10.05.2013 Views

GSA poster - Department of Geography and Geology - Western ...

GSA poster - Department of Geography and Geology - Western ...

GSA poster - Department of Geography and Geology - Western ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

GEOCHEMISTRY AND PETROGENESIS OF LAVAS FROM THE CASITAS SHIELD,<br />

VOLCAN CERRO AZUL, SOUTHERN VOLCANIC ZONE, CHILE<br />

Mollie K. LAIRD, <strong>and</strong> WULFF, Andrew H., Dept. <strong>of</strong> <strong>Geography</strong> <strong>and</strong> <strong>Geology</strong>, <strong>Western</strong> Kentucky Univ., Bowling Green, KY, 42101; lairdmk@wku.edu<br />

Abstract<br />

The Cerro Azul/Descabezado Gr<strong>and</strong>e (DGCA) volcanic complex is located at 35.5o S in the<br />

Southern Volcanic Zone <strong>of</strong> the Chilean Andes. This region is compositionally transitional<br />

between more primitive compositions in the south <strong>and</strong> more evolved compositions in the north.<br />

The two main edifices, Cerro Azul <strong>and</strong> Descabezado Gr<strong>and</strong>e are early Holocene <strong>and</strong> latest<br />

Pleistocene in age <strong>and</strong> overlie the more mafic Casitas Shield. Pleistocene glaciers deeply incised<br />

the sides <strong>of</strong> these edifices exposing vertical stacks <strong>of</strong> lavas. Lavas were sampled in seven vertical<br />

stratigraphic sections during two field seasons in order to construct chemical stratigraphic<br />

columns, <strong>and</strong> ultimately, to construct a composite chemo-stratigraphy for the Casitas shield stage.<br />

All samples were analyzed for complete major <strong>and</strong> trace element abundances. At least ten<br />

different eruptive episodes, comprising 3-15 individual flows, have been identified primarily by<br />

various field criteria. Each episode may be modeled separately, revealing the influence <strong>of</strong> shortterm,<br />

shallow processes superimposed over the longer-term behavior <strong>of</strong> the volcanic complex with<br />

time.<br />

Whole rock geochemistry, petrography <strong>and</strong> modal analysis, <strong>and</strong> mineral compositional data were<br />

analyzed to determine the petrogenetic history <strong>of</strong> an eruptive episode. Changes in elemental<br />

abundances <strong>and</strong> ratios were used to facilitate the correlation between lava flows from section to<br />

section. Petrogenetic models constructed using the geochemical data show fractional<br />

crystallization as the dominant process responsible for the lavas, followed by a period <strong>of</strong> recharge<br />

late in the episode. The whole magma system shows a decrease in Sr but individual eruptive<br />

episodes have short-term increases indicating evidence <strong>of</strong> other processes (e.g. magma mixing,<br />

assimilation). The abundance <strong>of</strong> Si decreases up section but fluctuations in Mg within flows are<br />

supportive <strong>of</strong> other magmatic processes.<br />

Similar comprehensive sampling at the nearby Tatara-San Pedro complex resulted in the<br />

development <strong>of</strong> a detailed composite volcanic stratigraphy. This study will compare lavas <strong>of</strong> the<br />

same age at the two neighboring volcanic centers to examine the possibility <strong>of</strong> identifying<br />

regional/tectonic controls on the magma generation <strong>and</strong> modification.<br />

Field relationships<br />

between sections<br />

CSS1, CSS2, CSN1<br />

<strong>and</strong> CSN2. Photo<br />

taken from below<br />

CSN.3 looking east up<br />

to the top <strong>of</strong> the Casitas<br />

shield.<br />

CSS2 CSN2<br />

CSS1<br />

CSN1<br />

Background<br />

■ The transitional SVZ represents a boundary separating dominantly basaltic <strong>and</strong>esite volcanoes in the<br />

southern SVZ from volcanoes composed dominantly <strong>of</strong> <strong>and</strong>esite to dacite in the northern SVZ.<br />

■ Compositional variations at individual eruptive centers have been attributed to multiple sources for<br />

magmas <strong>and</strong> complicated interactions between different petrogenetic processes.<br />

■ The Tatara-San Pedro (TSP) volcanic complex in the transitional SVZ revealed a range <strong>of</strong><br />

compositions, at one location, that is essentially equivalent to that <strong>of</strong> the entire SVZ.<br />

■ Composite chemostratigraphy demonstrates changes in petrogenetic processes, sources, <strong>and</strong> eruptive<br />

activity <strong>and</strong> styles at a single location, with time, in addition to identifying periods <strong>of</strong> eruptive activity or<br />

quiescence.<br />

■ The Descabezado Gr<strong>and</strong>e-Cerro Azul (DGCA) volcanic complex is characterized by excellent<br />

exposures <strong>of</strong> stacks <strong>of</strong> lavas in steep-walled canyons surrounding the present edifices.<br />

■ Every lava in vertical stacks <strong>of</strong> flows was sampled in stratigraphic sections located in three adjacent<br />

canyons south <strong>of</strong> the Cerro Azul edifice.<br />

■ Sixteen physically correlative flows were sampled in more than one section to facilitate unambiguous<br />

correlations between sections, <strong>and</strong> to assess within-flow geochemical variation.<br />

CSS<br />

CSN<br />

CDCS<br />

CDCN<br />

Desc. Gr<strong>and</strong>e Cerro Azul<br />

Map <strong>of</strong> the Southern Volcanic Zone (SVZ) <strong>of</strong> the Chilean Andes showing the location<br />

<strong>of</strong> this study <strong>and</strong> the Tatara-San Pedro complex referred to. In general, volcanoes to<br />

the south are more mafic, almost totally lacking evolved compositions, while<br />

volcanoes to the north <strong>of</strong> this study are more evolved/contaminated, almost totally<br />

lacking basalts.<br />

Aerial photograph <strong>of</strong> the Casitas shield portion <strong>of</strong> the DGCA complex. The<br />

yellow dashed line is a line <strong>of</strong> traverse along the edge <strong>of</strong> the shield, with sampled<br />

sections identified in yellow letters. Blue dots are camps <strong>and</strong> the dotted blue line<br />

is a line <strong>of</strong> traverse connecting sections CSN <strong>and</strong> CSS. Flows in this study are<br />

physically correlated to both <strong>of</strong> these sections.<br />

Topographic map <strong>of</strong> the DGCA volcanic region. Sampled stratigraphic sections<br />

are located west <strong>and</strong> north <strong>of</strong> Laguna Invernada (refer to aerial photo). Map from<br />

Hildreth <strong>and</strong> Drake (1992)<br />

CAS<br />

CSS.3-9<br />

Data<br />

■ The DGCA lavas are primarily basalts to basaltic <strong>and</strong>esites in composition, <strong>and</strong> are tholeiitic in character.<br />

■ The basalts <strong>and</strong> basaltic <strong>and</strong>esites are generally aphanitic in texture, with larger (subhedral/rounded)<br />

xenocrysts, phenocrysts <strong>and</strong> glomerocrysts, <strong>and</strong> are composed primarily <strong>of</strong> plagioclase, olivine, <strong>and</strong> pyroxenes.<br />

■ Olivine phenocrysts are small <strong>and</strong> euhedral with compositions ranging from Fo65-70. ■ Olivine xenocrysts are generally larger, subhedral to slightly rounded <strong>and</strong> with higher Fo content (Fo74-80). ■ Feldspars generally fall into two populations – one generally larger <strong>and</strong> more rounded with higher An<br />

content <strong>and</strong> the other comprising smaller, more euhedral laths with lower An content.<br />

■ SiO2 content ranges from 51.7 to 54.3 wt%, with MgO ranges <strong>of</strong> 3.87-4.75 wt% <strong>and</strong> Mg# ranging from 48-<br />

50.5; demonstrating that none <strong>of</strong> these lavas represent primary magmas – but all have undergone substantial<br />

fractional crystallization.<br />

■ CaO ranges <strong>of</strong> 7.91 – 8.79 wt% <strong>and</strong> Al2O3 forms a narrow range from 18.87 – 19.23wt% - reflecting high<br />

feldspar content in all lavas.<br />

■ Sr content: 801-902 ppm ■ Rb content: 11.4-21.1 ppm<br />

■ Ba content: 297-363 ppm ■ Ni content: 13-19 ppm<br />

■ Cr content: 1-10 ppm ■ Ce content: 23-31 ppm<br />

■ In comparison to the rest <strong>of</strong> the SVZ <strong>and</strong> TSVZ, the lavas <strong>of</strong> the DGCA complex exhibit high abundances <strong>of</strong><br />

aluminum, calcium, <strong>and</strong> strontium.<br />

■ The lavas also exhibit low levels <strong>of</strong> nickel, chromium, rubidium, <strong>and</strong> magnesium, as well as low levels <strong>of</strong><br />

other large ion lithophile elements.<br />

■ Within-flow compositional variation is sufficiently low that flows from the same eruptive episode can be<br />

chemically correlated between different sampled stratigraphic sections.<br />

CSS.10-17<br />

CSS.18-27<br />

34<br />

31-33<br />

30<br />

29<br />

28<br />

27<br />

26<br />

Eruptive<br />

break<br />

25<br />

24<br />

23<br />

Eruptive<br />

break<br />

19-22<br />

17-18<br />

16<br />

12<br />

15<br />

14<br />

13<br />

11<br />

10<br />

8<br />

9<br />

7<br />

6<br />

5<br />

Photographs <strong>of</strong> sections CSS1 <strong>and</strong> CSN1 showing flows in stratigraphic position. Flows at the top <strong>of</strong> the CSS section cover<br />

the top <strong>of</strong> the Casitas shield <strong>and</strong> extend from Volcan Cerro Azul west to abut on outcrops <strong>of</strong> the Invernada pluton. Samples<br />

were taken from the massive middle <strong>of</strong> lava flows to avoid weathering <strong>and</strong> alteration. Field observations (soil development,<br />

mingled flow tops <strong>and</strong> bottoms, erosion surfaces, etc.) were the basis for identifying eruptive episodes. Several flows were<br />

quite laterally extensive <strong>and</strong> were used to physically correlate the sampled sections.<br />

Yellow numbers show the location <strong>and</strong> number <strong>of</strong> each sample.<br />

Plots showing flows from this study compared with all published compositional data for volcanic centers <strong>of</strong> the<br />

Southern Volcanic Zone (in gray symbols). Lavas are medium-K, tholeiitic basaltic <strong>and</strong>esites. Flows CSN.24-34<br />

<strong>and</strong> CSS.1-9 are filled red circles; lower CSN flows are in green open circles. Plots after LaBas et al. (1986), Gill<br />

(1981), Miyashiro (1974).


Casitas Shield Flows<br />

sample SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 Nb Zr Sr Zn Ni Cr V Ce Ba La Y U Rb Th Pb<br />

CSN-24 53.90 0.94 19.17 8.48 0.14 3.96 7.96 4.18 1.16 0.25 2.8 85 902 72 15 1 180 30 349 16 16.2 2 21.1 3 8<br />

CSN-25 52.56 1.07 19.12 8.86 0.14 4.39 8.45 3.86 1.03 0.23 3.2 80 845 67 14 3 188 29 315 12 17.1 1 17.2 2 5<br />

CSN-26 52.70 1.08 19.22 8.93 0.15 4.37 8.44 4.15 1.02 0.22 3.1 75 842 66 13 4 174 23 332 11 17.3 0 15.8 2 6<br />

CSN-27 52.59 1.09 19.11 8.98 0.14 4.40 8.47 4.09 1.02 0.22 2.7 80 848 64 15 5 167 27 326 14 17.2 1 16.5 3 7<br />

CSN-28 52.31 1.11 19.23 8.98 0.14 4.55 8.65 4.05 0.98 0.21 3.4 80 842 65 16 9 224 26 317 14 17.3 1 15.3 3 5<br />

CSN-29 51.68 1.13 19.08 9.24 0.15 4.75 8.72 4.06 0.93 0.21 3.3 78 828 67 19 9 193 25 322 12 17.6 1 11.4 1 7<br />

CSN-30 51.86 1.11 19.06 9.03 0.15 4.65 8.79 3.79 0.93 0.21 2.5 78 826 66 15 8 187 24 308 9 17.8 1 12.7 2 7<br />

CSN-31 52.10 1.13 19.17 9.09 0.15 4.67 8.79 3.83 0.92 0.21 2.7 75 822 69 15 10 217 23 297 11 18.1 1 11.5 1 8<br />

CSN-32 52.13 1.12 19.13 9.06 0.15 4.59 8.79 4.11 0.94 0.21 2.9 73 817 65 18 7 200 24 309 12 17.8 1 13.1 2 5<br />

CSN-33 52.11 1.14 19.08 9.12 0.15 4.59 8.74 3.86 0.95 0.21 2.8 73 801 65 15 9 200 24 308 12 17.9 1 13.8 1 5<br />

CSN-33 50.66 1.10 18.91 9.00 0.14 4.52 8.51 4.11 0.91 0.21 BD 82 795 94 7 21 298 11 15 17<br />

CSN-34 54.27 0.94 18.87 8.21 0.15 3.87 7.91 4.31 1.19 0.26 3.3 90 861 69 14 8 159 31 363 15 16.1 2 19.5 3 9<br />

CSS-11 3.8 91 828 76 13 4 166 29 331 10 18.5 1 16.2 2 10<br />

CSS-11 52.81 0.96 19.60 8.32 0.13 3.58 8.23 3.95 1.03 0.25 BD 106 808 68 BD 9 355 13 22 21<br />

CSS-10 52.16 1.08 19.37 8.98 0.15 4.27 8.69 3.74 0.95 0.23 3.3 81 777 64 19 8 181 27 311 11 18.0 2 14.6 2 7<br />

CSS-9 3.1 84 761 76 15 8 204 22 300 12 18.7 1 14.5 2 6<br />

CSS-9 51.78 1.06 19.27 8.82 0.13 4.18 8.51 3.92 0.94 0.23 BD 94 749 65 10 19 267 10 19 20<br />

CSS-8 3.2 85 773 62 11 10 172 27 318 12 18.8 2 16.3 2 9<br />

CSS-8 51.93 1.07 19.37 8.89 0.14 4.22 8.46 3.93 0.95 0.23 BD 97 749 65 7 15 307 12 21 23<br />

CSS-7 52.37 1.02 19.22 8.71 0.15 4.30 8.60 3.80 0.97 0.23 2.5 83 783 61 24 10 168 26 308 13 17.7 2 15.5 1 5<br />

CSS-6 3.1 86 861 71 11 8 133 35 388 17 16.6 2 21.6 3 10<br />

CSS-6 54.56 0.86 18.64 7.90 0.13 3.57 7.51 4.12 1.17 0.27 BD 99 844 71 BD 16 361 18 19 29<br />

CSS-5 2.4 70 792 64 21 14 182 24 307 9 17.2 2 13.3 1 8<br />

CSS-5 51.40 1.09 18.81 9.21 0.14 4.78 8.77 3.80 0.88 0.20 BD 84 761 68 10 28 273 9 19 20<br />

CSS-4 2.1 65 801 63 17 13 191 24 309 12 17.2 1 13.7 2 7<br />

CSS-4 50.95 1.11 19.02 9.09 0.14 4.70 8.48 3.89 0.91 0.21 BD 84 785 67 7 18 254 9 19 22<br />

CSS-3 2.5 71 888 67 16 2 165 29 363 15 16.5 2 19.0 3 7<br />

CSS-3 52.55 0.92 19.13 8.42 0.13 4.09 7.73 3.97 1.09 0.24 BD 88 873 73 7 9 320 17 18 24<br />

CSS-2 2.7 74 910 70 14 1 171 28 363 14 16.2 1 13.4 3 7<br />

CSS-2 52.59 0.92 19.15 8.55 0.13 4.03 7.91 4.01 1.03 0.24 BD 89 890 99 5 13 332 13 13 15<br />

CSS-1 2.7 71 885 66 16 3 173 29 362 15 16.4 2 14.4 3 9<br />

CSS-1 52.50 0.96 19.18 8.70 0.13 4.29 8.20 3.89 1.00 0.22 BD 88 864 99 9 11 335 15 15 17<br />

Major <strong>and</strong> trace element concentrations for lavas from the same eruptive episode from sections CSS <strong>and</strong> CSN. Data in blue<br />

represent analyses obtained from the X-Ray Facility at Michigan State University. All other data are from the Ronald B.<br />

Gilmore X-Ray Facility at Univ. <strong>of</strong> Massachusetts. Analyses were obtained from the same powders but using different fused<br />

disk size <strong>and</strong> techniques. Analyses show some interlab differences, but analyses are consistent for each data set..<br />

Variation diagrams showing behavior <strong>of</strong> several Large Ion<br />

Lithophile (LIL) <strong>and</strong> High Field Strength (HFS) Elements,<br />

all plotted versus Rb which is the among the most<br />

incompatible elements for this suite <strong>of</strong> lavas.<br />

2.00<br />

1.80<br />

1.60<br />

1.40<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 Nb Zr Sr Zn Ni Cr V Ce Ba La Y U Rb Th Pb<br />

Si Ti Al Fe Mn Mg Ca Na K P Nb Zr Sr Zn Ni Cr V Ce Ba La Y U Rb Th Pb<br />

CSN.24 n24<br />

s18<br />

CSS.8<br />

Plot <strong>of</strong> major <strong>and</strong> trace element concentrations compared to flow CSN.18 to show<br />

the degree <strong>of</strong> compositional variation within the eruptive episode. Heavy black<br />

lines delineate the individual high <strong>and</strong> low concentrations <strong>of</strong> flows CSN.25-33.<br />

Flow CSN.25 represents the preceding eruptive episode <strong>and</strong> is shown to<br />

demonstrate the difference between episodes. Flow CSS.8 is the same as flow<br />

CSN.32 sampled approximately 1 km to the west along the wall <strong>of</strong> the casitas<br />

shield, <strong>and</strong> is shown to demonstrate the degree <strong>of</strong> similarity within the eruptive<br />

package <strong>of</strong> flows. Variations in U, Th, La <strong>and</strong> Nb probably represent analytical<br />

uncertainty, while the variation in Cr is a consequence <strong>of</strong> local accumulations <strong>of</strong><br />

pyroxene <strong>and</strong> olivine.<br />

Chemo-stratigraphic Columns show changes in element concentrations with stratigraphic position. Shortterm<br />

(generally shallow) processes are superimposed on longer-term (generally deeper) processes that are<br />

more indicative <strong>of</strong> potentially regional controls on petrogenesis. Within-flow compositional variation made<br />

be evaluated between section CSS <strong>and</strong> CSN lavas. Symbols are as follows:<br />

= lower CSN lavas; = CSN. 24-34; = lower CSS flows (CSS.1-9)<br />

CSN.34 olivines<br />

CSN.29 olivines<br />

Olivine compositions for flows CSN.29 <strong>and</strong><br />

CSN.34. Olivine cores (filled symbols) are higher<br />

in Fo content than rims. Small euhedral olivine<br />

compositions are generally the same as the rim<br />

compositions.<br />

CSN.34<br />

CSN.29<br />

Representative plots <strong>of</strong> plagioclase compositions<br />

(from microprobe) showing a typical<br />

disequilibrium assemblage (CSN.34) with many<br />

different compositions <strong>and</strong> zoning types. Flow<br />

CSN.29 shows similar plagioclase core <strong>and</strong> rim<br />

compositions for sampled feldspars in a texture<br />

more indicative <strong>of</strong> fractional crystallization.<br />

Filled symbols = core compositions<br />

Open symbols = rim compositions<br />

Volcan Cerro Azul as viewed from the southwest. Flows <strong>of</strong><br />

the Casitas shield extend to the left (west) <strong>and</strong> the flat-topped<br />

peak in the back left is Volcan Descabezado Gr<strong>and</strong>e.<br />

Proposed Composite Stratigraphy for upper CSN <strong>and</strong> lower CSS Lavas<br />

CSS2 elevations CSS elevations CSN elevations CSN2 elevations<br />

n34 2470m?<br />

s9 2425m n33<br />

s8 n32 2437m<br />

s7 2419m n31<br />

s6 n30<br />

s5 2390m n29<br />

n28<br />

2395m<br />

s4 n27<br />

n26<br />

2375m<br />

s3<br />

s2<br />

n25 2360m<br />

s1 2333m n24<br />

n23<br />

n22<br />

n21<br />

n20<br />

7<br />

6<br />

2350m n19 2323m<br />

5 2320m n18<br />

4 2308m n17<br />

3<br />

2<br />

Dike 3 n16 2310m<br />

1 2295m n15 2317m<br />

n14<br />

n13<br />

n12<br />

2300m<br />

n11 2252m<br />

n10 2240m<br />

3 2285m<br />

n9 2220m 2 2237m<br />

n8 2202m 1 2222m<br />

n7 2182m<br />

Dike 2 n6<br />

Dike 1 n5 2107m<br />

n4 2100m<br />

n3 2088m<br />

n2 2072m<br />

Acknowledgements<br />

We gratefully acknowledge the <strong>Western</strong> Kentucky University <strong>Department</strong> <strong>of</strong> <strong>Geography</strong> <strong>and</strong> <strong>Geology</strong> for travel <strong>and</strong> research<br />

funds, as well as continuing support <strong>of</strong> undergraduate research; Dr. John Andersl<strong>and</strong>, <strong>of</strong> <strong>Western</strong> Kentucky University, for his<br />

expert knowledge <strong>and</strong> assistance with the SEM; <strong>and</strong> Dr. David Moecher, <strong>of</strong> the University <strong>of</strong> Kentucky, for his assistance with the<br />

electron microprobe.<br />

References<br />

n1 2030m<br />

Chart showing the correlation between four sampled<br />

sections in the western portion <strong>of</strong> the Casitas shield.<br />

Bevis M. <strong>and</strong> Isacks B. (1984) Hypocentral trend surface analysis: Probing the geometry <strong>of</strong> Beni<strong>of</strong>f Zones. Journal <strong>of</strong> Geophys. Res., 89, 6153-6170.<br />

Dungan, MA, Wulff, AH, <strong>and</strong> Thompson, RA, 2001. Eruptive stratigraphy <strong>of</strong> the Tatara-San Pedro complex, 36oS, Southern Volcanic Zone, Chilean Andes:<br />

Reconstruction method <strong>and</strong> implications for magma evolution at long-lived arc volcanic centers. Journal <strong>of</strong> Petrology, 42, 3, 555-626.<br />

Guthrie, KM. <strong>and</strong> Wulff, AH 2002, Magma Petrogenesis <strong>of</strong> Stratigraphically Collected Flows from Volcan Cerro Azul, Southern Volcanic Zone, Chile. 2002 <strong>GSA</strong><br />

Abstracts with Programs.<br />

Hickey R.L., Frey F.A., Gerlach D.C., <strong>and</strong> Lopez-Escobar L. (1986) Multiple sources for basaltic arc rocks from the southern volcanic zone <strong>of</strong> the Andes (34-41o S):<br />

trace element <strong>and</strong> isotopic evidence for contributions from subducted oceanic crust, mantle, <strong>and</strong> continental crust. J. Geophys. Res., 91, 5963-5984.<br />

Hickey-Vargas R.L., Moreno-Roa H., Lopez-Escobar L., <strong>and</strong> Frey F.A. (1989) Geochemical variations in Andean basaltic <strong>and</strong> silicic lavas from the Villarica-Lanin<br />

volcanic chain (39.5o S): an evaluation <strong>of</strong> source heterogeneity, fractional crystallization, <strong>and</strong> crustal assimilation. J. Geophys. Res., 103, 361-386.<br />

Hildreth W. <strong>and</strong> Drake R.E. (1992) Volcan Quizapu, Chilean Andes. Bull. Volc., 54, 93-125<br />

Hildreth W. <strong>and</strong> Moorbath S. (1988) Crustal contributions to arc magmatism in the Andes <strong>of</strong> central Chile. Contrib. Mineral. Petrol., 98, 455-489.<br />

Mertes, ND <strong>and</strong> Wulff, AH, 2001. Chemostratigraphic Analysis <strong>and</strong> Petrogenetic Modelling: Magma Chamber Evolution at Volcan Cerro Azul, Chilean Andes. 2001<br />

Abstracts with Programs, 33, 4, p.39.<br />

Singer, B.S., R.A. Thompson, M.A. Dungan, T.C. Feeley, J.C. Pickens, L.L. Brown, S.T. Nelson, A.H. Wulff, J.P. Davidson, <strong>and</strong> J. Metzger, 1997; Volcanism <strong>and</strong><br />

erosion during the past 930 k.y. at the Tatara-San Pedro complex, Chilean Andes. <strong>GSA</strong> Bulletin, 109, no. 2, 127-142.<br />

Wulff, A.H. The Geochemical Evolution Of Volcan Tatara-San Pedro, 36o S, Southern Volcanic Zone, Chile. Unpub. PhD., University <strong>of</strong> Massachusetts, 456 p.,<br />

1999.<br />

Wulff, A.H. Chemo-stratigraphic identification <strong>of</strong> eruptive episodes at Volcan Cerro Azul, Southern Volcanic Zone, Chile. Abstr. with Programs, 28, 7, p. A-484,<br />

1996.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!