br />

Haemodracon riebeckii<br />

Asaccus platyrhynchus<br />

65 100<br />

Ptyodactylus ragazzii<br />

Ptyodactylus oudrii<br />

100 Ptyodactylus hasselquistii<br />

Ptyodactylus guttatus<br />

Homonota gaudichaudii<br />

93<br />

100<br />

100<br />

85<br />

100<br />

92<br />

100<br />

92<br />

C<br />

73<br />

100<br />

100<br />

65<br />

90<br />

92<br />

100<br />

100<br />

99<br />

99<br />

67<br />

75<br />

96<br />

Phyllopezus periosus<br />

100<br />

100<br />

87<br />

97<br />

99<br />

100<br />

93<br />

76<br />

9162<br />

97<br />

Homonota fasciata<br />

Homonota underwoodi<br />

Homonota borellii<br />

Homonota darwinii<br />

Homonota andicola<br />

Phyllodactylus wirshingi<br />

Phyllodactylus reissii<br />

Phyllodactylus tuberculosus<br />

Phyllodactylus lanei<br />

Phyllodactylus bordai<br />

Phyllodactylus xanti<br />

Phyllodactylus unctus<br />

100 Phyllodactylus bugastrolepis<br />

Phyllodactylus nocticolus<br />

Phyllodactylus paucituberculatus<br />

Phyllodactylus delcampoi<br />

Phyllopezus pollicaris<br />

Phyllopezus lutzae<br />

Phyllopezus maranjonensis<br />

Tarentola americana<br />

Tarentola boehmei<br />

Tarentola deserti<br />

Tarentola mauritanica<br />

Tarentola angustimentalis<br />

Tarentola neglecta<br />

Tarentola mindiae<br />

Tarentola boettgeri<br />

100<br />

86<br />

100 99<br />

Tarentola ephippiata<br />

Tarentola annularis<br />

Tarentola gomerensis<br />

Tarentola delalandii<br />

Tarentola chazaliae<br />

Tarentola darwini<br />

73<br />

57<br />

Phyllodactylus duellmani<br />

Phyllodactylus davisi<br />

Phyllodactylus homolepidurus<br />

Tarentola rudis<br />

Tarentola caboverdiana<br />

Tarentola gigas


100<br />

C<br />

Figure 4<br />

(i)<br />

(ii)<br />

Gekkonidae<br />

(i)<br />

Perochirus ateles<br />

Urocotyledon inexpectata<br />

Ebenavia inunguis<br />

Paroedura masobe<br />

Paroedura gracilis<br />

Paroedura homalorhina<br />

Paroedura oviceps<br />

Paroedura karstophila<br />

Paroedura lohatsara<br />

Paroedura stumpffi<br />

Paroedura sanctijohannis<br />

Paroedura picta<br />

Paroedura androyensis<br />

Paroedura vazimba<br />

Paroedura tanjaka<br />

Paroedura bastardi<br />

Ailuronyx tachyscopaeus<br />

Ailuronyx seychellensis<br />

Ailuronyx trachygaster<br />

Calodactylodes illingworthorum<br />

Calodactylodes aureus<br />

Ptenopus carpi<br />

Narudasia festiva<br />

Cnemaspis uzungwae<br />

Cnemaspis dickersonae<br />

69<br />

Cnemaspis africana<br />

Uroplatus guentheri<br />

Uroplatus malahelo<br />

Uroplatus malama<br />

Uroplatus ebenaui<br />

Uroplatus phantasticus<br />

Uroplatus alluaudi<br />

Uroplatus pietschmanni<br />

Uroplatus lineatus<br />

Uroplatus sikorae<br />

Uroplatus henkeli<br />

Uroplatus giganteus<br />

Uroplatus fimbriatus<br />

Paragehyra gabriellae<br />

Christinus marmoratus<br />

Afrogecko swartbergensis<br />

Cryptactites peringueyi<br />

Matoatoa brevipes<br />

Afrogecko porphyreus<br />

Afroedura pondolia<br />

52<br />

Afroedura karroica<br />

Geckolepis typica<br />

Geckolepis maculata<br />

89<br />

Homopholis fasciata<br />

Homopholis walbergii<br />

Homopholis mulleri<br />

Blaesodactylus boivini<br />

Blaesodactylus antongilensis<br />

98<br />

Blaesodactylus sakalava<br />

Goggia lineata<br />

Rhoptropus afer<br />

Rhoptropus bradfieldi<br />

Rhoptropus boultoni<br />

99<br />

Rhoptropus biporosus<br />

Rhoptropus barnardi<br />

Elasmodactylus tetensis<br />

100<br />

Elasmodactylus tuberculosus<br />

Chondrodactylus angulifer<br />

Pachydactylus laevigatus<br />

96<br />

100<br />

Chondrodactylus turneri<br />

100 Chondrodactylus fitzsimonsi<br />

Chondrodactylus bibronii<br />

Pachydactylus robertsi<br />

100 93<br />

Colopus wahlbergii<br />

Colopus kochii<br />

98<br />

Pachydactylus haackei<br />

Pachydactylus kladaroderma<br />

89<br />

100<br />

Pachydactylus namaquensis<br />

68<br />

Pachydactylus scutatus<br />

74 100 Pachydactylus parascutatus<br />

Pachydactylus reconditus<br />

70<br />

95 Pachydactylus gaiasensis<br />

90<br />

Pachydactylus oreophilus<br />

100 91<br />

Pachydactylus bicolor<br />

Pachydactylus caraculicus<br />

63 Pachydactylus sansteynae<br />

86<br />

Pachydactylus scherzi<br />

96 Pachydactylus punctatus<br />

85 100<br />

Pachydactylus rugosus<br />

99 Pachydactylus formosus<br />

95<br />

Pachydactylus barnardi<br />

84<br />

Pachydactylus labialis<br />

Pachydactylus geitje<br />

52 Pachydactylus maculatus<br />

93<br />

Pachydactylus oculatus<br />

Pachydactylus purcelli<br />

61 100<br />

Pachydactylus waterbergensis<br />

97<br />

Pachydactylus tsodiloensis<br />

Pachydactylus fasciatus<br />

98 Pachydactylus carinatus<br />

85<br />

Pachydactylus griffini<br />

68 Pachydactylus serval<br />

74<br />

Pachydactylus weberi<br />

Pachydactylus monicae<br />

69<br />

Pachydactylus mclachlani<br />

Pachydactylus mariquensis<br />

99<br />

Pachydactylus austeni<br />

Pachydactylus rangei<br />

100<br />

Pachydactylus vanzyli<br />

Pachydactylus montanus<br />

Pachydactylus tigrinus<br />

100<br />

Pachydactylus oshaughnessyi<br />

72<br />

Pachydactylus capensis<br />

100<br />

Pachydactylus vansoni<br />

100 Pachydactylus affinis<br />

Cnemaspis podihuna<br />

Cnemaspis kandiana<br />

100 99 Cnemaspis tropidogaster<br />

Rhoptropella ocellata<br />

Lygodactylus expectatus<br />

Lygodactylus rarus<br />

Lygodactylus madagascariensis<br />

71<br />

98<br />

Lygodactylus miops<br />

92 Lygodactylus guibei<br />

Lygodactylus tolampyae<br />

100 Lygodactylus heterurus<br />

100 100<br />

Lygodactylus verticillatus<br />

81<br />

Lygodactylus blancae<br />

90<br />

91<br />

Lygodactylus arnoulti<br />

85 Lygodactylus pauliani<br />

Lygodactylus gravis<br />

81<br />

99<br />

Lygodactylus montanus<br />

82<br />

Lygodactylus tuberosus<br />

73<br />

Lygodactylus mirabilis<br />

98<br />

Lygodactylus pictus<br />

Lygodactylus lawrencei<br />

Lygodactylus stevensoni<br />

68 89<br />

93 Lygodactylus capensis<br />

84<br />

Lygodactylus bradfieldi<br />

Lygodactylus klugei<br />

Lygodactylus conraui<br />

100<br />

97 Lygodactylus thomensis<br />

78<br />

Lygodactylus angularis<br />

67<br />

Lygodactylus gutturalis<br />

Lygodactylus chobiensis<br />

94<br />

Lygodactylus williamsi<br />

94 Lygodactylus picturatus<br />

68 100 Lygodactylus luteopicturatus<br />

97 Lygodactylus kimhowelli<br />

93 Lygodactylus keniensis<br />

92<br />

Phelsuma vanheygeni<br />

100<br />

Phelsuma astriata<br />

100 Phelsuma sundbergi<br />

Phelsuma guttata<br />

Phelsuma madagascariensis<br />

100 Phelsuma abbotti<br />

10087 Phelsuma parkeri<br />

Phelsuma seippi<br />

Phelsuma barbouri<br />

100<br />

96<br />

100 Phelsuma pronki<br />

Phelsuma breviceps<br />

85<br />

Phelsuma mutabilis<br />

92<br />

Phelsuma andamanense<br />

82<br />

Phelsuma standingi<br />

Phelsuma edwardnewtoni<br />

94 Phelsuma gigas<br />

99 99<br />

Phelsuma guentheri<br />

95<br />

100<br />

100<br />

55 100<br />

100<br />

100<br />

86<br />

Lepidodactylus novaeguineae<br />

Pseudogekko smaragdinus<br />

100 100<br />

Pseudogekko compressicorpus<br />

93<br />

Lepidodactylus orientalis<br />

83<br />

100 Luperosaurus macgregori<br />

100<br />

Luperosaurus cumingii<br />

98<br />

99<br />

79<br />

Luperosaurus joloensis<br />

73<br />

100<br />

Lepidodactylus lugubris<br />

91<br />

100<br />

Lepidodactylus moestus<br />

100 100<br />

100 Gekko smithii<br />

85<br />

Gekko gecko<br />

99<br />

100<br />

Gekko chinensis<br />

100<br />

Gekko japonicus<br />

92<br />

Gekko hokouensis<br />

99<br />

100 95<br />

61<br />

Gekko auriverrucosus<br />

98 100<br />

54<br />

Gekko swinhonis<br />

Gekko athymus<br />

100 Gekko monarchus<br />

100<br />

100<br />

Gekko mindorensis<br />

98<br />

100<br />

99<br />

Gekko romblon<br />

Gekko crombota<br />

80<br />

(ii) 65<br />

100 Gekko porosus<br />

89<br />

Ptychozoon rhacophorus<br />

53<br />

100<br />

Ptychozoon kuhli<br />

64<br />

87<br />

95<br />

Ptychozoon lionotum<br />

92<br />

Luperosaurus iskandari<br />

100<br />

97<br />

Gekko vittatus<br />

100<br />

94<br />

Gekko petricolus<br />

Gekko badenii<br />

85 100<br />

96<br />

Gekko grossmanni<br />

50 100<br />

Dixonius melanostictus<br />

100 Dixonius vietnamensis<br />

100<br />

100<br />

100 Dixonius siamensis<br />

77 100<br />

100 Heteronotia planiceps<br />

100<br />

100<br />

Heteronotia binoei<br />

100<br />

Heteronotia spelea<br />

56<br />

Nactus acutus<br />

97<br />

Nactus eboracensis<br />

100<br />

Nactus vankampeni<br />

100<br />

100<br />

83 100 Nactus galgajuga<br />

52<br />

Nactus cheverti<br />

100<br />

98 100 Nactus multicarinatus<br />

Nactus pelagicus<br />

79<br />

Hemiphyllodactylus typus<br />

100<br />

99<br />

100<br />

Hemiphyllodactylus yunnanensis<br />

93<br />

100<br />

85<br />

Hemiphyllodactylus aurantiacus<br />

100 Gehyra fehlmanni<br />

100<br />

Gehyra mutilata<br />

100<br />

99<br />

97<br />

Gehyra lacerata<br />

100<br />

Gehyra brevipalmata<br />

100 Gehyra baliola<br />

100<br />

Gehyra barea<br />

99<br />

84<br />

59 Gehyra marginata<br />

100<br />

91<br />

Gehyra oceanica<br />

98<br />

98<br />

96<br />

Gehyra membranacruralis<br />

86<br />

100 Gehyra dubia<br />

Gehyra catenata<br />

100<br />

Gehyra pamela<br />

100<br />

55<br />

Gehyra borroloola<br />

97 Gehyra robusta<br />

70 Gehyra koira<br />

100 Gehyra occidentalis<br />

Gehyra australis<br />

Gehyra xenopus<br />

Gehyra nana<br />

98<br />

Gehyra purpurascens<br />

98 100 Gehyra variegata<br />

Gehyra punctata<br />

Gehyra pilbara<br />

98<br />

Gehyra montium<br />

92 Gehyra minuta<br />

Alsophylax pipiens<br />

Tropiocolotes helenae<br />

65 100<br />

Cnemaspis limi<br />

Cnemaspis kendallii<br />

100<br />

Mediodactylus spinicaudum<br />

98<br />

Mediodactylus russowii<br />

Pseudoceramodactylus khobarensis<br />

Tropiocolotes tripolitanus<br />

96<br />

Stenodactylus arabicus<br />

92<br />

Stenodactylus petrii<br />

100<br />

Stenodactylus leptocosymbotus<br />

96<br />

100 Stenodactylus doriae<br />

Stenodactylus yemenensis<br />

100<br />

85<br />

Stenodactylus sthenodactylus<br />

Mediodactylus kotschyi<br />

Mediodactylus sagittiferum<br />

99<br />

69<br />

Mediodactylus heterocercum<br />

99 Mediodactylus heteropholis<br />

75<br />

100<br />

Bunopus tuberculatus<br />

Crossobamon orientalis<br />

86<br />

Bunopus crassicauda<br />

95<br />

Agamura persica<br />

Cyrtopodion sistanensis<br />

99<br />

Cyrtopodion scabrum<br />

Cyrtopodion longipes<br />

79 100 Cyrtopodion caspium<br />

Cyrtopodion agamuroides<br />

99 Cyrtopodion gastrophole<br />

Cyrtodactylus oldhami<br />

100 87<br />

Cyrtodactylus ayeyarwadyensis<br />

100<br />

Cyrtodactylus angularis<br />

Cyrtodactylus jarujini<br />

Cyrtodactylus triedrus<br />

88<br />

Cyrtodactylus marmoratus<br />

92<br />

99<br />

Cyrtodactylus irregularis<br />

100<br />

Cyrtodactylus consobrinus<br />

52<br />

Cyrtodactylus annulatus<br />

Cyrtodactylus philippinicus<br />

92<br />

97<br />

98 Cyrtodactylus agusanensis<br />

Cyrtodactylus intermedius<br />

Cyrtodactylus pulchellus<br />

79<br />

Cyrtodactylus sermowaiensis<br />

94<br />

Cyrtodactylus loriae<br />

77<br />

Cyrtodactylus novaeguineae<br />

96 Cyrtodactylus tuberculatus<br />

98<br />

97<br />

Cyrtodactylus klugei<br />

Cyrtodactylus robustus<br />

98 Cyrtodactylus tripartitus<br />

98 Cyrtodactylus epiroticus<br />

99 Cyrtodactylus louisiadensis<br />

100<br />

Hemidactylus bowringii<br />

100<br />

Hemidactylus garnotii<br />

Hemidactylus karenorum<br />

Hemidactylus platyurus<br />

Hemidactylus fasciatus<br />

100<br />

Hemidactylus aaronbaueri<br />

81 93<br />

Hemidactylus giganteus<br />

Hemidactylus depressus<br />

Hemidactylus triedrus<br />

89<br />

Hemidactylus prashadi<br />

100<br />

8876<br />

93<br />

Hemidactylus maculatus<br />

100<br />

Hemidactylus leschenaultii<br />

Hemidactylus flaviviridis<br />

Hemidactylus frenatus<br />

Hemidactylus brookii<br />

100<br />

Hemidactylus sataraensis<br />

100<br />

Hemidactylus imbricatus<br />

99 Hemidactylus albofasciatus<br />

56<br />

Hemidactylus reticulatus<br />

97<br />

Hemidactylus gracilis<br />

Hemidactylus angulatus<br />

100 Hemidactylus haitianus<br />

57<br />

Hemidactylus mabouia<br />

100 Hemidactylus mercatorius<br />

Hemidactylus longicephalus<br />

100<br />

Hemidactylus platycephalus<br />

97 Hemidactylus greeffii<br />

100<br />

Hemidactylus brasilianus<br />

96<br />

Hemidactylus bouvieri<br />

99<br />

95<br />

Hemidactylus palaichthus<br />

97<br />

Hemidactylus agrius<br />

96<br />

Hemidactylus modestus<br />

98<br />

Hemidactylus citernii<br />

Hemidactylus foudaii<br />

98<br />

97<br />

91<br />

91<br />

82<br />

96<br />

66<br />

99<br />

97<br />

Hemidactylus pumilio<br />

Hemidactylus dracaenacolus<br />

100 Hemidactylus granti<br />

Hemidactylus persicus<br />

Hemidactylus yerburii<br />

Hemidactylus robustus<br />

Hemidactylus turcicus<br />

Hemidactylus lemurinus<br />

Hemidactylus mindiae<br />

Hemidactylus macropholis<br />

Hemidactylus oxyrhinus<br />

Hemidactylus forbesii<br />

98 Hemidactylus homoeolepis<br />

100<br />

98<br />

94<br />

95<br />

99<br />

95<br />

99 96<br />

87<br />

99<br />

1005794<br />

Phelsuma borbonica<br />

Phelsuma cepediana<br />

Phelsuma guimbeaui<br />

Phelsuma ornata<br />

Phelsuma inexpectata<br />

Phelsuma nigristriata<br />

Phelsuma modesta<br />

Phelsuma dubia<br />

Phelsuma ravenala<br />

Phelsuma flavigularis<br />

Phelsuma hielscheri<br />

Phelsuma berghofi<br />

Phelsuma malamakibo<br />

Phelsuma serraticauda<br />

Phelsuma laticauda<br />

Phelsuma robertmertensi<br />

Phelsuma klemmeri<br />

Phelsuma antanosy<br />

Phelsuma quadriocellata<br />

Phelsuma pusilla<br />

Phelsuma comorensis<br />

Phelsuma lineata<br />

Phelsuma kely


D<br />

Figure 5<br />

99<br />

Xantusiidae<br />

Cricosaurinae 100<br />

Cricosaura typica<br />

Xantusia gracilis<br />

100<br />

Xantusiinae 100<br />

100<br />

84 97<br />

92<br />

Xantusia henshawi<br />

Xantusia bolsonae<br />

Xantusia sanchezi<br />

Xantusia riversiana<br />

Xantusia arizonae<br />

Xantusia vigilis<br />

100<br />

100<br />

66<br />

Xantusia bezyi<br />

Xantusia wigginsi<br />

Lepidophyma mayae<br />

100<br />

Lepidophyminae<br />

100<br />

100<br />

100<br />

Lepidophyma tuxtlae<br />

Lepidophyma lipetzi<br />

Lepidophyma flavimaculatum<br />

Lepidophyma reticulatum<br />

Lepidophyma pajapanensis<br />

94<br />

87<br />

95<br />

100<br />

Lepidophyma occulor<br />

Lepidophyma micropholis<br />

Lepidophyma sylvaticum<br />

Lepidophyma gaigeae<br />

Lepidophyma lineri<br />

Lepidophyma smithii<br />

Gerrhosaurinae 100<br />

95<br />

95 Lepidophyma cuicateca<br />

94 Lepidophyma lowei<br />

100100 Lepidophyma radula<br />

Lepidophyma dontomasi<br />

Gerrhosaurus major<br />

Cordylosaurus subtessellatus<br />

Tetradactylus seps<br />

98<br />

69<br />

Tetradactylus africanus<br />

Tetradactylus tetradactylus<br />

Gerrhosaurus validus<br />

79<br />

Gerrhosaurus skoogi<br />

Gerrhosaurus typicus<br />

100 91<br />

100<br />

Gerrhosaurus nigrolineatus<br />

100 Gerrhosaurus multilineatus<br />

76 Gerrhosaurus flavigularis<br />

Tracheloptychus madagascariensis<br />

100<br />

Zonosaurinae<br />

Tracheloptychus petersi<br />

100 Zonosaurus haraldmeieri<br />

Zonosaurus madagascariensis<br />

Zonosaurus ornatus<br />

100 Zonosaurus trilineatus<br />

100<br />

91<br />

96<br />

Zonosaurus quadrilineatus<br />

Zonosaurus karsteni<br />

100 Zonosaurus anelanelany<br />

100 Zonosaurus laticaudatus<br />

Zonosaurus boettgeri<br />

Gerrhosauridae<br />

Platysaurinae<br />

92<br />

100<br />

Cordylidae<br />

100<br />

Cordylinae<br />

55<br />

95<br />

91<br />

96<br />

94<br />

99<br />

100<br />

99<br />

66 73<br />

82<br />

89<br />

87<br />

100<br />

93<br />

100<br />

100<br />

99<br />

86<br />

100<br />

95<br />

99<br />

81 88<br />

82<br />

83<br />

92<br />

100<br />

100<br />

85<br />

86 100<br />

Zonosaurus tsingy<br />

Zonosaurus brygooi<br />

Zonosaurus subunicolor<br />

Zonosaurus bemaraha<br />

Zonosaurus aeneus<br />

Zonosaurus rufipes<br />

Platysaurus pungweensis<br />

100<br />

Platysaurus mitchelli<br />

Platysaurus broadleyi<br />

Platysaurus capensis<br />

Platysaurus intermedius<br />

Platysaurus minor<br />

Platysaurus monotropis<br />

Ouroborus cataphractus<br />

Karusasaurus jordani<br />

Karusasaurus polyzonus<br />

Namazonurus campbelli<br />

Namazonurus pustulatus<br />

Namazonurus namaquensis<br />

Namazonurus lawrenci<br />

Namazonurus peersi<br />

Smaug warreni<br />

Smaug giganteus<br />

Chamaesaura aenea<br />

Chamaesaura anguina<br />

Pseudocordylus langi<br />

Pseudocordylus microlepidotus<br />

83<br />

100<br />

84<br />

Pseudocordylus spinosus<br />

Pseudocordylus melanotus<br />

Ninurta coeruleopunctatus<br />

Hemicordylus nebulosus<br />

Hemicordylus capensis<br />

Cordylus tropidosternum<br />

Cordylus meculae<br />

Cordylus vittifer<br />

Cordylus ukingensis<br />

Cordylus beraduccii<br />

Cordylus jonesii<br />

Cordylus rhodesianus<br />

Cordylus macropholis<br />

Cordylus imkeae<br />

Cordylus aridus<br />

Cordylus minor<br />

Cordylus niger<br />

Cordylus mclachlani<br />

Cordylus oelofseni<br />

Cordylus tasmani<br />

Cordylus cordylus


E<br />

Figure 6<br />

Scincidae<br />

100<br />

Typhlosaurus braini<br />

Typhlosaurus meyeri<br />

Typhlosaurus caecus<br />

Typhlosaurus vermis<br />

Typhlosaurus lomiae<br />

Acontias gariepensis<br />

Acontias lineatus<br />

Acontias litoralis<br />

Acontias kgalagadi<br />

Acontias meleagris<br />

Acontias percivali<br />

Acontias rieppeli<br />

Acontias breviceps<br />

Acontias gracilicauda<br />

Acontias plumbeus<br />

Acontias poecilus<br />

Mesoscincus schwartzei<br />

Mesoscincus managuae<br />

Ophiomorus punctatissimus<br />

Ophiomorus latastii<br />

Brachymeles apus<br />

Brachymeles miriamae<br />

Brachymeles tridactylus<br />

Brachymeles bonitae<br />

Brachymeles minimus<br />

Brachymeles cebuensis<br />

Brachymeles samarensis<br />

Brachymeles talinis<br />

Brachymeles elerae<br />

Brachymeles schadenbergi<br />

Brachymeles boulengeri<br />

Brachymeles bicolor<br />

Brachymeles gracilis<br />

Brachymeles pathfinderi<br />

Plestiodon tamdaoensis<br />

Plestiodon kishinouyei<br />

Plestiodon chinensis<br />

Plestiodon quadrilineatus<br />

Plestiodon tunganus<br />

Plestiodon capito<br />

Plestiodon barbouri<br />

Plestiodon japonicus<br />

Plestiodon latiscutatus<br />

Plestiodon elegans<br />

Plestiodon marginatus<br />

Plestiodon stimpsonii<br />

Plestiodon reynoldsi<br />

Plestiodon egregius<br />

Plestiodon anthracinus<br />

Plestiodon inexpectatus<br />

97<br />

Plestiodon laticeps<br />

Plestiodon tetragrammus<br />

Plestiodon callicephalus<br />

Plestiodon obsoletus<br />

Plestiodon fasciatus<br />

Plestiodon multivirgatus<br />

Plestiodon septentrionalis<br />

Plestiodon longirostris<br />

Plestiodon gilberti<br />

Plestiodon lagunensis<br />

Plestiodon skiltonianus<br />

Plestiodon parviauriculatus<br />

Plestiodon sumichrasti<br />

Plestiodon lynxe<br />

Plestiodon ochoterenae<br />

Plestiodon parvulus<br />

Plestiodon copei<br />

Plestiodon brevirostris<br />

Plestiodon dugesii<br />

Eurylepis taeniolatus<br />

Eumeces schneideri<br />

Scincopus fasciatus<br />

Eumeces algeriensis<br />

Scincus scincus<br />

Scincus mitranus<br />

Pamelaescincus gardineri<br />

Janetaescincus veseyfitzgeraldi<br />

Janetaescincus braueri<br />

Gongylomorphus bojerii<br />

81<br />

Chalcides mauritanicus<br />

Chalcides minutus<br />

Chalcides guentheri<br />

Chalcides chalcides<br />

Chalcides pseudostriatus<br />

Chalcides striatus<br />

Chalcides ocellatus<br />

Chalcides sepsoides<br />

Chalcides colosii<br />

100<br />

Chalcides bedriagai<br />

Chalcides boulengeri<br />

Chalcides parallelus<br />

Chalcides lanzai<br />

Chalcides sexlineatus<br />

Chalcides coeruleopunctatus<br />

Chalcides viridanus<br />

Chalcides sphenopsiformis<br />

Chalcides mionecton<br />

Chalcides manueli<br />

Chalcides polylepis<br />

Chalcides montanus<br />

Sepsina angolensis<br />

97<br />

Typhlacontias brevipes<br />

Typhlacontias punctatissimus<br />

Feylinia grandisquamis<br />

Feylinia polylepis<br />

93<br />

Feylinia currori<br />

Melanoseps occidentalis<br />

Melanoseps ater<br />

Melanoseps loveridgei<br />

Hakaria simonyi<br />

Proscelotes eggeli<br />

Scelotes caffer<br />

100<br />

Scelotes anguineus<br />

Scelotes mirus<br />

99<br />

Scelotes arenicolus<br />

Scelotes bipes<br />

100 Scelotes sexlineatus<br />

Scelotes gronovii<br />

Scelotes montispectus<br />

92<br />

Scelotes kasneri<br />

100<br />

Paracontias holomelas<br />

Paracontias brocchii<br />

Paracontias manify<br />

100 60<br />

69<br />

Paracontias hildebrandti<br />

Paracontias rothschildi<br />

Madascincus melanopleura<br />

89<br />

Pseudoacontias menamainty<br />

52<br />

Madascincus igneocaudatus<br />

97 Madascincus mouroundavae<br />

64 Madascincus nanus<br />

100 Madascincus stumpffi<br />

100<br />

Madascincus polleni<br />

87 Madascincus intermedius<br />

100 Amphiglossus melanurus<br />

90<br />

Amphiglossus ornaticeps<br />

100 Amphiglossus mandokava<br />

Amphiglossus tanysoma<br />

100<br />

Pygomeles braconnieri<br />

100<br />

Androngo trivittatus<br />

93<br />

Amphiglossus tsaratananensis<br />

85<br />

Amphiglossus reticulatus<br />

86 Amphiglossus astrolabi<br />

93<br />

Voeltzkowia fierinensis<br />

100<br />

Voeltzkowia lineata<br />

95 Voeltzkowia rubrocaudata<br />

24<br />

Amphiglossus splendidus<br />

80<br />

Amphiglossus anosyensis<br />

7090<br />

Amphiglossus macrocercus<br />

Amphiglossus punctatus<br />

96 Amphiglossus frontoparietalis<br />

97<br />

89<br />

95<br />

Acontiinae 99<br />

100 100<br />

100<br />

96<br />

94<br />

98<br />

98<br />

92<br />

100<br />

98<br />

91<br />

99<br />

100<br />

99<br />

94 94<br />

95<br />

83<br />

88<br />

85<br />

85<br />

73<br />

85<br />

100<br />

100<br />

98<br />

100<br />

100 86<br />

70<br />

97<br />

93<br />

100<br />

97 100<br />

88<br />

74<br />

56<br />

Scincinae<br />

100<br />

74<br />

7671<br />

100<br />

98 86<br />

92<br />

100<br />

100 91<br />

73 73<br />

76<br />

98<br />

77<br />

100<br />

100 100<br />

99<br />

100<br />

55 92<br />

57<br />

100<br />

8675<br />

94<br />

74<br />

100<br />

91<br />

74<br />

88<br />

87<br />

99<br />

98<br />

99<br />

100<br />

94<br />

95<br />

96<br />

97<br />

100<br />

100<br />

100<br />

96<br />

98<br />

96<br />

100<br />

80<br />

89<br />

87<br />

75<br />

94<br />

F-I


F<br />

Figure 7<br />

Lygosominae<br />

Lygosominae<br />

cont.<br />

H-I G<br />

100<br />

Ateuchosaurus pellopleurus<br />

Asymblepharus alaicus<br />

Ablepharus pannonicus<br />

81<br />

Sphenomorphus praesignis<br />

Sphenomorphus simus<br />

98 60<br />

100<br />

Tropidophorus berdmorei<br />

Tropidophorus matsuii<br />

Tropidophorus latiscutatus<br />

99<br />

90 Tropidophorus noggei<br />

Tropidophorus murphyi<br />

89 100<br />

98<br />

Tropidophorus hainanus<br />

Tropidophorus baviensis<br />

Tropidophorus sinicus<br />

98<br />

Tropidophorus robinsoni<br />

Tropidophorus thai<br />

89<br />

83<br />

Tropidophorus cocincinensis<br />

Tropidophorus microlepis<br />

97<br />

100<br />

95<br />

94<br />

Tropidophorus grayi<br />

Tropidophorus baconi<br />

Tropidophorus beccarii<br />

Tropidophorus brookei<br />

100 Tropidophorus partelloi<br />

95 Tropidophorus misaminius<br />

86<br />

Lipinia vittigera<br />

Isopachys anguinoides<br />

77<br />

98<br />

Sphenomorphus melanopogon<br />

Sphenomorphus jobiensis<br />

Sphenomorphus muelleri<br />

Tytthoscincus aesculeticola<br />

100<br />

Tytthoscincus parvus<br />

94<br />

99<br />

95<br />

100 Tytthoscincus hallieri<br />

92 Tytthoscincus atrigularis<br />

Sphenomorphus concinnatus<br />

100 Sphenomorphus scutatus<br />

Sphenomorphus solomonis<br />

100 Sphenomorphus fasciatus<br />

90<br />

100<br />

87<br />

76<br />

Sphenomorphus leptofasciatus<br />

Sphenomorphus cranei<br />

Sphenomorphus maindroni<br />

93<br />

Otosaurus cumingi<br />

100<br />

Pinoyscincus mindanensis<br />

96<br />

100<br />

80<br />

76<br />

99<br />

91<br />

100<br />

99<br />

89<br />

65<br />

98<br />

100<br />

100<br />

100<br />

99<br />

97<br />

99<br />

68<br />

83<br />

96<br />

93<br />

54<br />

100<br />

94 100<br />

100<br />

100<br />

80<br />

Pinoyscincus jagori<br />

Pinoyscincus coxi<br />

Pinoyscincus abdictus<br />

Pinoyscincus llanosi<br />

Sphenomorphus diwata<br />

Sphenomorphus acutus<br />

Parvoscincus steerei<br />

Parvoscincus decipiens<br />

Parvoscincus leucospilos<br />

Parvoscincus tagapayo<br />

100<br />

Parvoscincus sisoni<br />

Parvoscincus beyeri<br />

100<br />

Parvoscincus laterimaculatus<br />

Parvoscincus luzonense<br />

Parvoscincus kitangladensis<br />

Parvoscincus lawtoni<br />

Larutia seribuatensis<br />

Sphenomorphus maculatus<br />

Sphenomorphus indicus<br />

Sphenomorphus multisquamatus<br />

Sphenomorphus variegatus<br />

Sphenomorphus cyanolaemus<br />

100 Sphenomorphus sabanus<br />

Scincella reevesii<br />

Asymblepharus sikimmensis<br />

Scincella lateralis<br />

Scincella gemmingeri<br />

Scincella cherriei<br />

99<br />

Scincella assatus<br />

Sphenomorphus buenloicus<br />

Prasinohaema virens<br />

Insulasaurus arborens<br />

Insulasaurus wrighti<br />

Insulasaurus victoria<br />

Lipinia pulchella<br />

Lipinia noctua<br />

Papuascincus stanleyanus


G<br />

Figure 8<br />

Lygosominae<br />

cont. 100<br />

97<br />

95<br />

80<br />

70<br />

55<br />

Eulamprus frerei<br />

Nangura spinosa<br />

Calyptotis lepidorostrum<br />

Calyptotis scutirostrum<br />

100<br />

77<br />

Calyptotis ruficauda<br />

98<br />

Gnypetoscincus queenslandiae<br />

Eulamprus amplus<br />

Eulamprus tenuis<br />

78<br />

Eulamprus tigrinus<br />

96<br />

Eulamprus martini<br />

88<br />

100 Eulamprus sokosoma<br />

Eulamprus brachyosoma<br />

Eulamprus luteilateralis<br />

85<br />

Eulamprus tryoni<br />

83<br />

Eulamprus murrayi<br />

77<br />

Coggeria naufragus<br />

91<br />

Coeranoscincus frontalis<br />

Ophioscincus ophioscincus<br />

95<br />

Saiphos equalis<br />

95<br />

Coeranoscincus reticulatus<br />

Ophioscincus truncatus<br />

Anomalopus swansoni<br />

Anomalopus mackayi<br />

100<br />

Anomalopus verreauxi<br />

100<br />

Anomalopus leuckartii<br />

Eremiascincus fasciolatus<br />

Eremiascincus pardalis<br />

100<br />

Eremiascincus richardsonii<br />

97<br />

91<br />

Eremiascincus douglasi<br />

62<br />

88<br />

Eremiascincus isolepis<br />

100<br />

Hemiergis initialis<br />

100 Hemiergis peronii<br />

100<br />

Hemiergis quadrilineatum<br />

Hemiergis gracilipes<br />

82<br />

Hemiergis millewae<br />

60<br />

Hemiergis decresiensis<br />

Glaphyromorphus punctulatus<br />

Glaphyromorphus mjobergi<br />

95<br />

Glaphyromorphus fuscicaudis<br />

93<br />

Glaphyromorphus pumilus<br />

99<br />

Glaphyromorphus cracens<br />

78<br />

Glaphyromorphus darwiniensis<br />

Eulamprus quoyii<br />

93<br />

100<br />

Eulamprus leuraensis<br />

Eulamprus kosciuskoi<br />

82<br />

Eulamprus heatwolei<br />

87<br />

Eulamprus tympanum<br />

Notoscincus ornatus<br />

Ctenotus labillardieri<br />

76<br />

99<br />

Ctenotus brooksi<br />

Ctenotus rubicundus<br />

Ctenotus nasutus<br />

100 Ctenotus pantherinus<br />

95<br />

Ctenotus strauchii<br />

Ctenotus youngsoni<br />

81<br />

Ctenotus schomburgkii<br />

85<br />

Ctenotus calurus<br />

84<br />

Ctenotus rawlinsoni<br />

Ctenotus fallens<br />

Ctenotus saxatilis<br />

67<br />

85<br />

Ctenotus inornatus<br />

Ctenotus spaldingi<br />

99 Ctenotus robustus<br />

76<br />

Ctenotus taeniolatus<br />

89<br />

Ctenotus rutilans<br />

Ctenotus uber<br />

Ctenotus australis<br />

95 88<br />

Ctenotus leae<br />

Ctenotus leonhardii<br />

100 Ctenotus quattuordecimlineatus<br />

Ctenotus serventyi<br />

100 Ctenotus greeri<br />

83<br />

Ctenotus tanamiensis<br />

86<br />

Ctenotus mimetes<br />

88<br />

Ctenotus astarte<br />

7363<br />

Ctenotus septenarius<br />

Ctenotus regius<br />

Ctenotus olympicus<br />

97<br />

Ctenotus maryani<br />

66<br />

Ctenotus atlas<br />

90<br />

Ctenotus grandis<br />

51<br />

Ctenotus angusticeps<br />

79<br />

Ctenotus hanloni<br />

Ctenotus piankai<br />

85<br />

92<br />

Ctenotus essingtonii<br />

78<br />

Ctenotus hebetior<br />

Ctenotus hilli<br />

91 Ctenotus gagudju<br />

65<br />

Ctenotus pulchellus<br />

95<br />

Lerista stylis<br />

Lerista karlschmidti<br />

81<br />

Lerista carpentariae<br />

100<br />

Lerista ameles<br />

99<br />

Lerista cinerea<br />

98<br />

97<br />

Lerista wilkinsi<br />

Lerista kalumburu<br />

91<br />

Lerista apoda<br />

100<br />

Lerista griffini<br />

Lerista ips<br />

88<br />

Lerista bipes<br />

99<br />

Lerista labialis<br />

93<br />

Lerista greeri<br />

98<br />

Lerista robusta<br />

90<br />

100 Lerista vermicularis<br />

Lerista simillima<br />

99<br />

Lerista walkeri<br />

96<br />

Lerista borealis<br />

Lerista frosti<br />

97<br />

89<br />

Lerista fragilis<br />

Lerista chordae<br />

Lerista xanthura<br />

99<br />

90<br />

100<br />

Lerista aericeps<br />

Lerista taeniata<br />

100<br />

100<br />

Lerista orientalis<br />

100<br />

Lerista ingrami<br />

Lerista zonulata<br />

100 87<br />

Lerista neander<br />

Lerista puncticauda<br />

100 Lerista desertorum<br />

99<br />

79 Lerista eupoda<br />

Lerista gerrardii<br />

100 Lerista axillaris<br />

93 Lerista macropisthopus<br />

Lerista microtis<br />

100<br />

Lerista arenicola<br />

Lerista edwardsae<br />

Lerista baynesi<br />

100<br />

Lerista picturata<br />

Lerista flammicauda<br />

85<br />

100<br />

Lerista zietzi<br />

61<br />

Lerista speciosa<br />

100<br />

Lerista elongata<br />

100 Lerista tridactyla<br />

Lerista terdigitata<br />

82<br />

99<br />

90<br />

Lerista dorsalis<br />

Lerista punctatovittata<br />

Lerista emmotti<br />

100<br />

100<br />

Lerista elegans<br />

90<br />

Lerista distinguenda<br />

87<br />

Lerista christinae<br />

Lerista lineata<br />

92<br />

Lerista planiventralis<br />

93<br />

Lerista stictopleura<br />

90<br />

Lerista allochira<br />

89<br />

Lerista haroldi<br />

96<br />

Lerista muelleri<br />

Lerista viduata<br />

93 100<br />

93<br />

89<br />

98<br />

100<br />

84<br />

100<br />

100<br />

56<br />

81 77<br />

100<br />

96<br />

Lerista bougainvillii<br />

Lerista praepedita<br />

Lerista humphriesi<br />

Lerista petersoni<br />

Lerista gascoynensis<br />

Lerista nichollsi<br />

Lerista kendricki<br />

Lerista yuna<br />

100<br />

Lerista lineopunctulata<br />

Lerista varia<br />

Lerista connivens<br />

Lerista uniduo<br />

Lerista onsloviana<br />

Lerista kennedyensis


H<br />

Figure 9<br />

Lygosominae<br />

cont.<br />

100 Tribolonotus novaeguineae<br />

100<br />

Tribolonotus gracilis<br />

Tribolonotus blanchardi<br />

Tribolonotus schmidti<br />

86<br />

9793<br />

Tribolonotus brongersmai<br />

96 Tribolonotus ponceleti<br />

93<br />

Tribolonotus pseudoponceleti<br />

Corucia zebrata<br />

Egernia saxatilis<br />

86 Bellatorias major<br />

77<br />

Egernia depressa<br />

Egernia kingii<br />

Bellatorias frerei<br />

100 74<br />

90 Egernia richardi<br />

Egernia napoleonis<br />

Lissolepis luctuosa<br />

73 Egernia stokesii<br />

Egernia hosmeri<br />

96 66 Cyclodomorphus michaeli<br />

Cyclodomorphus casuarinae<br />

97<br />

Cyclodomorphus branchialis<br />

81<br />

Tiliqua adelaidensis<br />

95<br />

Tiliqua rugosa<br />

84 Tiliqua occipitalis<br />

71<br />

Tiliqua nigrolutea<br />

Tiliqua gigas<br />

91<br />

100 Tiliqua scincoides<br />

88 Liopholis striata<br />

Liopholis inornata<br />

98<br />

Liopholis multiscutata<br />

90 Liopholis kintorei<br />

85<br />

Liopholis pulchra<br />

99 73<br />

Liopholis modesta<br />

Liopholis margaretae<br />

56 Liopholis whitii<br />

52 Liopholis guthega<br />

90<br />

Liopholis montana<br />

94<br />

Ristella rurkii<br />

Lankascincus fallax<br />

Eutropis longicaudata<br />

95 96<br />

Eutropis macularia<br />

Eutropis rudis<br />

88<br />

Eutropis macrophthalma<br />

Eutropis multifasciata<br />

83 90<br />

100 Eutropis cumingi<br />

Eutropis multicarinata<br />

73<br />

Eutropis clivicola<br />

97<br />

Eutropis bibronii<br />

96 100 Eutropis beddomii<br />

Eutropis nagarjuni<br />

97<br />

80 Eutropis trivittata<br />

97<br />

Dasia vittata<br />

Dasia grisea<br />

91<br />

99<br />

87<br />

98<br />

93<br />

92<br />

83<br />

84<br />

90<br />

99<br />

90<br />

54<br />

74<br />

100<br />

99<br />

78<br />

89<br />

95<br />

98<br />

98<br />

100<br />

98<br />

78<br />

97<br />

89<br />

81<br />

100<br />

70<br />

80<br />

Dasia olivacea<br />

Trachylepis aurata<br />

Trachylepis vittata<br />

Trachylepis brevicollis<br />

Trachylepis socotrana<br />

Trachylepis maculilabris<br />

Trachylepis wrightii<br />

Trachylepis sechellensis<br />

Trachylepis affinis<br />

Trachylepis perrotetii<br />

Trachylepis quinquetaeniata<br />

Trachylepis margaritifera<br />

Trachylepis atlantica<br />

Trachylepis varia<br />

Trachylepis capensis<br />

100<br />

100<br />

99<br />

100 95<br />

91<br />

96<br />

95<br />

77 80<br />

97 95<br />

100<br />

Trachylepis occidentalis<br />

Trachylepis spilogaster<br />

100 Trachylepis striata<br />

Trachylepis hoeschi<br />

Trachylepis variegata<br />

Trachylepis sulcata<br />

Trachylepis homalocephala<br />

Trachylepis acutilabris<br />

Trachylepis gravenhorstii<br />

Trachylepis elegans<br />

Trachylepis madagascariensis<br />

Trachylepis boettgeri<br />

Trachylepis vato<br />

Trachylepis aureopunctata<br />

Trachylepis dumasi<br />

Eumecia anchietae<br />

Chioninia vaillantii<br />

Chioninia delalandii<br />

Chioninia coctei<br />

Chioninia spinalis<br />

Chioninia fogoensis<br />

Chioninia stangeri<br />

Mabuya carvalhoi<br />

Mabuya croizati<br />

Mabuya nigropalmata<br />

Mabuya sloanii<br />

Mabuya altamazonica<br />

Mabuya nigropunctata<br />

Mabuya cochabambae<br />

Mabuya dorsivittata<br />

Mabuya meridensis<br />

100<br />

Mabuya mabouya<br />

Mabuya unimarginata<br />

Mabuya falconensis<br />

Mabuya bistriata<br />

Mabuya frenata<br />

Mabuya agmosticha<br />

Mabuya macrorhyncha<br />

Mabuya guaporicola<br />

Mabuya agilis<br />

100 Mabuya caissara<br />

99 Mabuya heathi<br />

100<br />

100


I<br />

Figure 10<br />

Lygosominae<br />

cont.<br />

90<br />

100<br />

63<br />

60<br />

Ablepharus budaki<br />

Ablepharus chernovi<br />

Ablepharus kitaibelii<br />

Sphenomorphus stellatus<br />

Emoia concolor<br />

96 Emoia tongana<br />

Lamprolepis smaragdina<br />

Lygosoma quadrupes<br />

98<br />

Lygosoma koratense<br />

Lygosoma albopunctata<br />

95<br />

Lepidothyris fernandi<br />

93<br />

Lygosoma lineolatum<br />

92<br />

Mochlus afer<br />

100 Lygosoma sundevalli<br />

Lygosoma punctata<br />

Mochlus brevicaudis<br />

76<br />

70<br />

Lygosoma bowringii<br />

Eugongylus rufescens<br />

100<br />

Eugongylus albofasciolatus<br />

Emoia loyaltiensis<br />

Leiolopisma telfairii<br />

75<br />

100 Leiolopisma mauritiana<br />

Panaspis breviceps<br />

100<br />

Panaspis togoensis<br />

Afroablepharus wahlbergi<br />

84<br />

99<br />

99<br />

Afroablepharus annobonensis<br />

85<br />

Afroablepharus africanus<br />

90<br />

Lacertaspis reichenowi<br />

85<br />

Lacertaspis rohdei<br />

93<br />

Lacertaspis chriswildi<br />

91 Lacertaspis gemmiventris<br />

96<br />

Lacertaspis lepesmei<br />

100<br />

Leptosiaphos hackarsi<br />

95 Leptosiaphos graueri<br />

Leptosiaphos amieti<br />

81<br />

95<br />

Leptosiaphos kilimensis<br />

100<br />

99 Leptosiaphos vigintiserierum<br />

Pseudemoia pagenstecheri<br />

80<br />

99<br />

Bassiana duperreyi<br />

Pseudemoia entrecasteauxii<br />

Oligosoma lichenigera<br />

Oligosoma suteri<br />

Oligosoma pikitanga<br />

100 99 95 Oligosoma taumakae<br />

Oligosoma acrinasum<br />

98<br />

Oligosoma infrapunctatum<br />

100 Oligosoma waimatense<br />

86 91<br />

Oligosoma otagense<br />

98 100 Oligosoma chloronoton<br />

61<br />

Oligosoma lineoocellatum<br />

99 Oligosoma longipes<br />

99<br />

Oligosoma nigriplantare<br />

98 Oligosoma grande<br />

Oligosoma stenotis<br />

Oligosoma maccanni<br />

100<br />

90 85<br />

100<br />

98<br />

Oligosoma inconspicuum<br />

Oligosoma notosaurus<br />

Oligosoma zelandicum<br />

100 Oligosoma homalonotum<br />

100 Oligosoma striatum<br />

100 Oligosoma smithi<br />

Oligosoma microlepis<br />

94 93<br />

Oligosoma aeneum<br />

99<br />

99 Oligosoma levidensum<br />

Oligosoma hardyi<br />

57<br />

Oligosoma fallai<br />

Oligosoma alani<br />

98<br />

63<br />

Oligosoma moco<br />

93 Oligosoma macgregori<br />

Oligosoma ornatum<br />

Oligosoma townsi<br />

89 Oligosoma oliveri<br />

9796 Oligosoma whitakeri<br />

98 Nannoscincus garrulus<br />

98<br />

Nannoscincus slevini<br />

89 Nannoscincus gracilis<br />

Nannoscincus mariei<br />

82<br />

Nannoscincus greeri<br />

94 Nannoscincus hanchisteus<br />

93<br />

Nannoscincus humectus<br />

Marmorosphax montana<br />

90 100<br />

Marmorosphax tricolor<br />

96<br />

100<br />

Celatiscincus similis<br />

Celatiscincus euryotis<br />

96<br />

Lioscincus vivae<br />

96 Lioscincus steindachneri<br />

Kanakysaurus viviparus<br />

84<br />

Lioscincus nigrofasciolatum<br />

80<br />

96 80<br />

Lacertoides pardalis<br />

Phoboscincus garnieri<br />

Sigaloseps ruficauda<br />

100<br />

Sigaloseps deplanchei<br />

85<br />

Lioscincus novaecaledoniae<br />

85<br />

Lioscincus maruia<br />

98 92<br />

Tropidoscincus aubrianus<br />

Lioscincus tillieri<br />

100<br />

Tropidoscincus boreus<br />

100 Tropidoscincus variabilis<br />

87<br />

Graciliscincus shonae<br />

Simiscincus aurantiacus<br />

97<br />

Caledoniscincus orestes<br />

100 Caledoniscincus renevieri<br />

95<br />

Caledoniscincus auratus<br />

95 Caledoniscincus festivus<br />

83<br />

Caledoniscincus austrocaledonicus<br />

97<br />

Caledoniscincus haplorhinus<br />

53<br />

Caledoniscincus atropunctatus<br />

Caledoniscincus chazeaui<br />

87 98<br />

95<br />

Caledoniscincus aquilonius<br />

Caledoniscincus terma<br />

100 Cryptoblepharus nigropunctatus<br />

Cryptoblepharus boutonii<br />

93<br />

Cryptoblepharus novocaledonicus<br />

93 79<br />

Menetia greyii<br />

Menetia alanae<br />

Emoia schmidti<br />

100<br />

91<br />

Emoia cyanogaster<br />

Emoia caeruleocauda<br />

98<br />

Emoia atrocostata<br />

100<br />

100<br />

Emoia jakati<br />

Emoia physicae<br />

77<br />

Emoia impar<br />

Emoia cyanura<br />

98 71 98<br />

52<br />

Emoia pseudocyanura<br />

Emoia isolata<br />

Bassiana trilineata<br />

73<br />

Morethia ruficauda<br />

Morethia butleri<br />

Morethia adelaidensis<br />

Bartleia jigurru<br />

Saproscincus basiliscus<br />

96<br />

Saproscincus lewisi<br />

72 96<br />

Saproscincus czechurai<br />

79<br />

98<br />

Saproscincus tetradactylus<br />

Saproscincus hannahae<br />

76<br />

100 Saproscincus oriarus<br />

Saproscincus mustelinus<br />

71<br />

Saproscincus challengeri<br />

Saproscincus rosei<br />

100<br />

100 97<br />

Saproscincus spectabilis<br />

Lampropholis guichenoti<br />

92<br />

Lampropholis delicata<br />

100<br />

Lampropholis coggeri<br />

Lampropholis robertsi<br />

Proablepharus reginae<br />

Niveoscincus greeni<br />

72<br />

Niveoscincus ocellatus<br />

76<br />

Niveoscincus pretiosus<br />

100 Niveoscincus metallicus<br />

87<br />

Cautula zia<br />

96<br />

Liburnascincus coensis<br />

Liburnascincus scirtetis<br />

88<br />

91<br />

Liburnascincus mundivensis<br />

Menetia timlowi<br />

100<br />

98<br />

Carlia triacantha<br />

Carlia johnstonei<br />

Carlia jarnoldae<br />

90<br />

Carlia bicarinata<br />

Carlia gracilis<br />

79<br />

75<br />

Lygisaurus sesbrauna<br />

Lygisaurus parrhasius<br />

88<br />

Lygisaurus macfarlani<br />

98 99 Lygisaurus novaeguineae<br />

Lygisaurus aeratus<br />

85<br />

Lygisaurus laevis<br />

100 100<br />

Lygisaurus foliorum<br />

78<br />

68<br />

Lygisaurus abscondita<br />

89<br />

100 Lygisaurus tanneri<br />

Lygisaurus malleolus<br />

91<br />

Carlia schmeltzii<br />

Carlia storri<br />

98<br />

Carlia fusca<br />

100<br />

Carlia longipes<br />

Carlia mysi<br />

80 93<br />

73<br />

Carlia munda<br />

Carlia pectoralis<br />

Carlia rufilatus<br />

85 100 Carlia rhomboidalis<br />

Carlia rubrigularis<br />

92<br />

Carlia tetradactyla<br />

Carlia amax<br />

76 Carlia rostralis<br />

53 Carlia dogare<br />

62<br />

Carlia vivax


J<br />

Figure 11<br />

Tupinambinae<br />

Teiidae<br />

100<br />

Gymnophthalmidae<br />

98<br />

54<br />

100<br />

Teiinae<br />

100<br />

84<br />

Callopistes flavipunctatus<br />

Callopistes maculatus<br />

Tupinambis rufescens<br />

Tupinambis merianae<br />

Tupinambis duseni<br />

Tupinambis quadrilineatus<br />

Tupinambis longilineus<br />

Tupinambis teguixin<br />

Crocodilurus amazonicus<br />

Dracaena guianensis<br />

Teius teyou<br />

Ameiva ameiva<br />

Ameiva bifrontata<br />

100<br />

Cnemidophorus ocellifer<br />

Kentropyx calcarata<br />

Kentropyx striata<br />

Kentropyx altamazonica<br />

Kentropyx pelviceps<br />

56<br />

Kentropyx paulensis<br />

Kentropyx vanzoi<br />

Kentropyx viridistriga<br />

Ameiva undulata<br />

Ameiva quadrilineata<br />

93<br />

Ameiva festiva<br />

Cnemidophorus vanzoi<br />

Cnemidophorus gramivagus<br />

Cnemidophorus lemniscatus<br />

Cnemidophorus arenivagus<br />

Aspidoscelis inornata<br />

Aspidoscelis sexlineata<br />

99 Aspidoscelis burti<br />

Aspidoscelis communis<br />

98<br />

93 Aspidoscelis costata<br />

99<br />

Aspidoscelis gularis<br />

Aspidoscelis laredoensis<br />

Aspidoscelis velox<br />

98 Aspidoscelis deppei<br />

Aspidoscelis guttata<br />

Aspidoscelis lineattissima<br />

84<br />

100<br />

Aspidoscelis marmorata<br />

92<br />

Aspidoscelis tigris<br />

Aspidoscelis hyperythra<br />

98 Aspidoscelis ceralbensis<br />

Ameiva auberi<br />

100 Ameiva dorsalis<br />

Ameiva polops<br />

86<br />

Ameiva exsul<br />

99<br />

Ameiva wetmorei<br />

97 Ameiva leberi<br />

59 100 Ameiva chrysolaema<br />

96 Ameiva taeniura<br />

95<br />

100 Ameiva lineolata<br />

Ameiva maynardi<br />

100 Ameiva plei<br />

Ameiva corax<br />

98 Ameiva pluvianotata<br />

100 Ameiva griswoldi<br />

93 Ameiva erythrocephala<br />

94 Ameiva fuscata<br />

55<br />

Dicrodon guttulatum<br />

85<br />

Cnemidophorus longicaudus<br />

97<br />

Cnemidophorus lacertoides<br />

Ptychoglossus brevifrontalis<br />

100<br />

Alopoglossus atriventris<br />

99<br />

100<br />

Alopoglossus copii<br />

Alopoglossus angulatus<br />

99<br />

97<br />

100<br />

97<br />

98<br />

8766<br />

91<br />

99<br />

82<br />

71<br />

100<br />

91<br />

96<br />

97<br />

100<br />

99<br />

94<br />

100<br />

81<br />

83<br />

Alopoglossinae<br />

Ecpleopinae<br />

99<br />

99<br />

100 77<br />

100<br />

100<br />

80<br />

97<br />

Cercosaurinae<br />

Bachiinae<br />

Gymnophthalminae<br />

100<br />

98<br />

100<br />

100<br />

100<br />

99<br />

100<br />

88<br />

93<br />

91<br />

72<br />

50<br />

65<br />

100<br />

Rhachisaurinae<br />

100 98 97<br />

93<br />

91<br />

94<br />

97<br />

55<br />

100<br />

96<br />

86<br />

98<br />

61<br />

Ecpleopus gaudichaudii<br />

Leposoma nanodactylus<br />

Leposoma baturitensis<br />

Leposoma puk<br />

Leposoma scincoides<br />

Leposoma annectans<br />

Colobosauroides cearensis<br />

Anotosaura collaris<br />

Riama unicolor<br />

Riama colomaromani<br />

Riama simoterus<br />

Neusticurus rudis<br />

Neusticurus bicarinatus<br />

Placosoma cordylinum<br />

Placosoma glabellum<br />

Pholidobolus montium<br />

Pholidobolus macbrydei<br />

Cercosaura ocellata<br />

Cercosaura schreibersii<br />

Cercosaura eigenmanni<br />

Proctoporus sucullucu<br />

Proctoporus subsolanus<br />

Proctoporus pachyurus<br />

Bachia flavescens<br />

Bachia bresslaui<br />

Bachia dorbignyi<br />

Bachia huallagana<br />

Bachia scolecoides<br />

Bachia trisanale<br />

Bachia panoplia<br />

97 95 100<br />

Potamites ecpleopus<br />

Potamites juruazensis<br />

Cercosaura quadrilineata<br />

100 Cercosaura oshaughnessyi<br />

Cercosaura argulus<br />

Proctoporus guentheri<br />

Proctoporus unsaacae<br />

Proctoporus bolivianus<br />

Petracola ventrimaculatus<br />

Bachia peruana<br />

Bachia bicolor<br />

Bachia barbouri<br />

Bachia intermedia<br />

Bachia heteropa<br />

Rhachisaurus brachylepis<br />

Heterodactylus imbricatus<br />

Colobodactylus dalcyanus<br />

Colobodactylus taunayi<br />

Iphisa elegans<br />

98<br />

100<br />

92<br />

98<br />

98<br />

88<br />

100<br />

99<br />

94 99<br />

100<br />

100<br />

100<br />

82<br />

100<br />

78<br />

74<br />

98<br />

100<br />

100<br />

95<br />

96<br />

Colobosaura modesta<br />

Stenolepis ridleyi<br />

Acratosaura mentalis<br />

Tretioscincus agilis<br />

Tretioscincus oriximinensis<br />

Micrablepharus atticolus<br />

Micrablepharus maximiliani<br />

Vanzosaura rubricauda<br />

Procellosaurinus erythrocercus<br />

Procellosaurinus tetradactylus<br />

Nothobachia ablephara<br />

Calyptommatus sinebrachiatus<br />

Calyptommatus confusionibus<br />

93 Calyptommatus leiolepis<br />

86 Calyptommatus nicterus<br />

Arthrosaura reticulata<br />

Arthrosaura kockii<br />

Leposoma percarinatum<br />

Leposoma osvaldoi<br />

Leposoma parietale<br />

Leposoma southi<br />

Leposoma guianense<br />

Psilophthalmus paeminosus<br />

Gymnophthalmus pleei<br />

Gymnophthalmus leucomystax<br />

Gymnophthalmus vanzoi<br />

100<br />

Gymnophthalmus speciosus<br />

87<br />

100<br />

Gymnophthalmus underwoodi<br />

Gymnophthalmus cryptus


K<br />

Figure 12<br />

99<br />

100<br />

84<br />

100<br />

Rhineura floridana<br />

100<br />

91<br />

Amphisbaenidae<br />

86<br />

100<br />

73<br />

100<br />

100<br />

97<br />

89<br />

95<br />

90<br />

92<br />

87<br />

Bipes biporus<br />

Bipes canaliculatus<br />

Blanus strauchi<br />

Blanus cinereus<br />

Blanus mettetali<br />

Blanus tingitanus<br />

Cadea blanoides<br />

55<br />

81<br />

Bipes tridactylus<br />

Diplometopon zarudnyi<br />

Trogonophis wiegmanni<br />

Geocalamus acutus<br />

Monopeltis capensis<br />

Amphisbaena brasiliana<br />

Amphisbaena fuliginosa<br />

Amphisbaena cunhai<br />

Amphisbaena mertensii<br />

Amphisbaena hyporissor<br />

Amphisbaena innocens<br />

Amphisbaena leali<br />

91 Amphisbaena ignatiana<br />

Amphisbaena saxosa<br />

100<br />

Amphisbaena kraoh<br />

100<br />

100 Amphisbaena roberti<br />

Amphisbaena vermicularis<br />

98 Amphisbaena alba<br />

Amphisbaena camura<br />

Amphisbaena bolivica<br />

Amphisbaena anomala<br />

Amphisbaena polystegum<br />

100<br />

Amphisbaena microcephalum<br />

100 Amphisbaena infraorbitale<br />

90<br />

Amphisbaena hastata<br />

100<br />

Amphisbaena cuiabana<br />

78 Amphisbaena kingii<br />

100<br />

Amphisbaena munoai<br />

99<br />

Amphisbaena darwini<br />

93 Amphisbaena angustifrons<br />

100<br />

89<br />

95<br />

100<br />

100<br />

Amphisbaena leeseri<br />

Amphisbaena silvestrii<br />

Amphisbaena anaemariae<br />

Amphisbaena barbouri<br />

100<br />

Amphisbaena cubana<br />

97<br />

100<br />

95<br />

96<br />

67<br />

Rhineuridae<br />

100<br />

Amphisbaena carlgansi<br />

Amphisbaena schmidti<br />

Amphisbaena manni<br />

Amphisbaena fenestrata<br />

Amphisbaena caeca<br />

Amphisbaena bakeri<br />

Amphisbaena xera<br />

Bipedidae<br />

Blanidae<br />

Cadeidae<br />

Trogonophiidae<br />

Cynisca leucura<br />

Chirindia swynnertoni


L<br />

Figure 13<br />

Lacertidae<br />

Gallotiinae<br />

100<br />

Lacertinae<br />

Psammodromus hispanicus<br />

Psammodromus algirus<br />

99<br />

95<br />

Psammodromus blanci<br />

100<br />

Gallotia stehlini<br />

Gallotia atlantica<br />

99<br />

Gallotia galloti<br />

95<br />

Gallotia caesaris<br />

Gallotia intermedia<br />

68<br />

Gallotia simonyi<br />

100<br />

97 Gallotia bravoana<br />

Atlantolacerta andreanskyi<br />

73<br />

Poromera fordii<br />

Nucras lalandii<br />

Latastia longicaudata<br />

96<br />

99<br />

Philochortus spinalis<br />

Pseuderemias smithii<br />

8890<br />

100<br />

Heliobolus lugubris<br />

Heliobolus spekii<br />

99 84<br />

Australolacerta australis<br />

54<br />

Tropidosaura gularis<br />

Ichnotropis capensis<br />

Meroles reticulatus<br />

Meroles knoxii<br />

92<br />

100<br />

Meroles suborbitalis<br />

Ichnotropis squamulosa<br />

76<br />

80<br />

Meroles anchietae<br />

97<br />

100<br />

Meroles ctenodactylus<br />

97<br />

Meroles micropholidotus<br />

Meroles cuneirostris<br />

Pedioplanis lineoocellata<br />

Nucras tessellata<br />

100<br />

Pedioplanis laticeps<br />

100<br />

Pedioplanis burchelli<br />

Pedioplanis breviceps<br />

Pedioplanis namaquensis<br />

96<br />

Pedioplanis husabensis<br />

100 69<br />

Pedioplanis undata<br />

76<br />

Pedioplanis rubens<br />

96<br />

96 Pedioplanis inornata<br />

Pedioplanis gaerdesi<br />

100<br />

56<br />

Holaspis laevis<br />

100<br />

Holaspis guentheri<br />

100<br />

Gastropholis vittata<br />

Gastropholis prasina<br />

72<br />

Adolfus africanus<br />

96<br />

89<br />

99<br />

Adolfus alleni<br />

Adolfus jacksoni<br />

Eremias brenchleyi<br />

97<br />

Eremias argus<br />

Eremias vermiculata<br />

76<br />

Eremias velox<br />

100<br />

99<br />

Eremias montanus<br />

Eremias persica<br />

Eremias nigrolateralis<br />

95<br />

Eremias arguta<br />

Eremias przewalskii<br />

93<br />

93 100 Eremias multiocellata<br />

56 Eremias pleskei<br />

86<br />

Eremias grammica<br />

Congolacerta vauereselli<br />

Omanosaura cyanura<br />

98<br />

Omanosaura jayakari<br />

100<br />

97<br />

Mesalina simoni<br />

Mesalina olivieri<br />

Mesalina bahaeldini<br />

100<br />

91 Mesalina guttulata<br />

Mesalina balfouri<br />

89 93 Mesalina adramitana<br />

63<br />

Mesalina brevirostris<br />

Mesalina rubropunctata<br />

Ophisops occidentalis<br />

100<br />

Ophisops elegans<br />

Acanthodactylus orientalis<br />

100 Acanthodactylus tristrami<br />

Acanthodactylus blanci<br />

73<br />

95<br />

99 Acanthodactylus erythrurus<br />

94<br />

Acanthodactylus busacki<br />

Acanthodactylus beershebensis<br />

100<br />

76<br />

Acanthodactylus pardalis<br />

100<br />

86 Acanthodactylus maculatus<br />

Acanthodactylus aureus<br />

95<br />

Acanthodactylus scutellatus<br />

93 Acanthodactylus longipes<br />

80<br />

Acanthodactylus schmidti<br />

99<br />

Acanthodactylus cantoris<br />

96<br />

Acanthodactylus masirae<br />

100<br />

Acanthodactylus gongrorhynchatus<br />

Acanthodactylus opheodurus<br />

85<br />

75<br />

Acanthodactylus boskianus<br />

99 Acanthodactylus schreiberi<br />

100<br />

Phoenicolacerta kulzeri<br />

98<br />

Phoenicolacerta laevis<br />

Phoenicolacerta cyanisparsa<br />

95<br />

Zootoca vivipara<br />

Takydromus kuehnei<br />

100<br />

Takydromus sexlineatus<br />

Takydromus tachydromoides<br />

100<br />

Takydromus smaragdinus<br />

95<br />

Takydromus sauteri<br />

85<br />

Takydromus intermedius<br />

100<br />

100<br />

Takydromus dorsalis<br />

Takydromus sylvaticus<br />

79<br />

Takydromus amurensis<br />

100<br />

99 Takydromus hsuehshanensis<br />

100<br />

Takydromus formosanus<br />

97 Takydromus wolteri<br />

100<br />

Takydromus toyamai<br />

99 Takydromus septentrionalis<br />

75 Takydromus stejnegeri<br />

Timon princeps<br />

94<br />

Timon pater<br />

99 98<br />

Timon lepidus<br />

69<br />

Timon tangitanus<br />

Lacerta viridis<br />

58<br />

100 100 Lacerta bilineata<br />

80<br />

Lacerta strigata<br />

Lacerta schreiberi<br />

Lacerta agilis<br />

92<br />

98<br />

Lacerta media<br />

99<br />

Lacerta trilineata<br />

Lacerta pamphylica<br />

100<br />

98<br />

Teira dugesii<br />

94<br />

86<br />

62<br />

64<br />

73<br />

97<br />

92<br />

53<br />

99<br />

96<br />

100<br />

97<br />

100<br />

100<br />

94 98<br />

100<br />

85<br />

78<br />

74<br />

55<br />

99 85<br />

88<br />

92<br />

91 86<br />

97<br />

93<br />

92 100<br />

96<br />

79<br />

100<br />

Scelarcis perspicillata<br />

Podarcis melisellensis<br />

Podarcis tauricus<br />

Podarcis milensis<br />

Podarcis gaigeae<br />

Podarcis filfolensis<br />

Podarcis tiliguerta<br />

Podarcis muralis<br />

Podarcis siculus<br />

Podarcis pityusensis<br />

Podarcis lilfordi<br />

Podarcis raffoneae<br />

Podarcis erhardii<br />

Podarcis peloponnesiacus<br />

Podarcis liolepis<br />

Podarcis vaucheri<br />

Podarcis hispanicus<br />

Podarcis bocagei<br />

Podarcis carbonelli<br />

Dalmatolacerta oxycephala<br />

Hellenolacerta graeca<br />

Archaeolacerta bedriagae<br />

100<br />

99<br />

95<br />

Apathya cappadocica<br />

Iberolacerta galani<br />

Iberolacerta cyreni<br />

Iberolacerta monticola<br />

Iberolacerta horvathi<br />

Iberolacerta aurelioi<br />

Iberolacerta bonnali<br />

Iberolacerta aranica<br />

93<br />

100<br />

100 94<br />

100<br />

100<br />

89<br />

Parvilacerta fraasii<br />

Parvilacerta parva<br />

Anatololacerta anatolica<br />

Anatololacerta oertzeni<br />

Anatololacerta danfordi<br />

Algyroides moreoticus<br />

Algyroides nigropunctatus<br />

Dinarolacerta mosorensis<br />

Dinarolacerta montenegrina<br />

Algyroides marchi<br />

Algyroides fitzingeri<br />

Iranolacerta brandtii<br />

Iranolacerta zagrosica<br />

Darevskia parvula<br />

Darevskia rudis<br />

Darevskia portschinskii<br />

Darevskia valentini<br />

Darevskia praticola<br />

Darevskia chlorogaster<br />

100<br />

87<br />

100<br />

Darevskia alpina<br />

Darevskia lindholmi<br />

Darevskia brauneri<br />

Darevskia saxicola<br />

Darevskia rostombekovi<br />

Darevskia raddei<br />

97<br />

Darevskia uzzelli<br />

Darevskia sapphirina<br />

93<br />

Darevskia bendimahiensis<br />

94<br />

100<br />

Darevskia armeniaca<br />

Darevskia clarkorum<br />

98 Darevskia mixta<br />

7099 Darevskia daghestanica<br />

Darevskia caucasica<br />

90 Darevskia derjugini


M<br />

Figure 14<br />

Xenosauridae 100 Xenosaurus platyceps<br />

Xenosaurus grandis<br />

Helodermatidae Heloderma suspectum<br />

100<br />

100 Heloderma horridum<br />

Anniellidae Anniella pulchra<br />

100 Anniella geronimensis<br />

95<br />

Celestus enneagrammus<br />

98<br />

Diploglossus bilobatus<br />

Diploglossus pleii<br />

Ophiodes striatus<br />

Diploglossinae<br />

100<br />

100<br />

93<br />

100 Celestus agasepsoides<br />

Celestus haetianus<br />

Ophisaurus ventralis<br />

90 100 83 Ophisaurus koellikeri<br />

Anguidae<br />

Pseudopus apodus<br />

99 Anguis fragilis<br />

Anguinae<br />

87 Ophisaurus attenuatus<br />

Dopasia gracilis<br />

100 Dopasia harti<br />

100 100 Elgaria coerulea<br />

Elgaria kingii<br />

99 Elgaria paucicarinata<br />

8584 Elgaria panamintina<br />

100 Elgaria multicarinata<br />

Gerrhonotus parvus<br />

Gerrhonotinae 88<br />

Coloptychon rhombifer<br />

Gerrhonotus liocephalus<br />

100<br />

92<br />

Gerrhonotus infernalis<br />

97 Abronia mixteca<br />

100 Barisia levicollis<br />

Barisia imbricata<br />

89 95 Barisia herrerae<br />

94 Barisia rudicollis<br />

Mesaspis moreletii<br />

79<br />

72<br />

Mesaspis gadovii<br />

Abronia chiszari<br />

66 Abronia oaxacae<br />

99 Abronia graminea<br />

Abronia frosti<br />

Abronia ornelasi<br />

96 84 Abronia lythrochila<br />

89 Abronia fimbriata<br />

96 Abronia matudai<br />

97<br />

Abronia anzuetoi<br />

95 Abronia campbelli<br />

Shinisauridae Abronia aurita<br />

Shinisaurus crocodilurus<br />

Lanthanotidae<br />

Lanthanotus borneensis<br />

Varanus griseus<br />

Varanus niloticus<br />

94<br />

95 Varanus exanthematicus<br />

97 Varanus albigularis<br />

99 Varanus yemenensis<br />

100<br />

Varanus olivaceus<br />

98 Varanus keithhornei<br />

95 100 Varanus beccarii<br />

Varanidae<br />

95 Varanus boehmei<br />

Varanus macraei<br />

100<br />

75 Varanus prasinus<br />

86<br />

86 Varanus rainerguentheri<br />

78<br />

Varanus indicus<br />

Varanus melinus<br />

88 Varanus cerambonensis<br />

100 Varanus caerulivirens<br />

100<br />

84<br />

100 69<br />

100<br />

85<br />

72<br />

100<br />

100<br />

86<br />

99<br />

88<br />

76<br />

7974<br />

92 9694<br />

97<br />

100<br />

99<br />

100<br />

87<br />

96<br />

76 86100<br />

100<br />

99 10099<br />

Varanus jobiensis<br />

Varanus yuwonoi<br />

Varanus doreanus<br />

Varanus finschi<br />

Varanus marmoratus<br />

Varanus salvator<br />

Varanus rudicollis<br />

Varanus dumerilii<br />

Varanus flavescens<br />

Varanus bengalensis<br />

Varanus mertensi<br />

Varanus spenceri<br />

Varanus giganteus<br />

Varanus rosenbergi<br />

Varanus panoptes<br />

Varanus gouldii<br />

Varanus salvadorii<br />

Varanus varius<br />

Varanus komodoensis<br />

Varanus glebopalma<br />

Varanus pilbarensis<br />

Varanus tristis<br />

Varanus glauerti<br />

Varanus scalaris<br />

Varanus timorensis<br />

Varanus mitchelli<br />

100<br />

100<br />

99<br />

Varanus semiremex<br />

Varanus brevicauda<br />

Varanus eremius<br />

Varanus caudolineatus<br />

Varanus gilleni<br />

Varanus bushi<br />

Varanus kingorum<br />

Varanus primordius<br />

Varanus storri<br />

Varanus acanthurus<br />

Varanus baritji


N<br />

Figure 15<br />

Chamaeleonidae<br />

100<br />

Brookesia lolontany<br />

79<br />

Brookesia nasus<br />

100<br />

Brookesia dentata<br />

100<br />

Brookesia exarmata<br />

63<br />

Brookesia minima<br />

Brookesia tuberculata<br />

83 100<br />

Brookesia karchei<br />

100<br />

Brookesia peyrierasi<br />

100<br />

Brookesia perarmata<br />

Brookesia decaryi<br />

100<br />

98 Brookesia brygooi<br />

Brookesia bonsi<br />

100<br />

Brookesia therezieni<br />

Brookesiinae<br />

99<br />

Brookesia superciliaris<br />

93 Brookesia valerieae<br />

100<br />

Brookesia griveaudi<br />

Brookesia stumpffi<br />

100 Brookesia ambreensis<br />

Brookesia antakarana<br />

Brookesia ebenaui<br />

Brookesia vadoni<br />

100 Brookesia thieli<br />

Brookesia betschi<br />

51 Brookesia lineata<br />

Furcifer balteatus<br />

99<br />

Furcifer bifidus<br />

99 62<br />

Furcifer minor<br />

Furcifer willsii<br />

86<br />

Furcifer petteri<br />

Furcifer campani<br />

93 96 Furcifer cephalolepis<br />

91<br />

Furcifer polleni<br />

94 100 Furcifer pardalis<br />

Furcifer angeli<br />

99 93 Furcifer oustaleti<br />

Furcifer verrucosus<br />

98 Furcifer belalandaensis<br />

98<br />

Furcifer lateralis<br />

94<br />

100 Furcifer labordi<br />

Furcifer antimena<br />

100 Kinyongia oxyrhina<br />

Kinyongia tenue<br />

95<br />

100 Kinyongia adolfifriderici<br />

Kinyongia excubitor<br />

67 Kinyongia xenorhina<br />

98 Kinyongia carpenteri<br />

82<br />

Kinyongia uthmoelleri<br />

Kinyongia tavetana<br />

100 92<br />

100 Kinyongia boehmei<br />

55 100<br />

Kinyongia matschiei<br />

100 Kinyongia multituberculata<br />

59 Kinyongia vosseleri<br />

100 Kinyongia fischeri<br />

96 Bradypodion pumilum<br />

Bradypodion damaranum<br />

Bradypodion caffer<br />

100 100 Bradypodion melanocephalum<br />

94 Bradypodion thamnobates<br />

98 Bradypodion transvaalense<br />

72 Bradypodion dracomontanum<br />

87 Bradypodion nemorale<br />

Bradypodion setaroi<br />

Bradypodion occidentale<br />

85 Bradypodion atromontanum<br />

98<br />

Bradypodion gutturale<br />

749595<br />

Bradypodion taeniabronchum<br />

Bradypodion karrooicum<br />

Bradypodion ventrale<br />

100<br />

Calumma furcifer<br />

99<br />

Calumma gastrotaenia<br />

Rieppeleon kerstenii<br />

100<br />

Rieppeleon brachyurus<br />

58<br />

Rieppeleon brevicaudatus<br />

Calumma cucullatum<br />

82 100 88 Calumma crypticum<br />

Calumma brevicorne<br />

98 Calumma tsaratananense<br />

100 75 Calumma hilleniusi<br />

Calumma guibei<br />

91<br />

Calumma malthe<br />

78<br />

93 Calumma gallus<br />

85 Calumma fallax<br />

97 Calumma boettgeri<br />

94 Calumma nasutum<br />

Nadzikambia mlanjensis<br />

73<br />

Rhampholeon spectrum<br />

88<br />

Rhampholeon temporalis<br />

98<br />

Rhampholeon spinosus<br />

98<br />

Rhampholeon viridis<br />

99<br />

Rhampholeon marshalli<br />

Chamaeleoninae<br />

85<br />

95<br />

90<br />

100<br />

66<br />

86<br />

100<br />

97<br />

100<br />

100<br />

93<br />

98<br />

92<br />

92<br />

97 91<br />

70<br />

98<br />

100<br />

73<br />

99<br />

100<br />

85<br />

100<br />

96<br />

50<br />

Calumma capuroni<br />

Calumma oshaughnessyi<br />

Calumma parsonii<br />

Calumma globifer<br />

100<br />

61<br />

Chamaeleo namaquensis<br />

100<br />

90<br />

85 879766<br />

100<br />

99<br />

95<br />

81<br />

91<br />

90 100<br />

100<br />

98 100<br />

Rhampholeon moyeri<br />

Rhampholeon uluguruensis<br />

Rhampholeon acuminatus<br />

Rhampholeon boulengeri<br />

Rhampholeon beraduccii<br />

Rhampholeon nchisiensis<br />

Rhampholeon platyceps<br />

Rhampholeon chapmanorum<br />

Chamaeleo laevigatus<br />

Chamaeleo necasi<br />

Chamaeleo gracilis<br />

Chamaeleo quilensis<br />

Chamaeleo dilepis<br />

Chamaeleo roperi<br />

Chamaeleo senegalensis<br />

Chamaeleo monachus<br />

Chamaeleo africanus<br />

Chamaeleo calcaricarens<br />

Chamaeleo chamaeleon<br />

Chamaeleo zeylanicus<br />

Chamaeleo calyptratus<br />

Chamaeleo arabicus<br />

Trioceros affinis<br />

Trioceros harennae<br />

Trioceros balebicornutus<br />

Trioceros feae<br />

Trioceros montium<br />

Trioceros cristatus<br />

Trioceros wiedersheimi<br />

Trioceros quadricornis<br />

Trioceros pfefferi<br />

Trioceros oweni<br />

Trioceros johnstoni<br />

Trioceros melleri<br />

Trioceros deremensis<br />

Trioceros werneri<br />

Trioceros tempeli<br />

Trioceros goetzei<br />

Trioceros fuelleborni<br />

Trioceros bitaeniatus<br />

Trioceros jacksonii<br />

Trioceros narraioca<br />

Trioceros schubotzi<br />

Trioceros hoehnelii<br />

Trioceros ellioti<br />

Trioceros rudis<br />

Trioceros sternfeldi


O<br />

Figure 16<br />

Uromasticinae<br />

(i)<br />

100<br />

Agamidae<br />

(i)<br />

(ii)<br />

96<br />

100<br />

100<br />

94<br />

86<br />

Leiolepidinae<br />

95<br />

Uromastyx hardwickii<br />

Uromastyx loricata<br />

Uromastyx asmussi<br />

Uromastyx princeps<br />

Uromastyx macfadyeni<br />

100<br />

74<br />

94<br />

Uromastyx geyri<br />

Uromastyx acanthinura<br />

Uromastyx dispar<br />

Uromastyx thomasi<br />

100 Uromastyx aegyptia<br />

91 Uromastyx leptieni<br />

70<br />

99 Uromastyx ornata<br />

Uromastyx ocellata<br />

100 Uromastyx benti<br />

100 Uromastyx yemenensis<br />

100 Leiolepis belliana<br />

Leiolepis reevesii<br />

100 100 Leiolepis guttata<br />

Leiolepis guentherpetersi<br />

Hydrosaurus amboinensis<br />

Physignathus cocincinus<br />

100<br />

92<br />

85<br />

Hypsilurus spinipes<br />

Hypsilurus boydii<br />

97<br />

Hypsilurus dilophus<br />

Moloch horridus<br />

98<br />

Chelosania brunnea<br />

Hypsilurus modestus<br />

100<br />

Hypsilurus papuensis<br />

100 Hypsilurus nigrigularis<br />

51<br />

Hypsilurus bruijnii<br />

100 75<br />

Intellagama lesueurii<br />

Ctenophorus maculosus<br />

Ctenophorus adelaidensis<br />

Ctenophorus clayi<br />

100<br />

96<br />

Ctenophorus gibba<br />

Ctenophorus salinarum<br />

Ctenophorus cristatus<br />

71<br />

100<br />

Ctenophorus nuchalis<br />

98<br />

Ctenophorus reticulatus<br />

Ctenophorus rufescens<br />

99<br />

Ctenophorus tjantjalka<br />

Ctenophorus vadnappa<br />

99 Ctenophorus decresii<br />

79 90 Ctenophorus fionni<br />

Ctenophorus caudicinctus<br />

100<br />

Ctenophorus ornatus<br />

Ctenophorus isolepis<br />

100 53 92<br />

Ctenophorus scutulatus<br />

100<br />

Ctenophorus mckenziei<br />

76 Ctenophorus pictus<br />

90<br />

Ctenophorus maculatus<br />

100<br />

94<br />

Ctenophorus fordi<br />

Ctenophorus femoralis<br />

71<br />

Lophognathus temporalis<br />

Lophognathus longirostris<br />

100<br />

Chlamydosaurus kingii<br />

Lophognathus gilberti<br />

94<br />

Amphibolurus muricatus<br />

100<br />

97 Amphibolurus norrisi<br />

Tympanocryptis uniformis<br />

100<br />

Tympanocryptis intima<br />

99<br />

Tympanocryptis tetraporophora<br />

Hydrosaurinae Agaminae<br />

Amphibolurinae<br />

71<br />

99<br />

Tympanocryptis cephalus<br />

Tympanocryptis pinguicolla<br />

Tympanocryptis lineata<br />

Rankinia diemensis<br />

Pogona barbata<br />

Pogona nullarbor<br />

99<br />

Pogona henrylawsoni<br />

Pogona minima<br />

99 Pogona minor<br />

94 Pogona vitticeps<br />

Diporiphora superba<br />

Diporiphora linga<br />

99<br />

Diporiphora winneckei<br />

81<br />

Diporiphora reginae<br />

Diporiphora magna<br />

76<br />

Diporiphora bilineata<br />

95 100<br />

95<br />

100<br />

53<br />

63<br />

67<br />

56<br />

100<br />

95<br />

100<br />

Diporiphora pindan<br />

Diporiphora valens<br />

Diporiphora amphiboluroides<br />

Diporiphora australis<br />

Diporiphora nobbi<br />

Diporiphora bennettii<br />

Diporiphora albilabris<br />

Diporiphora arnhemica<br />

Diporiphora lalliae<br />

(ii)<br />

Draconinae<br />

Laudakia stellio<br />

94 99 Laudakia sacra<br />

Laudakia tuberculata<br />

Laudakia nupta<br />

Laudakia lehmanni<br />

85 Laudakia himalayana<br />

84 99 Laudakia stoliczkana<br />

84<br />

Laudakia microlepis<br />

88100<br />

Laudakia caucasia<br />

Laudakia erythrogaster<br />

Phrynocephalus scutellatus<br />

Phrynocephalus interscapularis<br />

Phrynocephalus forsythii<br />

100 100 Phrynocephalus theobaldi<br />

64 90<br />

Phrynocephalus putjatai<br />

7573 Phrynocephalus vlangalii<br />

Phrynocephalus lidskii<br />

Phrynocephalus axillaris<br />

Phrynocephalus helioscopus<br />

91 Phrynocephalus mystaceus<br />

100<br />

Phrynocephalus raddei<br />

89<br />

100 Phrynocephalus versicolor<br />

94 Phrynocephalus przewalskii<br />

100 Phrynocephalus melanurus<br />

9690 Phrynocephalus albolineatus<br />

Phrynocephalus guttatus<br />

100<br />

Pseudotrapelus sinaitus<br />

Acanthocercus atricollis<br />

66<br />

95 Xenagama taylori<br />

Bufoniceps laungwalaensis<br />

Trapelus sanguinolentus<br />

100 Trapelus mutabilis<br />

99 Trapelus agilis<br />

Trapelus ruderatus<br />

99<br />

93 Trapelus pallidus<br />

89 Trapelus flavimaculatus<br />

100<br />

100 Trapelus savignii<br />

Agama spinosa<br />

Agama boueti<br />

100<br />

100<br />

Agama impalearis<br />

96 Agama castroviejoi<br />

76<br />

Agama boulengeri<br />

Agama insularis<br />

100<br />

84 Agama gracilimembris<br />

69 Agama weidholzi<br />

Agama anchietae<br />

100 100 Agama atra<br />

91<br />

Agama hispida<br />

100<br />

50<br />

Agama armata<br />

100 Agama aculeata<br />

Agama caudospinosa<br />

100 Agama rueppelli<br />

Agama lionotus<br />

91 Agama kaimosae<br />

65 Agama mwanzae<br />

98 Agama sankaranica<br />

99 Agama doriae<br />

100 Agama agama<br />

100 Agama finchi<br />

6868 Agama planiceps<br />

Agama paragama<br />

Mantheyus phuwuanensis<br />

Japalura variegata<br />

70 Japalura tricarinata<br />

100<br />

Ptyctolaemus gularis<br />

Ptyctolaemus collicristatus<br />

100<br />

Draco dussumieri<br />

Draco lineatus<br />

95 Draco maculatus<br />

Draco fimbriatus<br />

86 99 97 Draco cristatellus<br />

53 Draco maximus<br />

100<br />

Draco mindanensis<br />

92<br />

Draco quinquefasciatus<br />

100<br />

65<br />

Draco melanopogon<br />

59 95<br />

Draco haematopogon<br />

Draco indochinensis<br />

96 Draco blanfordii<br />

Draco taeniopterus<br />

86 61<br />

100 Draco obscurus<br />

100 Draco spilonotus<br />

Draco caerulhians<br />

100 97 Draco biaro<br />

Draco beccarii<br />

Draco bourouniensis<br />

100<br />

99 Draco rhytisma<br />

95 Draco bimaculatus<br />

100 Draco volans<br />

Draco timorensis<br />

99 Draco boschmai<br />

100<br />

100 Draco reticulatus<br />

Draco cyanopterus<br />

Draco quadrasi<br />

91 Draco guentheri<br />

Draco cornutus<br />

85 Draco spilopterus<br />

Draco palawanensis<br />

87 Draco ornatus<br />

Phoxophrys nigrilabris<br />

Japalura polygonata<br />

100<br />

Gonocephalus robinsonii<br />

Aphaniotis fusca<br />

97 98<br />

Coryphophylax subcristatus<br />

Bronchocela cristatella<br />

85 Gonocephalus grandis<br />

87 Gonocephalus chamaeleontinus<br />

86 100 Gonocephalus kuhlii<br />

52 97 Lyriocephalus scutatus<br />

Cophotis dumbara<br />

100 Cophotis ceylanica<br />

100<br />

Ceratophora aspera<br />

Ceratophora karu<br />

90 Ceratophora stoddartii<br />

100 Ceratophora erdeleni<br />

Calotes mystaceus<br />

81<br />

72 Calotes chincollium<br />

100 Calotes emma<br />

55 Calotes liocephalus<br />

100 90 Calotes ceylonensis<br />

99Calotes<br />

nigrilabris<br />

Calotes liolepis<br />

99 Calotes versicolor<br />

100 Calotes irawadi<br />

50<br />

Calotes calotes<br />

91 Calotes htunwini<br />

Salea horsfieldii<br />

96<br />

69<br />

100<br />

100<br />

100<br />

99<br />

10095<br />

Acanthosaura crucigera<br />

Acanthosaura armata<br />

Acanthosaura capra<br />

Acanthosaura lepidogaster<br />

Sitana ponticeriana<br />

Otocryptis wiegmanni<br />

Japalura flaviceps<br />

Japalura splendida<br />

Pseudocalotes kakhienensis<br />

Pseudocalotes brevipes<br />

Pseudocalotes flavigula


P<br />

Figure 17<br />

94 Stenocercus scapularis<br />

86<br />

Stenocercus apurimacus<br />

Stenocercus formosus<br />

94 Stenocercus ochoai<br />

Stenocercus roseiventris<br />

64 Stenocercus azureus<br />

100 100 Stenocercus doellojuradoi<br />

69 Stenocercus limitaris<br />

Stenocercus caducus<br />

88 Stenocercus ornatus<br />

78<br />

100 Stenocercus percultus<br />

Stenocercus puyango<br />

100 Stenocercus iridescens<br />

96 89 Stenocercus angulifer<br />

Stenocercus rhodomelas<br />

Stenocercus chota<br />

84 82<br />

9996100 Stenocercus festae<br />

Stenocercus guentheri<br />

Stenocercus angel<br />

Stenocercus humeralis<br />

Stenocercus marmoratus<br />

71<br />

100<br />

Stenocercus crassicaudatus<br />

100 Stenocercus torquatus<br />

73 Stenocercus varius<br />

89<br />

Stenocercus imitator<br />

94<br />

Stenocercus eunetopsis<br />

Stenocercus empetrus<br />

Stenocercus boettgeri<br />

100<br />

88 100<br />

Stenocercus cupreus<br />

78 Stenocercus chrysopygus<br />

79 Stenocercus ornatissimus<br />

100<br />

Stenocercus orientalis<br />

Stenocercus latebrosus<br />

85 Stenocercus melanopygus<br />

88 Stenocercus stigmosus<br />

100<br />

Microlophus thoracicus<br />

Microlophus theresiae<br />

100 Microlophus heterolepis<br />

99 96Microlophus<br />

tigris<br />

Microlophus peruvianus<br />

100 Microlophus quadrivittatus<br />

100 100 Microlophus atacamensis<br />

Microlophus theresioides<br />

98 Microlophus yanezi<br />

Microlophus koepckeorum<br />

100 Microlophus occipitalis<br />

100 Microlophus bivittatus<br />

100 Microlophus habelii<br />

Microlophus stolzmanni<br />

100<br />

Microlophus delanonis<br />

100<br />

Microlophus grayii<br />

1006495 Microlophus pacificus<br />

Microlophus albemarlensis<br />

Microlophus duncanensis<br />

Uranoscodon superciliosus<br />

74<br />

Uracentron flaviceps<br />

98 Tropidurus bogerti<br />

Strobilurus torquatus<br />

78<br />

Plica umbra<br />

Plica lumaria<br />

99<br />

100<br />

Plica plica<br />

Tropidurus callathelys<br />

100<br />

100 Tropidurus spinulosus<br />

100 Eurolophosaurus divaricatus<br />

100 Eurolophosaurus amathites<br />

Eurolophosaurus nanuzae<br />

Tropidurus hygomi<br />

Tropidurus montanus<br />

100 100 Tropidurus psammonastes<br />

73 Tropidurus itambere<br />

98 Tropidurus cocorobensis<br />

97 83 Tropidurus etheridgei<br />

Tropidurus mucujensis<br />

Tropidurus erythrocephalus<br />

Tropidurus insulanus<br />

100 Tropidurus oreadicus<br />

Iguanidae<br />

9889 Tropidurus hispidus<br />

Tropidurus torquatus<br />

Dipsosaurus dorsalis<br />

Brachylophus fasciatus<br />

100 Brachylophus vitiensis<br />

99 Iguana iguana<br />

92 Iguana delicatissima<br />

Sauromalus ater<br />

100 100 Sauromalus klauberi<br />

Sauromalus hispidus<br />

61 Sauromalus varius<br />

Cyclura pinguis<br />

100 94 Cyclura cornuta<br />

100<br />

Cyclura ricordi<br />

97 Cyclura carinata<br />

95 Cyclura collei<br />

57 Cyclura rileyi<br />

8586 Cyclura nubila<br />

56<br />

Cyclura cychlura<br />

Amblyrhynchus cristatus<br />

100 Conolophus subcristatus<br />

72<br />

Conolophus pallidus<br />

62 Ctenosaura similis<br />

100 Ctenosaura hemilopha<br />

96 Ctenosaura acanthura<br />

99 Ctenosaura pectinata<br />

99 98 Ctenosaura melanosterna<br />

Ctenosaura oedirhina<br />

Ctenosaura bakeri<br />

100 74 Ctenosaura palearis<br />

Ctenosaura flavidorsalis<br />

99 Ctenosaura quinquecarinata<br />

72 Ctenosaura oaxacana<br />

Tropiduridae<br />

Q-R


Q<br />

Figure 18<br />

(i)<br />

(ii)<br />

Leiocephalidae<br />

(i)<br />

54<br />

81<br />

87<br />

100<br />

100<br />

100<br />

100 100<br />

100 99<br />

86<br />

90<br />

75<br />

100<br />

100<br />

100<br />

100<br />

96<br />

100<br />

100<br />

100<br />

83<br />

93 100<br />

100<br />

100<br />

99 100100<br />

96<br />

92<br />

99<br />

99<br />

95<br />

89<br />

94<br />

93<br />

Crotaphytidae<br />

Phrynosomatidae<br />

100<br />

100<br />

100<br />

96<br />

100 76100<br />

100<br />

100<br />

99<br />

Leiocephalus carinatus<br />

Leiocephalus raviceps<br />

Leiocephalus psammodromus<br />

Leiocephalus personatus<br />

Leiocephalus schreibersii<br />

Leiocephalus barahonensis<br />

Gambelia wislizenii<br />

Gambelia sila<br />

Gambelia copeii<br />

Crotaphytus antiquus<br />

Crotaphytus reticulatus<br />

82<br />

100 97 10099<br />

95<br />

96<br />

82<br />

Crotaphytus vestigium<br />

Crotaphytus insularis<br />

Crotaphytus grismeri<br />

100<br />

Crotaphytus bicinctores<br />

Crotaphytus nebrius<br />

Crotaphytus collaris<br />

Uma exsul<br />

100 Uma paraphygas<br />

Uma scoparia<br />

100 100<br />

99 100<br />

100<br />

88<br />

92<br />

100<br />

100<br />

100<br />

100<br />

82<br />

100<br />

99<br />

96<br />

Uma inornata<br />

Uma notata<br />

Callisaurus draconoides<br />

Cophosaurus texanus<br />

Holbrookia lacerata<br />

Holbrookia propinqua<br />

Holbrookia maculata<br />

Phrynosoma cornutum<br />

Phrynosoma solare<br />

Phrynosoma mcallii<br />

Phrynosoma platyrhinos<br />

Phrynosoma coronatum<br />

Phrynosoma blainvillii<br />

Phrynosoma cerroense<br />

Phrynosoma wigginsi<br />

Phrynosoma asio<br />

Phrynosoma braconnieri<br />

Phrynosoma taurus<br />

Phrynosoma modestum<br />

Phrynosoma orbiculare<br />

Phrynosoma ditmarsi<br />

Phrynosoma douglassii<br />

Phrynosoma hernandesi<br />

Petrosaurus mearnsi<br />

Petrosaurus repens<br />

Petrosaurus thalassinus<br />

Uta squamata<br />

Uta palmeri<br />

Uta stansburiana<br />

Uta stejnegeri<br />

Urosaurus gadovi<br />

Urosaurus bicarinatus<br />

Urosaurus lahtelai<br />

Urosaurus nigricaudus<br />

Urosaurus graciosus<br />

Urosaurus ornatus<br />

Urosaurus clarionensis<br />

Urosaurus auriculatus<br />

Sceloporus parvus<br />

Sceloporus couchii<br />

Sceloporus chrysostictus<br />

Sceloporus teapensis<br />

Sceloporus variabilis<br />

Sceloporus smithi<br />

Sceloporus cozumelae<br />

100<br />

92<br />

96<br />

100<br />

91 97<br />

Sceloporus grandaevus<br />

Sceloporus angustus<br />

Sceloporus utiformis<br />

Sceloporus carinatus<br />

Sceloporus squamosus<br />

100 Sceloporus siniferus<br />

Sceloporus merriami<br />

100 99<br />

99<br />

100 99<br />

100 99<br />

97<br />

89 99<br />

100<br />

99<br />

98<br />

98<br />

100<br />

89 97<br />

100<br />

100<br />

98<br />

98 98100<br />

100 91<br />

65<br />

100<br />

100<br />

98 100<br />

74<br />

100<br />

Sceloporus pyrocephalus<br />

Sceloporus nelsoni<br />

Sceloporus gadoviae<br />

Sceloporus maculosus<br />

Sceloporus jalapae<br />

Sceloporus ochoterenae<br />

Sceloporus vandenburgianus<br />

Sceloporus graciosus<br />

Sceloporus arenicolus<br />

Sceloporus magister<br />

Sceloporus zosteromus<br />

Sceloporus lineatulus<br />

Sceloporus licki<br />

Sceloporus orcutti<br />

Sceloporus hunsakeri<br />

Sceloporus melanorhinus<br />

Sceloporus grammicus<br />

Sceloporus palaciosi<br />

Sceloporus heterolepis<br />

Sceloporus aeneus<br />

Sceloporus bicanthalis<br />

Sceloporus scalaris<br />

Sceloporus slevini<br />

Sceloporus chaneyi<br />

Sceloporus samcolemani<br />

Sceloporus goldmani<br />

Sceloporus megalepidurus<br />

Sceloporus insignis<br />

Sceloporus jarrovii<br />

Sceloporus torquatus<br />

Sceloporus bulleri<br />

Sceloporus mucronatus<br />

Sceloporus macdougalli<br />

Sceloporus poinsettii<br />

Sceloporus dugesii<br />

Sceloporus minor<br />

Sceloporus ornatus<br />

Sceloporus serrifer<br />

61<br />

100 97<br />

Sceloporus cyanogenys<br />

Sceloporus clarkii<br />

Sceloporus olivaceus<br />

Sceloporus occidentalis<br />

Sceloporus virgatus<br />

Sceloporus woodi<br />

Sceloporus consobrinus<br />

Sceloporus undulatus<br />

Sceloporus cautus<br />

Sceloporus horridus<br />

Sceloporus edwardtaylori<br />

Sceloporus spinosus<br />

Sceloporus taeniocnemis<br />

Sceloporus smaragdinus<br />

Sceloporus malachiticus<br />

Sceloporus lundelli<br />

Sceloporus cryptus<br />

Sceloporus subpictus<br />

Sceloporus formosus<br />

Sceloporus stejnegeri<br />

Sceloporus adleri<br />

100<br />

Polychrotidae<br />

Hoplocercidae<br />

(ii)<br />

63<br />

99<br />

99<br />

95<br />

96<br />

69 Polychrus gutturosus<br />

100<br />

Polychrus acutirostris<br />

Polychrus femoralis<br />

92<br />

Polychrus marmoratus<br />

100<br />

Hoplocercus spinosus<br />

Morunasaurus annularis<br />

100<br />

Enyalioides laticeps<br />

88<br />

Enyalioides heterolepis<br />

Enyalioides oshaughnessyi<br />

Enyalioides palpebralis<br />

96 Enyalioides microlepis<br />

96<br />

96 Enyalioides praestabilis<br />

Chalarodon madagascariensis<br />

90 Oplurus cyclurus<br />

99 Oplurus cuvieri<br />

100<br />

Oplurus quadrimaculatus<br />

Oplurus saxicola<br />

73<br />

96<br />

Oplurus grandidieri<br />

88 Oplurus fierinensis<br />

Enyalius bilineatus<br />

Enyalius leechii<br />

97<br />

Urostrophus gallardoi<br />

99<br />

Anisolepis longicauda<br />

Urostrophus vautieri<br />

100 98 Pristidactylus scapulatus<br />

100<br />

Diplolaemus darwinii<br />

Pristidactylus torquatus<br />

Leiosaurus bellii<br />

78<br />

7770 Leiosaurus paronae<br />

Leiosaurus catamarcensis<br />

Ctenoblepharys adspersa<br />

100 Phymaturus indistinctus<br />

Phymaturus somuncurensis<br />

100 98 Phymaturus patagonicus<br />

100 Phymaturus dorsimaculatus<br />

Phymaturus palluma<br />

96<br />

Phymaturus punae<br />

89<br />

Phymaturus mallimaccii<br />

88 Phymaturus antofagastensis<br />

Liolaemus tenuis<br />

Liolaemus lemniscatus<br />

95 99<br />

Liolaemus monticola<br />

100 Liolaemus nitidus<br />

68 Liolaemus nigroviridis<br />

93 Liolaemus fuscus<br />

100 Liolaemus atacamensis<br />

Liolaemus zapallarensis<br />

91<br />

Liolaemus pseudolemniscatus<br />

Liolaemus nigromaculatus<br />

67 Liolaemus platei<br />

66 97<br />

99<br />

Liolaemus paulinae<br />

99 Liolaemus austromendocinus<br />

100<br />

Liolaemus thermarum<br />

100 Liolaemus dicktracyi<br />

Liolaemus heliodermis<br />

95<br />

98 Liolaemus capillitas<br />

83 Liolaemus umbrifer<br />

Liolaemus petrophilus<br />

100 Liolaemus buergeri<br />

59 Liolaemus ceii<br />

100 Liolaemus leopardinus<br />

100 6698 Liolaemus kriegi<br />

Liolaemus elongatus<br />

Liolaemus coeruleus<br />

98 Liolaemus bellii<br />

Liolaemus gravenhorstii<br />

97<br />

100<br />

Liolaemus schroederi<br />

99 Liolaemus chiliensis<br />

Liolaemus cyanogaster<br />

98 Liolaemus pictus<br />

Liolaemus hernani<br />

86 99<br />

Liolaemus bibronii<br />

56<br />

Liolaemus pagaburoi<br />

Liolaemus bitaeniatus<br />

100 53 Liolaemus chaltin<br />

100<br />

100 Liolaemus puna<br />

97 68 Liolaemus walkeri<br />

91 Liolaemus yanalcu<br />

Liolaemus ramirezae<br />

74 Liolaemus robertmertensi<br />

84 Liolaemus gracilis<br />

100 Liolaemus saxatilis<br />

94 Liolaemus hatcheri<br />

Liolaemus lineomaculatus<br />

70 Liolaemus silvanae<br />

100 Liolaemus kolengh<br />

100 Liolaemus magellanicus<br />

Liolaemus uptoni<br />

99 Liolaemus somuncurae<br />

100<br />

100 Liolaemus baguali<br />

100 95<br />

Liolaemus tari<br />

Liolaemus escarchadosi<br />

Liolaemus kingii<br />

100<br />

83<br />

Liolaemus gallardoi<br />

Liolaemus sarmientoi<br />

99 Liolaemus scolaroi<br />

98 Liolaemus zullyae<br />

78 Liolaemus tristis<br />

Liolaemus archeforus<br />

100<br />

Liolaemus stolzmanni<br />

100 Liolaemus orientalis<br />

98<br />

Liolaemus famatinae<br />

Liolaemus vallecurensis<br />

82 82 Liolaemus ruibali<br />

Liolaemus audituvelatus<br />

72<br />

78 99<br />

Liolaemus fabiani<br />

Liolaemus huacahuasicus<br />

84<br />

Liolaemus dorbignyi<br />

87 Liolaemus molinai<br />

Liolaemus multicolor<br />

100 Liolaemus andinus<br />

100<br />

Liolaemus pseudoanomalus<br />

97 99<br />

Liolaemus occipitalis<br />

Liolaemus lutzae<br />

Liolaemus salinicola<br />

85 65 Liolaemus riojanus<br />

100 Liolaemus multimaculatus<br />

99 Liolaemus scapularis<br />

98 Liolaemus azarai<br />

100 Liolaemus wiegmannii<br />

100 Liolaemus rothi<br />

99<br />

Liolaemus boulengeri<br />

Liolaemus inacayali<br />

85 Liolaemus telsen<br />

99<br />

Liolaemus cuyanus<br />

Liolaemus donosobarrosi<br />

100<br />

Liolaemus melanops<br />

Liolaemus canqueli<br />

98 93 Liolaemus morenoi<br />

64 Liolaemus chehuachekenk<br />

95<br />

79<br />

Opluridae<br />

Leiosaurinae<br />

Liolaemidae<br />

R<br />

Enyaliinae<br />

94<br />

100<br />

78<br />

95<br />

99100<br />

100<br />

94<br />

100<br />

66<br />

99<br />

67 86<br />

Liolaemus fitzingerii<br />

Liolaemus xanthoviridis<br />

Liolaemus hermannunezi<br />

Liolaemus uspallatensis<br />

Liolaemus chacoensis<br />

Liolaemus olongasta<br />

Liolaemus grosseorum<br />

Liolaemus darwinii<br />

Liolaemus laurenti<br />

Liolaemus koslowskyi<br />

Liolaemus quilmes<br />

Liolaemus espinozai<br />

Liolaemus abaucan<br />

Liolaemus crepuscularis<br />

Liolaemus irregularis<br />

100<br />

Liolaemus albiceps<br />

Liolaemus calchaqui<br />

Liolaemus ornatus<br />

Liolaemus lavillai<br />

Enyaliidae


R<br />

Figure 19<br />

(i)<br />

(ii)<br />

(i)<br />

99<br />

100<br />

Dactyloidae<br />

100<br />

Laemanctus longipes<br />

Corytophanes percarinatus<br />

Corytophanes cristatus<br />

Basiliscus galeritus<br />

Basiliscus vittatus<br />

98<br />

92<br />

Basiliscus plumifrons<br />

Basiliscus basiliscus<br />

67<br />

Anolis boettgeri<br />

Anolis luciae<br />

64<br />

Anolis bonairensis<br />

Anolis griseus<br />

100<br />

100<br />

62<br />

96<br />

100<br />

100<br />

89<br />

Anolis trinitatis<br />

Anolis richardii<br />

Anolis aeneus<br />

Anolis roquet<br />

Anolis extremus<br />

Anolis fitchi<br />

Anolis huilae<br />

96 Anolis peraccae<br />

Anolis festae<br />

Anolis chloris<br />

95<br />

Anolis ventrimaculatus<br />

90<br />

99<br />

96<br />

Anolis aequatorialis<br />

Anolis gemmosus<br />

Anolis euskalerriari<br />

100<br />

100<br />

9965<br />

Anolis nicefori<br />

Anolis heterodermus<br />

Anolis vanzolinii<br />

Anolis inderenae<br />

83<br />

100<br />

100<br />

Anolis punctatus<br />

Anolis transversalis<br />

Anolis tigrinus<br />

99<br />

Anolis jacare<br />

100 Anolis anatoloros<br />

71 98<br />

Anolis calimae<br />

Anolis neblininus<br />

100<br />

Anolis agassizi<br />

Anolis microtus<br />

100<br />

100<br />

80<br />

98<br />

Anolis insignis<br />

Anolis danieli<br />

Anolis fraseri<br />

Anolis chocorum<br />

87<br />

100<br />

100<br />

Anolis princeps<br />

Anolis frenatus<br />

Anolis casildae<br />

Anolis maculigula<br />

100<br />

Anolis bartschi<br />

75<br />

Anolis vermiculatus<br />

79<br />

82<br />

Anolis occultus<br />

Anolis monticola<br />

Anolis darlingtoni<br />

99<br />

56<br />

100<br />

100<br />

Anolis bahorucoensis<br />

Anolis dolichocephalus<br />

Anolis hendersoni<br />

94<br />

Anolis coelestinus<br />

Anolis chlorocyanus<br />

100<br />

59 99<br />

90<br />

Anolis singularis<br />

Anolis aliniger<br />

Anolis smallwoodi<br />

100 Anolis noblei<br />

Anolis baracoae<br />

59 Anolis luteogularis<br />

89 Anolis equestris<br />

98<br />

98<br />

Anolis etheridgei<br />

Anolis fowleri<br />

100 97<br />

86<br />

97<br />

99<br />

Anolis insolitus<br />

Anolis barbouri<br />

Anolis olssoni<br />

Anolis semilineatus<br />

Anolis alumina<br />

Anolis argenteolus<br />

95 100 Anolis barbatus<br />

Anolis porcus<br />

86<br />

86 Anolis chamaeleonides<br />

66 Anolis guamuhaya<br />

Anolis cuvieri<br />

Anolis christophei<br />

93 90<br />

90<br />

Anolis eugenegrahami<br />

Anolis ricordi<br />

10095 Anolis baleatus<br />

Anolis barahonae<br />

100<br />

99<br />

Anolis marcanoi<br />

Anolis strahmi<br />

Anolis longitibialis<br />

96<br />

99<br />

95<br />

Anolis haetianus<br />

Anolis shrevei<br />

Anolis armouri<br />

Anolis cybotes<br />

60<br />

99 Anolis whitemani<br />

Anolis lucius<br />

97 Anolis clivicola<br />

Anolis rejectus<br />

100 100<br />

Anolis cyanopleurus<br />

Anolis cupeyalensis<br />

99<br />

Anolis macilentus<br />

Anolis alfaroi<br />

65<br />

Anolis vanidicus<br />

76<br />

100<br />

Anolis inexpectatus<br />

Anolis alutaceus<br />

86<br />

85<br />

100<br />

Anolis placidus<br />

Anolis sheplani<br />

Anolis alayoni<br />

100 Anolis paternus<br />

100<br />

Anolis angusticeps<br />

80<br />

Anolis garridoi<br />

98 89<br />

97<br />

100 Anolis guazuma<br />

Anolis loysiana<br />

Anolis pumilus<br />

95<br />

100<br />

100<br />

Anolis centralis<br />

Anolis argillaceus<br />

Anolis oporinus<br />

Anolis isolepis<br />

99<br />

100<br />

Anolis carolinensis<br />

Anolis porcatus<br />

Anolis longiceps<br />

Anolis brunneus<br />

100 Anolis maynardi<br />

74<br />

97<br />

Anolis allisoni<br />

Anolis smaragdinus<br />

Corytophanidae<br />

100<br />

100<br />

56<br />

99<br />

100<br />

99<br />

100<br />

90<br />

77<br />

100<br />

95<br />

57<br />

96<br />

94 100<br />

Anolis wattsi<br />

Anolis pogus<br />

Anolis leachii<br />

Anolis bimaculatus<br />

Anolis gingivinus<br />

Anolis oculatus<br />

Anolis terraealtae<br />

Anolis ferreus<br />

Anolis lividus<br />

Anolis nubilus<br />

Anolis sabanus<br />

Anolis marmoratus<br />

Anolis distichus<br />

Anolis websteri<br />

Anolis brevirostris<br />

Anolis marron<br />

Anolis caudalis<br />

95 100 Anolis acutus<br />

Anolis stratulus<br />

Anolis evermanni<br />

100<br />

Anolis poncensis<br />

88<br />

Anolis gundlachi<br />

91<br />

Anolis pulchellus<br />

100<br />

Anolis krugi<br />

98 100 Anolis monensis<br />

Anolis cooki<br />

100 Anolis scriptus<br />

96 Anolis ernestwilliamsi<br />

75<br />

100 Anolis desechensis<br />

100 Anolis cristatellus<br />

98<br />

Anolis imias<br />

Anolis rubribarbaris<br />

90<br />

100<br />

98<br />

100<br />

Anolis allogus<br />

Anolis ahli<br />

Anolis guafe<br />

Anolis confusus<br />

100<br />

72<br />

94<br />

Anolis jubar<br />

Anolis homolechis<br />

Anolis mestrei<br />

100<br />

99<br />

Anolis ophiolepis<br />

Anolis sagrei<br />

89<br />

99<br />

Anolis quadriocellifer<br />

Anolis bremeri<br />

58<br />

100<br />

Anolis lineatopus<br />

Anolis reconditus<br />

Anolis valencienni<br />

100<br />

95<br />

100<br />

90<br />

Anolis opalinus<br />

Anolis garmani<br />

Anolis conspersus<br />

100 Anolis grahami<br />

Anolis auratus<br />

99<br />

Anolis annectens<br />

100<br />

Anolis onca<br />

Anolis lineatus<br />

52<br />

Anolis meridionalis<br />

84<br />

Anolis nitens<br />

59<br />

Anolis bombiceps<br />

99<br />

90<br />

99 Anolis chrysolepis<br />

Anolis loveridgei<br />

100<br />

Anolis purpurgularis<br />

Anolis utilensis<br />

96<br />

Anolis crassulus<br />

Anolis sminthus<br />

72<br />

94<br />

Anolis polyrhachis<br />

Anolis uniformis<br />

Anolis bitectus<br />

Anolis biporcatus<br />

95<br />

100<br />

Anolis woodi<br />

Anolis aquaticus<br />

92 93<br />

Anolis quercorum<br />

Anolis ortonii<br />

Anolis laeviventris<br />

100<br />

Anolis intermedius<br />

Anolis isthmicus<br />

100<br />

Anolis sericeus<br />

100<br />

86<br />

69<br />

Anolis pachypus<br />

Anolis humilis<br />

Anolis altae<br />

100<br />

86<br />

Anolis kemptoni<br />

Anolis fuscoauratus<br />

93<br />

98<br />

Anolis cupreus<br />

Anolis polylepis<br />

90 99<br />

Anolis capito<br />

Anolis tropidonotus<br />

Anolis ocelloscapularis<br />

Anolis carpenteri<br />

100 100 Anolis bicaorum<br />

56<br />

Anolis lemurinus<br />

91<br />

Anolis limifrons<br />

100<br />

Anolis zeus<br />

94 Anolis oxylophus<br />

86<br />

Anolis lionotus<br />

97 Anolis tropidogaster<br />

96 Anolis poecilopus<br />

92 Anolis trachyderma<br />

(ii)


S<br />

Figure 20<br />

100<br />

90<br />

100<br />

100<br />

T-AA<br />

97<br />

83<br />

97<br />

100<br />

91<br />

93<br />

100<br />

100<br />

100<br />

100<br />

100<br />

Liotyphlops albirostris<br />

Typhlophis squamosus<br />

Tricheilostoma bicolor<br />

Siagonodon septemstriatus<br />

Epictia albifrons<br />

Epictia goudotii<br />

Epictia columbi<br />

Trilepida macrolepis<br />

Rena dulcis<br />

Rena humilis<br />

100 Tetracheilostoma carlae<br />

Tetracheilostoma breuili<br />

Mitophis asbolepis<br />

Mitophis pyrites<br />

Mitophis leptipileptus<br />

Myriopholis longicauda<br />

Myriopholis algeriensis<br />

Myriopholis rouxestevae<br />

100 Myriopholis boueti<br />

Myriopholis blanfordi<br />

100 Myriopholis macrorhyncha<br />

Myriopholis adleri<br />

Namibiana occidentalis<br />

Leptotyphlops nigroterminus<br />

Leptotyphlops nigricans<br />

Leptotyphlops sylvicolus<br />

Leptotyphlops conjunctus<br />

Leptotyphlops distanti<br />

Leptotyphlops scutifrons<br />

Gerrhopilus hedraeus<br />

Gerrhopilus mirus<br />

Xenotyphlops grandidieri<br />

90<br />

96<br />

71<br />

95<br />

100<br />

Typhlops brongersmianus<br />

Typhlops reticulatus<br />

Typhlops biminiensis<br />

Typhlops pusillus<br />

Typhlops hectus<br />

Typhlops syntherus<br />

Typhlops eperopeus<br />

92<br />

87<br />

Typhlops lumbricalis<br />

84<br />

Typhlops schwartzi<br />

56<br />

100<br />

Typhlops titanops<br />

Typhlops sulcatus<br />

77<br />

Typhlops rostellatus<br />

Typhlops capitulatus<br />

77<br />

Typhlops jamaicensis<br />

92 Typhlops sylleptor<br />

92 99 Typhlops agoralionis<br />

100<br />

Typhlops caymanensis<br />

Typhlops arator<br />

100<br />

Typhlops contorhinus<br />

74<br />

Typhlops anchaurus<br />

Typhlops anousius<br />

Typhlops notorachius<br />

Typhlops monastus<br />

100<br />

Typhlops dominicanus<br />

86 Typhlops granti<br />

87<br />

Typhlops hypomethes<br />

84<br />

99<br />

Typhlops platycephalus<br />

95 Typhlops richardi<br />

75 Typhlops catapontus<br />

Rhinotyphlops lalandei<br />

Letheobia feae<br />

100 Letheobia newtoni<br />

Letheobia obtusa<br />

Typhlops elegans<br />

100 100 Afrotyphlops angolensis<br />

87<br />

77<br />

99<br />

87<br />

Megatyphlops schlegelii<br />

Afrotyphlops fornasinii<br />

89<br />

Afrotyphlops bibronii<br />

Afrotyphlops lineolatus<br />

99 Afrotyphlops congestus<br />

72 Afrotyphlops punctatus<br />

100<br />

Typhlops vermicularis<br />

Typhlops arenarius<br />

Typhlops luzonensis<br />

Typhlops ruber<br />

76<br />

Ramphotyphlops albiceps<br />

99<br />

84<br />

100<br />

97<br />

Typhlops pammeces<br />

Ramphotyphlops braminus<br />

Typhlopidae sp. (Sri Lanka)<br />

72<br />

65<br />

100<br />

Ramphotyphlops lineatus<br />

Ramphotyphlops acuticaudus<br />

Acutotyphlops subocularis<br />

Acutotyphlops kunuaensis<br />

Ramphotyphlops polygrammicus<br />

91 74<br />

Austrotyphlops diversus<br />

75<br />

Austrotyphlops howi<br />

87<br />

Typhlopidae<br />

100 Anomalepididae<br />

100<br />

100<br />

100 100<br />

56<br />

100<br />

98<br />

79<br />

69<br />

99<br />

100<br />

51 100<br />

98<br />

76<br />

99<br />

100 52<br />

59<br />

92<br />

87<br />

98<br />

81<br />

93<br />

74 91<br />

Austrotyphlops guentheri<br />

Austrotyphlops bituberculatus<br />

Austrotyphlops grypus<br />

Austrotyphlops longissimus<br />

Austrotyphlops leptosomus<br />

Austrotyphlops unguirostris<br />

Austrotyphlops ammodytes<br />

Austrotyphlops kimberleyensis<br />

96<br />

Austrotyphlops troglodytes<br />

Austrotyphlops ganei<br />

Austrotyphlops ligatus<br />

Ramphotyphlops bicolor<br />

Austrotyphlops pinguis<br />

90 Austrotyphlops splendidus<br />

Austrotyphlops waitii<br />

Austrotyphlops australis<br />

Austrotyphlops endoterus<br />

Austrotyphlops hamatus<br />

Austrotyphlops pilbarensis<br />

96<br />

Leptotyphlopidae<br />

Gerrhopilidae<br />

Xenotyphlopidae


T<br />

Figure 21<br />

U-AA<br />

98 100<br />

Anilius scytale<br />

Trachyboa gularis<br />

Trachyboa boulengeri<br />

Aniliidae<br />

100<br />

100 Tropidophis pardalis<br />

Tropidophis wrighti<br />

100<br />

53<br />

Tropidophis greenwayi<br />

100 Tropidophis haetianus<br />

Tropidophis feicki<br />

98 Tropidophis melanurus<br />

Xenophidion schaeferi<br />

100<br />

Casarea dussumieri<br />

Sanzinia madagascariensis<br />

Acrantophis madagascariensis<br />

Bolyeriidae<br />

Sanziniinae<br />

100 100 Acrantophis dumerili<br />

Calabaria reinhardtii<br />

100<br />

Exiliboa placata<br />

100<br />

Ungaliophis continentalis<br />

99<br />

Charina bottae<br />

100<br />

Lichanura trivirgata<br />

Ungaliophiinae<br />

99<br />

100<br />

81<br />

Candoia aspera<br />

Candoia carinata<br />

Candoia bibroni<br />

Candoiinae<br />

69<br />

100<br />

87<br />

95<br />

Eryx jayakari<br />

Eryx colubrinus<br />

53<br />

Eryx conicus<br />

Eryx johnii<br />

87<br />

Eryx jaculus<br />

Erycinae<br />

83<br />

96 Eryx elegans<br />

93 Eryx miliaris<br />

100 Eryx tataricus<br />

Boa constrictor<br />

Boidae<br />

97<br />

98<br />

99 Corallus hortulanus<br />

Corallus caninus<br />

Corallus annulatus<br />

Epicrates cenchria<br />

88 100<br />

96<br />

100<br />

Eunectes murinus<br />

Eunectes notaeus<br />

94<br />

Epicrates angulifer<br />

Epicrates inornatus<br />

85<br />

Epicrates monensis<br />

Boinae<br />

90 Epicrates fordi<br />

Epicrates subflavus<br />

95 Epicrates chrysogaster<br />

100<br />

92<br />

Epicrates exsul<br />

Epicrates striatus<br />

65<br />

100<br />

Anomochilus leonardi<br />

Cylindrophis maculatus<br />

Cylindrophis ruffus<br />

Melanophidium punctatum<br />

98<br />

86<br />

90<br />

73<br />

Brachyophidium rhodogaster<br />

Uropeltis liura<br />

Uropeltis ceylanicus<br />

Rhinophis travancoricus<br />

100 Uropeltis melanogaster<br />

89<br />

80<br />

69<br />

Uropeltis phillipsi<br />

Rhinophis drummondhayi<br />

82<br />

Rhinophis dorsimaculatus<br />

77<br />

Rhinophis philippinus<br />

Rhinophis oxyrhynchus<br />

84<br />

8580<br />

Pseudotyphlops philippinus<br />

Rhinophis homolepis<br />

Rhinophis blythii<br />

98<br />

100<br />

99<br />

Xenopeltis unicolor<br />

Loxocemus bicolor<br />

Python brongersmai<br />

Python regius<br />

99<br />

Python curtus<br />

86<br />

96<br />

Python sebae<br />

Python molurus<br />

100<br />

98<br />

Broghammerus reticulatus<br />

Broghammerus timoriensis<br />

Morelia oenpelliensis<br />

76<br />

97<br />

Morelia boeleni<br />

Morelia amethistina<br />

100 100<br />

Aspidites ramsayi<br />

Aspidites melanocephalus<br />

75<br />

Liasis olivaceus<br />

Apodora papuana<br />

98<br />

96 Liasis mackloti<br />

100 Liasis fuscus<br />

Leiopython albertisii<br />

100<br />

Bothrochilus boa<br />

71<br />

96<br />

85<br />

Morelia viridis<br />

84 Morelia carinata<br />

100<br />

Morelia spilota<br />

Morelia bredli<br />

51<br />

83100<br />

Antaresia maculosa<br />

Antaresia perthensis<br />

Antaresia stimsoni<br />

Antaresia childreni<br />

Tropidophiidae<br />

Xenophidiidae<br />

Calabariidae<br />

Anomochilidae<br />

Cylindrophiidae<br />

Uropeltidae<br />

Xenopeltidae<br />

Loxocemidae<br />

Pythonidae


U<br />

Figure 22<br />

Acrochordidae<br />

(i)<br />

(ii)<br />

(i)<br />

100<br />

95<br />

Xenodermatidae<br />

100<br />

V-AA<br />

95<br />

Pareatidae<br />

100<br />

95<br />

100<br />

99<br />

Viperinae<br />

100<br />

Viperidae<br />

96<br />

100<br />

98<br />

95<br />

100<br />

94<br />

100<br />

100<br />

Acrochordus javanicus<br />

Acrochordus granulatus<br />

Acrochordus arafurae<br />

Stoliczkia borneensis<br />

Xenodermus javanicus<br />

Achalinus meiguensis<br />

Achalinus rufescens<br />

Aplopeltura boa<br />

Pareas monticola<br />

Pareas boulengeri<br />

Pareas formosensis<br />

Pareas macularius<br />

Pareas hamptoni<br />

Eristicophis macmahoni<br />

Pseudocerastes persicus<br />

Pseudocerastes fieldi<br />

Macrovipera lebetina<br />

Macrovipera schweizeri<br />

100<br />

Montivipera xanthina<br />

Montivipera raddei<br />

Montivipera bornmuelleri<br />

94 Montivipera albizona<br />

83<br />

88<br />

Montivipera wagneri<br />

Daboia palaestinae<br />

96<br />

Daboia russelii<br />

59 Macrovipera deserti<br />

100 Macrovipera mauritanica<br />

95<br />

Vipera ammodytes<br />

Vipera latastei<br />

100<br />

100 Vipera aspis<br />

Vipera seoanei<br />

93<br />

77 Vipera nikolskii<br />

100<br />

Vipera berus<br />

97<br />

100<br />

97<br />

91<br />

99<br />

86<br />

100<br />

51<br />

96<br />

100<br />

99<br />

97<br />

99<br />

85<br />

59<br />

80<br />

89<br />

93<br />

77<br />

53<br />

Vipera barani<br />

Vipera kaznakovi<br />

Vipera eriwanensis<br />

Vipera ursinii<br />

Vipera dinniki<br />

Vipera renardi<br />

Vipera lotievi<br />

Asthenodipsas vertebralis<br />

Pareas margaritophorus<br />

100 Pareas carinatus<br />

100 Pareas nuchalis<br />

Proatheris superciliaris<br />

Cerastes vipera<br />

Cerastes cerastes<br />

Cerastes gasperettii<br />

Causus resimus<br />

Causus rhombeatus<br />

Causus defilippii<br />

Echis omanensis<br />

100<br />

Echis coloratus<br />

Atheris ceratophora<br />

Atheris barbouri<br />

Atheris chlorechis<br />

Atheris hispida<br />

100<br />

Atheris squamigera<br />

Atheris nitschei<br />

Echis carinatus<br />

Atheris desaixi<br />

Bitis worthingtoni<br />

63<br />

Bitis arietans<br />

Bitis nasicornis<br />

100<br />

Bitis gabonica<br />

98<br />

99<br />

100<br />

99<br />

100<br />

100<br />

62<br />

100<br />

100<br />

91<br />

98<br />

100<br />

100<br />

100<br />

Bitis peringueyi<br />

Bitis caudalis<br />

Bitis xeropaga<br />

Bitis atropos<br />

Bitis cornuta<br />

Bitis rubida<br />

Echis ocellatus<br />

Echis jogeri<br />

Echis leucogaster<br />

Echis pyramidum<br />

(ii)<br />

100<br />

100<br />

Crotalinae<br />

Azemiops feae<br />

91<br />

Garthius chaseni<br />

Tropidolaemus wagleri<br />

50<br />

Deinagkistrodon acutus<br />

Calloselasma rhodostoma<br />

Hypnale nepa<br />

100<br />

Hypnale hypnale<br />

100<br />

Hypnale zara<br />

99<br />

95<br />

Trimeresurus puniceus<br />

98<br />

Trimeresurus borneensis<br />

Trimeresurus malabaricus<br />

100<br />

96 Trimeresurus gramineus<br />

Trimeresurus trigonocephalus<br />

100<br />

99<br />

Trimeresurus hageni<br />

Trimeresurus malcolmi<br />

Trimeresurus flavomaculatus<br />

99<br />

89<br />

Trimeresurus schultzei<br />

97<br />

Trimeresurus sumatranus<br />

98 89<br />

Trimeresurus popeiorum<br />

Trimeresurus tibetanus<br />

94 Trimeresurus medoensis<br />

Trimeresurus yunnanensis<br />

Trimeresurus gumprechti<br />

81 Trimeresurus stejnegeri<br />

72<br />

96 Trimeresurus vogeli<br />

93<br />

100 Trimeresurus kanburiensis<br />

Trimeresurus venustus<br />

Trimeresurus macrops<br />

96 Trimeresurus fasciatus<br />

64<br />

Trimeresurus insularis<br />

85 Trimeresurus septentrionalis<br />

100<br />

Trimeresurus andersonii<br />

93 Trimeresurus albolabris<br />

Trimeresurus cantori<br />

77<br />

100<br />

Trimeresurus erythrurus<br />

97<br />

99 Trimeresurus purpureomaculatus<br />

100<br />

Ovophis monticola<br />

Ovophis zayuensis<br />

98<br />

Ovophis tonkinensis<br />

97<br />

Protobothrops kaulbacki<br />

Protobothrops sieversorum<br />

Protobothrops mangshanensis<br />

99 92<br />

Protobothrops cornutus<br />

100 Protobothrops xiangchengensis<br />

90<br />

Protobothrops jerdonii<br />

100 100<br />

Protobothrops elegans<br />

Protobothrops mucrosquamatus<br />

63 100 Protobothrops flavoviridis<br />

Protobothrops tokarensis<br />

100<br />

Ovophis okinavensis<br />

Trimeresurus gracilis<br />

85<br />

100<br />

Gloydius tsushimaensis<br />

100 Gloydius brevicaudus<br />

99 Gloydius ussuriensis<br />

Gloydius blomhoffii<br />

100<br />

Gloydius strauchi<br />

97<br />

Gloydius halys<br />

96<br />

100<br />

Gloydius shedaoensis<br />

Gloydius intermedius<br />

9995 Gloydius saxatilis<br />

100 Atropoides occiduus<br />

100 Atropoides nummifer<br />

99<br />

Atropoides olmec<br />

Atropoides picadoi<br />

Cerrophidion godmani<br />

94<br />

Cerrophidion tzotzilorum<br />

90<br />

99 Cerrophidion petlalcalensis<br />

78<br />

Porthidium ophryomegas<br />

96<br />

Porthidium dunni<br />

100<br />

Porthidium yucatanicum<br />

Porthidium nasutum<br />

100<br />

8690<br />

Porthidium porrasi<br />

Porthidium lansbergii<br />

Bothrocophias campbelli<br />

99 Bothrocophias microphthalmus<br />

Bothrocophias hyoprora<br />

Bothrops pictus<br />

100<br />

Rhinocerophis ammodytoides<br />

96 100 Rhinocerophis cotiara<br />

Rhinocerophis fonsecai<br />

90 94 Rhinocerophis alternatus<br />

99<br />

Rhinocerophis itapetiningae<br />

100 Bothropoides erythromelas<br />

Bothropoides diporus<br />

91 100<br />

94 Bothropoides neuwiedi<br />

100 Bothropoides jararaca<br />

Bothropoides insularis<br />

90 Bothropoides alcatraz<br />

99 100<br />

Bothriopsis pulchra<br />

Bothriopsis chloromelas<br />

98 Bothriopsis taeniata<br />

95 Bothriopsis bilineata<br />

100<br />

Bothrops brazili<br />

100 Bothrops jararacussu<br />

Bothrops punctatus<br />

100 97 Bothrops caribbaeus<br />

Bothrops lanceolatus<br />

100<br />

Bothrops asper<br />

87 Bothrops marajoensis<br />

90 Bothrops colombiensis<br />

99 Bothrops atrox<br />

72 Bothrops moojeni<br />

Bothrops leucurus<br />

100<br />

Ophryacus undulatus<br />

Mixcoatlus barbouri<br />

85<br />

100<br />

Mixcoatlus melanurus<br />

100<br />

Lachesis stenophrys<br />

Lachesis muta<br />

Bothriechis schlegelii<br />

53<br />

51<br />

Bothriechis nigroviridis<br />

98<br />

Bothriechis lateralis<br />

98 Bothriechis marchi<br />

100 100 Bothriechis thalassinus<br />

Bothriechis bicolor<br />

91<br />

Bothriechis aurifer<br />

84 Bothriechis rowleyi<br />

100<br />

Agkistrodon contortrix<br />

96<br />

99 99<br />

100<br />

87<br />

74<br />

97<br />

97<br />

99<br />

100<br />

Agkistrodon piscivorus<br />

Agkistrodon taylori<br />

Agkistrodon bilineatus<br />

Sistrurus catenatus<br />

Sistrurus miliarius<br />

Crotalus pricei<br />

100<br />

99<br />

63<br />

82<br />

100<br />

100 91<br />

100<br />

95<br />

56<br />

98<br />

52<br />

98<br />

77<br />

89 90<br />

100<br />

58<br />

100<br />

Crotalus intermedius<br />

Crotalus transversus<br />

Crotalus tancitarensis<br />

Crotalus triseriatus<br />

Crotalus pusillus<br />

Crotalus lepidus<br />

Crotalus aquilus<br />

Crotalus enyo<br />

Crotalus polystictus<br />

Crotalus cerastes<br />

Crotalus ravus<br />

Crotalus willardi<br />

Crotalus horridus<br />

Crotalus durissus<br />

Crotalus simus<br />

Crotalus basiliscus<br />

Crotalus molossus<br />

Crotalus totonacus<br />

Crotalus ruber<br />

Crotalus catalinensis<br />

Crotalus atrox<br />

Crotalus tortugensis<br />

Crotalus scutulatus<br />

100<br />

100<br />

Azemiopinae<br />

Crotalus oreganus<br />

Crotalus viridis<br />

Crotalus mitchellii<br />

Crotalus tigris<br />

Crotalus adamanteus


V<br />

Figure 23<br />

X-AA<br />

100<br />

Homalopsidae<br />

58<br />

98<br />

95<br />

95<br />

100<br />

100<br />

96 95<br />

90<br />

W<br />

100<br />

100<br />

Enhydris chinensis<br />

53<br />

Enhydris plumbea<br />

97<br />

100 Enhydris matannensis<br />

Enhydris enhydris<br />

Enhydris jagorii<br />

100<br />

Enhydris longicauda<br />

100<br />

100 Enhydris innominata<br />

100<br />

Myron richardsonii<br />

100<br />

Pseudoferania polylepis<br />

71<br />

Erpeton tentaculatum<br />

89<br />

Enhydris bocourti<br />

96<br />

Bitia hydroides<br />

85<br />

Cantoria violacea<br />

Gerarda prevostiana<br />

70<br />

Fordonia leucobalia<br />

88 98<br />

Enhydris punctata<br />

Homalopsis buccata<br />

88 Cerberus australis<br />

97 Cerberus microlepis<br />

100 100<br />

Cerberus rynchops<br />

Micrelaps bicoloratus<br />

Oxyrhabdium leporinum<br />

100<br />

Prosymna ruspolii<br />

86<br />

Prosymna visseri<br />

Prosymna janii<br />

100<br />

Prosymna greigerti<br />

Prosymna meleagris<br />

99<br />

Rhamphiophis oxyrhynchus<br />

99<br />

Rhamphiophis rubropunctatus<br />

96<br />

Malpolon monspessulanus<br />

Rhagerhis moilensis<br />

54<br />

Mimophis mahfalensis<br />

Dipsina multimaculata<br />

97<br />

100<br />

Hemirhagerrhis viperina<br />

100<br />

Hemirhagerrhis kelleri<br />

Hemirhagerrhis hildebrandtii<br />

65<br />

Psammophylax acutus<br />

Psammophylax rhombeatus<br />

97<br />

100<br />

Psammophylax variabilis<br />

90<br />

95 Psammophylax tritaeniatus<br />

70<br />

Psammophis crucifer<br />

Psammophis lineolatus<br />

100<br />

Psammophis condanarus<br />

Psammophis trigrammus<br />

100<br />

Psammophis jallae<br />

100 Psammophis leightoni<br />

8550<br />

Psammophis notostictus<br />

100<br />

Psammophis angolensis<br />

76<br />

Psammophis schokari<br />

Psammophis punctulatus<br />

80<br />

Psammophis praeornatus<br />

100 Psammophis tanganicus<br />

69<br />

Psammophis biseriatus<br />

Psammophis lineatus<br />

96 97 Psammophis subtaeniatus<br />

73<br />

Psammophis sudanensis<br />

60 Psammophis orientalis<br />

100 Psammophis rukwae<br />

Psammophis sibilans<br />

80 Psammophis leopardinus<br />

71 100 Psammophis mossambicus<br />

100 Psammophis phillipsi<br />

Homoroselaps lacteus<br />

Atractaspis irregularis<br />

98<br />

Lamprophiidae<br />

97<br />

54<br />

96<br />

64<br />

92<br />

82<br />

95<br />

92<br />

76<br />

96<br />

98<br />

95<br />

99<br />

98<br />

99<br />

100 94<br />

93<br />

95<br />

90<br />

97<br />

98 58<br />

100<br />

100 92<br />

69<br />

92<br />

97<br />

97<br />

100<br />

100 94<br />

94<br />

98<br />

95<br />

94<br />

99<br />

98<br />

100<br />

99<br />

100<br />

99<br />

93<br />

100<br />

98<br />

100<br />

100<br />

100<br />

100<br />

89 99<br />

100<br />

73<br />

100<br />

Atractaspis microlepidota<br />

Atractaspis boulengeri<br />

Atractaspis bibronii<br />

Atractaspis micropholis<br />

Atractaspis corpulenta<br />

Macrelaps microlepidotus<br />

Amblyodipsas polylepis<br />

Xenocalamus transvaalensis<br />

Amblyodipsas dimidiata<br />

100 100<br />

Polemon notatus<br />

Polemon collaris<br />

Polemon acanthias<br />

Aparallactus modestus<br />

Aparallactus werneri<br />

Aparallactus capensis<br />

Aparallactus guentheri<br />

Pythonodipsas carinata<br />

Pseudaspis cana<br />

Psammodynastes pulverulentus<br />

Psammodynastes pictus<br />

Buhoma procterae<br />

Buhoma depressiceps<br />

Lycophidion nigromaculatum<br />

Lycophidion laterale<br />

Lycophidion capense<br />

Lycophidion ornatum<br />

Hormonotus modestus<br />

Inyoka swazicus<br />

Gonionotophis stenophthalmus<br />

Gonionotophis nyassae<br />

Gonionotophis brussauxi<br />

Gonionotophis poensis<br />

Gonionotophis capensis<br />

Pseudoboodon lemniscatus<br />

Bothrolycus ater<br />

Bothrophthalmus brunneus<br />

100 Bothrophthalmus lineatus<br />

Boaedon virgatus<br />

Boaedon lineatus<br />

Boaedon fuliginosus<br />

Boaedon olivaceus<br />

Lamprophis guttatus<br />

Lamprophis fuscus<br />

Lamprophis aurora<br />

Lamprophis fiskii<br />

Lycodonomorphus inornatus<br />

Lycodonomorphus rufulus<br />

Lycodonomorphus laevissimus<br />

Lycodonomorphus whytii<br />

Amplorhinus multimaculatus<br />

Duberria variegata<br />

Duberria lutrix<br />

Ditypophis vivax<br />

Compsophis boulengeri<br />

Compsophis albiventris<br />

Compsophis laphystius<br />

Compsophis infralineatus<br />

Alluaudina bellyi<br />

100<br />

100<br />

100<br />

100<br />

Parastenophis betsileanus<br />

Leioheterodon geayi<br />

Leioheterodon madagascariensis<br />

Leioheterodon modestus<br />

Langaha madagascariensis<br />

Micropisthodon ochraceus<br />

Ithycyphus miniatus<br />

Ithycyphus oursi<br />

Madagascarophis colubrinus<br />

Dromicodryas quadrilineatus<br />

Dromicodryas bernieri<br />

Thamnosophis infrasignatus<br />

Thamnosophis martae<br />

Thamnosophis epistibes<br />

Thamnosophis stumpffi<br />

Thamnosophis lateralis<br />

Pseudoxyrhopus ambreensis<br />

Heteroliodon occipitalis<br />

Liopholidophis dimorphus<br />

Liopholidophis dolicocercus<br />

Liopholidophis sexlineatus<br />

Liophidium rhodogaster<br />

Liophidium vaillanti<br />

Liophidium therezieni<br />

Liophidium torquatum<br />

99<br />

100<br />

93<br />

100<br />

98<br />

100<br />

95<br />

98<br />

54<br />

Liophidium mayottensis<br />

Liophidium chabaudi<br />

Madagascarophis meridionalis<br />

Lycodryas inornatus<br />

Lycodryas citrinus<br />

Lycodryas sanctijohannis<br />

Lycodryas inopinae<br />

100 Lycodryas pseudogranuliceps<br />

Lycodryas granuliceps<br />

Atractaspidinae<br />

Aparallactinae<br />

Prosymninae<br />

Psammophiinae<br />

Pseudaspidinae<br />

Lamprophiinae<br />

Pseudoxyrhophiinae


W<br />

Figure 24<br />

100<br />

Elapidae<br />

Calliophis melanurus<br />

Maticora bivirgata<br />

61<br />

Micruroides euryxanthus<br />

Sinomicrurus japonicus<br />

100<br />

Sinomicrurus kelloggi<br />

85<br />

95<br />

Sinomicrurus macclellandi<br />

Micrurus corallinus<br />

100 Micrurus albicinctus<br />

90 Micrurus psyches<br />

Micrurus fulvius<br />

99 Micrurus diastema<br />

100<br />

Micrurus narduccii<br />

98<br />

Micrurus mipartitus<br />

Micrurus dissoleucus<br />

91<br />

Micrurus surinamensis<br />

97<br />

Micrurus hemprichii<br />

Micrurus lemniscatus<br />

Micrurus decoratus<br />

Micrurus baliocoryphus<br />

94<br />

97 Micrurus pyrrhocryptus<br />

98 Micrurus altirostris<br />

Micrurus ibiboboca<br />

88 Micrurus spixii<br />

98<br />

89 Micrurus frontalis<br />

59 Micrurus brasiliensis<br />

84<br />

Hemibungarus calligaster<br />

Ophiophagus hannah<br />

84<br />

100<br />

Dendroaspis angusticeps<br />

87<br />

Dendroaspis polylepis<br />

63<br />

Walterinnesia aegyptia<br />

Aspidelaps scutatus<br />

Hemachatus haemachatus<br />

Naja kaouthia<br />

100<br />

100<br />

Naja atra<br />

Naja naja<br />

91<br />

Naja mandalayensis<br />

99 Naja siamensis<br />

87 Naja sumatrana<br />

90 69<br />

Naja multifasciata<br />

Naja melanoleuca<br />

58<br />

Naja annulata<br />

100 Naja nivea<br />

83<br />

Naja annulifera<br />

95<br />

88 Naja haje<br />

92<br />

78<br />

Naja nubiae<br />

Naja pallida<br />

99 Naja katiensis<br />

96 Naja mossambica<br />

9676 Naja nigricollis<br />

Naja ashei<br />

100<br />

Elapsoidea nigra<br />

99 Elapsoidea semiannulata<br />

Elapsoidea sundevallii<br />

Bungarus flaviceps<br />

98<br />

Bungarus bungaroides<br />

Bungarus fasciatus<br />

90<br />

Bungarus sindanus<br />

100<br />

97<br />

Bungarus ceylonicus<br />

97<br />

Bungarus caeruleus<br />

100<br />

Bungarus niger<br />

99<br />

100 Bungarus multicinctus<br />

Bungarus candidus<br />

Laticauda laticaudata<br />

100<br />

Laticauda saintgironsi<br />

98<br />

Laticauda guineai<br />

100 Laticauda colubrina<br />

Micropechis ikaheka<br />

Toxicocalamus preussi<br />

100<br />

100<br />

Demansia vestigiata<br />

100<br />

Demansia papuensis<br />

91<br />

Demansia psammophis<br />

Toxicocalamus loriae<br />

82 100<br />

92<br />

85<br />

67<br />

89<br />

68<br />

75<br />

99<br />

88<br />

98<br />

71<br />

99<br />

94<br />

78<br />

91<br />

100 100<br />

100<br />

97<br />

100<br />

88<br />

95<br />

100 97<br />

98<br />

100<br />

100<br />

100<br />

90<br />

100<br />

99 98<br />

98<br />

98<br />

72<br />

100<br />

100<br />

100<br />

Furina ornata<br />

Furina diadema<br />

Simoselaps semifasciatus<br />

Simoselaps anomalus<br />

Simoselaps bertholdi<br />

Aspidomorphus schlegeli<br />

Aspidomorphus lineaticollis<br />

Aspidomorphus muelleri<br />

Acanthophis praelongus<br />

Acanthophis antarcticus<br />

Pseudechis porphyriacus<br />

Pseudechis butleri<br />

Pseudechis australis<br />

Pseudechis colletti<br />

Pseudechis papuanus<br />

Pseudechis guttatus<br />

Cacophis squamulosus<br />

Elapognathus coronata<br />

Cryptophis nigrescens<br />

Rhinoplocephalus bicolor<br />

Suta fasciata<br />

Suta monachus<br />

Suta suta<br />

Suta spectabilis<br />

Vermicella intermedia<br />

Simoselaps calonotus<br />

Denisonia devisi<br />

Oxyuranus microlepidotus<br />

Oxyuranus scutellatus<br />

Pseudonaja modesta<br />

Pseudonaja textilis<br />

Echiopsis curta<br />

Drysdalia mastersii<br />

Drysdalia coronoides<br />

Austrelaps labialis<br />

Austrelaps superbus<br />

Hoplocephalus bitorquatus<br />

Echiopsis atriceps<br />

Notechis scutatus<br />

Tropidechis carinatus<br />

Hemiaspis signata<br />

Hemiaspis damelii<br />

100<br />

96<br />

100<br />

100<br />

94<br />

90 100<br />

97<br />

Emydocephalus annulatus<br />

Aipysurus eydouxii<br />

Aipysurus duboisii<br />

Aipysurus apraefrontalis<br />

Aipysurus fuscus<br />

Aipysurus laevis<br />

Parahydrophis mertoni<br />

Ephalophis greyae<br />

Hydrelaps darwiniensis<br />

Hydrophis elegans<br />

Hydrophis lapemoides<br />

94 Hydrophis spiralis<br />

95<br />

67<br />

83<br />

100<br />

94<br />

100<br />

97<br />

98<br />

54<br />

83<br />

77<br />

93<br />

88<br />

74100<br />

100 75<br />

Hydrophis semperi<br />

Hydrophis pacifica<br />

Hydrophis cyanocincta<br />

Hydrophis melanocephala<br />

Hydrophis parviceps<br />

Hydrophis curtus<br />

Hydrophis platura<br />

Hydrophis stokesii<br />

Hydrophis atriceps<br />

Hydrophis brooki<br />

Hydrophis caerulescens<br />

Hydrophis czeblukovi<br />

Hydrophis major<br />

Hydrophis schistosa<br />

Hydrophis macdowelli<br />

Hydrophis kingii<br />

Hydrophis peronii<br />

Hydrophis ornata


X<br />

Figure 25<br />

Calamariinae<br />

100<br />

Colubridae<br />

68<br />

74<br />

97<br />

71<br />

96<br />

100<br />

57<br />

100<br />

100<br />

68<br />

73<br />

99<br />

100<br />

86<br />

71<br />

79<br />

60<br />

68<br />

100<br />

100<br />

89 96<br />

100<br />

94<br />

100<br />

60<br />

100<br />

Pseudoxenodontinae<br />

Sibynophiinae<br />

Colubrinae<br />

Grayiinae<br />

100<br />

74<br />

100<br />

90<br />

99<br />

94<br />

100<br />

69<br />

99<br />

96 68<br />

85<br />

69<br />

92 86 100<br />

99<br />

100<br />

100<br />

97 91<br />

94<br />

87<br />

68<br />

100<br />

100<br />

Y<br />

Z-AA Colubrinae cont.<br />

98<br />

100<br />

52<br />

92<br />

99<br />

83<br />

100<br />

70<br />

100<br />

98<br />

100<br />

Pseudorabdion oxycephalum<br />

Calamaria pavimentata<br />

Calamaria yunnanensis<br />

Plagiopholis styani<br />

Pseudoxenodon bambusicola<br />

Pseudoxenodon macrops<br />

Pseudoxenodon karlschmidti<br />

Scaphiodontophis annulatus<br />

Sibynophis bistrigatus<br />

Sibynophis subpunctatus<br />

Sibynophis triangularis<br />

Sibynophis collaris<br />

100 Sibynophis chinensis<br />

Grayia tholloni<br />

Grayia ornata<br />

Grayia smithii<br />

Ahaetulla fronticincta<br />

Ahaetulla pulverulenta<br />

Ahaetulla nasuta<br />

Chrysopelea taprobanica<br />

Chrysopelea ornata<br />

Chrysopelea paradisi<br />

Dendrelaphis bifrenalis<br />

Dendrelaphis caudolineolatus<br />

Dendrelaphis caudolineatus<br />

Dendrelaphis schokari<br />

Dendrelaphis tristis<br />

Boiga kraepelini<br />

Crotaphopeltis tornieri<br />

Dipsadoboa unicolor<br />

Telescopus fallax<br />

Boiga irregularis<br />

Boiga dendrophila<br />

Boiga forsteni<br />

Boiga cynodon<br />

Boiga barnesii<br />

Boiga trigonata<br />

Boiga ceylonensis<br />

Boiga beddomei<br />

Boiga multomaculata<br />

Toxicodryas pulverulenta<br />

Dasypeltis confusa<br />

83<br />

90<br />

100<br />

100<br />

95<br />

100<br />

100<br />

98<br />

99<br />

98<br />

52<br />

100<br />

100<br />

100<br />

83<br />

100<br />

99<br />

86<br />

100<br />

97 85<br />

93<br />

88<br />

61<br />

100<br />

97<br />

100<br />

99<br />

86<br />

92 77<br />

98<br />

91<br />

56<br />

Dasypeltis atra<br />

Dasypeltis scabra<br />

Dasypeltis sahelensis<br />

Dasypeltis gansi<br />

Dasypeltis fasciata<br />

Scaphiophis albopunctatus<br />

Oligodon arnensis<br />

Oligodon sublineatus<br />

Oligodon taeniolatus<br />

Oligodon octolineatus<br />

Oligodon cyclurus<br />

Oligodon barroni<br />

Oligodon taeniatus<br />

Oligodon chinensis<br />

Oligodon ocellatus<br />

Oligodon formosanus<br />

Oligodon cinereus<br />

Oligodon maculatus<br />

Oligodon splendidus<br />

Oligodon cruentatus<br />

Oligodon theobaldi<br />

Oligodon torquatus<br />

Oligodon planiceps<br />

Coelognathus radiatus<br />

Coelognathus helena<br />

Coelognathus erythrurus<br />

Coelognathus subradiatus<br />

Coelognathus flavolineatus<br />

Thrasops jacksonii<br />

Dispholidus typus<br />

Thelotornis capensis<br />

Philothamnus carinatus<br />

Philothamnus heterodermus<br />

Philothamnus nitidus<br />

Philothamnus semivariegatus<br />

Philothamnus angolensis<br />

Philothamnus girardi<br />

Philothamnus thomensis<br />

Philothamnus natalensis<br />

Philothamnus hoplogaster<br />

Hapsidophrys lineatus<br />

Hapsidophrys smaragdina<br />

Hapsidophrys principis<br />

Lytorhynchus diadema<br />

82<br />

89<br />

85<br />

99 90<br />

97<br />

90<br />

99<br />

100<br />

Coluber zebrinus<br />

Bamanophis dorri<br />

Macroprotodon cucullatus<br />

Macroprotodon abubakeri<br />

Hemerophis socotrae<br />

Hemorrhois hippocrepis<br />

Hemorrhois algirus<br />

Hemorrhois nummifer<br />

Hemorrhois ravergieri<br />

Spalerosophis microlepis<br />

Spalerosophis diadema<br />

Platyceps rhodorachis<br />

Platyceps rogersi<br />

Platyceps karelini<br />

Platyceps ventromaculatus<br />

Platyceps najadum<br />

Platyceps collaris<br />

Platyceps florulentus<br />

Dolichophis jugularis<br />

Dolichophis schmidti<br />

Dolichophis caspius<br />

Hierophis viridiflavus<br />

Hierophis gemonensis<br />

Hierophis spinalis<br />

Eirenis modestus<br />

Eirenis aurolineatus<br />

Eirenis persicus<br />

Eirenis decemlineatus<br />

Eirenis levantinus<br />

Eirenis medus<br />

Eirenis thospitis<br />

86<br />

Eirenis lineomaculatus<br />

59<br />

Eirenis rothii<br />

Eirenis coronelloides<br />

Eirenis eiselti<br />

100 Eirenis collaris<br />

Eirenis barani<br />

Eirenis punctatolineatus


Y<br />

Figure 26<br />

Colubrinae cont.<br />

64<br />

83<br />

93<br />

53<br />

100<br />

100<br />

93<br />

98<br />

83<br />

93<br />

100<br />

99<br />

81<br />

87<br />

90<br />

82<br />

96 100<br />

86<br />

75<br />

97<br />

98<br />

100<br />

94<br />

100<br />

99<br />

99<br />

84<br />

88<br />

92<br />

64<br />

92<br />

91<br />

87<br />

92<br />

88<br />

98<br />

71<br />

100<br />

98<br />

83<br />

100<br />

93 60<br />

100<br />

61<br />

100<br />

87<br />

89<br />

100<br />

82<br />

86<br />

100<br />

100<br />

98<br />

83<br />

96<br />

Cyclophiops major<br />

Ptyas korros<br />

Ptyas mucosa<br />

Oxybelis fulgidus<br />

Oxybelis aeneus<br />

Opheodrys vernalis<br />

Opheodrys aestivus<br />

Salvadora mexicana<br />

Tantilla melanocephala<br />

Coluber taeniatus<br />

Coluber constrictor<br />

Coluber flagellum<br />

Chironius quadricarinatus<br />

Trimorphodon biscutatus<br />

Phyllorhynchus decurtatus<br />

Spilotes pullatus<br />

Pseustes sulphureus<br />

Drymarchon corais<br />

Chironius fuscus<br />

Chironius scurrulus<br />

Chironius laevicollis<br />

Chironius grandisquamis<br />

Chironius flavolineatus<br />

Chironius bicarinatus<br />

Chironius monticola<br />

Ficimia streckeri<br />

Gyalopion canum<br />

100<br />

100<br />

100<br />

75<br />

Chironius carinatus<br />

Leptophis ahaetulla<br />

Dendrophidion dendrophis<br />

Dendrophidion percarinatum<br />

Drymobius rhombifer<br />

Rhadinophis prasinus<br />

Rhynchophis boulengeri<br />

Rhadinophis frenatus<br />

Lycodon ruhstrati<br />

Lycodon laoensis<br />

Lycodon fasciatus<br />

Lycodon paucifasciatus<br />

Lycodon rufozonatum<br />

Lycodon semicarinatum<br />

Dryocalamus nympha<br />

Lycodon carinatus<br />

Lycodon capucinus<br />

Lycodon osmanhilli<br />

Lycodon zawi<br />

98 94 76<br />

100<br />

93<br />

100<br />

99 66<br />

55<br />

98<br />

81<br />

74<br />

100<br />

92<br />

92<br />

Archelaphe bella<br />

Euprepiophis conspicillata<br />

Euprepiophis mandarinus<br />

Oreocryptophis porphyraceus<br />

Orthriophis taeniurus<br />

Orthriophis hodgsoni<br />

Orthriophis moellendorffi<br />

Orthriophis cantoris<br />

Zamenis hohenackeri<br />

Zamenis persicus<br />

Zamenis longissimus<br />

Zamenis lineatus<br />

Rhinechis scalaris<br />

Zamenis situla<br />

Elaphe davidi<br />

91<br />

100 98<br />

82<br />

83<br />

99<br />

Coronella girondica<br />

94 99<br />

100<br />

100<br />

100<br />

54<br />

100<br />

100<br />

100<br />

87<br />

Drymoluber brazili<br />

Mastigodryas melanolomus<br />

Mastigodryas boddaerti<br />

Mastigodryas bifossatus<br />

Rhinobothryum lentiginosum<br />

Stenorrhina freminvillei<br />

Chionactis occipitalis<br />

Chilomeniscus stramineus<br />

Sonora semiannulata<br />

Conopsis biserialis<br />

Conopsis nasus<br />

Pseudoficimia frontalis<br />

Sympholis lippiens<br />

Gonyosoma oxycephalum<br />

Gonyosoma jansenii<br />

Elaphe carinata<br />

Elaphe bimaculata<br />

Elaphe dione<br />

Elaphe climacophora<br />

Elaphe schrenckii<br />

Elaphe quadrivirgata<br />

Elaphe quatuorlineata<br />

Elaphe sauromates<br />

Chironius exoletus<br />

Chironius laurenti<br />

Chironius multiventris<br />

Drymoluber dichrous<br />

Coronella austriaca<br />

Oocatochus rufodorsatus<br />

Senticolis triaspis<br />

Pituophis deppei<br />

Pituophis vertebralis<br />

Pituophis lineaticollis<br />

Pituophis melanoleucus<br />

Pituophis ruthveni<br />

Pituophis catenifer<br />

Pantherophis vulpinus<br />

Pantherophis guttatus<br />

Pantherophis emoryi<br />

99 Pantherophis slowinskii<br />

Pantherophis spiloides<br />

100 Pantherophis alleghaniensis<br />

Pantherophis obsoletus<br />

Pantherophis bairdi<br />

Bogertophis subocularis<br />

Bogertophis rosaliae<br />

Rhinocheilus lecontei<br />

Arizona elegans<br />

Pseudelaphe flavirufa<br />

Cemophora coccinea<br />

Lampropeltis calligaster<br />

Lampropeltis webbi<br />

72<br />

79 94<br />

96 98<br />

74<br />

96<br />

60<br />

98<br />

99<br />

Lampropeltis pyromelana<br />

Lampropeltis zonata<br />

Lampropeltis elapsoides<br />

Lampropeltis mexicana<br />

Lampropeltis ruthveni<br />

Lampropeltis triangulum<br />

Lampropeltis extenuatum<br />

Lampropeltis alterna<br />

Lampropeltis nigra<br />

Lampropeltis getula<br />

Lampropeltis holbrooki<br />

Lampropeltis splendida<br />

Lampropeltis californiae<br />

Lycodon aulicus


Z<br />

Figure 27<br />

Natricinae<br />

100<br />

99<br />

68<br />

98<br />

69<br />

99<br />

100<br />

98<br />

100<br />

98<br />

100<br />

86<br />

100<br />

Trachischium monticola<br />

Amphiesma sauteri<br />

Amphiesma craspedogaster<br />

Natriciteres olivacea<br />

Afronatrix anoscopus<br />

Lycognathophis seychellensis<br />

Macropisthodon rudis<br />

100<br />

Balanophis ceylonensis<br />

Rhabdophis subminiatus<br />

62 Rhabdophis tigrinus<br />

96 Rhabdophis nuchalis<br />

Amphiesma stolatum<br />

Xenochrophis vittatus<br />

Xenochrophis flavipunctatus<br />

Xenochrophis piscator<br />

100<br />

Atretium schistosum<br />

Xenochrophis punctulatus<br />

Xenochrophis asperrimus<br />

88 Atretium yunnanensis<br />

100<br />

Aspidura drummondhayi<br />

Aspidura trachyprocta<br />

Aspidura ceylonensis<br />

99<br />

Aspidura guentheri<br />

Opisthotropis guangxiensis<br />

Opisthotropis lateralis<br />

Opisthotropis latouchii<br />

100 Opisthotropis cheni<br />

100 Sinonatrix aequifasciata<br />

88<br />

100<br />

82<br />

88<br />

100<br />

72<br />

97<br />

76<br />

96<br />

100<br />

100<br />

80<br />

100<br />

99<br />

Sinonatrix percarinata<br />

Sinonatrix annularis<br />

Natrix maura<br />

Natrix natrix<br />

Natrix tessellata<br />

Clonophis kirtlandii<br />

Virginia striatula<br />

Storeria occipitomaculata<br />

Storeria dekayi<br />

Seminatrix pygaea<br />

98<br />

50<br />

100<br />

100<br />

100<br />

100<br />

69<br />

100<br />

93<br />

100<br />

Regina rigida<br />

Regina alleni<br />

Regina septemvittata<br />

Regina grahami<br />

Tropidoclonion lineatum<br />

Nerodia cyclopion<br />

Nerodia floridana<br />

Nerodia taxispilota<br />

Nerodia rhombifer<br />

Nerodia erythrogaster<br />

Nerodia harteri<br />

Nerodia fasciata<br />

Nerodia sipedon<br />

Thamnophis sirtalis<br />

Thamnophis sauritus<br />

Thamnophis proximus<br />

Thamnophis rufipunctatus<br />

Adelophis foxi<br />

Thamnophis valida<br />

Thamnophis melanogaster<br />

Thamnophis exsul<br />

72<br />

Thamnophis godmani<br />

96<br />

85<br />

100<br />

Thamnophis scaliger<br />

Thamnophis sumichrasti<br />

98<br />

Thamnophis mendax<br />

86<br />

99<br />

Thamnophis fulvus<br />

100<br />

Thamnophis chrysocephalus<br />

Thamnophis cyrtopsis<br />

Thamnophis eques<br />

99<br />

Thamnophis marcianus<br />

100 Thamnophis hammondii<br />

92<br />

63<br />

73<br />

Thamnophis ordinoides<br />

99<br />

Thamnophis couchii<br />

69<br />

Thamnophis atratus<br />

Thamnophis gigas<br />

Thamnophis elegans<br />

94 Thamnophis brachystoma<br />

100 Thamnophis radix<br />

89 Thamnophis butleri


AA<br />

Figure 28<br />

(i)<br />

100<br />

Dipsadinae<br />

Conophis lineatus<br />

Thermophis zhaoermii<br />

95<br />

Crisantophis nevermanni<br />

100<br />

Psomophis obtusus<br />

Thermophis baileyi<br />

Psomophis genimaculatus<br />

100<br />

94<br />

Psomophis joberti<br />

Contia tenuis<br />

100 Pseudalsophis biserialis<br />

72<br />

Pseudalsophis elegans<br />

Heterodon platirhinos<br />

100<br />

100<br />

Arrhyton taeniatum<br />

Arrhyton supernum<br />

Heterodon simus<br />

Arrhyton vittatum<br />

58<br />

99<br />

Arrhyton landoi<br />

Heterodon nasicus<br />

73 Arrhyton procerum<br />

91<br />

Diadophis punctatus<br />

75 100 Arrhyton tanyplectum<br />

98 Arrhyton dolichura<br />

Magliophis exiguum<br />

Carphophis amoenus<br />

(ii) 81<br />

87<br />

100 Cubophis cantherigerus<br />

100<br />

Cubophis vudii<br />

80<br />

Farancia abacura<br />

99<br />

Caraiba andreae<br />

98<br />

93 Haitiophis anomalus<br />

Farancia erytrogramma<br />

Borikenophis portoricensis<br />

80<br />

100 Alsophis antillensis<br />

Nothopsis rugosus<br />

Alsophis rijgersmaei<br />

97 97 Alsophis antiguae<br />

68<br />

Amastridium veliferum<br />

100 Alsophis rufiventris<br />

99<br />

Ialtris dorsalis<br />

Tantalophis discolor<br />

89<br />

Darlingtonia haetiana<br />

99<br />

Hypsirhynchus ferox<br />

Coniophanes fissidens<br />

83<br />

Antillophis parvifrons<br />

98 Schwartzophis callilaemum<br />

Rhadinaea flavilata<br />

93 96<br />

100 Schwartzophis polylepis<br />

100 Schwartzophis funereum<br />

86<br />

Rhadinaea fulvivittis<br />

100<br />

Uromacer catesbyi<br />

Uromacer oxyrhynchus<br />

Pseudoleptodeira latifasciata<br />

99 Uromacer frenatus<br />

Lygophis anomalus<br />

80<br />

Trimetopon gracile<br />

100 Lygophis elegantissimus<br />

99<br />

99<br />

Lygophis lineatus<br />

Hypsiglena slevini<br />

Lygophis paucidens<br />

78<br />

76<br />

73<br />

Lygophis flavifrenatus<br />

Hypsiglena jani<br />

70<br />

Lygophis meridionalis<br />

Xenodon severus<br />

63<br />

100<br />

Hypsiglena affinis<br />

Xenodon merremi<br />

100<br />

98<br />

Xenodon werneri<br />

100<br />

52<br />

Xenodon neuwiedii<br />

99 Hypsiglena ochrorhyncha<br />

98 Xenodon dorbignyi<br />

75<br />

Xenodon histricus<br />

84 Hypsiglena torquata<br />

99 Xenodon nattereri<br />

85<br />

Xenodon guentheri<br />

Hypsiglena chlorophaea<br />

71<br />

Xenodon semicinctus<br />

90<br />

94<br />

61 98<br />

Xenodon matogrossensis<br />

Tretanorhinus variabilis<br />

62 Xenodon pulcher<br />

92 Eryrthrolamprus atraventer<br />

64<br />

Leptodeira nigrofasciata<br />

Eryrthrolamprus jaegeri<br />

73<br />

Eryrthrolamprus almadensis<br />

Imantodes inornatus<br />

Eryrthrolamprus ceii<br />

89 71<br />

99 100 Eryrthrolamprus poecilogyrus<br />

Imantodes lentiferus<br />

Eryrthrolamprus epinephelus<br />

67<br />

87 94 Eryrthrolamprus juliae<br />

100<br />

Imantodes gemmistratus<br />

Eryrthrolamprus miliaris<br />

86<br />

96 Eryrthrolamprus reginae<br />

Imantodes cenchoa<br />

Eryrthrolamprus breviceps<br />

88<br />

Eryrthrolamprus pygmaea<br />

Leptodeira uribei<br />

97 Eryrthrolamprus typhlus<br />

Erythrolamprus mimus<br />

100<br />

87<br />

Leptodeira frenata<br />

100 Erythrolamprus aesculapii<br />

51<br />

Philodryas baroni<br />

Leptodeira splendida<br />

Philodryas nattereri<br />

100<br />

100 88<br />

Philodryas viridissima<br />

Leptodeira punctata<br />

Philodryas olfersii<br />

Philodryas argentea<br />

91<br />

Leptodeira septentrionalis<br />

68 100 Philodryas georgeboulengeri<br />

90<br />

Philodryas mattogrossensis<br />

98 Leptodeira annulata<br />

68 96 Philodryas psammophidea<br />

97<br />

Philodryas aestiva<br />

Leptodeira bakeri<br />

62<br />

Philodryas agassizii<br />

94<br />

Philodryas patagoniensis<br />

88<br />

Leptodeira maculata<br />

Sordellina punctata<br />

95<br />

Taeniophallus brevirostris<br />

100 Leptodeira rubricata<br />

100<br />

Taeniophallus nicagus<br />

66 Echinanthera melanostigma<br />

Adelphicos quadrivirgatum<br />

67 Echinanthera undulata<br />

79 75 Taeniophallus affinis<br />

90<br />

Hydromorphus concolor<br />

95 Phalotris lemniscatus<br />

100<br />

Phalotris nasutus<br />

Tretanorhinus nigroluteus<br />

100<br />

Phalotris lativittatus<br />

100<br />

Phalotris mertensi<br />

100<br />

100<br />

Cryophis hallbergi<br />

Elapomorphus quinquelineatus<br />

Apostolepis assimilis<br />

56<br />

Geophis carinosus<br />

Apostolepis dimidiata<br />

95<br />

91<br />

Apostolepis albicollaris<br />

97<br />

Apostolepis flavotorquata<br />

94<br />

Geophis godmani<br />

94<br />

69<br />

Apostolepis sanctaeritae<br />

Apostolepis cearensis<br />

Atractus zidoki<br />

99<br />

Manolepis putnami<br />

55<br />

Hydrops triangularis<br />

Atractus wagleri<br />

Pseudoeryx plicatilis<br />

83 86<br />

Helicops infrataeniatus<br />

Atractus schach<br />

100<br />

68<br />

Helicops hagmanni<br />

91 98<br />

Helicops carinicaudus<br />

96<br />

Atractus albuquerquei<br />

91 99 Helicops gomesi<br />

68<br />

Helicops angulatus<br />

Atractus elaps<br />

Gomesophis brasiliensis<br />

(i)<br />

(ii)<br />

70<br />

100<br />

82<br />

73<br />

70<br />

75<br />

73<br />

90<br />

84<br />

75<br />

89<br />

79<br />

88<br />

97<br />

79<br />

Atractus flammigerus<br />

Atractus trihedrurus<br />

Ninia atrata<br />

Sibon nebulatus<br />

96<br />

Atractus reticulatus<br />

Tropidodipsas sartorii<br />

100<br />

Dipsas indica<br />

Dipsas variegata<br />

Dipsas pratti<br />

Atractus badius<br />

Atractus zebrinus<br />

Dipsas catesbyi<br />

Dipsas neivai<br />

Sibynomorphus turgidus<br />

Dipsas articulata<br />

Sibynomorphus mikanii<br />

Dipsas albifrons<br />

Sibynomorphus ventrimaculatus<br />

Sibynomorphus neuwiedi<br />

91<br />

68<br />

87<br />

56<br />

100<br />

87<br />

86<br />

94 90<br />

90<br />

93 99<br />

100<br />

100<br />

100<br />

97<br />

98<br />

95<br />

95<br />

87<br />

Calamodontophis paucidens<br />

Pseudotomodon trigonatus<br />

Tachymenis peruviana<br />

Ptychophis flavovirgatus<br />

Tomodon dorsatus<br />

Thamnodynastes pallidus<br />

Thamnodynastes lanei<br />

Thamnodynastes hypoconia<br />

Thamnodynastes strigatus<br />

Thamnodynastes rutilus<br />

Tropidodryas serra<br />

Tropidodryas striaticeps<br />

Xenopholis undulatus<br />

Xenopholis scalaris<br />

Caaeteboia amarali<br />

Hydrodynastes bicinctus<br />

100 Hydrodynastes gigas<br />

Siphlophis cervinus<br />

91 Siphlophis compressus<br />

Siphlophis pulcher<br />

100 Siphlophis longicaudatus<br />

67<br />

63 95 67<br />

96<br />

96<br />

87<br />

74<br />

92<br />

90<br />

Oxyrhopus petolarius<br />

Oxyrhopus formosus<br />

Oxyrhopus trigeminus<br />

Oxyrhopus clathratus<br />

Oxyrhopus rhombifer<br />

Oxyrhopus melanogenys<br />

Oxyrhopus guibei<br />

Rodriguesophis iglesiasi<br />

Paraphimophis rusticus<br />

Phimophis guerini<br />

Clelia clelia<br />

Mussurana bicolor<br />

Drepanoides anomalus<br />

Boiruna maculata<br />

Rhachidelus brazili<br />

Pseudoboa neuwiedii<br />

Pseudoboa nigra<br />

Pseudoboa coronata<br />

100


Additional files provided with this submission:<br />

Additional file 1: 2046042875907394_add1.txt, 264K<br />

http://www.biomedcentral.com/imedia/1032288879981940/supp1.txt<br />

Additional file 2: 2046042875907394_add2.docx, 681K<br />

http://www.biomedcentral.com/imedia/7057154239819418/supp2.docx

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!