15.05.2013 Views

Download (15Mb) - Etheses - Saurashtra University

Download (15Mb) - Etheses - Saurashtra University

Download (15Mb) - Etheses - Saurashtra University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Saurashtra</strong> <strong>University</strong><br />

Re – Accredited Grade ‘B’ by NAAC<br />

(CGPA 2.93)<br />

Ramani, Vaibhav N., 2011, “Studies on Nitrogen and Oxygen Containing<br />

Heterocyclic Compounds”, thesis PhD, <strong>Saurashtra</strong> <strong>University</strong><br />

http://etheses.saurashtrauniversity.edu/id/eprint/546<br />

Copyright and moral rights for this thesis are retained by the author<br />

A copy can be downloaded for personal non-commercial research or study,<br />

without prior permission or charge.<br />

This thesis cannot be reproduced or quoted extensively from without first<br />

obtaining permission in writing from the Author.<br />

The content must not be changed in any way or sold commercially in any<br />

format or medium without the formal permission of the Author<br />

When referring to this work, full bibliographic details including the author, title,<br />

awarding institution and date of the thesis must be given.<br />

<strong>Saurashtra</strong> <strong>University</strong> Theses Service<br />

http://etheses.saurashtrauniversity.edu<br />

repository@sauuni.ernet.in<br />

© The Author


“STUDIES ON NITROGEN AND OXYGEN<br />

CONTAINING HETEROCYCLIC COMPOUNDS”<br />

A THESIS SUBMITTED TO<br />

THE SAURASHTRA UNIVERSITY<br />

IN THE FACULTY OF SCIENCE<br />

FOR THE DEGREE OF<br />

DOCTOR OF PHILOSOPHY<br />

IN<br />

CHEMISTRY<br />

BY<br />

VAIBHAV N. RAMANI<br />

Supervisor:<br />

Prof. Anamik Shah<br />

DEPARTMENT OF CHEMISTRY<br />

(DST-FIST FUNDED AND UGC-SAP SPONSORED)<br />

SAURASHTRA UNIVERSITY<br />

RAJKOT – 360 005 GUJARAT (INDIA)<br />

DECEMBER – 2011


Statement under O. Ph. D. 7 of <strong>Saurashtra</strong> <strong>University</strong><br />

The work included in the thesis is done by me under the supervision of<br />

Prof. Anamik K. Shah and the contribution made thereof is my own<br />

work.<br />

Date:<br />

Place: Vaibhav N. Ramani


CERTIFICATE<br />

This is to certify that the present work submitted for the Ph.D. degree of <strong>Saurashtra</strong> <strong>University</strong><br />

by Mr. Vaibhav N Ramani has been the result of work carried out under my supervision and is a<br />

good contribution in the field of organic, heterocyclic and synthetic medicinal chemistry.<br />

Date:<br />

Place: Prof. Anamik K. Shah


ACKNOWLEDGEMENT<br />

It is moment of gratification and pride to look back with a sense of<br />

contentment at the long traveled path, to be able to recapture some of the<br />

fine moments, to be think of the infinite number of people, some who<br />

were with me from the beginning, some who joined me at different stages<br />

during this journey, whose kindness, love and blessings has brought me<br />

to this day. I wish to thank each of them from the bottom of my heart.<br />

Therefore first and foremost I bow my head humbly before<br />

ALMIGHTY GOD for making me much capable that I could adopt and<br />

finish this huge task.<br />

I bow my head with absolute respect and pleasantly convey my<br />

heartily thankfulness to my research guide and thesis supervisor, most<br />

respectable Prof. Anamik Shah, who has helped me at each and every<br />

stage of my research work with patience and enthusiasm. I am much<br />

indebted to him for his inspiring guidance, affection, generosity and<br />

everlasting supportive nature throughout the tenure of my research work.<br />

I would like to bow my head with utter respect and convey my<br />

pleasant regards to my most adorable Mom and Dad, for believing in me<br />

and also for their blessing, constant support, courage and enthusiasm;<br />

they have shown throughout my work without which this thesis would<br />

not have appeared in the present form. I am equally thankful to my wife<br />

Ketaki, for her endless moral support and belief; I would also like to<br />

thank her for performing biological activity tests of my compounds. I am<br />

blessed to have my twin brother Vihar on my side with his concern and<br />

care during this tenure. I would also like to thank Papaji, Mumiji, Kaka,


Kaki, Dashu, Bhabhi, Saloni, Vicky, Harmeet, Rushi, Varun and<br />

Mira for encouraging me during my Research work.<br />

My Special thanks to Punitbhai, Dipak, Bharatbhai,<br />

Bhavinbhai, Dilip and Denish who gave me constant support during my<br />

Research work.<br />

I would like to express my feelings of gratitude to Prof. P.H.<br />

Parsania, Professor and Head, Department of Chemistry, <strong>Saurashtra</strong><br />

<strong>University</strong>, Rajkot for providing adequate infrastructure facilities.<br />

I am also thankful to Kanakaka who has been for me whenever in<br />

need and given me constant support during all my Research work.<br />

Words are inadequate to thank my closest friends Hiten, Yash,<br />

Vijay, Rasesh, Mohit and Jay who are always with me and have helped<br />

me in each and every phase of my life.<br />

Many many special thanks and lots of love to my dearest<br />

colleagues Dhairya, Jignesh, Rakshitbhai, Nilaybhai, Hitesh,<br />

Harshad, Manisha, Mrunal, Ravi, Vaibhavbhai, Saileshbhai,<br />

Hardevbhai, Abhay, Ashish, Pratik, Vishwa, Sabera, Madhvi, Hetal.<br />

I would like to thank Dr. Preeti, Dr. Jyoti, Dr. Fatema, Dr.<br />

Rupesh for all their help and support.<br />

I would also like to express my deep sense of gratitude to Dr.<br />

Ranjanben A. Shah and Mr. Aditya A. Shah for their kind concern and<br />

moral support that made my second home in Rajkot.<br />

I am also thankful to my Collegues Bhavesh, Dr. Ram, Govind,<br />

Minaxi, Amit, Kapil, Piyush, Renish, Naimish, Dipti, Sagar, Anil,


Vipul Mahesh, Piyush, Jignesh, Suresh, Jignesh, Lina, Pooja, Sandip,<br />

Ritesh, Ashish, Rahul and Kataria.<br />

I am also thankful to Dr. Yogesh Naliapara, Dr. V.H. Shah, Dr.<br />

H. S. Joshi, Dr. Shipra Baluja, Dr. Manish Shah and Dr. Bhoya for<br />

their constant support.<br />

I would like to thank teaching and non-teaching staff members of<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot.<br />

I am also grateful to Sophisticated Analytical Instrumentation<br />

Facility (SAIF), RSIC, Punjab <strong>University</strong> Chandigardh and Central<br />

Drug Research Institute (CDRI) Lucknow for 1 H NMR and<br />

Department of Chemistry <strong>Saurashtra</strong> <strong>University</strong>, Rajkot for IR, Mass and<br />

Elemental Analysis.<br />

I am thankful to “National Facility For drug discovery through<br />

new chemical entities development and instrumentation support to<br />

small manufacturing pharma enterprises” for instrument support and<br />

limited financial assistance.<br />

Lastly I would like to thank each and every one of them who<br />

helped me directly or indirectly during this wonderful and lots of<br />

experience gaining journey.<br />

I once again bow my head before Almighty to facilitate me at<br />

every stage of my dream to accomplish this task.<br />

Vaibhav N. Ramani


General Remarks<br />

Abbreviations<br />

CONTENT<br />

CHAPTER – 1 MICROWAVE ASSISTED FACILE SYNTHESIS OF<br />

BENZOFURANS LINKED WITH SUBSTITUTED 1,3,4<br />

OXADIAZOLES<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot – 360 005<br />

Content<br />

1.1 Introduction 1<br />

1.2 Pharmacology 3<br />

1.3 Synthetic Aspect 6<br />

1.4 Aim of Current Work 10<br />

1.5 Reaction Scheme 10<br />

1.6 Reaction Mechanism 11<br />

1.7 Experimental 12<br />

1.8 Physical Data 13<br />

1.9 Spectral Study 14<br />

1.10 Spectral Characterization 15<br />

1.11 Representative Spectra 18<br />

1.12 Result and Discussion 24<br />

1.13 Conclusion 24<br />

1.14 References 25<br />

CHAPTER – 2 SYNTHESIS AND CHARACTERIZATION OF 5,6,7,8<br />

SUBSTITUTED (3-AMIDO ADAMANTANE) 4-HYDROXY<br />

COUMARINS.<br />

2.1 Introduction 28<br />

2.2 Pharmacology 30<br />

2.3 Aim of Current Work 45<br />

2.4 Reaction Scheme 46


Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot – 360 005<br />

Content<br />

2.5 Plausible Reaction Mechanism 46<br />

2.6 Experimental 47<br />

2.7 Physical data 48<br />

2.8 Spectral Study 49<br />

2.9 Spectral Characterization 50<br />

2.10 Representative Spectra 53<br />

2.11 Result and discussion 57<br />

2.12 Conclusion 57<br />

2.13 References 58<br />

CHAPTER – 3 SOLVENT FREE SOLID PHASE SYNTHESIS OF<br />

AZOMETHINE LINKED COUMARIN MOITIES.<br />

3.1 Introduction 68<br />

3.2 Synthetic Aspect 71<br />

3.3 Green Chemistry Approach 74<br />

3.4 Aim of Current Work 80<br />

3.5 Reaction Scheme 80<br />

3.6 Experimental 81<br />

3.7 Physical data 82<br />

3.8 Spectral Study 84<br />

3.9 Spectral Characterization 85<br />

3.10 Representative Spectra 90<br />

3.11 Result and discussion 94<br />

3.12 Conclusion 94<br />

3.13 References 95<br />

CHAPTER – 4 SYNTHESIS AND CHARACTERIZATION OF SOME<br />

4-SUBSTITUTED 2,6-DIMETHYL 3,5-DICARBONITRILE<br />

1,4-DIHYDROPYRIDINES AND THEIR MANNICH BASES<br />

USING VARIOUS SECONDARY AMINES.<br />

4.1 Introduction 98<br />

4.2 Biological profile of 1,4-dihydropyridine 99<br />

4.3 1,4-dihydropyridines and mannich reaction 105<br />

4.4 Aim of current work 111


Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot – 360 005<br />

Content<br />

4.5 Reaction scheme 111<br />

4.6 Plausible reaction mechanism 112<br />

4.7 Experimental 113<br />

4.8 Physical data 115<br />

4.9 Spectral Study 117<br />

4.10 Spectral Characterization 119<br />

4.11 Representative Spectra 126<br />

4.12 Result and Discussion 134<br />

4.13 Conclusion 134<br />

4.14 References 135<br />

CHAPTER – 5 FACILE SYNTHESIS OF SOME NOVEL FURO<br />

COUMARINS<br />

5.1 Introduction 143<br />

5.2 Synthetic Aspect 148<br />

5.3 Aim of Current Work 152<br />

5.4 Reaction Scheme 152<br />

5.5 Experimental 153<br />

5.6 Physical Data 154<br />

5.7 Spectral Study 156<br />

5.8 Spectral Characterization 157<br />

5.9 Representative Spectra 162<br />

5.10 Result and Discussion 166<br />

5.11 Conclusion 166<br />

5.12 References 167<br />

CHAPTER – 6 PREPARATION OF NOVEL PYRIDO PYRIMIDINE-2-ONE<br />

DERIVATIVES<br />

6.1 Introduction 170<br />

6.2 Synthetic Aspect 175<br />

6.3 Aim of Current Work 178<br />

6.4 Reaction Scheme 178


Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot – 360 005<br />

Content<br />

6.5 Experimental 179<br />

6.6 Physical Data 180<br />

6.7 Spectral Study 181<br />

6.8 Spectral Characterization 182<br />

6.9 Representative Spectra 186<br />

6.10 Result and Discussion 190<br />

6.11 Conclusion 190<br />

6.12 References 191<br />

CHAPTER – 7 PROCESS DEVELOPMENT AND YIELD OPTIMIZATION<br />

OF SOME IMPORTANT INTERMEDIATES.<br />

7.1 Introduction 194<br />

7.2 Synthetic Aspect 197<br />

7.3 Aim of Current Work 207<br />

7.4 Reaction Scheme 207<br />

7.5 Experimental 209<br />

7.6 Physical Data 212<br />

7.7 Result and Discussion 213<br />

7.8 Conclusion 213<br />

7.9 References 214<br />

CHAPTER – 8 BIOLOGICAL EVALUATION OF SYNTHESIZED<br />

CHEMICAL ENTITIES<br />

8.1 Introduction 218<br />

8.2 Methods used for Screening 222<br />

8.3 Results and Discussion 225<br />

8.4 References 227<br />

SUMMARY<br />

CONGERENCES/SEMINARS/WORKSHOPS ATTENDED


General Remarks<br />

GENERAL REMARKS<br />

1. Melting points were recorded by open capillary method and are uncorrected.<br />

2. Infrared spectra were recorded on Shimadzu FT IR-8400 (Diffuse reflectance<br />

attachment) using KBr. Spectra were calibrated against the polystyrene<br />

absorption at ‘1610 cm -1 .<br />

3.<br />

1<br />

H Spectra were recorded on Bruker Avance II 400 spectrometer. Making a<br />

solution of samples in DMSO d6 and CDCl3 solvents using tetramethylsilane<br />

(TMS) as the internal standard unless otherwise mentioned, and are given in<br />

the δ scale. The standard abbreviations s, d, t, q, m, dd, dt, brs refer to singlet<br />

doublet, triplet, quartet, multiplet, doublet of a doublet, doublet of a triplet, ab<br />

quartet and broad singlet respectively.<br />

4. Mass spectra were recorded on Shimadzu GC MS-QP 2010 spectrometer<br />

operating at 70 eV using direct injection probe technique.<br />

5. Analytical thin layer chromatography (TLC) was performed on Merck<br />

precoated silica gel-G F254 aluminium plates. Visulization of the spots on TLC<br />

plates was achieved either by exposure to iodine vapor or UV light.<br />

6. The chemicals used for the synthesis of intermediates and end products were<br />

purchased fro Spectrochem, Sisco Research Laboratories (SRL), Thomas<br />

baker, Sd fine chemicals, Loba chemie and SU-Lab.<br />

7. All the reactions were carried out in Samsung MW83Y Microwave Oven<br />

which was locally modified for carrying out chemical reactions.<br />

8. All evaporation of solvents was carried out under reduced pressure on<br />

Heidolph LABOROTA-400-efficient.<br />

9. % Yield reported are isolated yields of material judged homogeneous by TLC<br />

and before recrystallization.<br />

10. The structures and names of all compounds given in the experimental section<br />

and in physical data table were generated ChemBio Draw Ultra 10.0.<br />

11. Elemental analysis was carried out on Vario EL Carlo Erba 1108.<br />

Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot – 360 005


List of Abbreviations<br />

List of Abbreviations<br />

NCEs New Chemical Entities<br />

R & D Research & Development<br />

HTS High Throughput Screening<br />

DHFR Dihydrofolate Reductase<br />

UTIs Urinary Tract Infections<br />

IDU Idoxuridine<br />

ARC AIDS - related complex<br />

Hsv Herpes simplex virus<br />

HIV Human Immunodeficiency Virus<br />

5-HT 5-hydroxytryptamine<br />

CNS Central Nervous System<br />

NSAID Non-Steroidal Anti-Inflammatory Drug<br />

COX Cyclooxygenase<br />

GnRH Gonadotropin-Releasing Hormone Antagonist<br />

PDE4 inhibitors Phosphodiesterase inhibitor<br />

FT-IR Fourier Transform- Infrared spectroscopy<br />

1<br />

H-NMR<br />

1<br />

H- Nuclear Magnetic Resonance spectroscopy<br />

DEPT Distortionless Enhancement Polarization Transfer<br />

Gl. Glacial<br />

TLC Thin Layer Chromatography<br />

Rf Retardation factor<br />

EtOH Ethanol<br />

Conc. Concentrated<br />

hrs / h. Hours<br />

GC-MS Gas Chromatograph- Mass Spectrometry<br />

DMSO Dimethyl sulfoxide<br />

mL Milliliter<br />

MeOH Methanol<br />

mp Melting Point<br />

Ms Mass


List of Abbreviations<br />

Anal. Calcd. Analytical Calculated<br />

IR Infrared<br />

TMS Trimethylsilane<br />

MHz Megahertz<br />

MIC Minimum Inhibitory Concentration<br />

MTBE Methyl tertiary butyl ether<br />

NCCLS National Committee for Clinical Laboratory Standards<br />

mg Miligram<br />

CDK-2 Cyclin-Dependent Kinase -2<br />

PPA Polyphosphoric Acid<br />

DMF Dimethylformamide<br />

MAOS Microwave-Assisted Organic Synthesis<br />

MW Microwave<br />

Min. Minute<br />

W Watt<br />

Pd Palladium<br />

SiO2 Selenium Dioxide<br />

InCl3 Indium Trichloride<br />

PTP Pyrazolotriazolopyrimidine<br />

GABA Gamma Amino Butyric Acid<br />

QSAR Quantitative Structure Activity Relationship<br />

SAR Structure Activity Relationship<br />

DNA Deoxyribonucleic Acid<br />

DBU Diazabicycloundecene<br />

EDG Electron Donating Group<br />

EWG Electron Withdrawing Group<br />

POCl3 Phosphorous oxychloride<br />

ZnCl2 Zinc chloride<br />

AlCl3 Aluminium trichloride<br />

EtOH Ethanol<br />

MeOH Methanol<br />

NaOH Sodium hydroxide<br />

HCl Hydrochloric acid


List of Abbreviations<br />

K2CO3 Potassium carbonate<br />

H2SO4 Sulphuric acid<br />

BH3.THF Borane in tetrahydrofuran<br />

KBr Potassium bromide<br />

CDCl3 Deuteriated chloroform<br />

BF3.Et2O Borone trifluoride in diethylether<br />

HCN Hydrogen cyanide<br />

TiCl4 Titanium tetrachloride<br />

KOH Potassium hydroxide<br />

NaH Sodium hydride<br />

LiH Lithium hydride<br />

KF Potassium fluoride<br />

Al2O3 Aluminium trioxide<br />

Br2 Bromine<br />

FeCl3 Ferric chloride<br />

DMAP Dimethylaminopyridine<br />

HMT Hexamethylene tetraamine<br />

PTD Pyrrolothienodiazepine<br />

TEA/Et3N Triethylamine<br />

aq. Aqueous<br />

Liq. Liquor<br />

CAN Cerric ammonium nitrate<br />

DCC N,N'-Dicyclohexylcarbodiimide<br />

SmI2 Samarium iodide<br />

SmCl2 Samarium chloride<br />

TsCl Tosylchloride<br />

NMP N-Methylpiperazine<br />

FDA Food and Drug Administration<br />

DMAPP Dimethyl allyl pyrophosphate<br />

DHPMs Dihydropyridine moities<br />

PTSA Para toluene sulphonic acid<br />

TEA Tri ethyl amine<br />

HMDS Hexamethylene disilazane<br />

CCl4 Tetra chloro methane


Chapter‐1<br />

MICROWAVE ASSISTED FACILE SYNTHESIS OF<br />

BENZOFURANS LINKED WITH SUBSTITUTED 1,3,4<br />

OXADIAZOLES


Chapter-1 1,3,4-Oxadiazole derivatives…<br />

1.1 INTRODUCTION<br />

Oxadiazoles belong to an important group of heterocyclic compounds having –N=C-<br />

O- linkage. 1,3,4-oxadiazole(1) is a thermally stable aromatic heterocycle and exist in<br />

two partially reduced forms; 2,3-dihydro-1,3,4-oxadiazole(1,3,4-oxadiazoline)(2) and<br />

2,5-dihydro-1,3,4-oxadiazole(1,3,4-oxadiazoline)(3) depending on the position of the<br />

double bond. The completely reduced form of the 1,3,4-oxadiazole is known as<br />

2,3,4,5-tetrahydro-1,3,4-oxadiazole (1,3,4-oxadiazolidine)(4) [1]<br />

N<br />

N N<br />

NH N<br />

N HN<br />

O O O O<br />

1 2 3 4<br />

1,3,4-Oxadiazole is a heterocyclic molecule with oxygen atom at 1 and two nitrogen<br />

atoms at 3 and 4 position. They have been known for about 80 years, it is only in the<br />

last decade that investigations in this field have been intensified. This is because of<br />

large number of applications of 1,3,4-oxadiazoles in the most diverse areas viz. drug<br />

synthesis, dye stuff industry, heat resistant materials, heat resistant polymers and scintillators.<br />

Reviews of the relevant literature prior to 1965 are available.<br />

Bactericidal and/or fungicidal activity was reported for oxadiazole (5a), aminooxadiazole<br />

(5b) [2] and oxadiazolinethiones (6a). [3] The tin derivatives (6b) are an effective<br />

fungicide and antimicrobial activite compound shown by thiones (6c). [4] Antiinflammatory,<br />

sedative and analgesic properties were reported for aryloxadiazoles<br />

(5c). [5] Amino-oxadiazoles (5d) show analgesic activity and amino-oxadiazoles (5e)<br />

exhibit both anti-inflammatory and antiproteolytic properties [6] . Anticonvulsant and<br />

nervous system depressant activity was reported for amino-oxadiazoles (5f), where R<br />

is quinazolin-3-yl group. [7] Aminooxadiazole (5g) show local anaesthetic activity. [8]<br />

The oxadiazolinone (6d) is an orally active antiallergic agent, for example in the<br />

treatment of asthma and allergy disease and is claimed to be more potent than sodium<br />

cromoglycate. [9] Examples of the many oxadiazolones for the many herbicidal activity<br />

(week killers) are (6e,6f) and “oxadiazon”(6g), which is the subject of many regular<br />

reports in the literature. Insecticidal activity is shown by oxadiazolones (6h, 6i the later<br />

is an aphicide), and oxadiazole (5h)<br />

NH<br />

1


Chapter-1 1,3,4-Oxadiazole derivatives…<br />

R 1<br />

5a Ar CH2CONHCONHR<br />

5b AR OCH2 NHCOR<br />

5c Trimethoxy 3,4-dimethoxyphenyl<br />

5d 2-pyridyl<br />

Or<br />

NR2HCl<br />

5e 4-biphenylylmethyl<br />

NHAr<br />

5f Ar NHCH2CONHR<br />

5g Ar NHCO(CH2)nNRR'HCl(n=2or3)<br />

R 1<br />

N<br />

N<br />

R 2<br />

O<br />

X<br />

6(a-i)<br />

R 1 R 2 X<br />

6a heteroarylOCH2 H S<br />

6b<br />

6c<br />

1-methylcyclopropyl<br />

5-Cl-2-phenylindol-3-<br />

Sn(Ph)3<br />

H<br />

O<br />

S<br />

6d<br />

ylNH <br />

3-Cl-benzo[b]thiophen-2yl<br />

R 2<br />

H O<br />

6e 4-cyclohexylphenoxy H O<br />

6f 2,4-diCl-phenoxymethyl Bn O<br />

6g t-Bu 2,4-diCl--5-isopropoxyphenyl O<br />

6h OCH3 o-methoxyphenyl<br />

2,3-diH-2,2,4-triMebenzofuran-<br />

O<br />

6i CH3NH<br />

7-yl<br />

O<br />

2


Chapter-1 1,3,4-Oxadiazole derivatives…<br />

1.2 PHARMACOLOGY<br />

1,3,4-Oxadiazole derivatives have been tested for various pharmacological<br />

activities, which have been summarized as under.<br />

1. Antibacterial [10]<br />

2. Antiinflammatory [11]<br />

3. Analgesic [12]<br />

4. Antiviral and anticancer [13]<br />

5. Antihypertensive [14]<br />

6. Anticonvulsant [15]<br />

7. Antiproliferative [16]<br />

8. Antifungal [17]<br />

9. Cardiovascular [18]<br />

10. Herbicidal [19]<br />

11. Hypoglycemic [20]<br />

12. Hypnotic and Sedative [21]<br />

13. MAO inhibitor [22]<br />

14. Insecticidal [23]<br />

1,3,4-Oxadiazole is a versatile scaffold and is being consistently used as a building<br />

block in organic chemistry as well as in medicinal chemistry for the synthesis of different<br />

heterocycles. The synthetic versatility of 1,3,4-oxadiazole has led to the extensive<br />

use of this compound in organic synthesis.<br />

3


Chapter-1 1,3,4-Oxadiazole derivatives…<br />

Some new oxadiazole drugs & derivatives under Preclinical/Phase clinical trials.<br />

Sr. No<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

Chemical structure<br />

Activity<br />

Antitussive,<br />

Bronchodilator<br />

Antirhinoviral,<br />

Antiviral<br />

Antihypertensive,<br />

Antianginal,<br />

Antiglaucoma<br />

agent,<br />

Beta-adrenoceptor<br />

antagonist<br />

Antidepressants,<br />

Anxiolytic, 5-<br />

HT1D Antagonist<br />

Antidepressants,<br />

Anxiolytic,<br />

5-HT1D Inverse<br />

agonist<br />

Cognition enhancing<br />

drug,<br />

GABA(A) receptor<br />

modulator,<br />

GABA(A) B2 site<br />

inverse<br />

agonist<br />

Phase<br />

Phase-I<br />

Phase-III<br />

Phase-II<br />

Biological<br />

testing<br />

Preclinical<br />

Preclinical<br />

Originator<br />

Sanofi-<br />

Synthlabo<br />

Viro<br />

pharma<br />

Center for<br />

Chemistry<br />

of Drugs<br />

Smithkline<br />

Beecham<br />

Smithkline<br />

Beecham<br />

Dainoppon<br />

pharma<br />

4


Chapter-1 1,3,4-Oxadiazole derivatives…<br />

Some new oxadiazole drugs & derivatives under Preclinical/Phase clinical trials.<br />

Sr. No<br />

Chemical structure<br />

Activity<br />

Phase<br />

7 Analgesic Preclinical<br />

8<br />

9<br />

O<br />

10 O<br />

H 3CO<br />

HN<br />

S<br />

O<br />

OH<br />

CN<br />

N<br />

N O<br />

N<br />

N<br />

O N<br />

OCF 3<br />

CH 3<br />

Antiobesity drug,<br />

Antidiabetic drug,<br />

Beta3 adrenoce tor<br />

agonist<br />

Antiobesity drug,<br />

Antidiabetic drug,<br />

Beta3 adrenoceptor<br />

agonist<br />

Bronchodilator,<br />

Phosphodiesterase<br />

Inhibitor<br />

Originator<br />

Universidade<br />

federal pernambuco<br />

Preclinical Merck<br />

Preclinical Merck<br />

Preclinical<br />

11 Antitrypanosomal Preclinical<br />

12<br />

Antiepileptic<br />

drug,Neuronal Injury<br />

Inhibitor,<br />

AMPA antagonist,Sodium<br />

channel<br />

blocker<br />

Preclinical<br />

Smithkline<br />

Beecham<br />

Universidad<br />

de larepublica<br />

Boehringer<br />

Ingelaeim<br />

5


Chapter-1 1,3,4-Oxadiazole derivatives…<br />

1.3 SYNTHETIC ASPECT<br />

There were several routes for the synthesis of 1,3,4-oxadiazoles reported in the literature<br />

among which the most important aspects of synthesis were discussed as under.<br />

2,5-Disubstituted 1,3,4-oxadiazole can be accomplished by cyclodehydration of 1,2diacylhydrazine<br />

either by using chlorosulphonic acid [24] or phenyl dichorophosphite in<br />

dimethylformamide. A nonaqueous, nonacedic, route involves treatment of hydrazine<br />

with hexamethyl disilazane (HMDS) and tetrabutylammoniumfluoride, the last step<br />

presumably being fluoride catalyzed cyclization of intermediate bis silyl ether. [25-26]<br />

R 1<br />

HN NH<br />

O O<br />

Diacyl hydrazine<br />

R1, R2 = alkyl, aryl<br />

R 2<br />

HMDS<br />

OSi(CH 3) 3<br />

ClSO 3H/Cl 2POPh<br />

N N<br />

R1 R2 R 1<br />

N<br />

O<br />

N<br />

R 2<br />

2,5-disubstituted-1,3,4-oxadiazole<br />

R1, R2 = alkyl, aryl<br />

(C4H9) 4N-F<br />

(H 3C) 3SiO<br />

In a related reaction, 1,1,2-triacetylhydrazine with trimethylsilylchloride/triethylamine<br />

gave oxadiazolinyl silylether. [27] Cyclodehydration (PCl5/POCl3) of hydrazinyl diester<br />

gave the diphenyloxyoxadiazol. [28]<br />

R 1<br />

COCH3 HN N<br />

(CH3) 3SiCl/(Et) 3N<br />

R 2<br />

O O<br />

1,1,2-triacylhydrazine<br />

R1, R2 = alkyl<br />

R 1<br />

N<br />

O<br />

O<br />

N<br />

OSi(CH 3) 3<br />

R 2<br />

CH 3<br />

PhO<br />

HN NH<br />

O O<br />

OPh<br />

POCl3/PCl5 PhO<br />

N N<br />

O OPh<br />

Hydrazine diester 2,5-diphenoxy-1,3,4-oxadiazol<br />

The malonate derivative (1) reacted with acylhydrazine (2) to give a mixture of diacylhydrazine<br />

monoamine (3) and oxadiazole (4). The later was also formed from (3)<br />

by heating. [29]<br />

6


Chapter-1 1,3,4-Oxadiazole derivatives…<br />

H 2N<br />

OEt<br />

COOEt<br />

H2N NH<br />

O<br />

CN (Et) 3N,<br />

H2N NHNHCOCH2CN COOEt<br />

CH2CN N N<br />

O<br />

CH2COOEt 1 2 3 4<br />

Oxidation of acylhydrazones derived (5) from aldehydes has been developed into a<br />

useful route to disubstituted oxadiazoles (6). The use of potassium permanganate with<br />

acetone as solvent was claimed to give better yields than the use of other oxidizing<br />

agents (e.g.halogens). [30] An improved synthesis of bis-oxadiazolylbenzenes (8) involved<br />

oxidation of bishydrazones (7) with lead tetraacetate. [31] Acylhydrazones (9)<br />

were oxidized by iodosobenzene diacetate to oxadiazolinones (10), with acetates (11)<br />

also being formed in some cases. A similar oxidation of ethyl esters (9, X=OEt) gave<br />

oxadiazolyl ethers (11, X=OEt). [32] Oxidative cyclization(FeCl3/AcOH) of semicarbazone<br />

(12) yielded amino-oxadiazoles (13). [33]<br />

R 1<br />

R 1<br />

NNHCOX<br />

5<br />

R 1<br />

Iodosobenzene diacetate<br />

NNHCOX<br />

9<br />

R1 = alkyl, aryl,<br />

X=OBut<br />

R 1<br />

KMnO 4<br />

R 1, X = alkyl, aryl<br />

NNHCOX<br />

R1 = Ph, X=NHR<br />

12<br />

N<br />

O<br />

6<br />

N<br />

X<br />

FeCl 3/AcOH<br />

R 1<br />

R 1<br />

CH=NNHCOAr<br />

7<br />

N<br />

CH=NNHCOAr<br />

N NH N N<br />

O O R1 O<br />

10 11<br />

N<br />

O<br />

13<br />

(m - or p -)<br />

X<br />

Pb(OAc) 4<br />

OAc<br />

Ar<br />

N<br />

8<br />

O<br />

N<br />

Ar<br />

O<br />

(m - or p -)<br />

Important routes to monosubstituted oxadiazoles (14), aminooxadiazoles (15), oxadiazolinones<br />

(15a) and oxadiazolinethiones (16) involve reaction of hydrazides<br />

(R1CONHNH2) with triethyl orthoformate, cyanogen bromide, phosgene, or carbon<br />

disulphide (or CSCl2) respectively.<br />

N<br />

N<br />

7


Chapter-1 1,3,4-Oxadiazole derivatives…<br />

R 1<br />

N NH<br />

O<br />

O<br />

15a<br />

R 1<br />

N<br />

O<br />

16<br />

NH<br />

S<br />

CS 2/CSCl 2<br />

COCl 2<br />

R 1<br />

O<br />

C(OC 2H 5) 3<br />

HN NH 2<br />

CNBr<br />

Reaction of hydrazide (17) with triethylorthoformate, or with CS2/KOH, allowed the<br />

synthesis of oxadiazolyl methyl ketones (18) and (19), respectively, after hydrolysis<br />

of the acetal group. [34]<br />

O O<br />

CH 3<br />

17<br />

O<br />

N<br />

H<br />

C(OC 2H 5) 3<br />

NH 2<br />

CS 2/KOH<br />

O<br />

O<br />

CH 3<br />

CH 3<br />

N<br />

O<br />

18<br />

N<br />

N<br />

O<br />

19<br />

An alternative to cyanogenbromide is phenyl cyanate (PhOCN), which reacted with<br />

hydrazines (R1CONHNH2) to give aminooxadiazoles (R1= 4,6- dimethyl-2pyrimidyl).<br />

[35] From oxadiazol-2-carbohydrazides (20) bioxadiazolyls ( 21) and (22)<br />

were prepared using cyanogen bromide [36] or thiophosgene [37] respectively.<br />

NH<br />

R1 O<br />

N<br />

H<br />

NH2 OCN<br />

R1 N N<br />

O<br />

20<br />

NH2 R1=4,6-dimethyl-2-pyridyl R1=4,6-dimethyl-2-pyridyl<br />

R 1<br />

O<br />

N N<br />

43<br />

O<br />

NH<br />

NH 2<br />

CNBr<br />

CSCl 2<br />

R 1<br />

N<br />

R 1<br />

N<br />

N<br />

O<br />

N<br />

O<br />

N<br />

O<br />

21<br />

N<br />

22<br />

O<br />

N<br />

N<br />

R 1<br />

R 1<br />

S<br />

NH 2<br />

NH 2<br />

N<br />

N<br />

N<br />

O<br />

14<br />

O<br />

15<br />

N<br />

NH 2<br />

8


Chapter-1 1,3,4-Oxadiazole derivatives…<br />

It has been shown that o-aminobenzoylhydrazine reacted with (i) 1,1’-carbonyl- bisimidazole(a<br />

variation of the use of phosgene) to give oxadiazolinone(23) [38] and (ii)<br />

1,3 dicyclohexylcarbodiimide and an isothiocyanate RNCS to give aminooxadiazole<br />

(24). [39]<br />

HN<br />

NH 2<br />

O<br />

NH 2<br />

1, 1'-carbonylbisimidazole<br />

RNCS<br />

N C N<br />

N<br />

NH<br />

O<br />

NH 2<br />

23<br />

N<br />

NH<br />

O<br />

NH 2<br />

24<br />

O<br />

NHR<br />

A variation of the oxidative cyclization of acyl-thiosemicarbazides to aminooxadiazoles.<br />

[40] A variation of the reaction of acylhydrazines and carbon disulfide forming<br />

oxadiazolinethiones, is the reaction of thiosemicarbazide (RNHCSNHNH2) with carbon<br />

oxysulfide and benzyl chloride, which yields amino-oxadiazolyl thioeth-<br />

ers(25). [41]<br />

H2N HN<br />

S<br />

HN<br />

R<br />

O=C=S<br />

CH 2Cl<br />

S<br />

N<br />

25<br />

N<br />

O<br />

NHR<br />

9


Chapter-1 1,3,4-Oxadiazole derivatives…<br />

1.4 AIM OF CURRENT WORK<br />

The aim of current work is to use green protocol to obtain hybridized molecules with<br />

less reaction time and high yield.<br />

1.5 REACTION SCHEME<br />

OH<br />

Ethyl bromo acetate<br />

O<br />

DMF, K2CO3 O<br />

O<br />

O<br />

64 % N2H4 O<br />

EtOH O NH<br />

H2N R<br />

O<br />

OH<br />

N<br />

O O<br />

N<br />

MW.<br />

POCl 3<br />

Up to 90 % yield<br />

2 min reaction time<br />

R<br />

10


Chapter-1 1,3,4-Oxadiazole derivatives…<br />

1.6 PLAUSIBLE REACTION MECHANISM<br />

Step-1<br />

Step-2<br />

H + -<br />

O<br />

Step-3<br />

O<br />

O O<br />

O<br />

OC 2H 5<br />

H2N.. NH2 NH O<br />

.. 2<br />

NH + HO Ph<br />

O<br />

O<br />

H<br />

N<br />

HN<br />

NH<br />

C<br />

O<br />

Ph<br />

O<br />

NH<br />

..<br />

O..<br />

N<br />

O O<br />

Ph<br />

N<br />

:<br />

H<br />

Ph<br />

OH<br />

O<br />

-H 2O<br />

O -<br />

OC<br />

H 2H5 +<br />

C2H - 5 O<br />

N NH2 H<br />

-<br />

O<br />

O<br />

NH +<br />

NH2 H<br />

+ H2N<br />

NH<br />

O<br />

O<br />

C<br />

-<br />

HO<br />

Ph OH- O<br />

-<br />

O<br />

H<br />

N H<br />

N<br />

O<br />

+<br />

O<br />

O<br />

-<br />

Ph<br />

..<br />

N<br />

O O<br />

N<br />

Ph<br />

H + -<br />

H<br />

O<br />

H<br />

NH<br />

+<br />

N<br />

O O<br />

O<br />

C<br />

O<br />

Ph<br />

H<br />

+ H<br />

N<br />

N<br />

Ph<br />

O<br />

-<br />

O<br />

NH2 NH<br />

11


Chapter-1 1,3,4-Oxadiazole derivatives…<br />

1.7 EXPERIMENTAL<br />

Preparation of Ethyl benzofuran-2-carboxylate<br />

Salicaldehyde (0.01 mole) was charged into 250 ml round bottom flask. 30 ml of<br />

DMF was added into the flask. Then ethylbromo acetate (0.01 mole) and K2CO3 (0.03<br />

mole) was added. The reaction mixture was refluxed for 1.5 h at 110 ° C on oil bath.<br />

The progress and the completion of the reaction were checked by TLC using hexane:<br />

ethyl acetate (9:1) as a mobile phase. After the reaction was completed, reaction mixture<br />

was poured into ice water. Then product was extracted using ethyl acetate (50 ml<br />

× 3), the combined organic layer was washed using brine solution (20 ml × 2). The<br />

organic layer was dried on anhydrous sodium sulphate and the solvent was removed<br />

under reduced pressure to acquire the product in a viscous liquid form. Yield - 77 %,<br />

B.P.- 276 ° C. [42]<br />

Preparation of Benzofuran-2-carbohydrazides<br />

Ethyl benzofuran-2-carboxylate (0.01 mole) was charged into 250 ml round bottom<br />

flask. 15 ml of hydrazine hydrate was added dropwise at 0-5 ° C in above flask. The<br />

progress and the completion of the reaction were checked by silica gel-G F254 thin<br />

layer chromatography using hexane: ethyl acetate (4: 6) as a mobile phase. After the<br />

reaction was completed, the mixture was stirred at room temperature to give benzofuran-2-carbohydrazide<br />

as a white colored shining product. M.P.-190-194 ° C. [43]<br />

Preparation of N'-(2-chloroacetyl)benzofuran-2-carbohydrazide<br />

In a round bottom flask, Benzofuran-2-carbohydrazides (0.01 mole), substituted<br />

benzoic acid (0.01 mole) and POCl3 (0.015 mole) were irradiated in domestic<br />

microwave for 2 minutes at 600 watts. The reaction mix was cooled and poured into<br />

the ice, stirred for 30 minutes and filtered. The solids obtained were further washed<br />

with 50 ml 10% solution of sodium bicarbonate and followed by wash with 50 ml DM<br />

water. The resulting compound was purified by column chromatography by silica gel<br />

230-400 mesh using ethyl acetate: hexane (4: 6 v/v) as eluent. Yield : 85%.<br />

12


Chapter-1 1,3,4-Oxadiazole derivatives…<br />

1.8 PHYSICAL DATA<br />

PHYSICAL DATA OF 2-(BENZOFURAN-2-YL)-5-(SUBSTITUTED<br />

PHENYL)-1,3,4-OXADIAZOLES<br />

Sr.<br />

No.<br />

Code R Mass Formula M.P o C Yield %<br />

1 VNRBF-101 4-Methyl 276.29 C17H12N2O2 145-147 79<br />

2 VNRBF-102 2-amino 277.28 C16H11N3O2 165-167 85<br />

3 VNRBF-103<br />

2-chloro, 4nitro<br />

341.71 C16H8ClN3O4 140 o C 88<br />

4 VNRBF-104 4-amino 277.28 C16H11N3O2 >300 o C 77<br />

5 VNRBF-105 3,5-dihydroxy 294.26 C16H10N2O4 170 o C 84<br />

6 VNRBF-106 3-methyl 276.29 C17H12N2O2 90 o C 90<br />

7 VNRBF-107 2-methyl 276.29 C17H12N2O2 94 o C 89<br />

8 VNRBF-108<br />

2-hydroxy,<br />

3,5-dinitro<br />

368.26 C16H8N4O7 125 o C 85<br />

9 VNRBF-109 2,4-dichloro 331.15 C16H8Cl2N2O2 140 o C 78<br />

10 VNRBF-110 4-chloro 296.71 C16H9ClN2O2 230 o C 87<br />

11 VNRBF-111 H 262.26 C16H10N2O2 145 o C 92<br />

N<br />

O O<br />

N<br />

6<br />

1<br />

5<br />

2<br />

4<br />

3<br />

R<br />

13


Chapter-1 1,3,4-Oxadiazole derivatives…<br />

1.9 SPECTRAL STUDY<br />

IR spectra<br />

Infra Red spectra were taken on Shimadzu FT-IR-8400 spectrometer using KBr<br />

pellet method. The characteristic aromatic group in 1,3,4-oxadiazol moiety is<br />

observed at 3010-3090 cm -1 . Methyl (-CH3) observed at 1350 cm -1 .<br />

1 H NMR spectra<br />

1<br />

H NMR spectra were recorded on a Bruker AC 400 MHz NMR spectrometer using<br />

TMS (Tetramethyl Silane) as an internal standard and DMSO-d6 & CDCl3 as a<br />

solvent. In the NMR spectra of 2-(benzofuran-2-yl)-5-(substituted phenyl)-1,3,4oxadiazole<br />

derivatives various proton values of methylene (-CH2), amine (-NH),<br />

methyl (-CH3) and aromatic protons (Ar-H) etc. were observed. Individual data are<br />

given for each compound separately.<br />

13 C NMR spectra<br />

13<br />

C NMR spectra were recorded on a Bruker AC 400 MHz NMR spectrometer using<br />

DMSO-d6 & CDCl3 as a solvent. In the 13 C NMR spectra of 2-(benzofuran-2-yl)-5-<br />

(substituted phenyl)-1,3,4-oxadiazole derivatives, various carbon values of methylene<br />

(-CH2), keto (>C=O), methyl (-CH3) and aromatic carbon (Ar-H) etc. were observed.<br />

Mass spectra<br />

The mass spectrum of compounds were recorded by Shimadzu GC-MS-QP-2010<br />

spectrometer. The mass spectrum of compounds was obtained by positive chemical<br />

ionization mass spectrometry. The molecular ion peak and the base peak in all<br />

compounds were clearly obtained in mass spectral study. The molecular ion peak<br />

(M + ) values are in good agreement with molecular formula of all the compounds<br />

synthesized.<br />

Elemental analysis<br />

Elemental analysis of the synthesized compounds was carried out on Vario EL-III<br />

Carlo Erba 1108 model at <strong>Saurashtra</strong> <strong>University</strong>, Rajkot which showed calculated<br />

14


Chapter-1 1,3,4-Oxadiazole derivatives…<br />

and found percentage values of Carbon, Hydrogen and Nitrogen in support of the<br />

structure of synthesized compounds. The elemental analysis data are given for<br />

individual compounds.<br />

1.10 SPECTRAL CHARACTERIZATION<br />

2-(benzofuran-2-yl)-5-p-tolyl-1,3,4-oxadiazole (VNRBF-101)<br />

Yield: 79%; IR (KBr) cm -1 : 1639 (>C=N, str), 1087 (C-O-C), 2852 (>CH2 ,str), 1438<br />

(>CH2 ,ben), 2868 (>CH3,str), 1390 (>CH3, ben), 3010 (=C-H, str), 3037 (Ar, C-H,<br />

str), 1564 (Ar, C=C, str). 1 H NMR 400 MHz: (CDCl3, δ ppm): 2.45 (s, 2H), 7.31 (m,<br />

3H), 7.45 (m, 1H), 7.57 (s, 1H), 7.64 (d, 1H), 7.71 (d, 1H), 8.05 (d, 2H). 13 C NMR<br />

400 MHz: (DMSO-d6, δ ppm): 30.6, 39.3, 78.7, 86.2, 100.7, 111.7, 116.4, 117.5,<br />

119.3, 122.5, 124.1, 130.4, 132.6, 135.8, 154.3, 158.9, 166.2, 195.6; Mass: [m/z<br />

(%)], M. Wt.: 276. Elemental analysis, Calculated: C, 73.90; H, 4.38; N, 10.14<br />

Found: C, 73.87; H, 4.85; N, 10.79.<br />

2-(5-(benzofuran-2-yl)-1,3,4-oxadiazol-2-yl)benzenamine (VNRBF-102)<br />

Yield: 85%; IR (KBr) cm -1 : 1625 (>C=N, str), 1087 (C-O-C), 2872 (>CH2 ,str), 1455<br />

(>CH2 ,ben), 3015 (=C-H, str), 3042 (Ar, C-H, str), 1513 (Ar, C=C, str), 3450 (>NH2,<br />

str), 1470 (>NH2, ben). Mass: [m/z (%)], M. Wt.: 277. Elemental analysis,<br />

Calculated: C, 69.31; H, 4.00; N, 15.15; Found: C, 69.10; H, 4.28; N, 15.65.<br />

2-(benzofuran-2-yl)-5-(2-chloro-5-nitrophenyl)-1,3,4-oxadiazole (VNRBF-103)<br />

Yield: 88%; IR (KBr) cm -1 : 3496 (-NH), 1616 (>C=N, str), 1077 (C-O-C), 2871<br />

(>CH2 ,str), 1445 (>CH2 ,ben), 3010 (=C-H, str), 3036 (Ar, C-H, str), 1520 (Ar, C=C,<br />

str), 1610 (>NO2, str) 952 (C-Cl str.). Mass: [m/z (%)], M. Wt.: 341(M+),<br />

343(M+2). Elemental analysis, Calculated: C, 56.24; H, 2.36; N, 12.30; Found: C,<br />

56.23; H, 2.68; N, 12.61.<br />

4-(5-(benzofuran-2-yl)-1,3,4-oxadiazol-2-yl)benzenamine (VNRBF-104)<br />

Yield: 77%; IR (KBr) cm -1 : 1618 (>C=N, str), 1080 (C-O-C), 2862 (>CH2 ,str), 1455<br />

(>CH2 ,ben), 3015 (=C-H, str), 3042 (Ar, C-H, str), 1526 (Ar, C=C, str), 3456 (>NH2,<br />

str), 1484 (>NH2, ben). Mass: [m/z (%)], M. Wt.: 277. Elemental analysis,<br />

Calculated: C, 69.31; H, 4.00; N, 15.15; Found: C, 69.32; H, 4.16; N, 15.71.<br />

15


Chapter-1 1,3,4-Oxadiazole derivatives…<br />

5-(5-(benzofuran-2-yl)-1,3,4-oxadiazol-2-yl)benzene-1,3-diol (VNRBF-105)<br />

Yield: 84%; IR (KBr) cm -1 : 1626 (>C=N, str), 1077 (C-O-C), 2878 (>CH2 ,str), 1463<br />

(>CH2 ,ben), 3026 (=C-H, str), 3047 (Ar, C-H, str), 1533 (Ar, C=C, str), 1374 (-CH3,<br />

str.), 1180 (>C-O, str), 3550 (>O-H, str). Mass: [m/z (%)], M. Wt.: 294. Elemental<br />

analysis, Calculated: C, 65.31; H, 3.43; N, 9.52 Found: C, 65.42; H, 3.39; N, 9.88.<br />

2-(benzofuran-2-yl)-5-m-tolyl-1,3,4-oxadiazole (VNRBF-106)<br />

Yield: 90%; IR (KBr) cm -1 : 1630 (>C=N, str), 1075 (C-O-C), 2885 (>CH2 ,str), 1471<br />

(>CH2 ,ben), 3025 (=C-H, str), 3052 (Ar, C-H, str), 1545 (Ar, C=C, str), 2872<br />

(>CH3,str), 1380 (>CH3, ben). 1 H NMR 400 MHz: (CDCl3, δ ppm): 2.37 (s, 3H),<br />

7.32 (m, 4H), 7.55 (d, 1H), 7.62 (d, 1H), 7.87 (m, 2H). 13 C NMR 400 MHz: (DMSOd6,<br />

δ ppm): 109.7, 111.4, 121.6, 122.3, 123.4, 123.6, 126.6, 126.9, 128.6, 132.0,<br />

132.4, 138.4, 140.0, 154.4, 155.0, 157.0, 164.0, 164.11 Mass: [m/z (%)], M. Wt.:<br />

276. Elemental analysis, Calculated: C, 73.90; H, 4.38; N, 10.14; Found: C, 73.49;<br />

H, 4.86; N, 10.90.<br />

2-(benzofuran-2-yl)-5-o-tolyl-1,3,4-oxadiazole (VNRBF-107)<br />

Yield: 89%; IR (KBr) cm -1 : 1637 (>C=N, str), 1076 (C-O-C), 2882 (>CH2 ,str), 1475<br />

(>CH2 ,ben), 3023 (=C-H, str), 3056 (Ar, C-H, str), 1547 (Ar, C=C, str), 2885<br />

(>CH3,str), 1410 (>CH3, ben). 1 H NMR 400 MHz: (CDCl3, δ ppm): 2.70 (s, 3H),<br />

7.28 (m, 3H), 7.35 (m, 2H), 7.49 (d, 2H), 7.56 (m, 1H), 7.62 (d, 1H), 7.96 (m, 1H).<br />

13<br />

C NMR 400 MHz: (DMSO-d6, δ ppm): 109.7, 111.4, 121.6, 122.3, 123.4, 123.6,<br />

126.6, 126.9, 128.6, 132.0, 132.4, 138.4, 140.0, 154.4, 155.0, 157.0, 164.0, 164.11;<br />

Mass: [m/z (%)], M. Wt.: 276. Elemental analysis, Calculated: C, 73.90; H, 4.38;<br />

N, 10.14; Found: C, 73.92; H, 4.65; N, 10.65.<br />

2-(5-(benzofuran-2-yl)-1,3,4-oxadiazol-2-yl)-4,6-dinitrophenol (VNRBF-108)<br />

Yield: 85%; IR (KBr) cm -1 : 1640 (>C=N, str), 1078 (C-O-C), 2890 (>CH2 ,str), 1463<br />

(>CH2 ,ben), 3052 (=C-H, str), 3045 (Ar, C-H, str), 1565 (Ar, C=C, str), 1626 (>NO2,<br />

str), 3590 (>O-H, str) . Mass: [m/z (%)], M. Wt.: 368. Elemental analysis,<br />

Calculated: C, 52.18; H, 2.19; N, 15.21; Found: C, 52.28; H, 2.55; N, 15.65.<br />

16


Chapter-1 1,3,4-Oxadiazole derivatives…<br />

2-(benzofuran-2-yl)-5-(2,4-dichlorophenyl)-1,3,4-oxadiazole (VNRBF-109)<br />

Yield: 78%; IR (KBr) cm -1 : 1639 (>C=N, str), 1068 (C-O-C), 2896 (>CH2 ,str), 1455<br />

(>CH2 ,ben), 3052 (=C-H, str), 3039 (Ar, C-H, str), 1564 (Ar, C=C, str). Mass: [m/z<br />

(%)], M. Wt.: 331(M+), 333(M+2), 335(M+4). Elemental analysis, Calculated: C,<br />

58.03; H, 2.43; N, 8.46;Found: C, 58.22; H, 2.62; N, 8.48.<br />

2-(benzofuran-2-yl)-5-(4-chlorophenyl)-1,3,4-oxadiazole (VNRBF-110)<br />

Yield: 87%; IR (KBr) cm -1 : 1652 (>C=N, str), 1087 (C-O-C), 2879 (>CH2 ,str), 1462<br />

(>CH2 ,ben), 3041 (=C-H, str), 3062 (Ar, C-H, str), 1574 (Ar, C=C, str). 1 H NMR 400<br />

MHz: (CDCl3, δ ppm): 1.27 (s, 1H), 7.35 (m, 1H), 7.47 (m, 1H), 7.51 (m, 2H), 7.54<br />

(s, 1H), 7.63 (d, 1H), 7.72 (d, 1H), 8.10 (m, 2H). 13 C NMR 400 MHz: (DMSO-d6, δ<br />

ppm): 110.0, 111.4, 121.2, 121.9, 123.6, 126.6, 126.7, 127.6, 127.8, 128.9, 129.0,<br />

137.7, 139.7, 155.1, 157.2, 163.1 Mass: [m/z (%)], M. Wt.: 296(M+), 298(M+2).<br />

Elemental analysis, Calculated: C, 66.77; H, 6.06; N, 15.44; Found: C, 66.38; H,<br />

6.35; N, 15.57.<br />

2-(benzofuran-2-yl)-5-phenyl-1,3,4-oxadiazole (VNRBF-111)<br />

Yield: 92%; IR (KBr) cm -1 : 1651 (>C=N, str), 1089 (C-O-C), 2883 (>CH2 ,str), 1450<br />

(>CH2 ,ben), 3049 (=C-H, str), 3063 (Ar, C-H, str), 1579 (Ar, C=C, str). Mass: [m/z<br />

(%)], M. Wt.: 262. Elemental analysis, Calculated: C, 73.27; H, 3.84; N, 10.68;<br />

Found: C, 73.60; H, 3.38; N, 10.11.<br />

17


Chapter-1 1,3,4-Oxadiazole derivatives…<br />

1.11 REPRESENTATIVE SPECTRA<br />

IR spectrum of 2-(benzofuran-2-yl)-5-p-tolyl-1,3,4-oxadiazole (VNRBF-101)<br />

90<br />

%T<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

3600 3200<br />

VNRBF-101<br />

3126.71<br />

3057.27<br />

2928.04<br />

2868.24<br />

2679.21<br />

2492.11<br />

2800<br />

2400<br />

2000<br />

1800<br />

IR spectrum of 2-(benzofuran-2-yl)-5-o-tolyl-1,3,4-oxadiazole (VNRBF-107)<br />

105<br />

%T<br />

90<br />

75<br />

60<br />

45<br />

30<br />

15<br />

0<br />

-15<br />

3132.50<br />

3061.13<br />

2914.54<br />

O O<br />

3600 3200<br />

VNRBF-107<br />

N<br />

N<br />

O O<br />

N<br />

N<br />

2800<br />

2370.59<br />

2366.74<br />

2353.23<br />

2341.66<br />

2400<br />

2000<br />

1800<br />

1691.63<br />

1693.56<br />

1633.76<br />

1581.68<br />

1554.68<br />

1633.76<br />

1600<br />

1595.18<br />

1600<br />

1492.95<br />

1442.80<br />

1548.89<br />

1469.81<br />

1440.87<br />

1346.36<br />

1400<br />

1400<br />

1344.43<br />

1284.63<br />

1255.70<br />

1176.62<br />

1200<br />

1255.70<br />

1172.76<br />

1200<br />

1078.24<br />

1145.75<br />

1084.03<br />

1068.60<br />

1018.45<br />

960.58<br />

912.36<br />

881.50<br />

1000<br />

968.30<br />

912.36<br />

1000<br />

825.56<br />

881.50<br />

796.63<br />

790.84<br />

800<br />

742.62<br />

800<br />

732.97<br />

729.12<br />

698.25<br />

613.38<br />

569.02<br />

688.61<br />

505.37<br />

453.29<br />

600 400<br />

1/cm<br />

613.38<br />

555.52<br />

505.37<br />

462.93<br />

441 71<br />

600 400<br />

1/cm


Chapter-1 1,3,4-Oxadiazole derivatives…<br />

Mass spectrum of 2-(benzofuran-2-yl)-5-p-tolyl-1,3,4-oxadiazole (VNRBF-101)<br />

N<br />

N<br />

O O<br />

Mass spectrum of 2-(benzofuran-2-yl)-5-o-tolyl-1,3,4-oxadiazole (VNRBF-107)<br />

O O<br />

N<br />

N


Chapter-1 1,3,4-Oxadiazole derivatives…<br />

1 H NMR spectrum of 2-(benzofuran-2-yl)-5-p-tolyl-1,3,4-oxadiazole (VNRBF-101)<br />

N<br />

N<br />

O O<br />

Expanded 1 H NMR spectrum of 2-(benzofuran-2-yl)-5-p-tolyl-1,3,4-oxadiazole<br />

(VNRBF-101)<br />

O O<br />

N<br />

N


Chapter-1 1,3,4-Oxadiazole derivatives…<br />

1 H NMR spectrum of 2-(benzofuran-2-yl)-5-o-tolyl-1,3,4-oxadiazole (VNRBF-107)<br />

N<br />

N<br />

O O<br />

Expanded 1 H NMR spectrum of 2-(benzofuran-2-yl)-5-o-tolyl-1,3,4-oxadiazole<br />

(VNRBF-107)<br />

O O<br />

N<br />

N


Chapter-1 1,3,4-Oxadiazole derivatives…<br />

13<br />

C NMR spectrum of 2-(benzofuran-2-yl)-5-p-tolyl-1,3,4-oxadiazole (VNRBF-<br />

101)<br />

Expanded 13 C NMR spectrum of 2-(benzofuran-2-yl)-5-p-tolyl-1,3,4-oxadiazole<br />

(VNRBF-101)<br />

N<br />

N<br />

O O<br />

O O<br />

N<br />

N


Chapter-1 1,3,4-Oxadiazole derivatives…<br />

13<br />

C NMR spectrum of 2-(benzofuran-2-yl)-5-o-tolyl-1,3,4-oxadiazole (VNRBF-<br />

107)<br />

O O<br />

N<br />

N<br />

Expanded 13 C NMR spectrum of 2-(benzofuran-2-yl)-5-o-tolyl-1,3,4-oxadiazole<br />

(VNRBF-107)<br />

N<br />

N<br />

O O


Chapter-1 1,3,4-Oxadiazole derivatives…<br />

1.12 RESULT AND DISCUSSION<br />

Present work covers the synthesis of some novel oxadiazole compounds clubbed with<br />

benzofuran moiety. The main significance of the present work is that the reaction is<br />

carried out under conventional microwave leading to a rapid reaction time, easy work<br />

up method, excellent yield and high chemical purity of the desired compounds.<br />

1.13 CONCLUSION<br />

Total 11 derivatives of 2-(benzofuran-2-yl)-5-(substituted phenyl)-1,3,4-oxadiazole<br />

were synthesized. All the newly synthesized compounds were characterized by IR, 1 H<br />

NMR, 13 C NMR, Mass spectral data and Elemental Analysis.<br />

24


Chapter-1 1,3,4-Oxadiazole derivatives…<br />

1.14 REFERENCES<br />

[1] J. Hill, Comp. Heterocycl. Chem., 1984, 1 st edition, 6427.<br />

[2] K. Roda, R. Vansdadia, H. Parekh., J. Ind. Chem. Soc. 1988, 65, 807.<br />

[3] V. Adhikari, V. Badiger., Ind. J. Chem. Sect-B, 1988, 27, 542.<br />

[4] K. Manjunatha, B. Poojary, P. Lobo, J. Fernandes, N. Kumari, European<br />

Journal of Medicinal Chemistr.y, 2010, 45(11), 5225-5233.<br />

[5] M. Azam,S. Afzal, A. Thomas., Indian Journal of Heterocyclic Chemistry<br />

2010, 20(1), 77-80.<br />

[6] K. Raman, S. Parmar, S. Salzman, J. Pharm. Sci., 1989, 78, 999.<br />

[7] N. Ergenc, S. Buyuktimkin, G. Capan, G. baktir, S. Rollas., Pharmazie, 1991,<br />

46, 290.<br />

[8] V. Saxena, A. Singh, R. Agarwal, S. Mehra., J. Ind. Chem. Soc., 1983, 60,<br />

575.<br />

[9] J. Musser., J. Med. Chem., 1984, 27, 121.<br />

[10] S. Chao, X. Li, S. Wang, Huaxue Yanjiu Yu Yingyong., 2010, 22(8), 1066-<br />

1071.<br />

[11] S. Gilani, S. Khan, N. Siddiqui, Bioorg. Med. Chem. Lett., 2010, 20(16), 4762-<br />

4765.<br />

[12] S. Bhandari, J. Parikh, K. Bothara, T. Chitre, D. Lokwani, T. Devale, N.<br />

Modhave, V. Pawar, S. Panda., Journal of enzyme inhibition and medicinal<br />

chemistry, 2010, 25(4), 520-530.<br />

[13] Gattige Vidya., PCT Int. Appl., WO 2009090548, 2009, 82.<br />

[14] G. Bankar, G. Nampurath, P. Nayak, S. Bhattacharya., Chemico-Biological<br />

Interactions, 2010, 183(2), 327-331.<br />

[15] M. Bhat, M. Al-Omar, N. Siddiqui., Pharma Chemica, 2010, 2(2), 1-10.<br />

[16] Q. Zheng, X. Zhang, Y. Xu, K. Cheng, Q. Jiao, H. Zhu., Bioorg. Med. Chem.,<br />

2010, 18(22), 7836-7841.<br />

[17] L. Srikanth, U. Naik, R. Jadhav, N. Raghunandan, J. Rao, K. Manohar.,<br />

Pharma Chemica, 2010, 2(4), 231-243.<br />

[18] Z. M. Zuhair, J. Ghada, A. Elham, N. Lina., Jord J. Chem, 2008, 3(3), 233-<br />

43.<br />

25


Chapter-1 1,3,4-Oxadiazole derivatives…<br />

[19] R. Bankar , K. Nandakumar, G. Nayak, A. Thakur, C. Rao, N. Kutty.,<br />

Chemico-Biological Interactions, 2009, 181(3), 377-382.<br />

[20] Wang Bao-Lei, Li Zheng-Ming, Li Yong-Hong, Wang Su-Hua., Gaodeng<br />

Xuexiao Huaxue Xuebao, 2008, 29(1), 90-94.<br />

[21] I. Fumio, K. Jun, K. Hiromi, K. Eiji, S. Morihisa, K. Tomohiro, I. Hiroki, M.<br />

Katsuhito., PCT Int. Appl. 2008, 531.<br />

[22] K. Sushil, V. Gupta, V. Kashaw, P. Mishra, J. Stables, N. Jain., Med. Chem.<br />

Research., 2009, 38(2), 157-159.<br />

[23] U. Ghani, N. Ullah., Bioorg. Med. Chem., 2010, 18(11), 4042-4048.<br />

[24] C. Chiriac., Rev.Chim., (Bucharest), 1983, 34, 1131, Chem. Abstr., 1984,<br />

100,174735<br />

[25] C. Chiriac, Rev.Chim., (Bucharest), 1982, 27, 935, Chem. Abstr. 1983,<br />

98,107216.<br />

[26] B. Rigo, P. Cauliez, D. Fasseur, D. Couturier., Synth. Commun., 1986,<br />

16,1665.<br />

[27] A. Kalinin, B. Khasapov, E. Aposav, I. Kalikhman, S. Ioffe., Izv. Akad Nauk<br />

SSSR Ser. Khim. 1984, 694, Chem. Abstr. 1984, 101, 91045.<br />

[28] A. Theocharis, N. Alexandrou., J. Heterocycl. Chem., 1990, 27,1685.<br />

[29] M. Elnagdi, N. Ibrahim, F. Abdelrazek, A. Erian., Liebigs Ann. Chem., 1988,<br />

909.<br />

[30] P. Reddy., Ind. J. Chem. Sect-B, 1987, 26, 890.<br />

[31] S. Rekkas, N. Rodias, N. Alexandrou., Synthesis, 1986, 411.<br />

[32] H. Baumgarten, D. Hwang, T. Rao., J. Heterocycl. Chem., 1986, 23, 945.<br />

[33] S. Hiremath, N. Goudar, M. Purohit., Ind. J. Chem.Sect-B, 1982, 21,321.<br />

[34] B. Kubel., Monatsh Chem., 1982, 113, 793.<br />

[35] A. Hetzheim, G. Mueller, P. Vainilavicius, D. Girdziunaite., Pharmazie, 1985,<br />

40, 17.<br />

[36] J. Dost, M. Heschel, J. Stein., J. Prakt. Chem., 1985, 327,109.<br />

[37] E. Beriger, W. Eckhardt., Eur. Pat.364396, 1990, Chem. Abstr., 1990, 113,<br />

152432.<br />

[38] E. Tihanyi, M. Gal, P. Dvortsak., Heterocycles, 1983, 20, 571.<br />

[39] N. Peet, S. Sunder., J. Heterocycl. Chem., 1984, 21, 1807.<br />

[40] J. Hill., Comp. Heterocycl .Chem.,1 st Ed., 1984, 6, 427.<br />

26


Chapter-1 1,3,4-Oxadiazole derivatives…<br />

[41] M. Chande, A. Karnik, I. Inamdar, S. Damle., Ind. J. Chem. Sect B., 1991,<br />

30,430.<br />

[42] Bioorganic & Medicinal Chemistry Letters 2008, 18, 5591-5593.<br />

[43] Halli, M.B.; Oriental Journal of Chemistry 2001, V17(3), 441-444.<br />

27


Chapter‐2<br />

SYNTHESIS AND CHARACTERIZATION OF<br />

SUBSTITUTED 3‐(1‐AMIDO ADAMANTYL)<br />

4‐HYDROXY COUMARINS.


Chapter-2 Synthesis and characterization of…<br />

2.1 INTRODUCTION<br />

Coumarin are the best known aromatic lactones [1] .The isolation of coumarin was first<br />

reported by Vogel [2] in Munich in1820.He associated the pleasant odour of the tonka<br />

bean from Guiana with that of clover, Melilotous officinalis, which gives rise to the<br />

characteristic aroma of new –mown hay. Vogel then concluded that the long colorless<br />

crystals which he discovered on slicing open Tonka beans and which crystallized as<br />

glistening needles from aqueous alcohol, were identical with similar crystals he<br />

obtained, albeit in much lower yield, by extracting fresh clover blossoms [3] . The name<br />

coumarin originated [4] from a Caribbean word ‘coumarou’ for the tonka tree, which<br />

was known botanically at one time as Coumarouna odorata aubl.Coumarin is now<br />

well, accepted trivial name. The IUPAC nomenclature of the coumarin fing system is<br />

2H-1-benzopyran-2-one (I).<br />

The coumarin ring system has an easy acceptability in the biological system compared<br />

to its isomeric chromones and flavones nucleus [5] and is widely distributed in nature [6-<br />

9]<br />

.An excellent account of these naturally occurring coumarin is presented by Murray<br />

and Brown [10]<br />

O O<br />

Coumarin comprises a group of natural compounds found in a variety of plant<br />

sources. The very long association of plant coumarin with various animal species and<br />

other organisms throughout evolution may account for the extraordinary range of<br />

biochemical and pharmacological activities of these chemicals in mammalian and<br />

other biological systems. The coumarins that were studied have diverse biological<br />

properties and various effects on the different cellular systems. A lot of biological<br />

parameters should be evaluated to increase our understanding of mechanisms by<br />

which these coumarin act. Coumarin has important effects in plant biochemistry and<br />

physiology, acting as antioxidants, enzyme inhibitors and precursors of toxic<br />

28


Chapter-2 Synthesis and characterization of…<br />

substances. In addition, these compounds are involved in the actions of plant growth<br />

hormones and growth regulators, the control of respiration, photosynthesis, as well as<br />

defense against infection. The coumarin have long been recognized to possess antiinflammatory,<br />

antioxidant, antiallergic, hepatoprotective, antithrombotic, antiviral,<br />

and anticarcinogenic activities. The hydroxycoumarins are typical phenolic<br />

compounds and, therefore, act as potent metal chelators and free radical scavengers.<br />

They are powerful chain-breaking antioxidants. The coumarin display a remarkable<br />

array of biochemical and pharmacological actions, some of which suggest that certain<br />

members of this group of compounds may significantly affect the function of various<br />

mammalian cellular systems. The coumarin are extremely variable in structure, due to<br />

the various types of substitutions in their basic structure, which can influence their<br />

biological activity. Vast majority of coumarin, completely innocuous, may be<br />

beneficial in a variety of human disorders, in spite of some ongoing controversy.<br />

There has been, in recent years, a major rekindling of interest in pharmacognosy.<br />

Coumarin turns out to be present in many natural therapeutically utilized products.<br />

They hold a place apart in view of their cytotoxic activity. It was suggested that<br />

alterations in the chemical structure of coumarin could change their cytotoxic<br />

properties [11] .<br />

Coumarin and its hydroxy derivatives have been prominently accepted as natural<br />

pharmaceuticals [12] world wide, has revealed new biological activities with interesting<br />

therapeutic applications, besides their traditional employment as anticoagulants(antivitamin<br />

K activity) [13] , antibiotics(novobiocin and analogues [14] ) and anti AID [15] .<br />

Apart from this, they also possess anti-cancerous [11] , antibacte-rial [16] , neurotropic [17] ,<br />

immunosuppressive [18] , anti inflammatory [19] , antiulcerous [20] , anti PAF(anti platelet<br />

activating factor) [21] and antimutagenic [22] effects.<br />

29


Chapter-2 Synthesis and characterization of…<br />

2.2 PHARMACOLOGY<br />

Numerous biological activities have been associated with simple coumarin and its<br />

analogues. Among them, antimicrobial, antiviral, anticancer, enzyme inhibition, antiinflammatory,<br />

antioxidant, anticoagulant and effect on central nervous system are<br />

most prominent. Coumarin nucleus possesses diversified biological activities that can<br />

be briefly summarized as under:<br />

1 Antimicrobial and Molluscicidal [23-45]<br />

2 Antiviral [46-50]<br />

3 Anticancer [51-61]<br />

4 Enzyme Inhibition [62-67]<br />

5 Antioxidant [68-71]<br />

6 Anti-inflammatory [72-76]<br />

7 Anticoagulant and Cardiovascular [77-80]<br />

8 Effect on Central Nervous System [81-82]<br />

4-hydroxycoumarin is a versatile scaffold and is being consistently used as a building<br />

block in organic chemistry as well as in heterocyclic chemistry for the synthesis of<br />

different heterocycles. The synthetic versatility of 4-hydroxycoumarin has led to the<br />

extensive use of this compound in organic synthesis. 4-hydroxy coumarin shows<br />

diversified chemical reactivity.<br />

Anti Cancer activity profile of Benzopyran derivatives<br />

Analysis of scientific literature revealed numerous reports on the antiproliferative and<br />

antitumor activities of a variety of coumarin compounds, e.g., both coumarin itself<br />

and 7-hydroxycoumarin have been reported to inhibit the proliferation of a number of<br />

human malignant cell lines in vitro [83-86] and have demonstrated activity against<br />

several types of animal tumors [87-91] . These compounds have also been reported in<br />

clinical trials to demonstrate activity against prostate cancer, malignant melanoma,<br />

and metastatic renal cell carcinoma [92-94] .<br />

30


Chapter-2 Synthesis and characterization of…<br />

O O HO O O HO O O<br />

Coumarin 7-Hydroxy coumarin Esculetin<br />

O 2N<br />

HO O O<br />

7-Hydroxy-6-nitro coumarin<br />

HO<br />

NO 2<br />

HO<br />

O 2N NO 2<br />

O O<br />

7-Hydroxy-3,6,8-trinitro coumarin<br />

For coumarins, generally the in vitro structure-activity relationship studies have<br />

shown that cytotoxicity is found with derivatives containing ortho dihydroxy<br />

substituents [85] . Also, the chemical-structure/ biological activity study of the<br />

coumarins showed that the addition of a cathecolic group to the basic structure<br />

induces increased cytotoxic activity in tumor cell lines [95] . The different cytotoxic<br />

values found for the coumarins could be related to presence and the positions of the<br />

hydroxyls in their structures. The cytotoxicity of 22 natural and semi-synthetic simple<br />

coumarins was evaluated in GLC4, a human small cell lung carcinoma cell line, and<br />

in COLO 320, a human colorectal cancer cell line [95] . From the structure cytotoxicity<br />

relationship, it is conspicuous that all the potentially active natural compounds<br />

possess at least two phenolic groups in either the 6, 7- or 6, 8-positions. In addition,<br />

the 5-formyl-6-hydroxy substituted semisynthetic analogue was found to be potent,<br />

reflecting the importance of at least two polar functions for high cytotoxicity. Several<br />

hydroxylated and/or methoxylated coumarin derivatives were tested for their relative<br />

cytotoxicity on four human tumor cell lines (oral squamous cell carcinoma HSC-2,<br />

HSC-3, melanoma A-375 and promyelocytic HL-60) and three normal human cells<br />

(gingival fibroblast HGF, periodontal ligament fibroblast HPLF and pulp cell<br />

HPC) [96] . Tumor cell-specific cytotoxicity was detected in all 6, 7-dihydroxysubstituted<br />

coumarins only. The observations indicated that the tumor-specific<br />

cytotoxicity of the naturally occurring coumarin esculetin (6, 7- dihydroxycoumarin)<br />

could be further enhanced by proper substitutions at 3- and/or 4-position(s) of the<br />

molecule. Agarose gel electrophoresis revealed that esculetin and its derivatives with<br />

tumor-specific cytotoxicity induce internucleosomal DNA fragmentation in HL-60<br />

cells. A selected group of natural and synthetic coumarin compounds, including the<br />

31


Chapter-2 Synthesis and characterization of…<br />

hydroxylated and nitrated derivatives, were assessed for their cytotoxic potential for<br />

cellular viability [97] . This study utilized both human skin malignant melanocytes (SK-<br />

MEL-31) and normal human skin fibroblastic cells (HS613.SK), allowing<br />

identification of those coumarin derivatives that are selectively toxic. Novel synthetic<br />

nitrated coumarins, 6-nitro-7- hydroxycoumarin and 3, 6, 8-nitro-7-hydroxycoumarin,<br />

were shown to be significantly more toxic to SK-MEL-31 than HS613.SK cells. In the<br />

malignant melanocyte skin cell line (SK-MEL-31), the cytotoxic effects of these<br />

nitroderivatives were shown to be dose and time dependent. Therefore, the cytotoxic<br />

potential of coumarins appears to be highly dependent on the nature and position of<br />

the functional group. In addition, nitration of 7- hydroxycoumarin produced<br />

compounds that were cytotoxic to malignant melanocytes, suggesting that these nitroderivatives<br />

may have a chemotherapeutic role in future. Protective effects of<br />

coumarins against cytotoxicity induced by linoleic acid hydroperoxide were examined<br />

in cultured human umbilical vein endothelial cells28. When the cells were incubated<br />

in medium supplemented with linoleic acid hydroperoxide and coumarins, esculetin<br />

(6, 7-dihydroxycoumarin) and 4-methylesculetin protected cells from injury by<br />

linoleic acid hydroperoxide.<br />

HO<br />

CH 3<br />

H 3CO<br />

O O HO O O HO O O<br />

Coumarin 4-Methyl Esculetin<br />

Fraxetin<br />

Esculetin and 4-methylesculetin provided synergistic protection against cytotoxicity<br />

induced by linoleic acid hydroperoxide with alpha-tocopherol. Furthermore, the<br />

radical-scavenging ability of coumarins was examined in electron spin resonance<br />

spectrometry. Esucletin, 4-methylesculetin, fraxetin, and caffeic acid showed the<br />

quenching effect on the 1, 1-diphenyl-2- picrylhydrazyl radical. These results indicate<br />

that the presence of an ortho catechol moiety in the coumarin molecules plays an<br />

important role in the protective activities against linoleic acid hydroperoixde-induced<br />

cytotoxicity [98] .<br />

32


Chapter-2 Synthesis and characterization of…<br />

An antioxidant auraptene (7-geranyloxycoumarin) isolated from the peel of citrus fruit<br />

(Citrus natsudaidai Hayata) has been reported to have chemopreventive effects on<br />

chemically induced carcinogenesis. Dietary administration of auraptene significantly<br />

increased the activities of detoxification (phase II) enzymes, such as quinone<br />

reductase and glutathione S-transferase, in the liver and colon of rats. In addition,<br />

expression of cell proliferation biomarkers, such as ornithine decarboxylase activity<br />

and polyamine biosynthesis, in the colonic mucosal epithelium was significantly<br />

inhibited by dietary feeding of auraptene. These biological functions of auraptene may<br />

contribute to its anti-tumorigenic effect [99] . In addition to this, auraptene have been<br />

demonstrated its anti-tumor promoting effect in mouse skin and anti-carcinogenesis<br />

activities in rattongue, esophagus and colon [100] . Murakami A. et al. [100] reported that<br />

Auraptene suppresses superoxide anion (O2 –) generation from inflammatory<br />

leukocytes in in vitro experiments. In the study, they investigated the antiinflammatory<br />

activities of Auraptene and compared them with those of Umbelliferone<br />

(7- hydroxycoumarin), a structural analog of Auraptene that is virtually inactive<br />

toward (O2 –) generation inhibition. Double pre-treatments of mouse skin with<br />

Auraptene, but not Umbelliferone, markedly suppressed edema formation, hydrogen<br />

peroxide production, leukocyte infiltration, and the rate of proliferating cell nuclear<br />

antigen-stained cells. These inhibitory effects by Auraptene are attributable to its<br />

selective blockade of the activation stage. Umbelliferone did not show any inhibitory<br />

effect. This contrasting activity profile between Auraptene and Umbelliferone was<br />

rationalized to be a result of their distinct differences in cellular uptake efficiencies,<br />

i.e. the geranyloxyl group in Auraptene was found to play an essential role in<br />

incorporation.<br />

H 3C<br />

CH 3<br />

O O O HO<br />

CH3 Auraptene<br />

O O<br />

Umbelliferon<br />

The rat hepatic toxicity of coumarin and methyl analogues (3- methylcoumarin, 4methylcoumarin<br />

and 3, 4-dimethylcoumarin) has been determined in vivo and in<br />

vitro [101] . Coumarin at a dose of approximately 1 mmol/kg produced clear histological<br />

33


Chapter-2 Synthesis and characterization of…<br />

evidence of centrilobular necrosis, while the methyl analogues at an equivalent dose<br />

were much less toxic. By use of a systematic random sampling protocol and<br />

quantitative morphometry it was determined that there was a lobar variation in the<br />

extent of hepatic damage but that this exhibited random inter-animal variation. The<br />

order of cytotoxicity in vitro was identical to that observed in vivo.<br />

CH 3<br />

CH 3<br />

O O HO O O<br />

HO O O<br />

3-Methyl Coumarin 4-Methyl 7-hydroxy Coumarin 3,4-Dimethyl 7-hydroxy Coumarin<br />

Geiparvarin, containing coumarin moiety, is an antiproliferative compound isolated<br />

from the leaves of Geijera parviflora, and may represent a new drug which targets<br />

tubulin. To better explore the potential use of this agent, A. Miglieta, et al [102]<br />

investigated the antimicrotubular and cytotoxic effects of new synthetic aromatic<br />

derivatives of geiparvarin. These drugs inhibited polymerization of microtubular<br />

protein, particularly when the assembly was induced by paclitaxel.<br />

Bocca C. et al. [103] investigated biological activity of ferulenol, a prenylated 4hydroxycoumarin<br />

from Ferula communis. Ferulenol stimulates tubulin polymerization<br />

in vitro, and inhibits the binding of radiolabeled colchicines to tubulin. It rearranges<br />

cellular microtubule network into short fibres, and alters nuclear morphology.<br />

Remarkably, ferulenol exerts a dose dependent cytotoxic activity against various<br />

human tumor cell lines.<br />

CH 3<br />

CH 3<br />

34


Chapter-2 Synthesis and characterization of…<br />

O CH 3<br />

O O<br />

Ferulenol<br />

Three new coumarin derivatives along with furanocoumarins and a novel dioxocane<br />

derivative were isolated from the fern Cyclosorus interruptus (Willd.)H.Ito [104] . Based<br />

on spectrometric and spectroscopic analysis (FAB or El mass spectrometry as well as<br />

1D and 2D NMR experiments) their structures were characterised as 5,7- dihydroxy -<br />

6 - methyl - 4 - phenyl - 8 - ( 3 - phenylpropionyl ) -benzopyran-2-one (1), 5, 7dihydroxy-6-methyl-4-phenyl-8-<br />

(3-phenyl-trans-acryloyl)-1-benzopyran-2-one (2),<br />

5,7-dihydroxy - 8 - (2 - hydroxy - 3 - phenylpropionyl) - 6 - methyl – 4 - phenyl-1benzopyran-2-one<br />

(3). Among which compounds 5,7- dihydroxy - 6 - methyl - 4 -<br />

phenyl - 8 - (3 - phenylpropionyl) - 1benzopyran-2-one and 5, 7-dihydroxy-6-methyl-<br />

4-phenyl- 8-(3-phenyl-trans-acryloyl)-1-benzopyran-2-one, were cytotoxic to a KB<br />

cell line<br />

H 3C<br />

HO<br />

O<br />

OH<br />

O O<br />

H 3C<br />

HO<br />

O<br />

OH<br />

O O<br />

H 3C<br />

HO<br />

CH 3<br />

O<br />

OH<br />

O O<br />

H 3CO<br />

HO<br />

1 2 3 4<br />

OH<br />

OCH 3<br />

O O<br />

A new coumarin, 5-(4-hydroxyphenethenyl)-4, 7-dimethoxycoumarin (4) was isolated<br />

from the combined ethylacetate extracts of the root bark, root wood and stem bark of<br />

Monotes engleri, and found to be cytotoxic against two cell lines in a human tumor<br />

panel [105] . Its structure was determined on the basis of spectroscopic methods. In a<br />

Chinese herb cytotoxicity screening test, the ethanol extract of Cnidii monnieri<br />

35


Chapter-2 Synthesis and characterization of…<br />

Fructus exhibited strong effects on human leukemia (HL-60), cervical carcinoma<br />

(HeLa) and colorectal carcinoma (CoLo 205) cells. Then, the Cnidii monnieri Fructus<br />

extract was subjected to silica gel column chromatography and recrystallization to<br />

give five coumarins:osthol (5), imperatorin (6), bergapten (7), isopimpinellin (8), and<br />

xanthotoxin (9). Among these compounds, osthol showed the strongest cytotoxic<br />

activity on tumor cell lines. The structure-activity relationship established from the<br />

results indicated that the prenyl group has an important role in the cytotoxic effects.<br />

However, imperatorin showed the highest sensitivity to HL-60 cells and the least<br />

cytotoxicity to normal PBMCs. Osthol and imperatorin both caused apoptotic bodies,<br />

DNA fragmentation, and enhanced PARP degradation in HL-60 cells by biochemical<br />

analysis. These results indicate that osthol and imperatorin can induce apoptosis in<br />

HL-60 cells. Therefore, osthol and imperatorin are cytotoxic marker substances in the<br />

fruits of Cnidium monnieri [106] .<br />

H3CO O O O O O<br />

O<br />

O O O<br />

H3C 5<br />

CH3 H3C 6 7<br />

O<br />

OCH 3<br />

OCH 3<br />

8<br />

O O<br />

CH 3<br />

O<br />

OCH 3<br />

9<br />

O O<br />

OCH 3<br />

Five coumarins (seselin, 5-methoxyseselin, suberosin, xanthyletin and xanthoxyletin)<br />

were isolated from the roots of Plumbago zeylanica [107] . All coumarins were not<br />

previously found in this plant. Cytotoxicity of these compounds to various tumor cells<br />

lines was evaluated, and they were significantly suppressed growth of Raji, Calu-1,<br />

HeLa, and Wish tumor cell lines.<br />

36


Chapter-2 Synthesis and characterization of…<br />

H 3C<br />

O<br />

CH 3<br />

R<br />

O O<br />

H 3C<br />

CH 3<br />

H 3CO<br />

Seselin, R = H<br />

5-methoxyseselin R = OCH3<br />

suberosin<br />

H 3C<br />

O O<br />

O<br />

CH 3<br />

R<br />

O O<br />

Xanthyletin R = H<br />

Xenthoxyletin R = OCH3<br />

Fractionation of the methanol extract of Angelica dahurica Benth et Hook resulted in<br />

the isolation of six furocoumarins, imperatorin, isoimperatorin, (+/-)-byakangelicol,<br />

(+)-oxypeucedanin, (+)-byakangelicin and (+)-aviprin [108] . Among these, compounds<br />

imperatorin and (+)-byakangelicin exhibited strong hepatoprotective activities,<br />

displaying EC50 values of 36.6 +/- 0.98 and 47.9 +/- 4.6 mM, respectively.<br />

O<br />

O<br />

O<br />

O<br />

O O<br />

CH3 O O O<br />

CH3 CH 3<br />

isoimperatorin<br />

CH 3<br />

Oxypeucedanin<br />

A coumestan derivative, psoralidin was found to be a cytotoxic principle of the seeds<br />

of Psoralea corylifolia L.(Leguminosae) with the IC50 values of 0.3 and 0.4 mg/mL<br />

against the HT-29 (colon) and MCF-7 (breast) human cancer cell lines,<br />

respectively [109] .<br />

H 3<br />

C<br />

CH 3<br />

HO<br />

psoralidin<br />

O O<br />

A series of styrylcoumarin derivatives had been designed by Xu Song et al [110] in<br />

order to find compounds of antitumor activities by screening in vitro. The title<br />

O<br />

OH<br />

37


Chapter-2 Synthesis and characterization of…<br />

compounds were synthesized by phase-transfer Wittig reaction and screened by<br />

several antitumor models in vitro.Thirty new compounds of 6- or 7-styrylcoumarin<br />

were synthesized and their configurations were determined. Seven compounds(10-16)<br />

showed different inhibitory effects on L-1210, HL-60, HCT-8, KB and Bel-7402 cell<br />

lines in vitro. The activity data representes as shown in Table-1. Some 6- or 7styrylcoumarin<br />

derivatives showed antitumor activities and is worth further study.<br />

In continuation with this, a series of 4-styryl coumarin had been synthesized for in<br />

vitro antitumor activity study [111] . The titled compounds were synthesized by Phase<br />

transfer Wittig reaction or Wittig-Horner reaction and screened by several antitumor<br />

38


Chapter-2 Synthesis and characterization of…<br />

modeles in vitro. Among a series of 20 compounds, only one had effects on KB cell<br />

lines in vitro and possesses certain antitumor activities and it was selected for further<br />

studies.<br />

Antiviral activity<br />

R<br />

O O<br />

4-Styrylcoumarin derivattives<br />

The ether soluble fraction of the roots of Ononis vaginalis Vahl. Symb. afforded three<br />

new compounds: 3-hydroxy-4, 9-dimethoxycoumestan, maginaldehyde [2-(4hydroxy-2-methoxyphenyl)-5,<br />

6-dimethoxy-3- benzofurancarboxaldehyde] and 5, 7,<br />

4'-trihydroxy-4-styrylcoumarin. The styrylcoumarin derivative showed significant<br />

antiviral activity against Herpes simplex type 1 and weak cytotoxicity.<br />

OH<br />

OH<br />

HO<br />

O O<br />

5,7,4'-Trihydroxy-4-Styrylcoumarin<br />

R<br />

39


Chapter-2 Synthesis and characterization of…<br />

Adamantane:<br />

Adamantane is a colorless, crystalline chemical compound with a camphor-like<br />

odor. With a formula C10H16, it is a cycloalkane and also the simplest diamondoid.<br />

Adamantane molecules consist of three cyclohexane rings arranged in the "armchair"<br />

configuration. It is unique in that it is both rigid and virtually stress-free. Adamantane<br />

is the most stable among all the isomers with formula C10H16, which include the<br />

somewhat similar twistane. The spatial arrangement of carbon atoms is the same in<br />

adamantane molecule and in the diamond crystal.<br />

The discovery of adamantane in petroleum in 1933 launched a new chemistry<br />

field studying the synthesis and properties of polyhedral organic compounds.<br />

Adamantane derivatives have found practical application as drugs, polymeric<br />

materials and thermally stable lubricants.<br />

Drug like compounds having adamantine moiety has many therapeutic value.<br />

Adafenoxate having Nootropic and Psychostimulant as its therapeutic function, has<br />

been prepared using 1-Aminoadamantine-2-ethanol, p-Chlorophenoxyacetyl chloride<br />

and p-Chlorophenoxyacetic acid [179] .<br />

HN<br />

O<br />

Adamexine having common names Adamexine and Broncostyl is used as a<br />

mucolytic drug, prepared using 2-Bromomemtyl-4,6-dibromo-N,N,diacetylaniline and<br />

N-Methyladamantyl [180] .<br />

O<br />

O<br />

Cl<br />

40


Chapter-2 Synthesis and characterization of…<br />

Br<br />

N<br />

NH<br />

Br O<br />

Adapalene used as Anti-acne drug is synthesized using 4-Bromophenol and 1-<br />

Adamantanol [181] .<br />

Adatanserin Hydrochloride [115,116] consisting of amide linkage formed by linking [4-<br />

(2-pyrimidinyl)piperazino]ethylamine with Adamantane acid chloride is an antidepressant<br />

drug [182] .<br />

O N H<br />

H Cl<br />

N<br />

N<br />

N N<br />

Biologically active heterocyclic containing amide linkage<br />

A number of drugs and drug like compounds have amide linkages. Coumarin<br />

carboxamide [112] has been prepared from the corresponding coumarin carboxylic acid<br />

and 2-amino-4-phenylthiazole [113] and tested for anti-fungal and antibacterial<br />

activity. [114]<br />

OCH3 O<br />

O<br />

C N H<br />

O<br />

N<br />

S<br />

41


Chapter-2 Synthesis and characterization of…<br />

Adatanserin Hydrochloride [115,116] consisting of amide linkage formed by linking [4-<br />

(2-pyrimidinyl)piperazino]ethylamine with Adamantane acid chloride is an antidepressant<br />

drug.<br />

O N H<br />

H Cl<br />

N<br />

N<br />

N N<br />

Aromatic polyamide dendrons HOOC-G1, were synthesized by Ishida et. al. [117] by an<br />

orthogonal approach, which utilizes the direct condensation reaction and palladium<br />

catalyzed carbon monoxide insertion reaction in an alternating fashion to form amide<br />

linkages.<br />

COCl COOH<br />

H 2N NH 2<br />

COOH<br />

HN NH<br />

O O<br />

HOOC-G1<br />

Nevirapine, [118] consisting of amide linkage, is used for inhibition of RT enzyme.<br />

H 3C<br />

HN<br />

O<br />

N N N<br />

42


Chapter-2 Synthesis and characterization of…<br />

Planarity of the CONH linkage<br />

The XC(CO)NHY linkage, under the assumption Y=H called the amide linkage, or<br />

referred to as the peptide linkage, is generally assumed to have a planar structure. [119]<br />

Conformation and atomic numbering of syn-methyl carbonate<br />

It is shown that formamide, considered prototype for the amide linkage, is not typical<br />

as it has a planar equilibrium amide linkage corresponding to a single-minimum<br />

inversion potential around N. In contrast, several molecules containing the CONH<br />

linkage seem to have pyramidal nitrogen at equilibrium and a double-minimum<br />

inversion potential with a very small inversion barrier allowing for an effective planar<br />

ground-state structure. [120]<br />

Many of the molecules containing the XC(CO)NHY linkage are not planar at<br />

equilibrium. The simple molecules containing the -C(CO)NH linkage can be divided<br />

into three groups:<br />

1) All of the atoms of the molecule lie in a plane, i.e., the point-group symmetry<br />

of the molecule is Cs.<br />

2) All of the atoms of the molecule lie in a plane except pairs of hydrogen atoms<br />

which are situated symmetrically about the plane of symmetry, i.e., the pointgroup<br />

symmetry of the molecule is Cs.<br />

3) Molecules which do not have a plane of symmetry.<br />

43


Chapter-2 Synthesis and characterization of…<br />

Amide linkage containing analogues: A collection of<br />

commercial analogues:<br />

CH 3<br />

CH 3<br />

H<br />

N<br />

CH 3<br />

CH 3<br />

CH 3<br />

CH 3<br />

O<br />

CH 3<br />

H<br />

N<br />

H<br />

N<br />

Lidofenin<br />

O<br />

CH 3<br />

N COOH<br />

COOH<br />

N<br />

Bupivacaine<br />

H<br />

N<br />

H<br />

N<br />

O<br />

Aptocaine<br />

O<br />

CH 3<br />

N<br />

H<br />

Prilocaine<br />

O<br />

CH 3<br />

CH 3<br />

N<br />

H<br />

Pyrrocaine<br />

HH3C<br />

N<br />

O<br />

CH 3<br />

N<br />

H<br />

Quatacaine<br />

N<br />

N<br />

CH 3<br />

CH 3<br />

CH 3<br />

Cl<br />

H<br />

N<br />

O<br />

CH 3<br />

COOCH 3<br />

H 3<br />

C<br />

H 3C<br />

S<br />

H<br />

N<br />

N<br />

H<br />

Butanilicain<br />

O<br />

CH 3<br />

CH 3<br />

H<br />

N<br />

CH 3<br />

CH 3<br />

Tylocain<br />

H<br />

N<br />

O<br />

CH 3<br />

Trimecain<br />

O<br />

CH 3<br />

COOCH 3<br />

CH 3<br />

N COOH<br />

N<br />

H<br />

Articain<br />

H<br />

N N<br />

CH 3<br />

COOH<br />

N CH 3<br />

CH 3<br />

O CH 3<br />

Mepivacaine<br />

H<br />

N<br />

O<br />

CH 3<br />

Tocainidin<br />

CH 3<br />

NH 2<br />

CH 3<br />

44


Chapter-2 Synthesis and characterization of…<br />

2.3 AIM OF CURRENT WORK<br />

The literature survey revealed that some extensive work has been done on 4-hydroxy<br />

coumarin compounds. Also, due to the usefulness of traditional medicines like<br />

Auraptene, Ferulenol and Fraxetin, the coumarin moiety has been selected for the<br />

research criteria.<br />

Browsing through the literature of organomedicinal chemistry the most useful moiety<br />

found was substituted 3-amino 4-hydroxy coumarin derivatives. Because of the less<br />

toxicological properties and good to moderate activities, several compounds have<br />

been synthesized by our team in the laboratory. Though the chemistry of the<br />

synthesized compounds is unknown, the compounds are reported herein for the first<br />

time.<br />

In the current chapter two pharmacophoric moieties, coumarins and adamamtane were<br />

converted into a hybridized structure by means of amide linkage.<br />

45


Chapter-2 Synthesis and characterization of…<br />

2.4 REACTION SCHEME<br />

R<br />

OH<br />

O O<br />

HNO 3<br />

CH 3COOH<br />

R<br />

OH<br />

O O<br />

NO 2<br />

Na 2S2O 4<br />

NaHCO 3<br />

2.5 PLAUSIBLE REACTION MECHANISM<br />

OH ..<br />

Cl<br />

+<br />

O<br />

O O O O<br />

HN C<br />

O<br />

O O<br />

NH 2<br />

H + -<br />

H<br />

R<br />

R<br />

Cl<br />

OH<br />

+ H2N<br />

Cl- -<br />

H +<br />

N<br />

O<br />

C<br />

O O<br />

OH<br />

O O<br />

O -<br />

C<br />

NH 2<br />

OH HN<br />

Cl<br />

CHCl 3<br />

O<br />

O O<br />

O<br />

Triethyl amine<br />

46


Chapter-2 Synthesis and characterization of…<br />

2.6 EXPERIMENTAL<br />

Preparation of 3-amino 4-hydroxy coumarin<br />

3-nitro 4-hydroxy coumarin (0.01 mol) was dissolved in 100 ml saturated solution of<br />

sodium bicarbonate. Reaction mass was taken in a 500 ml beaker with constant<br />

mechanical stirring under fume hood. To which sodium dithionite 10 g was added in<br />

portions with constant stirring. As a result, solution colour changes from yellow to sea<br />

green to clear. Completion of reaction is checked using TLC. Reation mixture was<br />

then cooled to 0 oC and brought to pH-1 with conc. HCl dropwise. The resulting<br />

precipitates were filtered u/v, dried at 50 oC for 5-6 hours. Yield : 90%, M.P.: 226-<br />

228. [182]<br />

Preparation of substituted 3-(1-amido adamantyl) 4-hydroxy coumarins:<br />

To a stirred solution of substituted 3-amino 4-hydroxy coumarin (0.01 mol) in 50 ml<br />

methylene chloride, adamantane 1-carboxylic acid chloride (0.018 mol) and triethyl<br />

amine (0.015 mol) were added and stirring was continued overnight at room<br />

temperature. Reaction mass was washed with H2O, dried over sodium sulphate and<br />

evaporated under vacuum. Solids obtained were recrystallized using mixture of<br />

methylene dichloride and hexane.<br />

Note: Preparation of substituted 4-hydroxy coumarin (VNRINT-101) and<br />

substituted 3-nitro 4-hydroxy coumarin (VNRINT-103) are described in<br />

Chapter-7.<br />

47


Chapter-2 Synthesis and characterization of…<br />

2.7 PHYSICAL DATA<br />

Physical data of substituted 3-(1-amido adamantyl) 4-hydroxy<br />

coumarins derivatives.<br />

Sr.<br />

No<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

Code Structure<br />

VNRAD-<br />

101<br />

VNRAD-<br />

102<br />

VNRAD-<br />

103<br />

VNRAD-<br />

104<br />

VNRAD-<br />

105<br />

VNRAD-<br />

106<br />

VNRAD-<br />

107<br />

VNRAD-<br />

108<br />

VNRAD-<br />

109<br />

VNRAD-<br />

110<br />

OH HN<br />

O<br />

O O<br />

OH HN<br />

O<br />

O O<br />

OH HN<br />

O<br />

O O<br />

OH HN<br />

O<br />

O O<br />

OH HN<br />

O<br />

O O<br />

OH HN<br />

O<br />

O O<br />

OH HN<br />

O<br />

O O<br />

Molecular<br />

formula<br />

Molecular<br />

weight<br />

M. P.<br />

( o C)<br />

%<br />

Yield<br />

C 20H 21NO 4 339.39 105 o C 68<br />

C21H 23NO 4 353.41 221 o C 66<br />

C 22H 25NO 4 367.44 170 o C 51<br />

C 22H 25NO 4 367.44 185 o C 64<br />

C 22H 25NO 4 367.44 238 o C 63<br />

C 21H 23NO 4 353.41 166 o C 71<br />

F C 20H 20FNO 4 357.38 208 o C 52<br />

OH HN<br />

Cl C 20H 20ClNO 4 373.83 223 o C 55<br />

HO<br />

O<br />

O O<br />

OH HN<br />

O<br />

O O<br />

O<br />

O O<br />

C 20H 21NO 5 355.38 188 o C 77<br />

OH<br />

HN<br />

MeO C21H23NO5 369.41 175 o C 75<br />

48


Chapter-2 Synthesis and characterization of…<br />

49


Chapter-2 Synthesis and characterization of…<br />

2.8 SPECTRAL STUDY<br />

Infra Red spectra<br />

Infra Red Spectra were taken on SHIMADZU IR-435 Spectrometer using KBr Pellet<br />

method. The characteristic carbonyl group in coumarin moiety is observed at 1720-<br />

1750 cm -1 , while carbonyl value of –CONH- peaks are observed in the range 1630-<br />

1690 cm -1 . In some of the compounds, the moisture showed a broad peak between<br />

3000-3200 cm -1 . Secondary amine (> NH) observed a broad peak between 3000-3200<br />

cm -1 .Methylene gp (>CH2) observed at 2850-3000 cm -1 . methyl (-CH3) observed at<br />

1350 cm -1 .<br />

1 H NMR spectra<br />

1<br />

H NMR Spectra were recorded on a Bruker AC 400 MHz FT-NMR Spectrometer<br />

using TMS (Tetramethyl Silane) as an internal standard and DMSO-d6 & CDCl3 as a<br />

solvent. In the NMR spectra of derivatives of 3-(1-amido adamantyl) 4-hydroxy<br />

coumarin various proton values of methylene (-CH2), amine (-NH), methyl (-CH3)<br />

and aromatic protons (Ar-H) etc. were observed as under.<br />

The values for methylene (-CH2) proton is observed between δ 2.50-3.55 ppm. In<br />

some cases, the value of methylene proton differs to δ 4.20 and 4.43 ppm. Aromatic<br />

protons shows the multiplet between δ 6.01-8.54 δ ppm. The signal due to NH proton<br />

of amide group (>CONH) was observed at 10.3 δ ppm value.<br />

Mass spectra<br />

The mass spectrum of compounds were recorded by GCMS-QP2010 spectrometer (EI<br />

method). The mass spectrum of compounds was obtained by positive chemical<br />

ionization mass spectrometry. The molecular ion peak and the base peak in all<br />

compounds were clearly obtained in mass spectral study. The molecular ion peak<br />

(M+) values are in good agreement with molecular formula of all the compounds<br />

synthesized.<br />

Elemental analysis<br />

Elemental analysis of the synthesized compounds was carried out on Vario EL Carlo<br />

Erba 1108 model at <strong>Saurashtra</strong> <strong>University</strong>, Rajkot which showed calculated and found<br />

percentage values of Carbon, Hydrogen and Nitrogen in support of the structure of<br />

49


Chapter-2 Synthesis and characterization of…<br />

synthesized compounds. The spectral and elemental analysis data are given for<br />

individual compounds<br />

2.9 SPECTRAL CHARACTERIZATION<br />

3-(1-amido adamantyl) 4-hydroxy coumarin (VNRAD-101)<br />

Yield: 68%; IR (cm -1 ): 3355 (O-H str.), 3412 (N-H str.), 3040 (Ar C=C-H str.), 2980 (Asym<br />

C-H str. -CH3), 2930 (Asym C-H str. -CH2), 2870 (Sym C-H str. -CH3), 2845 (Sym C-H str. -<br />

CH2), 1735 (C=O str.), 1652 (N-H bend), 1580, 1545, 1500 (Ar C=C str.), 1475 (C-H bend –<br />

CH2), 1365 (C-H bend –CH3), 1340 (C-N sec amine vib), 1180 (C-O str.), 810 (C-H oop def);<br />

Mass: [m/z (%)], M. Wt.: 339; Elemental analysis, Calculated: C, 70.78; H, 6.24; N, 4.13;<br />

Found: C, 70.55; H, 6.17; N, 4.23.<br />

8-methyl 3-(1-amido adamantyl) 4-hydroxy coumarin (VNRAD-102)<br />

Yield: 66%; IR (cm -1 ): 3360 (O-H str.), 3385(N-H str.), 3040 (Ar C=C-H str.), 2904 (Asym<br />

C-H str. -CH3), 2948 (Asym C-H str. -CH2), 2850 (Sym C-H str. -CH3), 1730 (C=O str.),<br />

1602 (N-H bend), 1529, 1634 (Ar C=C str.), 1454 (C-H bend –CH2), 1356 (C-H bend –CH3),<br />

1332 (C-N sec amine vib), 1195 (C-O str.), 796 (C-H oop def); 1 H NMR 400 MHz: (CDCl3,<br />

δ ppm): 1.73 (m, 6H), 1.97 (s, 6H), 2.41 (s, 3H), 2.54 (m, 3H), 7.25 (t, 1H), 7.43 (d, 1H),<br />

7.74 (d, 1H), 8.52 (s, 1H), Mass: [m/z (%)], M. Wt.: 353 Elemental analysis, Calculated:<br />

C, 71.37; H, 6.56; N, 3.96; Found: C, 71.63; H, 6.41; N, 3.27.<br />

7,8- dimethyl 3-(1-amido adamantyl) 4-hydroxy coumarin (VNRAD-103)<br />

Yield: 51%; %; IR (cm -1 ): 3402 (O-H str.), 3397 (N-H str.), 3040 (Ar C=C-H str.), 2904<br />

(Asym C-H str. -CH3), 2903 (Asym C-H str. -CH2), 2850 (Sym C-H str. -CH3), 2845 (Sym C-<br />

H str. -CH2), 1703 (C=O str.), 1639 (N-H bend), 1608, 1545 (Ar C=C str.), 1454 (C-H bend –<br />

CH2), 1356 (C-H bend –CH3), 1319 (C-N sec amine vib), 1176 (C-O str.), 815 (C-H oop def);<br />

Mass: [m/z (%)], M. Wt.: 367 ; Elemental analysis, Calculated: C, 71.91; H, 6.86; N,<br />

3.81; Found: C, 71.11; H, 6.42; N, 3.54.<br />

50


Chapter-2 Synthesis and characterization of…<br />

5,8- dimethyl 3-(1-amido adamantyl) 4-hydroxy coumarin (VNRAD-104)<br />

Yield: 64%; IR (cm -1 ): 3575 (O-H str.), 3362 (N-H str.), 3017 (Ar C=C-H str.), 2908 (Asym<br />

C-H str. -CH3), 2903 (Asym C-H str. -CH2), 2850 (Sym C-H str. -CH3), 1726 (C=O str.),<br />

1633 (N-H bend), 1586, 1537, 1504 (Ar C=C str.), 1448 (C-H bend –CH2), 1344 (C-H bend –<br />

CH3), 1317 (C-N sec amine vib), 1232 (C-O str.), 819 (C-H oop def); 1 H NMR 400 MHz:<br />

(CDCl3, δ ppm): 1.75 (m, 8H), 1.92 (s, 6H), 2.07 (m, 7H), 2.37 (t, 3H), 2.5 (s, 3H), 3.32 (s,<br />

8H), 7.06 (d, 1H), 7.35 (d, 1H), 6.60 (s, 1H). Mass: [m/z (%)], M. Wt.: 367 ; Elemental<br />

analysis, Calculated: C, 71.91; H, 6.86; N, 3.81; Found: C, 71.33; H, 6.14; N, 3.79.<br />

5,7- dimethyl 3-(1-amido adamantyl) 4-hydroxy coumarin (VNRAD-105)<br />

Yield: 63%; IR (cm -1 ): 3578 (O-H str.), 3345 (N-H str.), 3025 (Ar C=C-H str.), 2912 (Asym<br />

C-H str. -CH3), 2905 (Asym C-H str. -CH2), 2875 (Sym C-H str. -CH3), 1736 (C=O str.),<br />

1640 (N-H bend), 1582, 1545, 1508 (Ar C=C str.), 1435 (C-H bend –CH2), 1345 (C-H bend –<br />

CH3), 1315 (C-N sec amine vib), 1223 (C-O str.), 815 (C-H oop def); Mass: [m/z (%)], M.<br />

Wt.: 367 ; Elemental analysis, Calculated: C, 71.91; H, 6.86; N, 3.81; Found: C, 71.68; H,<br />

6.19; N, 3.10.<br />

6- methyl 3-(1-amido adamantyl) 4-hydroxy coumarin (VNRAD-106)<br />

Yield: 71%; IR (cm -1 ): 3556 (O-H str.), 3345 (N-H str.), 3013 (Ar C=C-H str.), 2905 (Asym<br />

C-H str. -CH3), 2901 (Asym C-H str. -CH2), 2833 (Sym C-H str. -CH3), 1723 (C=O str.),<br />

1637 (N-H bend), 1582, 1573, 1506 (Ar C=C str.), 1443 (C-H bend –CH2), 1342 (C-H bend –<br />

CH3), 1314 (C-N sec amine vib), 1239 (C-O str.), 812 (C-H oop def); Mass: [m/z (%)], M.<br />

Wt.: 353 ; Elemental analysis, Calculated: C, 71.37; H, 6.56; N, 3.96; Found: C, 71.15; H,<br />

6.65; N, 3.14.<br />

6- fluoro 3-(1-amido adamantyl) 4-hydroxy coumarin (VNRAD-107)<br />

Yield: 52%; IR (cm -1 ): 3566 (O-H str.), 3362 (N-H str.), 3021 (Ar C=C-H str.), 2903 (Asym<br />

C-H str. -CH2), 1735 (C=O str.), 1637 (N-H bend), 1582, 1546, 1510 (Ar C=C str.), 1452 (C-<br />

H bend –CH2), 1338 (C-N sec amine vib), 1227 (C-O str.), 1215 (C-F str.), 817 (C-H oop<br />

def); Mass: [m/z (%)], M. Wt.: 357 ; Elemental analysis, Calculated: C, 67.22; H, 5.64;<br />

N, 3.92; Found: C, 67.26; H, 5.47; N, 3.81.<br />

51


Chapter-2 Synthesis and characterization of…<br />

6- chloro 3-(1-amido adamantyl) 4-hydroxy coumarin (VNRAD-108)<br />

Yield: 55%; IR (cm -1 ): 3572 (O-H str.), 3365 (N-H str.), 3018 (Ar C=C-H str.), 2905 (Asym<br />

C-H str. -CH2), 1755 (C=O str.), 1640 (N-H bend), 1586, 1537, 1504 (Ar C=C str.), 1435 (C-<br />

H bend –CH2), 1317 (C-N sec amine vib), 1223 (C-O str.), 946 (C-Cl str.), 809 (C-H oop<br />

def); Mass: [m/z (%)], M. Wt.: 373(M+), 375(M+2); Elemental analysis, Calculated: C,<br />

64.26; H, 5.39; N, 3.75; Found: C, 64.32; H, 5.57; N, 3.64.<br />

7- hydroxy 3-(1-amido adamantyl) 4-hydroxy coumarin (VNRAD-109)<br />

Yield: 77%; IR (cm -1 ): 3603 (O-H str.), 3370 (N-H str.), 3022 (Ar C=C-H str.), 2912 (Asym<br />

C-H str. -CH2), 1747 (C=O str.), 1643 (N-H bend), 1582, 1544, 1509 (Ar C=C str.), 1445 (C-<br />

H bend –CH2), 1314 (C-N sec amine vib), 1236 (C-O str.), 810 (C-H oop def); Mass: [m/z<br />

(%)], M. Wt.: 355 ; Elemental analysis, Calculated: C, 67.59; H, 5.96; N, 3.94; Found: C,<br />

67.34; H, 5.85; N, 3.86.<br />

6- methoxy 3-(1-amido adamantyl) 4-hydroxy coumarin (VNRAD-110)<br />

Yield: 75%; IR (cm -1 ): 3563 (O-H str.), 3352 (N-H str.), 3019 (Ar C=C-H str.), 2912 (Asym<br />

C-H str. -CH3), 2907 (Asym C-H str. -CH2), 2857 (Sym C-H str. -CH3), 1706 (C=O str.),<br />

1629 (N-H bend), 1575, 1533, 1516 (Ar C=C str.), 1457 (C-H bend –CH2), 1350 (C-H bend –<br />

CH3), 1319 (C-N sec amine vib), 1214 (C-O str.), 815 (C-H oop def); Mass: [m/z (%)], M.<br />

Wt.: 369 ; Elemental analysis, Calculated: C, 68.28; H, 6.28; N, 3.79; Found: C, 68.33; H,<br />

6.23; N, 3.65.<br />

52


Chapter-2 Synthesis and characterization of…<br />

2.10 REPRESENTATIVE SPECTRA<br />

IR Spectrum of 8-methyl 3-(1-amido adamantyl) 4-hydroxy coumarin (VNRAD-<br />

102)<br />

97.5<br />

%T<br />

90<br />

82.5<br />

75<br />

67.5<br />

60<br />

52.5<br />

45<br />

3360.11<br />

4000 3600 3200<br />

VNRAD-102<br />

2904.89<br />

2848.96<br />

2800<br />

2400<br />

2000<br />

1755.28<br />

1730.21<br />

1683.91<br />

1643.41<br />

1602.90<br />

1800<br />

600 400<br />

1/cm<br />

IR Spectrum of 5,8- dimethyl 3-(1-amido adamantyl) 4-hydroxy coumarin<br />

(VNRAD-104)<br />

100<br />

%T<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

3562.64<br />

3352.39<br />

-0<br />

4000 3600 3200<br />

VNRAD-104<br />

2908.75<br />

2850.88<br />

2800<br />

2400<br />

2000<br />

1800<br />

1600<br />

1600<br />

1529.60<br />

1747.57<br />

1726.35<br />

1695.49<br />

1633.76<br />

1595.18<br />

1537.32<br />

1504.53<br />

1454.38<br />

1356.00<br />

1400<br />

1400<br />

1195.91<br />

1200<br />

1481.38<br />

1446.66<br />

1415.80<br />

1344.43<br />

1317.43<br />

1232.55<br />

1180.47<br />

1200<br />

1080.17<br />

1045.45<br />

977.94<br />

920.08<br />

OH HN<br />

1000<br />

1000<br />

796.63<br />

O<br />

O O<br />

1041.60<br />

985.66<br />

916.22<br />

OH HN<br />

748.41<br />

800<br />

819.77<br />

769.62<br />

O<br />

O O<br />

800<br />

534.30<br />

453.29<br />

418 57<br />

428.21<br />

600 400<br />

1/cm<br />

53


Chapter-2 Synthesis and characterization of…<br />

Mass spectrum of 8-methyl 3-(1-amido adamantyl) 4-hydroxy coumarin<br />

(VNRAD-102)<br />

OH HN<br />

O<br />

O O<br />

Mass Spectrum of 5,8- dimethyl 3-(1-amido adamantyl) 4-hydroxy coumarin<br />

(VNRAD-104)<br />

OH HN<br />

O<br />

O O<br />

54


Chapter-2 Synthesis and characterization of…<br />

1<br />

H NMR Spectrum of 8-methyl 3-(1-amido adamantyl) 4-hydroxy coumarin<br />

(VNRAD-102)<br />

OH HN<br />

O<br />

O O<br />

Expanded 1 H NMR Spectrum of 8-methyl 3-(1-amido adamantyl) 4-hydroxy<br />

coumarin (VNRAD-102)<br />

OH HN<br />

O<br />

O O<br />

55


Chapter-2 Synthesis and characterization of…<br />

1<br />

H NMR Spectrum of 5,8- dimethyl 3-(1-amido adamantyl) 4-hydroxy coumarin<br />

(VNRAD-104)<br />

OH HN<br />

O<br />

O O<br />

Expanded 1H NMR Spectrum of 5,8- dimethyl 3-(1-amido adamantyl) 4hydroxy<br />

coumarin (VNRAD-104)<br />

OH HN<br />

O<br />

O O<br />

56


Chapter-2 Synthesis and characterization of…<br />

2.11 RESULT AND DISCUSSION<br />

In this Chapter, 10 different substituted 3-amino 4-hydroxy coumarins were prepared,<br />

preparation method of which is shown in chapter-7. These substituted 3-amino 4hydroxy<br />

coumarins were linked with adamantane through amide linkage. The main<br />

significance of present work that the reactions are carried out at room temperature<br />

under stirring, and desired product is obtained with easy work up method.<br />

2.12 CONCLUSION<br />

Thus, substituted 3-amino 4-hydroxy coumarin are reacted with adamantane acid<br />

chloride in order to form an amide linkage. By doing so, a new class of coumarin<br />

derivatives are generated and their potential biological activity will be checked upon.<br />

57


Chapter-2 Synthesis and characterization of…<br />

2.13 REFERENCE<br />

[1] S. Sen and V. Srivastava J. Ind. Chem. Soc,1989, 66, 166.<br />

[2] Vogel Gilbert’s ann. Phys., 1820,64, 161.<br />

[3] J.L.Abernethy J.Chem.Edu., 1969,46, 561.<br />

[4] A.Guillemette Justus Leibigs Ann. Chem.,1835, 14, 324.<br />

[5] V.N.Gupta , B.R.Sharma and R.R.Arora J.Sci.Ind.Res. 1961,20B, 300.<br />

[6] F.M.Dean Progr.Chem.Org.Nat.Prod., 1952, 9, 225.<br />

[7] P.K.Bose J.Indian.Chem.Soc., 1958, 35, 367.<br />

[8] T.A. Gexssman and E. Hineiner Bot.Rev.1952, 18, 77.<br />

[9] R.Robinson “The structural relation of natural products”, Clarenden<br />

Press, Oxford 1955<br />

[10] Robert D.H.Murray and Stewart A Brown “The Natural Coumarins”,<br />

Wiley-Interscience Publication, John Wiley & Sons 1982<br />

[11] I.Kostava, Curr. Med. Chem.- Anti Cancer Agents,2005, 5, 29<br />

[12] (a).B. Nielsen, Coumarin patterns in the Umbelliferae, in: V.H.<br />

Heywood(Ed.), The biology and chemistry of the Umbelliferae,<br />

Acedemic Press, London, 1971, 325 (b). A.Estevez-Braun, A.<br />

Gonzalez, Nat. Prod. Reps.,1997, 14, 465.<br />

[13] (a).M. Stahmann, T. Wolff, K. Link, J. Am.Chem.Soc., 1943, 65, 2285<br />

(b). E. Renk, W. Stoll, Prog. Drug. Res., 1968, 14, 226 (c). W.Levin, In<br />

The Pharmacology Basis of Therapeutics; 4th ed., L.Goodman,<br />

A.Gilman, Eds. New York: Macmillan 1975, 1445 (d). R. O’Reilly,<br />

Pharmacology, 1972, 8, 181 (e).T. Kralt, V. Classen, Drug Design, 3,<br />

Acedemic Press New York, 1972 (f). F. Kazmier, Mayo Clinic. Proc.,<br />

1974, 49, 918 (g). W.Levine, The Pharmacological Basis of<br />

Therapeutics, McMillan, New York, 1975 (h). R. O’Reilly,<br />

Ann.Rev.Med., 1976, 27, 245 (i). R. Silverman, J. Am.Chem.Soc., 1981,<br />

103, 3910 (j). I. Manolov, N. Danchev, Arch Pharm., 2003, 336, 83 (k).<br />

T.Sionae, J.Pharm.Sci., 1964, 53, 231 (l). B.Bose, P.Saxena, Entomol.<br />

Res., 1984, 8, 109 (m). A.Craciun, M. Groenen0van Dooren, H.<br />

Thijssen, C. Vermeer, Biochim. Biophys. Acta., 1998, 1380, 75 (n).<br />

S.Moran, Crop. Protect., 2001, 20, 529 (o). J.Berthelon, US Patent<br />

Appl., 4585786, 1986 (p). A. Dubock, Plant Protect. Bull., 1980, 22,<br />

223.<br />

58


Chapter-2 Synthesis and characterization of…<br />

[14] J.Hinmann, H. Hoeksema, E. Caron, W. Jackson, J.<br />

[15]<br />

Am.Chem.Soc.,1956, 78, 1072.<br />

(a).A. Bourinbaiar, X. Tan, R. Nagomy, Acta Virol., 1993, 37, 241 (b)<br />

P.Tummino, D. Ferguson, D. Hupe, Biochem. Biophys. Res. Commun.,<br />

1994, 201, 290 (c). Z. Ivezic, M. Trkovnik, PCT Int. Appl. WO<br />

2003/029237, 2003 (d). H. Zhao, N. Neamati, H. Hong, A. Mazmuder,<br />

S. Wang, S. Sunder, G. Milne, Y.Pommier, T. Burke, J.Med.Chem.,<br />

1997, 40, 242 (e).A. Mazmuder, S. Wang, N. Neamati, S. Sunder,<br />

J.Chen, G. Milne, W. Rice, Y. Pommier, T. Burke, J.Med.Chem.,<br />

1996, 39, 2472 (f). S. Kirkiacharian, T. Thuy, S. Sicsic, R.<br />

Bikhchinian, R. Kurkjian, Farmaco, 2002, 57, 703 (g). J. Shippeck, H.<br />

Kar, L. Gosink, J. Wheatley, E. Gjerstad, S. Loftus, A. Zubiria, J.<br />

Janc., Bioorg. Med. Chem. Lett.,2000, 10, 2639.<br />

[16] (a).P. Laurin, M. Klich, C. Dupis-Hamelin, P. Mauvais, P. Lassaigne,<br />

A. Bonnefoy, B. Musicki, Bioorg. Med. Chem. Lett., 1999, 9, 2079 (b).<br />

Y. Inoue, H. Kondo, M. Taguchi, Y. Jinbo, G. Tsukamoto,<br />

J.Med.Chem.,1994, 37, 586.<br />

[17] V. Savelev, N. Pryanishinikova, O. Artamonova, I. Fenida, V.<br />

Zagorevskii, Khimiko Farmatsevticheskii Zhurnal, 1975, 9(6), 10, 18.<br />

(a).Y.Kimura, H. Okuda, S. Arichi, K. Baba, M. Kozawa,<br />

Biochim. Biophys. Acta., 1985, 834, 224 (b). J. Hoffmanova, A.<br />

Kozubik, L. Dusek, J. Pachernik, Eur. J. Pharmacol., 1998, 350, 273<br />

(c). U. Matern, P. Lu er, D. Kreusch, In Polyketides and Other<br />

Secondary Metabolites Including Fatty Acids and Their Derivatives,<br />

1st Ed., U.Sandkawa, Ed., Elsvier: Great Britain, 1999, 1, 623.<br />

[18] (a).N. Thornberry, K. Chapman, D. Nicholson, Methods Enzymology,<br />

2000, 322, 100 (b). T. Rano, T. Timkey, E. Peterson, J. Rotonda, D.<br />

Nicholson, J. Becker, K. Chapman, N. Thornberry, Chem.Bio., 1997,<br />

4, 149 (c). A. Ruwet, C. Draguet, M.Renson, Bull.Soc.Chem.Belg.,<br />

1970, 79, 639 (d). B. Chakravarty, Y. Rao, S. Gombir, K.God, Planta<br />

Med., 1981, 43, 64 (e). R. Romen, Res. Commun Pathol Pharmacol.,<br />

1975, 11, 552 (f). I. Singh, A. Kumar, S. Gurtu, J. Sinha, K. Shanker,<br />

Arch Pharma.(Weinheim), 1984, 317, 984(g). A. Kumar, M. Verma,<br />

A. Saxena, K. Shanker, Ind.J.Chem.,1987,26B, 378.<br />

59


Chapter-2 Synthesis and characterization of…<br />

[19] V. Trapov, E. Perfanov, L. Smirnov, Khim.-Farm. Zh.,1996, 30, 20.<br />

[20] G. Raskob, P. Comp, G. Pineo, R. Hull, In Anticoagulants:<br />

Physiologic, Pathologic band Pharmacologic, D. Green, Ed.6, Eds.;<br />

CRC Press, Boca Raton,1994, 231.<br />

[21] S. Pillai, S. Menon, L. Mitscher, C. Pillai, D. Shankel, J. Nat.<br />

Prod.,1999, 62, 1358.<br />

[22] W. Gao, W. Hou, M. Chang, Y. Cui, Y. Li, X. Wang, L. Tang and S.<br />

Sun; Faming Zhuanli Shenqing Gongkai Shuomingshu, CN<br />

[23]<br />

101220016, 2008.<br />

L. Schio, F. Chatreaux and M. Klich; Tet. Lett., 2000, 41, 1543.<br />

[24] M. Garazd, L. Garazd, V. Shillin and P. Khliya; Chem. Nat.<br />

Compounds, 2000, 36, 485.<br />

[25] S. Schiedel, A. Briehn and P. Bauerle; Angrew. Chem. Int. Ed., 2001,<br />

40, 4677.<br />

[26] Meng, G. Shen, C. Fu, H. Gao, J. Wang, G. Wang and T. Matsurra;<br />

Synthesis, 1990, 719.<br />

[27] .I. Ivanova, V. Eremin and I. Shvets; Tetrahedron, 1996, 52, 9581.<br />

[28] M. Mohareb, Z. Shams and I. Aziz; J. Chem. Research (S), 1992, 154.<br />

[29] S. Govori, V. Rapic, O. Leci and I. Tabakovic; J. Heterocyclic Chem.,<br />

1996, 33, 351.<br />

[30] Aziz; J. Heteroatom Chem., 1996, 7, 137.<br />

[31] C. Majumdar, S. Saha, N. De and K. Ghosh; J. Chem. Soc., 1993, 715.<br />

[32] N. Nicolaides, C. Fylaktakidou, E. Litinas and D. Hadlipavlou-Litina;<br />

J. Heterocyclic Chem., 1996, 33, 967.<br />

[33] Emmanuel-Giota, C. Fylaktakidou, D. Hadlipavlou-Litina, E. Litinas<br />

and N. Nicolaides; J. Heterocyclic Chem., 2001, 38, 717.<br />

[34] Oduszek and M. Uher ; Synth. Commun., 2000, 30, 1749.<br />

[35] N. Nishizono, K. Oda, K. Ohno, M. Minami and M. Machida;<br />

Heterocycles, 2001, 55, 1897.<br />

[36] Ito, Y. Higuchi, C. Tame and J. Hariya; Heterocycles, 1993, 35, 937.<br />

[37] V. Hagen, S. Frings, S. Wiesner and B. Kaupp; J. Chem. Bio. Chem.,<br />

2003, 4, 434.<br />

[38] Rao and K. Mukerjee; Ind. J. Chem., 1994, 55, 14777.<br />

[39] Rahman and I. Gray; Phytochemistry, 2002, 59, 73.<br />

60


Chapter-2 Synthesis and characterization of…<br />

[40] Schinkovitz, S. Gibbons, M. Stavri, J. Cocksedge and F. Bucar; Plant<br />

Med., 2003, 69, 369.<br />

[41] R. Chowdhury, M. Hasan and A. Rashid; Fitoterapia, 2003, 74, 155.<br />

[42] Kawase, T. Tanaka, Y. Sohara, S. Tani and H. Sakagami; In vivo,<br />

2003, 17, 509.<br />

[43] Zaha and A. Hazem; New Microbio., 2002, 25, 213.<br />

[44] Gleye, G. Lewin, A. Laurens, C. Jullian and C. Loiseau; J. Nat. Prod.,<br />

2003, 66, 323.<br />

[45] E. De Clercq ; Med. Res. Rev., 2000, 20 323.<br />

[46] T. Makhija and M. Kulkarni; J. Comput. Aid. Mol. Des., 2001, 15, 961.<br />

[47] S. Bourinbaiar, X. Tan and R. Nagorny; Acta Virol., 1993, 37, 241.<br />

[48] H. Zhao, N. Neamati, Y. Pommier and R. Burke, Jr.; Heterocycles,<br />

1997, 45, 2277.<br />

[49] J. Vlientick, T. De Bruyne, S. Apers and A. Pieters; Plant Med., 1998,<br />

64, 97.<br />

[50] Valenti; Fitoterapia, 1996, 68, 115.<br />

[51] F. Rosskopf, J. Kraus and G. Franz; Pharmazie., 1992, 47, 139.<br />

[52] J. Finn, B. Creaven and A. Egan; Melanoma Res., 2001, 11, 461.<br />

[53] Kawaii, Y. Tomono, K. Ogawa, M. Sugiura, M. Yano, Y. Yoshizawa,<br />

C. Ito and H. Furukawa; Anticancer Res., 2001, 21, 1905.<br />

[54] Kawaii, Y. Tomono, M. Ogawa, Y. Yoshizawa; Anticancer Res., 2001,<br />

21, 917.<br />

[55] J. Wang, J. Hsieh, L. Lin and H. Tseng; Cancer Lett., 2002, 183, 163.<br />

[56] J. Finn, E. Kenealy, S. Creaven and A. Egan; Cancer Lett., 2002, 183,<br />

61.<br />

[57] J. Finn, S. Creaven and A. Egan; Eur. J. Pharmacol., 2003, 481, 159.<br />

[58] R. Edenharder and X. Tang; Food Chem. Toxicol., 1997, 35, 357.<br />

[59] S. Ahmed, K. James, P. Owen, K. Patel; Bioorg. & Med. Chem. Lett.,<br />

2002, 12, 1343.<br />

[60] T. Ho, A. Purohit, N. Vicker, P. Newman, J. Robinson, P. Leese, D.<br />

Ganeshapillai, L. Woo, L. Potter and J. Reed; Biochem. Biophys. Res.<br />

Commun., 2003, 305, 909.<br />

[61] Bruhimann, F. Ooms, A. Carrupt, B. Testa, M. Catto, F. Leonetti, C.<br />

Altomare and A. Carotti; J. Med. Chem., 2001, 44, 3195.<br />

61


Chapter-2 Synthesis and characterization of…<br />

[62] S. Jo, L. Gyibg, K. Bae, K. Lee and H. Jun; Plant Med., 2002, 68, 84.<br />

[63] H. Wang, B. Ternai and G. Polya; Phytochemistry, 1997, 44, 787.<br />

[64] S. Sardari, S. Nishibe, K. Horita, T. Nikaido and M. Daneshtalab;<br />

Pharmazie, 1999, 54, 554.<br />

[65] Yang, B. Zhao, K. Zhang and P. Mack; Biochem. Biophys. Res.<br />

Commun., 1999, 260, 682.<br />

[66] X. Wang and B. Ng; Plant Med., 2001, 67, 669.<br />

[67] L. Costantino, G. Rastelli and A. Albasini; Pharmazie, 1996, 51, 994.<br />

[68] T. Kaneko, N. Baba and M. Matsuo; Cytotechnology, 2001, 35, 43<br />

[69] Paya, B. Halliwell and S. Hoult; Biochem. Pharmacol., 1992, 44, 205.<br />

[70] Fernandez-Puntero, I. Barroso, I. Idlesias and J. Benedi, Bio. Pharm.<br />

Bull., 2001, 24, 777.<br />

[71] Lazarova, I. Kostova and H. Neychev; Fitoterapia, 1993, 64, 134.<br />

[72] V. Maddi, S. Raghu and A. Rao; J. Pharm. Sci., 1992, 81, 964.<br />

[73] Nicolaides, C. Fylaktakidou, E. Litinas and D. Hadlipavlou-Litina;<br />

Eur. J. Med. Chem., 1998, 33, 715.<br />

[74] G. Delgado, S. Olivares, M. I. Chavez, T. Ramirez-Apan, E. Linares<br />

and R. Bye; J. Nat. Prod., 2001, 64, 861.<br />

[75] M. Ghate, D. Manoher, V. Kulkarni, R. Shosbha and S. Kattimani;<br />

Eur. J. Med. Chem., 2003, 38, 297.<br />

[76] D. Hadlipavlou-Litina; J. Arzneim-Forsch./Drug Res., 2000, 50, 631.<br />

[77] M. Ferrer, J. Leiton and L. Zaton; J. Protein Chem., 1998, 17, 115.<br />

[78] G. Roma, M. Di Braccio, A. Carrieri, G. Grossi, G. Leoncini, G.<br />

Signorello and A. Carotti; Bioorg. & Med. Chem., 2003, 11, 123.<br />

[79] F. Chiou, L. Huang, F. Chen and C. Chen; Planta Med., 2001, 67, 282.<br />

[80] R. Pignatello, A. Puleo, S. Giustolisi, S. Cuzzoccrea, L. Dugo, P.<br />

Caputi and G. Puglisi; Drug Dev. Res., 2002, 57, 115.<br />

[81] L. Santana, E. Uriarte, Y. Fall, M. Teijeira, C. Teran, E. Garcia-<br />

Martinez and R. Tolf; Eur. J. Med. Chem., 2002, 37, 503.<br />

[82] M. Gonzalez-Gomez, L. Santana, E. Uriarte, J. Brea, M. Villlazon, I.<br />

Loza, M. De Luca, E. Rivas, Y. Montegero and A. Fontela; Bioorg. &<br />

Med. Chem. Lett., 2003, 13, 175.<br />

62


Chapter-2 Synthesis and characterization of…<br />

[83] M.Marshall, J.Mohler, K.Edmonds, B.Williams, K.Butler, M.Ryles,<br />

L.Weiss, D.Urban, A.Beuschen, M.Markiewicz, J. Cancer Res. Clin.<br />

Oncol.,1994,120, 39.<br />

[84] E.Moran, E.Prosser, R.O’Kennedy, R.Thornes, J. Irish.Coll. Phys.<br />

Surg., 1993, 22, 41.<br />

[85] C.Siegers, H.Bostelmann, J. Irish Coll. Phys. Surg.,1993,22, 47.<br />

[86] R.Myers, M.Parker, W.Grizzle, J. Cancer Res. Clin.Oncol.,1994,120,<br />

11.<br />

[87] G.Feuer, J.Kellen, K.Kovacs, Oncology,1976,33, 35.<br />

[88] D.Thornes, L.Daly, G.Lynch, H.Browne, A.Tanner, F.Keene,<br />

[89]<br />

S.O’Loughlin, T.Corrigan, P.Daly, G.Edwards, B.Breslin, H.Browne,<br />

M.Shine, F.Lennon, J.Hanley, N.McMurray,<br />

E.Gaffney, Eur. J. Surg. Oncol.,1989,15, 431.<br />

[90] B.Omarbasha, W.Fair, W.Heston, Cancer Res.,1989,49,3045.<br />

[91] L.Raev, E.Voinova, I.Ivanov, D.Popov, Pharmazie,1990, 45, 696.<br />

[92] A.Maucher, E.Von Angerer, J. Cancer Res. Clin. Oncol.,1994, 120,<br />

502.<br />

[93] R.Thornes, L.Daly, G.Lynch, B.Breslin, H.Browne, H.Browne,<br />

T.Corrigan, P.Daly, G.Edwards, E.Gaffney, J. Cancer Res. Clin.<br />

Oncol.,1994,12, S32.<br />

[94] M.Marshall, K.Butler, A.Fried, Mol. Biother.,1991, 3, 170.<br />

[95] J.Mohler, L.Gomella, E.Crawford, L.Glode, C.Zippe, W.Fair,<br />

[96]<br />

M.Marshall, Prostate, 1992,20, 123.<br />

H.Kolodziej, O.Kayser, H.Woerdenbag, W.van Uden, N.Pras, Z.<br />

Naturforsch,1997,52, 240.<br />

[97] M.Kawase, H.Sakagami, K.Hashimoto, S.Tani, H.Hauer, S.Chatterjee,<br />

Anticancer Res.,2003,23, 3243.<br />

[98] G.Finn, B.Creaven, D.Egan, Melanoma Res.,2001,11, 461.<br />

[99] T.Kaneko, N.Baba, M.Matsuo, Chem. Biol. Interact., 2003,142,239.<br />

[100] T.Tanaka, H.Sugiura, R.Inaba, A.Nishikawa, A.Murakami,<br />

K.Koshimizu, H.Ohigashi, Carcinogenesis,1999,20, 1471.<br />

[101] A.Murakami, Y.Nakamura, T.Tanaka, K.Kawabata, D.Takahashi,<br />

K.Koshimizu, H.Ohigashi, Carcinogenesis,2000,21, 1843.<br />

63


Chapter-2 Synthesis and characterization of…<br />

[102] L.Fernyhough, S.Kell, A.Hammond, N.Thomas, J.Fry,<br />

[103]<br />

Toxicology,1994,88,<br />

A.Miglietta, C.Bocca, L.Gabriel, A.Rampa, A.Bisi, P.Valenti, Cell<br />

Biochem. Funct.,2001,19, 181.<br />

[104] C.Bocca, L.Gabriel, F.Bozzo, A.Miglietta, Planta Med.,2002,68, 1135.<br />

[105] T.Quadri-Spinelli, J.Heilmann, T.Rali, O.Sticher, Planta Med.,2000,66,<br />

728.<br />

[106] E.Seo, H.Chai, T.Chagwedera, N.Farnsworth, G.Cordell, J.Pezzuto,<br />

A.Kinghorn, Planta Med.,2000,66, 182.<br />

[107] L.Yang, M.Wang, L.Chen, C.Wang, Planta Med.,2003,69, 1091.<br />

[108] P.Magiatis, E.Melliou, A.Skaltsounis, S.Mitaku, S.Leonce, P.Renard,<br />

A.Pierre, G.Atassi, J. Nat. Prod.,1998,61, 982.<br />

[109] H.Oh, H.Lee, T.Kim, K.Chai, H.Chung, T.Kwon, J.Jun, O.Jeong,<br />

Y.Kim, Y.Yun, Planta Med.,2002,68, 463<br />

[110] W.Mar, K.Je, E.Seo, Arch. Pharm. Res. (Korea), 2001,24,211<br />

[111] X.Song, X.Shiping, L.Lanmin, Acta Pharmaceutica Sinica, 2000,<br />

35(2), 103<br />

[112] S. Xu, S.Su, L.Li, Yaoxue Xuebao, 2001,36(4), 273<br />

[113] Shah, S.; Mehta, R. H. J. Indian Chem. Soc., 1987 , 64(11), 708<br />

[114] Metwally, M. A.; Abdel-latif, E.; Amer F. A.; Kaupp, G. Versatile<br />

2-amino-4-substituted-1,3-thiazoles: synthesis and reactions, Review,<br />

J. Sulfur Chemistry, 2004, 25, 63–85.<br />

[115] Dodson, R. M.; King, L. C. J. Am. Chem. Soc., 1945, 67, 2242.<br />

[116] Abou Gharbia M. A.-M. et al.; GB Patent No. 2,218,988A; Oct. 29,<br />

1989<br />

[117] Pharmaceutical Manufacturing Encyclopedia; 3rd edition, Vol. 1: 100.<br />

[118] Ishida, Y.; Jikei, M.; Kakimoto, M. Rapid Synthesis of Aromatic<br />

Polyamide Dendrimers by an Orthogonal and a Double-Stage<br />

Convergent Approach, Macromolecules, 2000, 33, 3202-3211.<br />

[119] Hargrave, K. D.; Proudfoot, J. R.; Grozinger, K. G.; Cullen, E.;<br />

Kapadia, S. R.; Patel, U. R.; Fuchs, V. U.; Mauldin, S. C.; Vitous, J.;<br />

Behnke, M. L.; Klunder, J. M.; Pal, K.; Skiles, J. W.; McNeil, D. W.;<br />

Rose, J. M.; Chow, G. C.; Skoog, M. T.; Wu, J. C.; Schmidt, G.;<br />

Engel, W. W.; Eberlein, W. G.; Saboe, T. D.; Campbell, S. J.;<br />

64


Chapter-2 Synthesis and characterization of…<br />

Rosenthal, A. S.; Adams, J. Novel non-nucleoside inhibitors of HIV-1<br />

reverse transcriptase. 1. Tricyclic pyridobenzo- and<br />

[120]<br />

dipyridodiazepinones. J. Med. Chem. 1991, 34, 2231-2241.<br />

(a)Wheland, G. Resonance in Organic Chemistry; Wiley: New York,<br />

1955, 345. (b) Pauling, L. Nature of the Chemical Bond, 2nd ed.;<br />

Cornell <strong>University</strong> Press: Ithaca, NY, 1960, 276.<br />

[121] Demaison, J.; Csaszar, A. G.; Kleiner, I.; Møolendal, H. Equilibrium<br />

vs Ground-State Planarity of the CONH Linkage, J. Phys. Chem. A,<br />

2007, 111, 2574-2586.<br />

[122] Alaxender Domling and Ivar Ugi, Angew. Chem, Int. Ed., 2000, 39,<br />

3168-3210<br />

[123] (a) W. H. Perkin; J. Chem. Soc., 1868, 21, 53.; (b) W. H. Perkin;<br />

Justus Liebigs Ann. Chem., 1868, 147, 229.<br />

[124] J. R. Johnson; Organic Reactions, 1942, Vol. 1, p 210.<br />

[125] S. M. Sethna and N. M. Shah; Chem. Rev., 1945, 36, 1.<br />

[126] G. Fewrer; Process in Medicinal Chemistry, 1974, Vol. 10, p. 85.<br />

[127] M. Darbarwar and V. Sundermurthy; Synthesis, 1982, 337.<br />

[128] R. Anshutz; Ber., 1903, 36, 465.<br />

[129] H. Pauly and K. Lokemann; Ber., 1915, 48, 48.<br />

[130] Sonn; Ber., 1917, 50, 1292.<br />

[131] Mentzer and G. Urbain; Bull. Soc. Chem., 1944, 11, 171.<br />

[132] Robertson and J. Boyd; J. Chem. Soc., 1948, 174.<br />

[133] Ziegler and H. Junek; Monatshefte fuer Chemie, 1955, 86, 29.<br />

[134] J. F. Garden, N. F. Hayes and R. H. Thomso; J. Chem. Soc., 1956,<br />

3315.<br />

[135] V. R. Shah, J. L. Bose and R. C. Shah; J. Org. Chem., 1960, 25, 677.<br />

[136] H. Kaneyuki; Bull. Chem. Soc. Japan, 1962, 35, 579.<br />

[137] Resplandy; Compat Rend., 1965, 260, 6479.<br />

[138] C. Jain, V. K. Rohtagi and T. R. Sheshadri; Tet. Lett., 1966, 2701.<br />

[139] K. Shah, N. S. Bhatt and V. M. Thakor; Curr. Sci., 1984, 53(24), 1289.<br />

[140] K. Sen and P. Bagchi; J. Org. Chem., 1959, 24, 316.<br />

[141] J. L. Bose, R. C. Shah and V. R. Shah; Chemistry & Industry, 1960,<br />

623.<br />

65


Chapter-2 Synthesis and characterization of…<br />

[142] Y. A. Shaikh and K. N. Trivedi; Ind. J. Chem., 1974, 12(12), 1262.W.<br />

Barz, R. Schlepphorst and J. Laimer; Phytochemistry, 1976, 15(1), 87.<br />

[143] V. Szabo and J. Borda; Acta Chim. Acade. Scientia. Hung., 1977, 95(2-<br />

3), 333.<br />

[144] V. Szabo, J. Borda, E. Theisz; Magy. Kemi. Folyoir., 1978, 84(3), 134.<br />

[145] Z. Jerzmanowska, W. Basinski, L. Zielinska; Pol. J. Chem., 1980,<br />

54(2), 383.<br />

[146] Ogawa, K. Kondo, S. Murai and N. Sonoda; J. Chem. Soc., Chem.<br />

Commun., 1982, 21, 1283.<br />

[147] W. Basinski and Z. Jerzmanowska; Pol. J. Chem., 1983, 57(4-5-6),<br />

471.<br />

[148] Ogawa, N. Kambe, S. Murai and N. Sonoda; Tetrahedron, 1985,<br />

41(21), 4813.<br />

[149] N. Shobanaa and P. Shanmugam; Ind. J. Chem., 1986, 25B(6), 658.<br />

[150] J. N. Chatterjea, K. R. R. P. Singh, I. S. Jha, Y. Prasad and S. C. Shaw;<br />

Ind. J. Chem., 1986, 25B(8), 796.<br />

[151] T. Mizuno, I. Nishiguchi, T. Hirashima, A. Ogawa, N. Kambe and N.<br />

Sonoda; Synthesis, 1988, 3, 257.<br />

[152] N. Shobana, M. Amirthavalli, V. Deepa and P. Shanmugam; Ind. J.<br />

Chem., 1988, 27B(10), 965.<br />

[153] A. Parfenov, V. L. Savel'ev and L. D. Smirnov; Khim. Geterotsikli.<br />

Soedin., 1989, 3, 423.<br />

[154] Pandey, C. Muralikrishna and U. T. Bhalerao; Tetrahedron, 1989,<br />

45(21), 6867.<br />

[155] M. M. Badran, A. K. El-Ansari and S. El-Meligie; Rev. Roum. de<br />

Chim., 1990, 35(6), 777.<br />

[156] S. K. Nayak, S. M. Kadam and A. Banerji; Synlett, 1993, 8, 581.<br />

[157] T. Kakimoto and T. Hirai; Jpn. Kokai Tokkyo Koho, JP 05255299,<br />

1993.<br />

[158] T. Kakimoto and T. Hirai; Jpn. Kokai Tokkyo Koho, JP 05262756,<br />

1993.<br />

[159] Ye, Y. Zhou and Q. Su; Faming Zhuanli Shenqing Gongkai<br />

Shuomingshu, CN 1101045, 1995.<br />

66


Chapter-2 Synthesis and characterization of…<br />

[160] V. Kalinin, A. J. M. Da Silva, C. C. Lopes, R. S. C. Lopes and V.<br />

Snieckus; Tet. Lett., 1998, 39(28), 4995.<br />

[161] V. Ya. Sosnovskikh, V. A. Kutsenko and I. S. Ovsyannikov; Russ.<br />

Chem. Bull., 2000, 49(3), 478.<br />

[162] J.-C. Jung, Y.-J. Jung and O.-S. Park; Synth. Commun., 2001, 31(8),<br />

1195.<br />

[163] X.-j. Long; Jiangxi Shifan Daxue Xuebao, Ziran Kexueban, 2001,<br />

25(3), 237.M. S. Buzariashvili,; M. V. Tsitsagi,; I. I. Mikadze,; M. G.<br />

Dzhaparidze,; A. V. Dolidze; Sakartvelos Mecnierebata Akademiis<br />

Macne, Kimiis Seria, 2003, 29(3-4), 242.<br />

[164] Y. Ling, X. Yang, M. Yang and W. Chen; Huaxue Tongbao, 2004,<br />

67(5), 355.<br />

[165] Y. Takahashi, K. Kato and K. Kubota; Jpn. Kokai Tokkyo Koho, JP<br />

2005097140, 2005.<br />

[166] N. C. Ganguly, S. Dutta and M. Datta; Tet. Lett., 2006, 47(32), 5807.<br />

[167] M. Gebauer; Bioorg. & Med. Chem., 2007, 15(6), 2414.<br />

[168] S.-J. Park, J.-C. Lee and K.-In. Lee; Bull. Kore. Chem. Soc., 2007,<br />

28(7), 1203.<br />

[169] W. Gao, W. Hou, M. Chang, Y. Cui, Y. Li, X. Wang, L. Tang and S.<br />

Sun; Faming Zhuanli Shenqing Gongkai Shuomingshu, CN<br />

[170]<br />

101220016, 2008.<br />

E. Song, D.-U. Jung, S. Y. Choung, E. J. Roh, S.-G. Lee, Angew.<br />

Chem., 2004, 116, 6309-6311.<br />

[171] Y. Yamamoto, N. Kirai, Org. Lett., 2008, 10, 5513-5516.<br />

[172] C. Ranu, R. Jana, Eur. J. Org. Chem., 2006, 3767-3770.<br />

[173] S. P. Rao, S. Sivakumar, J. Org. Chem., 2006, 71, 8715-8723.<br />

[174] Su, Z.-C. Chen, Q.-G. Zhen, Synthesis, 2003, 555-559.<br />

[175] V. Kalinin, A. J. M. Da Silva, C. C. Lopes, R. S. C. Lopes, V.<br />

Snieckus, Tetrahedron. Lett., 1998, 39, 4995-4998.<br />

[176] S. K. De, R. A. Gibbs, Synthesis, 2005, 1231-1233.<br />

[177] M. K. Potdar, S. S. Mohile, M. M. Salunkhe, Tetrahedron Lett., 2001,<br />

42, 9285-9287.<br />

[178] Andreoli R.R. et al; US Patent No. 4,476,319; 1984, Oct. 9.<br />

[179] B.D. Patent No. 2,436,909; 1974, July 31,; Ferrer Internacional, S. A.<br />

67


Chapter-2 Synthesis and characterization of…<br />

[180] Shroot B. et al.; US Patent No. 4,940,696; 1990, July 10.<br />

[181] Abou Gharbia M. A.-M. et al.; GB Patent No. 2,218, 1989, 988A; Oct.<br />

29.<br />

[182] Klosa, Josef; Pharmazie, 1953, 8, 221-223.<br />

68


Chapter‐3<br />

SOLVENT FREE SOLID PHASE SYNTHESIS OF<br />

AZOMETHINE LINKED COUMARIN MOITIES.


Chapter-3 Solvent less Solid Phase Synthesis of …<br />

3.1 INTRODUCTION<br />

Schiff Bases:<br />

Formation of Schiff Bases<br />

A Schiff base is nitrogen analog of an aldehyde or ketone in which the C=O<br />

group is replaced by a C=N-R group. It is usually formed by condensation of an<br />

aldehyde or ketone with a primary amine according to the following scheme:<br />

R NH O<br />

R<br />

2<br />

R R<br />

R<br />

N R H2O Primary Amine Aldehyde or Ketone Schiff Base Water<br />

Where R may be an alkyl or an aryl group. Schiff bases that contain aryl substituents<br />

are substantially more stable and more readily synthesized, while those which contain<br />

alkyl substituents are relatively unstable. Schiff bases of aliphatic aldehydes are<br />

relatively unstable and readily polymerizable, [1-3] while those of aromatic aldehydes<br />

having effective conjugation are more stable [4-7] .<br />

The formation of a Schiff base from an aldehydes or ketones is a reversible reaction<br />

and generally takes place under acid or base catalysis, or upon heating.<br />

O<br />

R H<br />

R NH OH<br />

Aldehyde or Ketone<br />

2<br />

Primary Amine<br />

R R<br />

NHR<br />

Carbinolamine<br />

R<br />

R<br />

NR<br />

N-Substituted Imine<br />

H 2O<br />

Water<br />

The formation is generally driven to the completion by separation of the<br />

product or removal of water, or both. Many Schiff bases can be hydrolyzed back to<br />

their aldehydes or ketones and amines by aqueous acid or base.<br />

The mechanism of Schiff base formation is another variation on the theme of<br />

nucleophilic addition to the carbonyl group. In this case, the neuclophile is the amine.<br />

In the first part of the mechanism, the amine reacts with the aldehyde or ketone to<br />

give an unstable addition compound called carbinolamine.<br />

68


Chapter-3 Solvent less Solid Phase Synthesis of …<br />

The carbinolamine loses water by either acid or base catalyzed pathways.<br />

Since the carbinolamine is and alcohol, it undergoes acid catalyzed dehydration.<br />

N R'<br />

OH H<br />

R2C H<br />

+<br />

N R'<br />

OH2 R2C H<br />

R<br />

R<br />

R<br />

R<br />

N<br />

H<br />

N<br />

R'<br />

R'<br />

H 2O<br />

H 3O +<br />

(Acid Catalyzed Dehydration)<br />

Typically the dehydration of the carbinolamine is the rate-determining step of Schiff<br />

base formation and this is why the reaction is catalyzed by acids. Yet the acid<br />

concentration cannot be too high because amines are basic compounds. If the amine is<br />

protonated and becomes non-nucleophilic, equilibrium is pulled to the left and<br />

carbinolamine formation cannot occur. Therefore, many Schiff base syntheses are best<br />

carried out at mildly acidic pH.<br />

The dehydration of carbinolamines is also catalyzed by base. This reaction is<br />

somewhat analogous to the E2 elimination of alkyl halides except that it is not a<br />

concerted reaction. It proceeds in two steps through an anionic intermediate.<br />

The Schiff base formation is really a sequence of two types of reactions, i.e. addition<br />

followed by elimination [8] .<br />

The utility of Schiff bases lay in their usefulness as synthons in the synthesis of<br />

bioactive molecules such as 4-thiazolidinines, 2-azetidinones, benzoxazines,<br />

formazans, etc. Schiff bases are known to have useful biological activity like<br />

insecticidal [9] , antibacterial [10] , antituberculosis [11] , antimicrobial [12] , anticonvulsant<br />

[13] , antifeedant [14] etc. Schiff bases belongs to a widely used group of organic<br />

intermediates important for production of specially chemicals, e.g. pharmaceutical or<br />

rubber additives [15] , as amino protective groups in organic synthesis [16-19] . They also<br />

have used as liquid crystals [20] , in analytical [21] , medical [22] and polymer chemistry<br />

[23] .<br />

A classical synthesis of these compounds involves the condensation of acetophenones<br />

and anilines to give Schiff bases [24] . The combination of solvents and long reaction<br />

time makes this method environmentally hazardous.<br />

This provided the stimulus to synthesize new Schiff bases using classical as well as<br />

grindstone technique [25] . In grindstone technique reaction occur through generation of<br />

69


Chapter-3 Solvent less Solid Phase Synthesis of …<br />

local heat by grinding of crystals of substrate and reagent by mortar and pestle.<br />

Reactions are initiated by grinding, with the transfer of very small amount of energy<br />

through friction. In some cases, a mixture and reagents turns to a glassy material.<br />

Such reaction are simple to handle, reduce pollution, comparatively cheaper to<br />

operate and may be regarded as more economical and ecologically favorable<br />

procedure in chemistry [26] .Solid state reaction occur more efficiently and more<br />

selectively than does the solution reaction, since molecules in the crystal are arranged<br />

tightly and regularly [27] .<br />

In present work grindstone technique was used for the synthesis of titled compounds.<br />

This method is superior since it is eco-friendly, high yielding, requires no special<br />

apparatus, non-hazardous, simple and convenient. A series of some new Schiff bases<br />

have been prepared. To best our knowledge earlier reports do not exist on the<br />

synthesis of these Schiff bases.<br />

70


Chapter-3 Solvent less Solid Phase Synthesis of …<br />

3.2 SYNTHETIC ASPECT<br />

Various methods for the preparation of azomethine derivatives have been cited<br />

in literature, some of the methods are as under.<br />

1. General account of the summary of reaction of aldehydes with amine<br />

(aromatic or aliphatic) has been reviewed by Murray [28] .<br />

R<br />

O<br />

R1 NH2 R N R1 2. E. C. Creencia and group [29] reported synthesis from ortho substituted aniline<br />

with 55 % yield in 2 hours in benzene.<br />

Ar<br />

NH 2<br />

O<br />

R<br />

Benzene<br />

3. D. Bleger et al. [30] have synthesized Schiff’s base of aniline and benzaldehyde<br />

in ethanol with short reaction time of 4 hours and reported E isomer as major<br />

product.<br />

NH 2<br />

O<br />

2h<br />

EtOH<br />

4. U. K. Roy and coworkers [31] have reported preparation of Schiff’s base with<br />

4h<br />

100 % of yield with toluene as a solvent.<br />

Ar<br />

N<br />

E<br />

N<br />

R<br />

71


Chapter-3 Solvent less Solid Phase Synthesis of …<br />

NH 2<br />

O<br />

PhMe<br />

24h<br />

5. L. B. Pierre and coworkers [32] have synthesized (E)-N-phenyl<br />

ClHH 2N<br />

methyleneglycineethyl ester by the cyclocondensation of glycine ethyl ester<br />

hydrochloride, t-butylmethyl ether (TBME), benzaldehyde was added<br />

followed by anhydrous Na2SO4 and triethylamine.<br />

O<br />

O<br />

O<br />

Et3N,TBME Na2SO4 6. J. G. Amanda et al. [33] have prepared Schiff bases by condensation of<br />

O<br />

equimolar quantity of 3,6-diformylcatechol and substituted ophenylenediamine.<br />

OH<br />

O<br />

OH<br />

H 2N<br />

OR<br />

NH 2<br />

OR<br />

7. L. Somogyi [34] reported some azomethine derivatives of phenylhydrazide in 99<br />

% yield and with short reaction time of 3.5 hours in polar solvent.<br />

O<br />

OH<br />

N<br />

N<br />

OH<br />

N<br />

O<br />

O<br />

OR<br />

NH 2<br />

OR<br />

72


Chapter-3 Solvent less Solid Phase Synthesis of …<br />

O<br />

H<br />

N NH2<br />

O<br />

3.5h<br />

O<br />

H<br />

N N<br />

8. Schiff’s base of o-phenelene diamine with substituted benzaldehyde was<br />

reported by M. Zintl and coworkers [35] .<br />

NH 2<br />

NH 2<br />

Ar O<br />

EtOH<br />

N<br />

N<br />

R<br />

Ar<br />

Ar<br />

73


Chapter-3 Solvent less Solid Phase Synthesis of …<br />

3.3 GREEN CHEMISTRY APPROACH<br />

Microwave irradiation (MWI) has become an established tool in organic synthesis,<br />

because of<br />

the rate enhancements, higher yields, and often, improved selectivity, with respect to<br />

the<br />

conventional reaction conditions.<br />

In recent years, solvent –free reactions using either organic or inorganic solid supports<br />

have received increasing attention [36] .<br />

There are several advantages to performing synthesis in dry media: (i) short reaction<br />

times, (ii) increased safety, (iii) economic advantages due to the absence of solvent. In<br />

addition, solvent free MWI processes are also clean and efficient [37] .<br />

Owing to environmental restrictions on emissions covered in several legislations<br />

throughout the world, non-polluting and atom-efficient catalytic technologies are<br />

much sought after. The use of acid catalysts is very common in the chemical and<br />

refinery industries, and those technologies employing highly corrosive, hazardous and<br />

polluting liquid acids are being replaced with solid acids; for instance, acid treated<br />

clays, zeolites, zeotypes, ion-exchange resins and metal oxides. Of late, a number of<br />

organic syntheses have been conducted with solid acids like sulfated zirconia, leading<br />

to better regio- and stereo- selectivity [38] .<br />

The challenge in chemistry to develop practical processes, reaction media, conditions<br />

and/or utility of materials based on the idea of green chemistry is one of the important<br />

issues in the scientific community.<br />

Owing to our interest in solid-state reactions [39-40] , we attempted to synthesize Schiff<br />

bases from reaction of substituted amines of 4-hydroxy coumarin with 3-formyl 4hydroxy<br />

coumarin using mortar pestle.<br />

Greener Reactions under solventless conditions<br />

Due to the growing concern for the influence of the organic solvent on the<br />

environment as well as on human body, organic reactions without use of conventional<br />

organic solvents have attracted the attention of synthetic organic chemists. Although a<br />

number of modern solvents, such as fluorous media, ionic liquids and water have been<br />

extensively studied recently, not using a solvent at all is definitely the best option.<br />

Development of solvent-free organic reactions is thus gaining prominence.<br />

74


Chapter-3 Solvent less Solid Phase Synthesis of …<br />

Catalyst and solvent-free conditions as an environmentally benign approach<br />

to 4-aryl-3-cyano-hexahydro-4H-1, 2-benzoxazine-2-oxides<br />

1,2-Oxazine-2-oxides are generally accessible via a catalyzed formal [4 + 2]<br />

cycloaddition reactions of nitroalkenes with electron-rich alkenes [41,42] . These<br />

heterocycles are valuable intermediates to prepare in a regio and stereoselectively<br />

manner a number of important building blocks or target heterocyclic compounds, such<br />

as pyrrolidines, β-lactam-N-oxides, pyrrolizidine and indolizidine alkaloids,<br />

enamines, ketoalcohols, nitroketones, etc. In 2008, Bellachioma et.al [45] reported that<br />

(E)-2-aryl-1-cyano-1- nitroethenes [43,44] are excellent Michael acceptors in water in<br />

the reactions with enantiopure alkyl vinyl ethers, allowing the preparation of various<br />

cyclic nitronates by a completely endo stereoselective [4 + 2] cycloaddition [46]<br />

(Scheme 1).<br />

MeO<br />

CN<br />

NO 2<br />

OSiMe 3<br />

Me 3SiO<br />

H<br />

O<br />

N<br />

OMe<br />

Scheme 1: Michael addition of 1-nitroethene with 1-(trimethylsilyloxy)-cyclohex-1ene<br />

Under solvent-free conditions, (E)-2-aryl-1-cyano-1-nitroethenes rapidly react with 1-<br />

(trimethylsilyloxy)-cyclohex-1-ene with a complete regio- and diasteroselectivity and<br />

leading to the exclusive formation of the cis-fused hexahydro-4H-benzoxazine-2oxides,<br />

which were isolated without the need for a work-up procedure in excellent<br />

yields.<br />

Solid-state regio and stereo-selective benzylic bromination of diquinoline<br />

compounds using N-bromosuccinimide<br />

The Wohl–Ziegler reaction, namely allylic or benzylic free radical bromination using<br />

N-bromosuccinimide (NBS) in a refluxing aprotic solvent, (Scheme 2) is a wellestablished<br />

synthetic organic procedure [47] . Benzene, chloroform and petrol have<br />

been employed as solvents, but the traditional choice has been carbon tetrachloride<br />

which combines optimum properties of solubility, reaction temperature and ease of<br />

product isolation. The succinimide by-product can be removed simply by filtration of<br />

the cooled reaction mixture and then evaporation of solvent from the filtrate affords<br />

the brominated product [48] . In 2005, Rahman et al. [49] synthesised a series of new<br />

O<br />

CN<br />

75


Chapter-3 Solvent less Solid Phase Synthesis of …<br />

brominated diquinoline lattice inclusion hosts, some of which have potential in<br />

separation chemistry due to their selective properties. In each case, the final step<br />

involved a regio and stereoselective benzylic NBS bromination in refluxing CCl4.<br />

However, identical products can be obtained by means of solid-state reaction.<br />

R<br />

R<br />

N<br />

H<br />

H<br />

N<br />

R<br />

R<br />

R<br />

R<br />

N<br />

Br<br />

H<br />

Scheme 2: Benzylic bromination of diquinoline compounds using Nbromosuccinimide<br />

Metal and solvent-free conditions for the acylation reaction catalyzed by<br />

carbon tetrabromide<br />

Organocatalysis has attracted much attention as result of both the novelty of the<br />

concept and more importantly the fact that the efficiency and selectivity of many<br />

organocatalytic reactions meet the standards of established organic reactions.<br />

Catalysts of the same class may promote similar reactions or less closely related<br />

reactions e.g., Carbon tetrabromide (CBr4) is another example of this catalyst class is<br />

able to mediate an astonishing variety of transformations. Although carbon<br />

tetrabromide is considered a poisonous, irritating solid (skin contact can cause severe<br />

irritation; avoid inhalation of fumes; toxicity: irritating to skin, eyes and respiratory<br />

tract, irritating to mucous membranes, narcotic in high concentrations; possible liver<br />

and kidney damage;). It has been utilized as a mild Lewis acid imparting high regio<br />

and chemo-selectivity in various organic transformations [50] . In 2007, Zhang et al. [51]<br />

reported that an efficient and useful catalyst carbon tetrabromide (CBr4) was<br />

discovered to be highly effective for the acylation of phenols, alcohols and thiols<br />

under metal and solvent-free conditions (Scheme 3).<br />

OH<br />

Ac 2O<br />

CBr4 (5 mol%)<br />

Solvent free<br />

RT, air<br />

24 hr, 91%<br />

Scheme 3: Acylation reaction catalyzed by carbon tetrabromide<br />

H<br />

Br<br />

OAc<br />

N<br />

R<br />

R<br />

76


Chapter-3 Solvent less Solid Phase Synthesis of …<br />

An environmentally benign solvent-free Tishchenko reaction<br />

The conversion of aldehydes to their dimeric esters, better known as the Tishchenko<br />

reaction has been known for more than a hundred years. This reaction is heavily used<br />

in industry and it is inherently environmentally benign since it utilizes catalytic<br />

conditions and is 100% atom economic. Over the years, chemists have looked to<br />

develop new reagents that are more efficient than the aluminum based catalysts<br />

traditionally used. Metal catalysts such as alkali metals, alkali metal oxides,<br />

lanthanides, and many others have been developed towards the improvement of<br />

Tishchenko chemistry. In 2009, Waddell et al. [52] reported that the solvent-free ball<br />

milling Tishchenko reaction. Using high speed ball milling and a sodium hydride<br />

catalyst, the Tishchenko reaction was performed for aryl aldehydes in high yields in<br />

0.5 hours (Scheme 4). The reaction was not affected by the type of ball bearing used<br />

and found to be successful in a liquid nitrogen environment.<br />

2 RCHO<br />

Scheme 4: Tishchenko reaction<br />

Catalyst<br />

R<br />

O<br />

O R<br />

Reformatsky and Luche Reaction in absence of solvent<br />

In 1990, Tanaka et al. [53] reported Reformatsky (scheme 5) and Luche reactions<br />

(Scheme 6) with Zn provide more economical C-C bond formation methods than<br />

Grignard reactions with more expensive Mg metal.<br />

RCHO BrCH 2COOEt<br />

Scheme 5: Reformatsky Reaction<br />

Scheme 6: Luche Reaction<br />

RCHO BrCH 2CH=CH 2<br />

Zn<br />

NH 4Cl<br />

Zn<br />

NH 4Cl<br />

ArCH(OH)CH 2COOEt<br />

RCH(OH)CH 2CH=CH 2<br />

In addition, it was pointed out that Reformatsky and Luche reactions proceed<br />

efficiently in the absence of solvent, although Grignard reactions under similar<br />

conditions are not very efficient and give more reduction product than the normal<br />

carbonyl addition product. The nonsolvent Reformatsky and Luche reactions can be<br />

carried out by a very simple procedure and give products in higher yield than with<br />

solvent. In general, the nonsolvent reaction was carried out by mixing aldehyde or<br />

77


Chapter-3 Solvent less Solid Phase Synthesis of …<br />

ketone, organic bromo compound and Zn-NH4C1 in an agate mortar and pestle and by<br />

keeping the mixture at room temperature for several hours.<br />

Oxidative coupling Reaction of phenols with FeCl3<br />

Oxidative couplings of phenols are usually carried out by treatment of phenols in<br />

solution with more than equimolar amount of metal salts such as FeCl3 or manganese<br />

tris(acetylacetonate), although the latter one is too expensive to use in a large<br />

quantity. The coupling reactions of phenols with FeCl3, however, sometimes give<br />

quinones as byproducts.<br />

OH<br />

FeCl3.6H2O solid<br />

Scheme 7: Oxidative coupling Reaction of phenols with FeCl3<br />

In 1989, Toda et al. [54] have reported that some oxidative coupling reactions of<br />

phenols with FeCl3 are faster and more efficient in the solid state than in solution<br />

(Scheme 7). Some coupling reactions in the solid state were accelerated by irradiation<br />

with ultrasound. Some coupling reactions are achieved by using a catalytic amount of<br />

FeCl3<br />

Solvent free synthesis of chalcones<br />

The synthesis of chalcones illustrates the reaction that proceeds with high atom<br />

economy and is relatively easy to perform in teaching labs. Chalcones are important<br />

compounds with applications in medicine and physics.<br />

O<br />

H<br />

O<br />

H 3C NaOH<br />

R2 R1 R1 Scheme 8: Synthesis of chalcones<br />

OH<br />

OH<br />

O<br />

R 2<br />

R 1 = 4-CH 3;4-OCH 3;3-Cl;4-Cl;-H<br />

R 2 = 4-CH 3;4-Br;4-OCH 3;-H<br />

In 2004, Palleros et al. [55] found that the reactions proceed rapidly and afford very<br />

good yields of product. Most of the chalcones can be obtained in a matter of minutes<br />

78


Chapter-3 Solvent less Solid Phase Synthesis of …<br />

by mixing the corresponding benzaldehyde and acetophenone in the presence of solid<br />

NaOH in a mortar with pestle (Scheme 8); the yields of crude product were in the<br />

range 81–94%.<br />

A Practical and Green Approach towards Synthesis of Dihydropyrimidinones<br />

without Any Solvent or Catalyst<br />

In 2002, Ranu et al. [56] reported a simple, efficient, green and cost-effective<br />

procedure for the synthesis of dihydropyrimidinones by a solvent-free and catalystfree<br />

Biginelli’s condensation of 1,3- dicarbonyl compound, aldehyde and urea<br />

(Scheme 9). This approach of direct reaction in neat without solvent and catalyst<br />

showed a new direction in green synthesis.<br />

O O<br />

R 1 R 2<br />

R 3 -CHO<br />

X<br />

H 2N NH 2<br />

X=O,S<br />

Scheme 9: Synthesis of Dihydropyrimidinones<br />

100-105 o C<br />

1 h<br />

Dihydropyrimidinone derivatives are of considerable interest in industry as well as in<br />

academia because of their promising biological activities as calcium channel blockers,<br />

antihypertensive agents and anticancer drugs. Thus, synthesis of this heterocyclic<br />

nucleus is of much importance and quite a number of synthetic procedures based on<br />

the modifications of the century-old Biginelli’s reaction involving acid-catalyzed<br />

three-component condensation of 1,3- dicarbonyl compound, aldehyde and urea, have<br />

been developed. Basically these methods are all similar using different Lewis acid<br />

catalysts such as BF3, FeCl3, InCl3 and 6h in a solvent such as CH3CN, THF. A<br />

number of procedures under solvent-free conditions using Yb(OTf)3, montmorillonite<br />

and ionic liquid as catalysts have also been reported. Obviously, many of these<br />

catalysts and solvents are not at all acceptable in the context of green synthesis. Thus,<br />

as a part of green synthesis, they have discovered that Biginelli’s reaction proceeds<br />

very efficiently by stirring a mixture of neat reactants at 100-105°C for an hour,<br />

requiring no solvent and catalyst, and producing dihydropyrimidinones in high yields.<br />

R 2<br />

O<br />

R 1<br />

R 3<br />

N<br />

H<br />

NH<br />

X<br />

79


Chapter-3 Solvent less Solid Phase Synthesis of …<br />

3.4 AIM OF CURRENT WORK<br />

To synthesize Schiff bases under solvent free conditions from 3-formyl 4-hydroxy<br />

coumarins using different amines including substituted 3-amino 4-hydroxy<br />

coumarins.<br />

3.5 REACTION SCHEME<br />

Preparation of 3-((E)-(substited phenylimino)methyl)-4-hydroxy-2Hchromen-2-one:<br />

OH<br />

O<br />

H<br />

C O<br />

O<br />

NH 2<br />

R'<br />

Solid State<br />

Mortal Pestle<br />

OH HC N<br />

O O<br />

Preparation of 3-((12E)-(substituted 4-hydroxy-2-oxo-2H-chromen-3ylimino)methyl)-4-hydroxy-2H-chromen-2-one:<br />

OH<br />

O<br />

H<br />

C O<br />

O<br />

R''<br />

OH<br />

O<br />

NH2 Solid State<br />

Mortal Pestle<br />

OH<br />

HC<br />

N<br />

O O O<br />

O<br />

R'<br />

O<br />

OH<br />

80<br />

R"


Chapter-3 Solvent less Solid Phase Synthesis of …<br />

3.6 EXPERIMENTAL<br />

Preparation of 3-((E)-(substituted phenylimino)methyl)-4-hydroxy-2Hchromen-2-one:<br />

A mixture of of 3-amino 4-hydroxy coumarin (0.02 mmol) and liquid substituted<br />

phenyl amines in excess (0.03 mmol) were taken into mortar pestle and grinded for<br />

about 20 minutes. Completion of reaction was checked over TLC. The mixture was<br />

then filtered and washed with hot methanol. The filered solids were dried and<br />

recrystallized from methanol.<br />

Preparation of 3-((12E)-(substituted 4-hydroxy-2-oxo-2H-chromen-3ylimino)methyl)-4-hydroxy-2H-chromen-2-one:<br />

A mixture of substituted 3-amino 4-hydroxy coumarin (0.02 mmol) and 3-formyl 4hydroxy<br />

coumarin (0.02 mmol) were taken into mortar pestle and grinded for about<br />

20 minutes. Completion of reaction was checked over TLC. If the reaction was not<br />

complete complete, drop of acetic acid was added to the mixture and grinded for 5<br />

more minutes. The mixture was then filtered and washed with hot methanol. The<br />

filered solids were dried and eluted over silica using Ethyl acetate/Hexane solvent<br />

mix.<br />

81


Chapter-3 Solvent less Solid Phase Synthesis of …<br />

3.7 PHYSICAL DATA<br />

PHYSICAL DATA TABLE OF 3-((12E)-(SUBSTITUTED 4-HYDROXY-2-<br />

OXO-2H-CHROMEN-3-YLIMINO)METHYL)-4-HYDROXY-2H-<br />

CHROMEN-2-ONE<br />

Sr.<br />

No<br />

1 VNRSc-101<br />

2 VNRSc-102<br />

3 VNRSc-103<br />

4 VNRSc-104<br />

5 VNRSc-105<br />

6 VNRSc-106<br />

7 VNRSc-107<br />

8 VNRSc-108<br />

9 VNRSc-109<br />

10 VNRSc-110<br />

Code Structure<br />

OH HC N<br />

O O<br />

O O<br />

O<br />

O<br />

OH HC N<br />

O O<br />

O<br />

OH HC N<br />

OH HC N<br />

O O<br />

O<br />

OH<br />

HC<br />

N<br />

O O<br />

O O<br />

O<br />

OH HC N<br />

OH HC N<br />

O O<br />

O O<br />

O<br />

O<br />

OH HC N<br />

OH HC N<br />

O O<br />

O O<br />

O<br />

O<br />

O<br />

OH<br />

O<br />

OH<br />

OH<br />

O<br />

O<br />

OH<br />

OH<br />

O<br />

OH<br />

O<br />

OH<br />

O<br />

OH<br />

F<br />

Cl<br />

O O OH<br />

O<br />

OH HC N<br />

OH<br />

O<br />

OH<br />

OMe<br />

Molecular<br />

formula<br />

Molecular<br />

weight<br />

M. P.<br />

( o C)<br />

%<br />

Yield<br />

C 19H 11NO 6 349.29 221-223 64%<br />

C 20H 13NO 6 363.32 252-254 72%<br />

C21H 15NO 6 377.35 231-233 57%<br />

C 21H 15NO 6 377.35 236-238 71%<br />

C21H 15NO 6 377.35 210-212 75%<br />

C 20H 13NO 6 363.32 241-243 66%<br />

C 19H 10FNO 6 367.28 233-235 64%<br />

C 19H 10ClNO 6 383.74 225-227 78%<br />

C 19H 11NO 7 365.29 214-216 72%<br />

C 20H 13NO 7 379.32 230-232 63%<br />

82


Chapter-3 Solvent less Solid Phase Synthesis of …<br />

PHYSICAL DATA TABLE OF 3-((E)-(SUBSTITUTED<br />

PHENYLIMINO)METHYL)-4-HYDROXY-2H-CHROMEN-2-ONE<br />

Sr.<br />

No<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

Code Structure<br />

VNRSc-<br />

111<br />

VNRSc-<br />

112<br />

VNRSc-<br />

113<br />

VNRSc-<br />

114<br />

VNRSc-<br />

115<br />

VNRSc-<br />

116<br />

OH<br />

O O<br />

OH<br />

O O<br />

OH<br />

O O<br />

OH<br />

O O<br />

OH<br />

O O<br />

OH<br />

N<br />

N<br />

O O<br />

N<br />

Cl<br />

N F<br />

N<br />

N<br />

Cl<br />

F<br />

Molecular<br />

formula<br />

Molecular<br />

weight<br />

M. P.<br />

( o C)<br />

%<br />

Yield<br />

Cl C 16H 9Cl 2NO 3 334.15 165 82%<br />

F<br />

F<br />

CF 3<br />

C 18H 15NO 3 293.32 147 85%<br />

C 16H 9F 2NO 3 301.24 137 75%<br />

C 16H 10FNO 3 283.25 148 87%<br />

C 17H 9F 4NO 3 351.25 155 83%<br />

C 16H 10ClNO 3 299.71 132 81%<br />

83


Chapter-3 Solvent less Solid Phase Synthesis of …<br />

3.8 SPECTRAL STUDY<br />

Infra Red spectra<br />

Infra Red Spectra were taken on SHIMADZU IR-435 Spectrometer using KBr Pellet<br />

method. The characteristic carbonyl group in coumarin moiety is observed at 1720-<br />

1750 cm -1 , Methylene gp (>CH2) observed at 2850-3000 cm -1 . methyl (-CH3)<br />

observed at 1350 cm -1 .<br />

1 H NMR spectra<br />

1<br />

H NMR Spectra were recorded on a Bruker AC 400 MHz FT-NMR Spectrometer<br />

using TMS (Tetramethyl Silane) as an internal standard and DMSO-d6 & CDCl3 as a<br />

solvent. In the NMR spectra of derivatives of 3-((12E)-(4-hydroxy-(substituted)-2oxo-2H-chromen-3-ylimino)methyl)-4-hydroxy-2H-chromen-2-one,<br />

various proton<br />

values of amine (-NH) and aromatic protons (Ar-H) etc. were observed as under.<br />

The -NH protons of substituted aniline observed at δ 3.95-4.20 ppm. Aromatic<br />

protons shows the multiplet between δ 6.01-8.54 δ ppm.<br />

Mass spectra<br />

The mass spectrum of compounds were recorded by GCMS-QP2010 spectrometer (EI<br />

method). The mass spectrum of compounds was obtained by positive chemical<br />

ionization mass spectrometry. The molecular ion peak and the base peak in all<br />

compounds were clearly obtained in mass spectral study. The molecular ion peak<br />

(M+) values are in good agreement with molecular formula of all the compounds<br />

synthesized.<br />

Elemental Analysis<br />

Elemental analysis of the synthesized compounds was carried out on Vario EL Carlo<br />

Erba 1108 model at <strong>Saurashtra</strong> <strong>University</strong>, Rajkot which showed calculated and found<br />

percentage values of Carbon, Hydrogen and Nitrogen in support of the structure of<br />

synthesized compounds. The spectral and elemental analysis data are given for<br />

individual compounds.<br />

84


Chapter-3 Solvent less Solid Phase Synthesis of …<br />

3.9 SPECTRAL CHARACTERIZATION<br />

3-((12E)-(4-hydroxy-2-oxo-2H-chromen-3-ylimino)methyl)-4-hydroxy-2Hchromen-2-one<br />

(VNRSC-101)<br />

Yield: 68%; IR (cm -1 ): 3545 (O-H str.), 3035 (Ar C=C-H str.), 2982 (Asym C-H str. -<br />

CH3), 2849 (Sym C-H str. -CH3), 2833 (Sym C-H str. -CH2), 1740 (C=O str.),<br />

1522,1595 ,1506 (Ar C=C str.), 1176 (C-O str.), 740 (C-H oop def); Mass: [m/z<br />

(%)], M. Wt.: 349; Elemental analysis, Calculated: C, 65.33; H, 3.17; N, 4.01;<br />

Found: C, 65.43; H, 3.22; N, 4.16.<br />

3-((12E)-(4-hydroxy-8-methyl-2-oxo-2H-chromen-3-ylimino)methyl)-4-hydroxy-<br />

2H-chromen-2-one (VNRSC-102)<br />

Yield: 66%; IR (cm -1 ): 3531 (O-H str.), 3032,3256 (Ar C=C-H str.), 2973 (Asym C-H<br />

str. -CH3), 2855 (Sym C-H str. -CH3), 2836 (Sym C-H str. -CH2), 1756 (C=O str.),<br />

1587,1502 (Ar C=C str.),1324 (C-H bend –CH3), 1275 (C-O str.), 785 (C-H oop def);<br />

Mass: [m/z (%)], M. Wt.: 363 Elemental analysis, Calculated: C, 66.12; H, 3.61;<br />

N, 3.86; Found: C, 66.08; H, 3.67; N, 3.27.<br />

3-((12E)-(4-hydroxy-7,8-dimethyl-2-oxo-2H-chromen-3-ylimino)methyl)-4hydroxy-2H-chromen-2-one<br />

(VNRSC-103)<br />

Yield: 51%; %; IR (cm -1 ): 3508 (O-H str.), 3091, (Ar C=C-H str.), 2983 (Asym C-H<br />

str. -CH3),2864 (Sym C-H str. -CH3), 2845 (Sym C-H str. -CH2), 1734 (C=O str.),<br />

1595 ,1506 (Ar C=C str.),1356 (C-H bend –CH3), 1176 (C-O str.), 767 (C-H oop<br />

def); Mass: [m/z (%)], M. Wt.: 377 ; Elemental analysis, Calculated: C, 66.84;<br />

H, 4.01; N, 3.71; Found: C, 66.24; H, 4.45; N, 3.48.<br />

3-((12E)-(4-hydroxy-5,8-dimethyl-2-oxo-2H-chromen-3-ylimino)methyl)-4hydroxy-2H-chromen-2-one<br />

(VNRSC-104)<br />

Yield: 64%; IR (cm -1 ):3612 (O-H str.), 3084, (Ar C=C-H str.), 2976 (Asym C-H str. -<br />

CH3),2854 (Sym C-H str. -CH3), 2825 (Sym C-H str. -CH2), 1731 (C=O str.), 1575<br />

85


Chapter-3 Solvent less Solid Phase Synthesis of …<br />

,1505 (Ar C=C str.),1346 (C-H bend –CH3), 1076 (C-O str.), 810 (C-H oop def);<br />

Mass: [m/z (%)], M. Wt.: 377 ; Elemental analysis, Calculated: C, 66.84; H, 4.01;<br />

N, 3.71; Found: C, 66.65; H, 4.19; N, 3.71.<br />

3-((12E)-(4-hydroxy-5,7-dimethyl-2-oxo-2H-chromen-3-ylimino)methyl)-4hydroxy-2H-chromen-2-one<br />

(VNRSC-105)<br />

Yield: 63%;(cm -1 ):3647,3537(O-H str.), 3097.3066, (Ar C=C-H str.), 3010 (Asym C-<br />

H str. -CH3), (Sym C-H str. -CH3), 1712, 1693 (C=O str.), 1591,1558, 1506 (Ar<br />

C=C str.)1356 (C-H bend –CH3), 1031,1111 (C-O str.), 785 (C-H oop def); 1 H<br />

NMR 400 MHz: (CDCl3, δ ppm): 2.12 (s, 3H), 2.82 (s, 3H), 6.76 (s, 1H), 6.83 (s,<br />

1H), 7.25 (m, 2H), 7.53 (m, 1H), 8.04 (m, 1H), 9.80 (d, 1H), 14.24 (d, 1H). Mass:<br />

[m/z (%)], M. Wt.: 377 ; Elemental analysis, Calculated: C, 66.84; H, 4.01; N,<br />

3.71; Found: C, 66.48; H, 4.11; N, 3.47.<br />

3-((12E)-(4-hydroxy-6-methyl-2-oxo-2H-chromen-3-ylimino)methyl)-4-hydroxy-<br />

2H-chromen-2-one (VNRSC-106)<br />

Yield: 71%; IR (cm -1 ): 3615(O-H str.), 3071, (Ar C=C-H str.), 2973 (Asym C-H str. -<br />

CH3),2861 (Sym C-H str. -CH3), 2843 (Sym C-H str. -CH2), 1724 (C=O str.), 1595<br />

,1506 (Ar C=C str.),1352 (C-H bend –CH3), 1156 (C-O str.), 741 (C-H oop<br />

def);Mass: [m/z (%)], M. Wt.: 363 ; Elemental analysis, Calculated: C, 71.47; H,<br />

6.72; N, 3.16; Found: C, 71.15; H, 6.65; N, 3.14.<br />

3-((12E)-(6-fluoro-4-hydroxy-2-oxo-2H-chromen-3-ylimino)methyl)-4-hydroxy-2Hchromen-2-one<br />

(VNRSC-107)<br />

Yield: 52%; IR (cm -1 ): 3655 (O-H str.), 3101, (Ar C=C-H str.), 2993 (Asym C-H str.<br />

-CH3),2854 (Sym C-H str. -CH3), 2835 (Sym C-H str. -CH2), 1744 (C=O str.), 1585<br />

,1501 (Ar C=C str.),1354 (C-H bend –CH3), 1176 (C-O str.), 567 (C-F str.) 741 (C-H<br />

oop def); Mass: [m/z (%)], M. Wt.: 367 ; Elemental analysis, Calculated: C,<br />

62.13; H, 2.74; F, 5.17; N, 3.81; Found: C, 62.24; H, 2.52; N, 3.46.<br />

86


Chapter-3 Solvent less Solid Phase Synthesis of …<br />

3-((12E)-(6-chloro-4-hydroxy-2-oxo-2H-chromen-3-ylimino)methyl)-4-hydroxy-2Hchromen-2-one<br />

(VNRSC-108)<br />

Yield: 55%; IR (cm -1 ): 3572 (O-H str.), 3091, (Ar C=C-H str.), 2983 (Asym C-H str.<br />

-CH3),2874 (Sym C-H str. -CH3), 2845 (Sym C-H str. -CH2), 1724 (C=O str.), 1585<br />

,1502 (Ar C=C str.),1345 (C-H bend –CH3), 1076 (C-O str.), 967 (C-Cl str.) 780 (C-H<br />

oop def); Mass: [m/z (%)], M. Wt.: 383 ; Elemental analysis, Calculated: C,<br />

59.47; H, 2.63; Cl, 9.24; N, 3.65; Found: C, 59.36; H, 2.55; N, 3.87.<br />

3-((12E)-(4,7-dihydroxy-2-oxo-2H-chromen-3-ylimino)methyl)-4-hydroxy-2Hchromen-2-one<br />

(VNRSC-109)<br />

Yield: 77%; IR (cm -1 ): 3647 (O-H str.), 3015, (Ar C=C-H str.), 2973 (Asym C-H str.<br />

-CH3),2857 (Sym C-H str. -CH3), 2845 (Sym C-H str. -CH2), 1724 (C=O str.), 1575<br />

,1505 (Ar C=C str.),1344 (C-H bend –CH3), 1146 (C-O str.), 745 (C-H oop def);<br />

Mass: [m/z (%)], M. Wt.: 365 ; Elemental analysis, Calculated: C, 62.47; H, 3.04;<br />

N, 3.83; Found: C, 62.58; H, 3.12; N, 3.77.<br />

3-((12E)-(4-hydroxy-6-methoxy-2-oxo-2H-chromen-3-ylimino)methyl)-4-hydroxy-<br />

2H-chromen-2-one (VNRSC-110)<br />

Yield: 75%; IR (cm -1 ): 3563 (O-H str.), 3001, (Ar C=C-H str.), 2973 (Asym C-H str.<br />

-CH3),2854 (Sym C-H str. -CH3), 2835 (Sym C-H str. -CH2), 1735 (C=O str.), 1585<br />

,1501 (Ar C=C str.),1354 (C-H bend –CH3), 1176 (C-O str.), 745 (C-H oop<br />

def);Mass: [m/z (%)], M. Wt.: 379 ; Elemental analysis, Calculated: C, 63.33; H,<br />

3.45; N, 3.69; Found: C, 63.42; H, 3.64; N, 3.57.<br />

3-((E)-(2,3-dichlorophenylimino)methyl)-4-hydroxy-2H-chromen-2-one (VNRSC-<br />

111)<br />

Yield: 71%; IR (cm -1 ): 3652 (O-H str.), 3015, (Ar C=C-H str.), 2965 (Asym C-H str.<br />

-CH3),2874 (Sym C-H str. -CH3), 2855 (Sym C-H str. -CH2), 1732 (C=O str.), 1575<br />

,1505 (Ar C=C str.),1354 (C-H bend –CH3), 1046 (C-O str.), 965(C-Cl str.), 745 (C-<br />

87


Chapter-3 Solvent less Solid Phase Synthesis of …<br />

H oop def);Mass: [m/z (%)], M. Wt.: 334 ; Elemental analysis, Calculated: C,<br />

57.51; H, 2.71; N, 4.19; Found: C, 57.15; H, 2.75; N, 4.12.<br />

3-((E)-(3,5-dimethylphenylimino)methyl)-4-hydroxy-2H-chromen-2-one (VNRSC-<br />

112)<br />

Yield: 52%; IR (cm -1 ): 3589 (O-H str.), 3088, (Ar C=C-H str.), 2963 (Asym C-H str.<br />

-CH3),2859 (Sym C-H str. -CH3), 2852 (Sym C-H str. -CH2), 1721(C=O str.), 1575<br />

,1505 (Ar C=C str.),1374 (C-H bend –CH3), 1185 (C-O str.), 756 (C-H oop def);<br />

Mass: [m/z (%)], M. Wt.: 293 ; Elemental analysis, Calculated: C, 73.71; H, 5.15;<br />

N, 4.78; Found: C, 73.14; H, 5.42; N, 4.51.<br />

3-((E)-(3,4-difluorophenylimino)methyl)-4-hydroxy-2H-chromen-2-one (VNRSC-<br />

113)<br />

Yield: 55%; IR (cm -1 ): 3655 (O-H str.), 3017, (Ar C=C-H str.), 2945 (Asym C-H str.<br />

-CH3),2852 (Sym C-H str. -CH3), 2848 (Sym C-H str. -CH2), 1724 (C=O str.), 1577<br />

,1535 (Ar C=C str.),1347 (C-H bend –CH3), 1157(C-O str.),587,(C-F str.), 745 (C-H<br />

oop def); Mass: [m/z (%)], M. Wt.: 301 ; Elemental analysis, Calculated: C,<br />

63.79; H, 3.01; N, 4.65; Found: C, 63.44; H, 3.21; N, 4.78.<br />

3-((E)-(4-fluorophenylimino)methyl)-4-hydroxy-2H-chromen-2-one (VNRSC-114)<br />

Yield: 77%; IR (cm -1 ): 3647 (O-H str.), 3015, (Ar C=C-H str.), 2973 (Asym C-H str.<br />

-CH3),2857 (Sym C-H str. -CH3), 2845 (Sym C-H str. -CH2), 1724 (C=O str.), 1575<br />

,1505 (Ar C=C str.),1344 (C-H bend –CH3), 1146 (C-O str.), 586(C-F str.), 745 (C-H<br />

oop def);Mass: [m/z (%)], M. Wt.: 283 ; Elemental analysis, Calculated: C, 67.84;<br />

H, 3.56; N, 4.94; Found: C, 67.49; H, 3.24; N, 4.36.<br />

88


Chapter-3 Solvent less Solid Phase Synthesis of …<br />

3-((E)-(4-fluoro-3-(trifluoromethyl)phenylimino)methyl)-4-hydroxy-2H-chromen-2one<br />

(VNRSC-115)<br />

Yield: 75%; IR (cm -1 ): 3678 (O-H str.), 3115, (Ar C=C-H str.), 2953 (Asym C-H str.<br />

-CH3),2878 (Sym C-H str. -CH3), 2845 (Sym C-H str. -CH2), 1724 (C=O str.), 1552<br />

,1575 (Ar C=C str.),1354 (C-H bend –CH3), 1015 (C-O str.), 755 (C-H oop def) 541<br />

(C-F ); 1 H NMR 400 MHz: (CDCl3, δ ppm): 7.34 (m, 2H), 7.51 (m, 1H), 7.66<br />

(m, 1H), 8.00 (m, 2H), 8.12 (s, 1H), 8.96 (d, 1H). Mass: [m/z (%)], M. Wt.: 351 ;<br />

Elemental analysis, Calculated: C, 58.13; H, 2.58; N, 3.99; Found: C, 58.12; H,<br />

2.71; N, 3.85.<br />

3-((E)-(2-chlorophenylimino)methyl)-4-hydroxy-2H-chromen-2-one (VNRSC-116)<br />

Yield: 75%; IR (cm -1 ):), 3615 (O-H str.), 3014, (Ar C=C-H str.), 2983 (Asym C-H<br />

str. -CH3),2857 (Sym C-H str. -CH3), 2855 (Sym C-H str. -CH2), 1734 (C=O str.),<br />

1575 ,1505 (Ar C=C str.),1354 (C-H bend –CH3), 1046 (C-O str.), 962 (C-Cl str.),<br />

786 (C-H oop def);Mass: [m/z (%)], M. Wt.: 299 ; Elemental analysis, Calculated:<br />

C, 64.12; H, 3.36; N, 4.67; Found: C, 64.14; H, 3.42; N, 4.77.<br />

89


Chapter-3 Solvent less Solid Phase Synthesis of …<br />

3.10 REPRESENTATIVE SPECTRA<br />

IR Spectrum of 3-((12E)-(4-hydroxy-7,8-dimethyl-2-oxo-2H-chromen-3ylimino)methyl)-4-hydroxy-2H-chromen-2-one<br />

(VNRSC-103)<br />

105<br />

%T<br />

90<br />

75<br />

60<br />

45<br />

30<br />

15<br />

0<br />

-15<br />

3508.63<br />

3600 3200<br />

VNRSC-103<br />

3091.99<br />

2983.98<br />

2864.39<br />

2800<br />

2364.81<br />

2400<br />

2000<br />

1734.06<br />

1800<br />

1695.49<br />

1668.48<br />

1595.18<br />

1539.25<br />

1514.17<br />

1491.02<br />

1433.16<br />

600 400<br />

1/cm<br />

IR Spectrum of 3-((12E)-(4-hydroxy-5,7-dimethyl-2-oxo-2H-chromen-3ylimino)methyl)-4-hydroxy-2H-chromen-2-one<br />

(VNRSC-105)<br />

105<br />

%T<br />

97.5<br />

90<br />

82.5<br />

75<br />

67.5<br />

60<br />

52.5<br />

45<br />

37.5<br />

30<br />

3647.51<br />

3537.57<br />

3097.78<br />

3066.92<br />

3010.98<br />

3600 3200<br />

VNRSC-105<br />

OH HC N<br />

O O<br />

O O<br />

2800<br />

O<br />

O<br />

OH HC N<br />

O<br />

OH<br />

2366.74<br />

O<br />

2400<br />

OH<br />

2000<br />

1800<br />

1712.85<br />

1693.56<br />

1600<br />

1622.19<br />

1591.33<br />

1558.54<br />

1600<br />

1506.46<br />

1400<br />

1400<br />

1317.43<br />

1465.95<br />

1435.09<br />

1323.21<br />

1269.20<br />

1211.34<br />

1145.75<br />

1200<br />

1200<br />

1112.96<br />

1155.40<br />

1111.03<br />

1018.45<br />

972.16<br />

1000<br />

1031.95<br />

1000<br />

896.93<br />

862.21<br />

887.28<br />

864.14<br />

767.69<br />

800<br />

800<br />

736.83<br />

785.05<br />

758.05<br />

682.82<br />

592.17<br />

534.30<br />

611.45<br />

600 400<br />

1/cm<br />

90


Chapter-3<br />

Solvent less Solid Phhase<br />

Synthe esis of …<br />

Mass spectrum<br />

oof<br />

3-((12EE)-(4-hydroxy-7,8-dimmethyl-2-oxxo-2H-chro<br />

omen-3-<br />

ylimino)meethyl)-4-hyydroxy-2H-chromen-2<br />

2-one (VNRRSC-103)<br />

O<br />

OHH<br />

HC<br />

N<br />

Mass Sppectrum<br />

oof<br />

3-((12EE)-(4-hydroxy-5,7-dimmethyl-2-oxxo-2H-chro<br />

omen-3ylimino)meethyl)-4-hyydroxy-2H--chromen-2<br />

2-one (VNRRSC-105)<br />

O<br />

O<br />

OH<br />

HC H<br />

C<br />

N<br />

O O<br />

O<br />

O<br />

OH<br />

O<br />

OH<br />

91


Chapter-3<br />

1<br />

H NMR Spectrum of 3-((12EE)-(4-hydroxy-5,7-dimmethyl-2-oxxo-2H-chro<br />

omen-3-<br />

ylimino)meethyl)-4-hyydroxy-2H--chromen-2<br />

2-one (VNRRSC-105)<br />

O<br />

OH<br />

HC<br />

C<br />

N<br />

O O<br />

O<br />

OH<br />

1<br />

Expanded H NMRR<br />

Spectrumm<br />

of 3-((12 2E)-(4-hydroxy-5,7-diimethyl-2-o<br />

oxo-2Hchromen-33-ylimino)mmethyl)-4-hhydroxy-2H<br />

H-chromen-2-one<br />

(VNNRSC-105)<br />

OH HC N<br />

O O<br />

O<br />

O<br />

OH<br />

Solvent less Solid Phhase<br />

Synthe esis of …<br />

92


Chapter-3<br />

1<br />

H NMR SSpectrum<br />

of 3-((E)-( (4-fluoro-3- -(trifluorommethyl)pheenylimino)m<br />

methyl)-<br />

4-hydroxy--2H-chrommen-2-one<br />

(VVNRSC-11<br />

15)<br />

1 H<br />

Solvent less Solid Phhase<br />

Synthe esis of …<br />

Expanded<br />

NMRR<br />

Spe ectrum of 3-((E)-(4-f fluoro-3<br />

(trifluorommethyl)phennylimino)mmethyl)-4-h<br />

hydroxy-2HH-chromen--2-one<br />

115)<br />

(V VNRSC-<br />

OOH<br />

OH<br />

O O<br />

O O<br />

N<br />

N<br />

F<br />

F<br />

CF 3<br />

CF 3<br />

93


Chapter-3 Solvent less Solid Phase Synthesis of …<br />

3.11 RESULT & DISCUSSION<br />

Present work covers the synthesis of some novel Azomethine linked 4-hydroxy<br />

coumarin molecules. The main significance of the present work is that the reaction is<br />

carried out with help of Mortar and Pestle, leading to a solvent free facile synthesis<br />

with rapid reaction time, easy work up method and excellent yield of the desired<br />

compounds.<br />

3.12 CONCLUSION<br />

Total 10 derivatives of 3-((12E)-(4-hydroxy-(substituted)-2-oxo-2H-chromen-3ylimino)methyl)-4-hydroxy-2H-chromen-2-one<br />

were synthesized. All the newly<br />

synthesized compounds were characterized by IR, 1H NMR, 13C NMR, Mass<br />

spectral data and Elemental Analysis.<br />

94


Chapter-3 Solvent less Solid Phase Synthesis of …<br />

3.13 REFERENCES<br />

[1] Hüsnü Güzel, Bull. Chem. Soc. Ethiop. 2008, 22(2), 237-246.<br />

[2] George R S, et al., Int. J. Polym. Mater., 1993, 23, 17-26.<br />

[3] Levitin I Y, et al., Chem Abstr., 2005, 143, 153521.<br />

[4] P. Kolandaivela and R. Kanakaraju, Int. J. Mol. Sci. 2004, 5, 1-12.<br />

[5] Mark J. MacLachlan, Pure Appl. Chem., 2006, 78(4), 873–888.<br />

[6] Shu WANG et.al, Chinese Chemical Letters, 1999, 10(5), 367–370.<br />

[7] İsmet Kaya et al, Chinese Journal of Polymer Science, 2009, 27(2), 209−219.<br />

[8] Ishwar J. Patel et. al., E-Journal of Chemistry, 2010, 7(2), 617-62<br />

[9] S. S. Murthy,A. Kaur, B. Sreenivasalu, R.N. Sarma, Indian J. Exp.Biol., 1998,<br />

36, 724.<br />

[10] K.N. Venugopala and V.A.Jayashree, Indian J.Pharm.Sci., 2009, 70, 88.<br />

[11] N. Solak and S. Rollas, Arkivoc xii, 2006 173.<br />

[12] S.J. Wadher, M.P. Puranik, N.A.Karande and P.G.Yeole, Int.J. Pharm Tech<br />

Res.,1, 2009, 22.<br />

[13] M. Verma, S.N.Pandeya, K.N.Singh and J.P.Stables, Acta Pharm., 2004,<br />

54,49.<br />

[14] S.S. Murthy, A. Kaur, B. Sreenivasulu and P.N. Sarma, Indian J. Exp. Biol.,<br />

1998, 36, 724.<br />

[15] Macho, V.; Kralik, M.; Hudac,J.; Cingelova, J.; J. Mol. Catal. A. Chem.,<br />

2004, 9, 2009.<br />

[16] P.Bey, J.P.Vvert, Tetrahedron Lett., 1977, 18,1455.<br />

[17] R.A.Lucas, D.F.Dicokel, M.J. Dziemian, B.L. Hensle and H.E. Mephillarrney,<br />

J.Am. Chem. Soc., 1960, 82, 5688.<br />

[18] G.W.Fleet and I.J.Fleming, J. Chem. Soc., 1969, 1758.<br />

[19] B.Bezas and L. Zewas, J. Am. Chem. Soc., 1961, 83, 719.<br />

[20] J.P.Adams, J. Chem. Soc. Perkin Trans., 2000,125.<br />

[21] (a).R.W.Layer, Chem. Rev., 1961, 63, 489. (b).A.Abbaspour,<br />

A.R.Esmaeilbeia, A.B. Varrapour and R.K.Khajeh, Talanta, 2002, 58, 394.<br />

[22] (a). A. Jarrahpour, M.Motamedifar, K.Pakshir, N. Hadii and M. Zareii,<br />

Molecules, 2004, 9, 815. (b).Alexander, Chem. Rev., 1995, 95, 273.<br />

[23] M. Hignchi, K. Yamamoto, Org. Lett., 1999, 1, 1881.<br />

[24] M.R.Jaysukhlal and D.S. Chothia, J. Med. Chem., 1970, 13, 335.<br />

95


Chapter-3 Solvent less Solid Phase Synthesis of …<br />

[25] A.K.Bose, S. Pednekar S.N. Ganguly, G. Chakaraborty and M.S.Manhas,<br />

Tetrahedron Lett., 2005, 45, 8351.<br />

[26] F. Toda, Acc Chem. Res., 1995, 28, 480.<br />

[27] G.Rothenberg, A.P. Downie, C.L.Raston and J.L.Scott, J.Am.Chem.Soc.,<br />

2001, 123, 8701.<br />

[28] A. S. Murray, Chemical Review, 1940, 26, 297-338.<br />

[29] E. C. Creencia, K. Taguchi, T. Horaguchi, J. Het. Chem., 45(3), 837-843<br />

(2008).<br />

[30] D. Bleger, D. Kerher, F. Mathevet, G. Schull, A. Huard, L. Douillard, F.<br />

Charra, Angew. Chemie, Int. Ed., 2007, 46(39), 7404-7407.<br />

[31] U. K. Roy, S. Roy, Tet. Lett., 2007, 48(40), 7177-7180.<br />

[32] L. B. Pierre, G. James, D. B. Murray, S. Jurgen, J. Org. Chem., 2005, 70(15),<br />

5869-5879.<br />

[33] J. G. Amanda, O. P. Brian, J. M. Mark, J. Org. Chem., 2004, 69(25), 8739-<br />

8744.<br />

[34] L. Somogyi, J. Het. Chem., 2007, 44(6), 1235-1246.<br />

[35] M. Zintl, F. Molnar, T. Urban, V. Bernhart, B. Rieger, Angew. Chemie, Int.<br />

Ed., 2008, 47(18), 3458-3460.<br />

[36] (a) Caddick, S. Tetrahedron 1995, 51, 10403. (b) Deshayes, S.; Liagre, M.;<br />

Loupy, A.;Luche, J.; Petit, A.; Tetrahedron 1999, 55, 10851. (c) Lidstrom, P.;<br />

Tierney, J.; Wathey, B.; Westman, J. Tetrahedron 2001, 57, 9225. (d)<br />

Kirschning, A.; Monenschein, H.; Wittenberg, R.; Angew. Chem. Int. Ed.<br />

2001, 73, 193. (e) Varma, R.S. Pure Appl. Chem. 2001, 73, 193. (f) Loupy, A.;<br />

Microwaves in Organic Synthesis; Wiley-VCH: Weinheim, 2002.<br />

[37] Diddams, P.; Butters, M. In Solid Supports and Catalysts in Organic<br />

Synthesis; Smith, K.; Ed.; Ellis Harwood and PTR Prentice Hall: New York<br />

and London, 1992, Chapters 1, 3 and 5.<br />

[38] Yadav, D. G.; Nair, J. J. Microporous and Mesoporous Materials, 1999, 33, 1.<br />

[39] Tundo, P.; Anastas, P. T. Green Chemistry: Challenging Perspectives, Oxford<br />

Science: Oxford, 1999.<br />

[40] (a) Gopalakrishnan, M.; Sureshkumar, P.; Kanagarajan, V.; Thanusu, J.;<br />

Govindaraju, R. J. Chem. Res. 2005, 5, 299. (b) Gopalakrishnan, M.;<br />

Sureshkumar, P.; Kanagarajan, V.;Thanusu, J. Lett. Org. Chem. 2005, 2, 136.<br />

(c) Gopalakrishnan, M.; Sureshkumar, P.;Kanagarajan, V.; Thanusu, J. Catal.<br />

Communications 2005, 6, 753.<br />

96


Chapter-3 Solvent less Solid Phase Synthesis of …<br />

[41] A. T. Nielsen and T. G. Archibald, Tetrahedron, 1970, 26, 3475.<br />

[42] D. Seebach and M. A. Brook, Helv. Chim. Acta, 1985, 68, 319.<br />

[43] M. Miyashita, T. Yanami and A. Yoshikoshi, J. Am. Chem. Soc., 1976, 98,<br />

4679.<br />

[44] R. S. Varma and G. W. Kabalka, Heterocycles, 1986, 24, 2645.<br />

[45] G. Bellachioma, L. Castrica, F. Fringuelli, F. Pizzo and L. Vaccaro, Green<br />

Chem., 2008, 10, 327.<br />

[46] F. Fringuelli, M. Matteucci, O. Piermatti, F. Pizzo and M. C. Burla, J. Org.<br />

Chem., 2001, 66, 4661.<br />

[47] C. Djerassi, Chem. Rev., 1948, 43, 271.<br />

[48] A. I. Vogel, A Text-Book of Practical Organic Chemistry, Longman, London,<br />

3rd edn., 1972, 926–927.<br />

[49] A. N. M. M. Rahman, R. Bishop, R. Tan and N. Shan, Green Chem., 2005, 7,<br />

207.<br />

[50] A. V. Reddy, V. L. N. Reddy, K. Ravinder and Y. Venkateswarlu,<br />

Hetero.Commun., 2002, 8, 459<br />

[51] L.Zhang, Y. Luo, R. Fan and J.Wu, Green Chem., 2007, 9, 1022.<br />

[52] D. C. Waddell and J. Mack, Green Chem., 2009, 11, 79.<br />

[53] K. Tanaka, S. Kishigami and F. Toda, J. Org. Chem. 1991, 56, 4333.<br />

[54] F. Toda, K. Tanaka and S. Iwata, J. Org. Chem. 1989, 54, 3007.<br />

[55] D. R. Palleros, J. Chem. Edu., 2004, 81, 1345.<br />

[56] B. C. Ranu, A. Hajra and S. S. Dey, Organic Process Research and<br />

Development, 2002, 6, 817<br />

97


Chapter‐4<br />

SYNTHESIS AND CHARACTERIZATION OF SOME<br />

4‐SUBSTITUTED 2,6‐DIMETHYL<br />

3,5‐DICARBONITRILE 1,4‐DIHYDROPYRIDINES<br />

AND THEIR MANNICH BASES USING VARIOUS<br />

SECONDARY AMINES.


Chapter-4 Synthesis and Characterizatin of…<br />

4.1 INTRODUCTION<br />

Dihydropyridines (DHPs) are the important class of organic compounds in view of its<br />

ample of application in the pharmaceuticals. [1,3] Arthur Hantzsch in 1882 [2] first<br />

reported the classical synthesis of 1,4-dihydropyridines(1,4-DHPs) which involves<br />

one pot three-component coupling reaction of 1 equivalent of alkyl or aryl aldehyde, 2<br />

equivalents of β-ketoester and 1 equivalent of ammonia at reflux temperature using<br />

either acetic acid or ethanol as a solvent. However, the yield of 1,4-DHPs are<br />

generally low. Hence numerous methodologies with improved reaction conditions<br />

have been documented. [3] Many of these still suffer some serious drawbacks such as<br />

unsatisfactory yields, tedious work-up procedure, occurrence of side reactions<br />

including aromatization, economically non-viable, long reaction rate, high reaction<br />

temperature etc.<br />

To overcome these problems, numerous modifications attempted including new Lewis<br />

acid catalyst, Zn[L-proline] [4] under microwave condition. The catalyst is also<br />

recycled up to five runs but it appreciably loss the catalytic activity for the next<br />

successive runs and ultimately yield loss were observed. 1,4-DHPs were also<br />

synthesized by using water-ethanol solvent [5] system using MWI, but this process fails<br />

at high microwave power, because reaction mixture is rapidly heated at high<br />

microwave power leading to solvent evaporation and hence precipitation of the<br />

reaction mixture were observed. The synthesis of 1,4-DHPs is also reported in room<br />

temperature ionic liquids [6] but the rate of reaction is sluggish than the microwave<br />

counterparts. Of all these methodologies, the ionic liquid medium is the sole protocol<br />

which allows the recycling of the solvent. There is despite the fact that, unlike several<br />

of ‘neoteric solvent’ like ionic liquids(ILs) where toxicity and environmental burden<br />

data are for the most part unknown while complete toxicity profiles are available for a<br />

range of polyethylene glycol(PEG) molecular weights and indeed, many are already<br />

approved for internal consumption by US-FDA. [7] Moreover, the vapor density for<br />

low molecular weight PEG is greater than 1 and this is consistent with the industry<br />

standard for selection of alternative solvents to Volatile Organic Chemicals (VOCs). [8]<br />

98


Chapter-4 Synthesis and Characterizatin of…<br />

4.2 BIOLOGICAL PROFILE OF 1,4-DIHYDROPYRIDINE<br />

The DHP skeleton is common to numerous bioactive compounds which include<br />

various vasodilator, geroprotective, antihypertensive, bronchodilator,<br />

antiatherosclerotic, hepatoprotective, antitumor, antimutagenic and antidiabetic<br />

agents [9-14] .<br />

DHPs nucleolus has number of pharmacologically commercial utility as calcium<br />

channel blockers, as exemplified by therapeutic agents such as Nifedipine [15]<br />

Nitrendipine [16] and Nimodipine [17] . Second-generation calcium antagonists include<br />

DHP derivatives with improved bioavailability, tissue selectivity, and/or stability,<br />

such as the antihypertensive/antianginal drugs like Elgodipine [18] , Furnidipine [19,20] ,<br />

Darodipine [21] , Pranidipine [22] , Lemildipine [23] , Dexniguldipine [24] , Lacidipine [25] , and<br />

Benidipine [26] . Number of DHP calcium agonists has been introduced as potential<br />

drug candidates for treatment of congestive heart failure [27, 28] .<br />

The key characteristic of calcium channel blockers is their inhibition of entry of<br />

calcium ions via a subset of channels, thereby leading to impairment of contraction.<br />

There are three main groups of calcium channel blockers, i.e. dihydropyridines,<br />

phenylalkylamines and benzothiazepines, classic examples of which are nifedipine,<br />

verapamil and diltiazem, respectively [29-32] . Each has a specific receptor on the<br />

calcium channel and a different profile of pharmacological activity. Dihydropyridines<br />

have a less negative inotropic effect than phenylalkylamines and benzothiazepines but<br />

can sometimes cause reflex tachycardia. Dihydropyridines are able to reduce<br />

peripheral resistance, generally without clinically significant cardiodepression.<br />

Among DHPs with other types of bioactivity, Cerebrocrast [33] has been recently<br />

introduced as a neuroprotectant and cognition enhancer lacking neuronal-specific<br />

calcium antagonist properties. In addition, a number of DHPs with platelet<br />

antiaggregatory activity have also been discovered [34] . These recent examples<br />

highlight the level of ongoing interest toward new DHP derivatives and have<br />

prompted us to explore this pharmacophoric scaffold to develope a fertile source of<br />

bioactive molecules.<br />

99


Chapter-4 Synthesis and Characterizatin of…<br />

Some representative Ca 2+ antagonists of Dihydropyridine class are as shown below:<br />

H 3COOC COOCH 3<br />

N<br />

H<br />

Nifedipine<br />

NO 2<br />

In particular, DHP-CA (calcium channel antagonist DHP) are extensively used for the<br />

treatment of hypertension, [35] subarachnoid hemorrhage, [36,37] myocardial infarction [38-<br />

41] [42, 43] [44,45]<br />

and stable and unstable angina even though recently their therapeutic<br />

efficacy in myocardial infarction and angina has been questioned [46] . This class of<br />

compounds is also under clinical evaluation for the treatment of heart failure [47] ,<br />

ischemic brain damage [48] nephropathies, and atherosclerosis [49] .<br />

1,4- DHPs having different pharmacological activities such as antitumor [50] ,<br />

vasodilator [51] , coronary vasodilator and cardiopathic [52] , antimayocardiac ischemic,<br />

antiulcer [53] , antiallergic [54] , antiinflammatory [55] and antiarrhythmic [56] , PAF<br />

antagonist [57] , Adenosine A3 receptor antagonist [58] and MDR reversal activity [59,60] .<br />

It is found recently that when the imidazolyl moiety is linked to the phenyl ring by<br />

means of a C-N bridge, the activity tends to decrease. Finally, the replacement of<br />

DHP itself by a pyridine ring gives an inactive compound [61] .<br />

H 3CH 2CH 2COC<br />

H 3COOC<br />

N<br />

N<br />

H<br />

N<br />

N<br />

H<br />

Nicamcipin<br />

COCH 2CH 3<br />

NO 2<br />

O<br />

O<br />

H 3CH 2CH 2COC<br />

CH 2Ph<br />

N<br />

H 3COOC COOEt<br />

N<br />

N<br />

N<br />

H<br />

NO 2<br />

Amlodipine<br />

N<br />

O<br />

COCH 2CH 3<br />

100<br />

NH 2


Chapter-4 Synthesis and Characterizatin of…<br />

Cozzi et al 56 have synthesized a series of 4-phenyl-1,4-dihydropyridines bearing<br />

imidazol-1-yl or pyridine-3-yl moieties on the phenyl ring, with the aim of combining<br />

Ca 2+ antagonism and thermboxane A2(TxA2) synthase inhibition in the same<br />

molecules. Some of the compounds showed significant combined activity in vitro,<br />

while other showed single activity. As far as Ca 2+ antagonism is concerned, two<br />

points deserve comment. First, the SAR, in most cases, does not differ substantially<br />

from that reported for classic DHP-CA, even though the potency is lower than that<br />

found with the most potent drugs of this class as, for example, reference compound<br />

nifedipine. In fact, Ca 2+ antagonism is dramatically reduced by (a) replacement of<br />

DHP by a pyridine ring, (b) substitution of DHP nitrogen N-1 by a methyl group, (c)<br />

para substitution on the phenyl ring, and (d) replacement of one ester function by a<br />

ketone or carboxy group. All these variations are also detrimental in classic DHP-<br />

CA. [62]<br />

Hernandez-Gallegos et al [63] have synthesized new 1,4-dihydropyridines and<br />

evaluated their relaxant ability (rat aorta), antihypertensive activity in spontaneously<br />

hypertensive rats and their microsomal oxidation rate (MOR) was determined.<br />

R = 3-NO 2, 4-F, 3,5-di-F, 3-Br-4-F<br />

R 1 = R 2 = Me, Et, -CH 2-CF 3, -CH 2CH 2-OPh, -(CH 2) 2-N(CH 3)-CH 3-Ph<br />

Christiaans and Timmerman [64] studied new molecules like CV-159 for possible<br />

variation at 3-position.<br />

H 3C<br />

R 1OOC<br />

N<br />

H<br />

NO 2<br />

O<br />

N<br />

H<br />

N<br />

N<br />

NO 2<br />

COOR 2<br />

N<br />

101


Chapter-4 Synthesis and Characterizatin of…<br />

Carlos et al [65] reported 1,4-DHPs derivatives with a 1,2-benzothiazol-3-one-1sulphoxide<br />

group, linked through an alkylene bridge to the C3 carboxylate of the DHP<br />

ring, with both vasoconstricting and vasorelaxant properties were obtained. In<br />

blocking Ca 2+ evoked contractions of K + depolarized rabbit aortic strips. Many<br />

compounds were 10 times more potent than nifedipine. Their vascular versus cardiac<br />

selectivity was very pronounced.<br />

O<br />

OH OH<br />

O O<br />

N<br />

H<br />

Schramm and coworker [66] have proved that phenyl carbamoyl moiety in<br />

dihydorpyridine affords for cardiovascular selective activity.<br />

Reddy and coworkers [67] synthesized 4-aryl hetroaryl-2,6-dimethyl-3,5-bis-N-(2methyl<br />

/ 2-chloro phenyl)carbamoyl-1,4-dihydropyridines through one-pot synthesis<br />

using appropriate aromatic aldehydes and liquid ammonia. Pharmacological screening<br />

of the new 1,4-dihyropyridines were also carried out for CNS depresant<br />

(anticonvulsant and analgesic) and cardiovascular (inotropic and blood pressure)<br />

activities by standard methods.<br />

N<br />

H<br />

O O<br />

Similarly Kelvin Cooper (Pfitzer , USA) et al [68] found that DHP can be highly<br />

selective as platlet activating factor (PAF) antagonist. They found potent compounds<br />

and prove that platlet aggregating activity (PAF) exhibits a wide spectrum of<br />

biological activities elicited either directly or via the release of other powerful<br />

mediator such as Thromboxane A2 or the Leukotrienes. In vitro PAF stimulates the<br />

movement and aggregation and the release there from of tissue damaging enzymes<br />

and oxygen radicals. Accordingly compounds like UK-74505, antagonize the action<br />

N<br />

H<br />

R<br />

N<br />

H<br />

O<br />

O<br />

S<br />

N<br />

O<br />

102


Chapter-4 Synthesis and Characterizatin of…<br />

of PAF and consequently also prevent mediator release by PAF, will have clinical<br />

utilities in the treatment of the variety of the allergic, inflammatory and<br />

hypersecretory conditions such as asthama, arthritis, rhinitis, bronchitis and utricaria<br />

in future. [69]<br />

Neamati and coworkers [70] reported that a 1,4-dihydorpyridine NCS-372643 came out<br />

with its anti-HIV activity, which has opened up the synthetic as well as<br />

pharmacological importance in antiviral area also.<br />

Sonja [71] and group have synthesized a new series of calcium channel agonists<br />

structurally related to Bay K8644, containing NO donor furoxans and the related<br />

furazans unable to release NO. The racemic mixtures were studied for their action on<br />

L-type Ca 2+ channels expressed in cultured rat insulinoma RINm5F cells. All the<br />

products proved to be potent calcium channel agonists.<br />

MeOOC<br />

N<br />

H<br />

N<br />

H<br />

OH<br />

OH<br />

O<br />

CF 3<br />

N<br />

H<br />

NO 2<br />

N<br />

H<br />

COOC 2H 5<br />

2-Heterosubstituted-4-aryl-l,4-dihydro-6-methyl-5-pyrimidinecarboxylic acid esters,<br />

which lack the potential C3 symmetry of dihydropyridine calcium channel blockers,<br />

were evaluated for biological activity. Biological assays using potassium-<br />

R<br />

N<br />

H<br />

R=<br />

O O<br />

N<br />

H<br />

OH<br />

OH<br />

N<br />

N<br />

CH 3<br />

MeOOC NO2 N<br />

N<br />

H<br />

N<br />

R<br />

O<br />

N<br />

103


Chapter-4 Synthesis and Characterizatin of…<br />

depolarized rabbit aorta and radioligand binding techniques showed that some of<br />

these compounds are potent mimics of dihydropyridine calcium channel blockers. The<br />

combination of a branched ester (e.g. isopropyl, sec-butyl) and an alkylthio group<br />

(e.g. SMe) was found to be optimal for biological activity [72] .<br />

EtOOC<br />

R 2X<br />

N<br />

H<br />

NO 2<br />

COOEt<br />

R 2X<br />

Labedipinedilol-A, a novel dihydropyridine-type calcium antagonist, has been shown<br />

to induce hypotension and vasorelaxation. Liouand co-workers have studied to<br />

investigate the effect of labedipinedilol-A on vascular function of rat aortic rings and<br />

cultured human umbilical vein endothelial cells (HUVECs). [73]<br />

Recent reports show that efonidipine, a dihydropyridine Ca 2+ antagonist, has blocking<br />

action on T-type Ca channels, which may produce favorable actions on cardiovascular<br />

systems. However, the effects of other dihydropyridine Ca antagonists on T-type Ca<br />

channels have not been investigated yet. Therefore, Furukawa and group [74] have<br />

examined the effects of dihydropyridine compounds clinically used for treatment of<br />

hypertension on a T-type Ca channel subtype, alpha1G, expressed in Xenopus<br />

oocytes. Twelve DHPs amlodipine, barnidipine, benidipine, cilnidipine, efonidipine,<br />

felodipine, manidipine, nicardipine, nifedipine, nilvadipine, nimodipine, nitrendipine)<br />

and mibefradil were tested. Cilnidipine, felodipine, nifedipine, nilvadipine,<br />

minodipine, and nitrendipine had little effect on the T-type channel. The blocks by<br />

drugs at 10 muM were less than 10% at a holding potential of -100 mV. The<br />

remaining 6 drugs had blocking action on the T-type channel comparable to that on<br />

the L-type channel. These results show that many dihydropyridine Ca 2+ antagonists<br />

have blocking action on the alpha1G channel subtype.<br />

Joanna Rzeszowska-Wolny et al reported that compounds of the 1,4-dihydropyridine<br />

(1,4-DHP) series have been shown to reduce spontaneous, alkylation- and radiation<br />

induced mutation rates in animal test systems. Studies using AV-153, the 1,4-DHP<br />

derivative that showed the highestantimutagenic activity in those tests, to examine if it<br />

N<br />

N<br />

H<br />

R 1<br />

COOR 3<br />

104


Chapter-4 Synthesis and Characterizatin of…<br />

modulates DNA repair in human peripheral blood lymphocytes and in two human<br />

lymphoblastoid cell lines. [75]<br />

1,4-Dihydropyridines are now established as heterocycles having numerous<br />

applications and having widened scope for its pronounced drug activity like calcium<br />

channel antagonism and antihypertensive action. Many other activities are associated<br />

with such compounds and they can be presented in the structure as 2,6-dimethyl-3,5diacetyl<br />

or dicarboxylate or dicarbamoyl or many other homoaryl or heteroaryl carbon<br />

chain having C2 to C8 1,4-dihydropyridines substituted at 4-position. [76-81]<br />

In continuation of earlier work on DHPs, an improved synthetic protocol is used to<br />

prepare several structurally diverse 1,4-dihydropyridines.<br />

In short, in viewing the benignity and superiority of PEG as a solvent over ionic<br />

liquids and other reported protocols for the synthesis of 1,4-DHPs as mentioned<br />

earlier, herein we disclose our findings by using PEG-400 as a solvent for the rapid<br />

microwave assisted multi component reaction (MCR).<br />

4.3 1,4-DIHYDROPYRIDINES AND MANNICH REACTION<br />

The Mannich reaction is an organic reaction which consists of an amino alkylation of<br />

an acidic proton placed next to a carbonyl functional group with formaldehyde and<br />

ammonia or any primary or secondary amine. The final product is a β-amino-carbonyl<br />

compound also known as a ‘Mannich Base’. Mannich bases are of particular in<br />

interest due to their application as synthetic building blocks and precursors of<br />

biologically active compounds. The reaction is named after chemist Carl Mannich. [82]<br />

The Mannich reaction is an example of nucleophilic addition of an amine to a<br />

carbonyl group followed by dehydration to the schiff base. The schiff base is an<br />

electrophile which reacts in the second step in an electrophilic addition with a<br />

compound containing an acidic proton (which is, or had become an enol). [83] The<br />

Mannich reaction is also considered a condensation reaction. The Mannich Reaction<br />

is an important carbon-carbon-bond forming reaction that is commonly employed in<br />

the synthesis of alkaloid natural products and is involved in a number of biosynthetic<br />

105


Chapter-4 Synthesis and Characterizatin of…<br />

pathways. [84] Numerous examples of both direct and indirect Mannich reactions have<br />

been reported in the literature, some of recent are sited in reference. [85-110]<br />

Few references are found related to Mannich reaction of 1,4-dihydropyridines. Some<br />

of them are enlisted below.<br />

Jiro Aritomi et al [111-112] reported Mannich reaction of dialkyl 4-aryl-2,6-dimethyl<br />

1,4-dihydropyridine-3,5-dicarboxylates with secondary amines and found that the<br />

reaction proceeds on the 2- and 6- methyl carbon.<br />

R<br />

R2OOC COOR2 H3C N<br />

R1 CH3 (I)<br />

R<br />

R2OOC COOR2 H 3C<br />

R<br />

R2OOC COOR2 N<br />

R 1<br />

R3R2NH2CH2C N CH2CH2NR2R3 R 1<br />

(III)<br />

CH 2CH 2NR 2R 3<br />

V. V. Dotsenko et al [113,114] reported the reactions of N-methylmorpholinium 6amino-3,5-dicyano-1,4-dihydropyridine-2-thiolates<br />

with formaldehyde and primary<br />

aromatic amines produce 3,5,7,11-tetraaza-tricyclo[7.3.1.02,7]tridec-2-ene-1,9dicarbonitrile<br />

derivatives.<br />

(II)<br />

106


Chapter-4 Synthesis and Characterizatin of…<br />

K. A. Frolov et al [115] gave synthesis of derivatives of 3,5,7,11-tetraazatricyclo-<br />

[7.3.1.02,7]tridec-2-ene-8-selenone yield by Mannich reaction of N-methylmorpholinium<br />

6-amino-3,5-di-cyano-4-(2-methoxy phenyl)-1,4-dihydropyridine-2selenolate<br />

with primary amines and excess HCHO.<br />

M Vijey Aanandhi et al [116] demonstrated synthesis, characterization and in-vitro<br />

antioxidant activity of Mannich bases of 1, 4-dihydro pyridines derivatives.<br />

R1 EtOOC COOEt<br />

H3C N CH3 H<br />

1) HCHO/EtOH<br />

2) PABA<br />

H 2N COOH<br />

R1 EtOOC COOEt<br />

H3C N CH3 NH<br />

COOH<br />

B. B. Subudhi et al [117] reported synthesis and anti-ulcer activity study of 1,4dihydropyridines<br />

and their mannich bases with sulfanilamides.<br />

107


Chapter-4 Synthesis and Characterizatin of…<br />

EtOOC<br />

R<br />

COOEt<br />

H3C N CH3 H<br />

Where R=-OH, -OCH 3, etc<br />

HCHO/ EtOH<br />

H 2N SO 2NH 2<br />

EtOOC<br />

R<br />

COOEt<br />

H3C N CH3 NH<br />

SO 2NH 2<br />

Mane D. V. et al [118] synthesized 1,3-Bis- [N-substituted dihydropyridine methylc]benzimidazoline-2-thiones<br />

I (R= Ph, substituted phenyl; R1 = Me, OMe, OEt) from<br />

benz-imidazoline-2-thione, various dihydropyridines and paraformaldehyde by<br />

Mannich reaction and screened for their antimicrobial activities.<br />

[119]<br />

Sielemann Dirk et al gave synthesis of novel functionalized bi- and<br />

oligopyridines. An annelation reaction is presented in which 1,3-cyclohexanedione<br />

and Mannich bases derived thereof are used for the preparation of functionalized<br />

bipyridines I (R = H, n = 1; R = H, n = 0; R = CMe3, n = 1) and dihydropyridine<br />

derivatives II (n = 0, 1). All these products possess a keto group which will allow<br />

further transformations. The same concept was applied for the synthesis of the Sshaped<br />

terpyridine III. The reaction of a Mannich base derived from 1,2,3,4,5,6,7,8octahydro-4,5-acridinedione<br />

with 1,3-cyclohexanedione yielded a heptacyclic<br />

terpyridine, which is a key intermediate for the synthesis of torands and other<br />

tridentate clefts. Ketone I (R = H, n = 1) was used for the synthesis of a<br />

quaterpyridine.<br />

108


Chapter-4 Synthesis and Characterizatin of…<br />

Apart from these, Michael et al [120] prepared antihypertensive and coronary<br />

vasodilator Mannich type N-substituted -1,4-dihydropyridine.<br />

Hung et al [121] were successful in synthesizing antihypertensive model of Flordipine,<br />

contrary to the belief proposed by Triggle that N-substituted 1,4-dihydropyridine will<br />

not give good antihypertensive activity, probably the concept of prodrug would not<br />

have been predicted at that time and –NH was believed to be essential for calcium<br />

channel antagonism.<br />

109


Chapter-4 Synthesis and Characterizatin of…<br />

Earlier, Arthur P. Philips [122-124] reported Mannich bases derived from a Hantzsch<br />

pyridine synthesis products. Use of Mannich reaction on a phenolic Hantzsch<br />

synthesis product afforded an alternative type of compound containing a basic chain.<br />

O<br />

EtOOC<br />

O<br />

O<br />

OH<br />

CHO<br />

NH 3<br />

OH<br />

O<br />

O<br />

O<br />

COOEt<br />

H3C N CH3 H<br />

Hantzch Reaction<br />

HCHO<br />

R 2NH<br />

EtOOC<br />

EtOOC<br />

OH<br />

COOEt<br />

H3C N CH3 H<br />

OH<br />

COOEt<br />

H3C N CH3 H<br />

R<br />

N<br />

R<br />

Where R= NH(CH 3) 2,NI(CH 3) 3, NH(C 2H 5) 2, Piperidine & Morpholine<br />

110


Chapter-4 Synthesis and Characterizatin of…<br />

4.4 AIM OF WORK<br />

Numerous Dihydropyridines and their derivatives have been reported for their various<br />

biological activities. These results promoted us to synthesize symmetric<br />

dihydropyridines and their mannich bases.<br />

4.5 REACTION SCHEME<br />

Preparation of 4-(2-Hydroxy-3-(substitued-1-methyl) phenyl)-2,6-dimethyl-<br />

1,4-dihydropyridine-3,5-dicarbonitrile<br />

OH<br />

CHO<br />

3-Amino Crotono<br />

nitrile<br />

gl. CH 3COOH<br />

RT<br />

N<br />

N<br />

H<br />

N<br />

HCHO<br />

Secondary Amines<br />

Ethanol<br />

Reflux<br />

1-4 hrs<br />

Where NR1R2= Secondary amines like piperidine, morpholine etc.<br />

OH<br />

Preparation of 4-(3-Hydroxy-4-(substitued-1-methyl) phenyl)-2,6-dimethyl-<br />

1,4-dihydropyridine-3,5-dicarbonitrile<br />

OH<br />

CHO<br />

OH<br />

3-Amino Crotono<br />

nitrile<br />

gl. CH 3COOH<br />

RT<br />

N<br />

N<br />

H<br />

N<br />

HCHO<br />

Secondary Amines<br />

Ethanol<br />

Reflux<br />

1-4 hrs<br />

Where NR1R2= Secondary amines like piperidine, morpholine etc.<br />

OH<br />

OH<br />

R 1<br />

N<br />

R 1<br />

N<br />

N<br />

N<br />

R 2<br />

OH<br />

N<br />

H<br />

R 2<br />

OH<br />

N<br />

H<br />

111<br />

N<br />

OH<br />

N


Chapter-4 Synthesis and Characterizatin of…<br />

4.6 PLAUSIBLE REACTION MEHCANISM<br />

H<br />

Step-1<br />

O<br />

H<br />

H<br />

H R 1<br />

N<br />

R 2<br />

H +<br />

-H 2O<br />

HO<br />

H 2O<br />

Where NR1R2 = Secondary amines like morpholine, piperidine<br />

R3 & R4 = Phenyl ring<br />

R 3<br />

Step-2<br />

OH<br />

R 4<br />

H<br />

H R 1<br />

H<br />

N<br />

R 2<br />

R 3<br />

H<br />

H<br />

H<br />

H<br />

OH<br />

R 4<br />

N<br />

H<br />

R 1<br />

R 2<br />

N<br />

H H<br />

H<br />

N<br />

R 1<br />

R 2<br />

R 2<br />

R 1<br />

H +<br />

HO<br />

-H +<br />

H<br />

HO<br />

R 3<br />

H<br />

H<br />

N<br />

H<br />

H<br />

OH<br />

R 1<br />

R 4<br />

R 2<br />

-H +<br />

N<br />

R 1<br />

H H<br />

R 2<br />

N<br />

R 2<br />

R 1<br />

112


Chapter-4 Synthesis and Characterizatin of…<br />

4.7 EXPERIMENTAL<br />

Materials and Methods<br />

Melting points were determined in open capillary tubes and are uncorrected.<br />

Formation of the compounds was routinely checked by TLC on silica gel-G plates of<br />

0.5 mm thickness and spots were located by iodine and UV. IR spectra were recorded<br />

in Shimadzu FT-IR-8400 instrument using KBr Powder method. Mass spectra were<br />

recorded on Shimadzu GC-MS-QP-2010 model using Direct Injection Probe<br />

technique. 1 H NMR was determined in DMSO-d6/CDCl3 solution on a Bruker<br />

Avance II 400 MHz NMR Spectrometer. Elemental analysis of the all the<br />

synthesized compounds was carried out on Elemental Vario EL III Carlo Erba 1108<br />

model. All the results are in agreements with the structures assigned.<br />

Preparation of 4-(4-Hydroxy phenyl)-2,6-di-methyl-1,4-dihydropyridine-3,5dicarbonitrile<br />

A mixture of 4-hydroxy benzaldehyde (0.01 M) and 3-amino crotononitrile (0.02 M)<br />

were taken in glacial acetic acid in a stoppered flask and stirred for 1 hour at 10º-15º<br />

C. During the reaction, progress and the completion of reaction were checked by<br />

silica gel-G F254 thin layer chromatography using ethyl acetate: hexane (3:2) as a<br />

mobile phase. After the completion of the reaction, the crystalline product was<br />

separated out which was filtered and washed with diethyl ether.<br />

Preparation of 4-(4-Hydroxy-3-(substitued-1-methyl) phenyl)-2,6-dimethyl-<br />

1,4-dihydropyridine-3,5-dicarbonitrile (General Procedure)<br />

A mixture of 4-(4-hydroxy phenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5dicarbonitrile<br />

(0.01 M), secondary amine (0.0135 M) and formaldehyde (0.02 M)<br />

were taken in absolute alcohol in 250 mL round bottom flask. The reaction mixture<br />

was refluxed for 1-4 hrs at reflux temperature till TLC completed. The progress and<br />

the completion of the reaction were checked by silica gel-G F254 thin layer<br />

chromatography using ethyl acetate: hexane (3:2) as a mobile phase. After completion<br />

of the reaction, the reaction mixture was allowed to cool at room temperature to<br />

obtain the product. When crystalline product was separated out, it was filtered and<br />

washed with cold ethanol. Similarly other compounds were also prepared.<br />

113


Chapter-4 Synthesis and Characterizatin of…<br />

Preparation of 4-(3,4-dihydroxy phenyl)-2,6-dimethyl-1,4-dihydropyridine-<br />

3,5-dicarbonitrile<br />

A mixture of 3,4-dihydroxy benzaldehyde (0.01 M) and 3-amino crotononitrile (0.02<br />

M) was taken in glacial acetic acid in a stoppered flask and stirred for 1 hour at room<br />

temperature. During the reaction, progress and the completion of reaction were<br />

checked by silica gel-G F254 thin layer chromatography using ethyl acetate: hexane (3:<br />

2) as a mobile phase. After the completion of the reaction, the crystalline product was<br />

separated out which was filtered and washed with diethyl ether.<br />

Preparation of 4-(3,4-dihydroxy-4-(substitued-1-methyl) phenyl)-2,6dimethyl-1,4-dihydropyridine-3,5-dicarbonitrile<br />

(General Procedure)<br />

A mixture of 4-(3,4-dihydroxy phenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5dicarbonitrile<br />

(0.01 M), secondary amine (0.0135 M) and formaldehyde (0.02 M)<br />

were taken in absolute alcohol in 250 mL round bottom flask. The reaction mixture<br />

was refluxed for 1-4 hrs at reflux temperature till TLC complete. The progress and the<br />

completion of the reaction were checked by silica gel-G F254 thin layer<br />

chromatography using ethyl acetate: hexane (3:2) as a mobile phase. After completion<br />

of the reaction, the reaction mixture was allowed to cool at room temperature to<br />

obtain the product. When crystalline product was separated out, it was filtered and<br />

washed with cold ethanol. Similarly other compounds were also prepared.<br />

114


Chapter-4 Synthesis and Characterizatin of…<br />

4.8 PHYSICAL DATA<br />

PHYSICAL DATA TABLE OF 4-(4-HYDROXY-3-(SUBSTITUED-1-<br />

METHYL) PHENYL)-2,6-DIMETHYL-1,4-DIHYDROPYRIDINE-3,5-<br />

DICARBONITRILES<br />

R 1<br />

N<br />

N<br />

H 3C<br />

R 2<br />

OH<br />

Sr. Sample Code Substitution Molecular M. Wt MP ºC Yield<br />

No.<br />

NR1R2<br />

Formula<br />

%<br />

1 VMMB 101 N-methyl piperazine C21H25N5O 363.46 211-213 63<br />

2 VMMB 102 N-ethyl piperazine C22H27N5O 377.48 218-220 66<br />

3 VMMB 103 N-benzyl piperazine C27H29N5O 439.55 247-249 76<br />

4 VMMB 104 Morpholine C20H22N4O2 350.41 233-235 72<br />

5 VMMB 105 N-phenyl piperazine C26H27N5O 425.53 245-247 55<br />

6 VMMB 106 Piperidine C21H24N4O 348.44 252-254 62<br />

7 VMMB 107 Pyrollidine C20H22N4O 334.41 242-244 73<br />

8 VMMB 108 N,N diethyl amine C20H24N4O 336.43 256-258 75<br />

9 VMMB 111 2-methyl piperidine C22H26N4O 362.47 150-152 75<br />

10 VMMB 114 Piperazine C20H23N5O 349.43 236-238 78<br />

N<br />

H<br />

CH 3<br />

N<br />

115


Chapter-4 Synthesis and Characterizatin of…<br />

PHYSICAL DATA TABLE OF 4-(3,4-DIHYDROXY-5-(SUBSTITUED-1-<br />

METHYL) PHENYL)-2,6-DIMETHYL-1,4-DIHYDROPYRIDINE-3,5-<br />

DICARBONITRILES<br />

N<br />

HO<br />

CH 3<br />

OH<br />

N<br />

H<br />

Sr. Sample Code Substitution Molecular M. Wt MP ºC Yield %<br />

No.<br />

NR1R2<br />

Formula<br />

1 VMMB 501 Piperazine C19H21N5O2 351.4 256-258 64<br />

2 VMMB 502 N-methyl piperazine C21H25N5O2 379.46 244-246 52<br />

3 VMMB 503 N-ethyl piperazine C22H27N5O2 393.48 212-214 55<br />

4 VMMB 504 N-phenyl piperazine C25H25N5O2 427.5 230-232 66<br />

5 VMMB 505 N-Benzyl piperazine C27H29N5O2 455.55 215-217 72<br />

6 VMMB 506 Morpholine C20H22N4O3 366.41 233-235 78<br />

7 VMMB 507 Piperidine C20H22N4O2 350.41 252-254 53<br />

8 VMMB 508 2-Methyl piperidine C21H24N4O2 364.44 247-249 69<br />

9 VMMB 511 Pyrolidine C19H20N4O2 336.39 223-225 71<br />

10 VMMB 514 N,N-diethyl amine C19H22N4O2 338.4 216-218 69<br />

CH 3<br />

N<br />

N<br />

R 1<br />

R 2<br />

116


Chapter-4 Synthesis and Characterizatin of…<br />

4.9 SPECTRAL STUDY<br />

IR Spectra<br />

IR spectra of the synthesized compounds were recorded on Shimadzu FT-IR 8400<br />

model using KBr Powder method. Various functional groups present were identified<br />

by characteristic frequency obtained for them.<br />

The stretching frequency of OH group showed at 3650-3600 (O-H str.) cm -1 and<br />

bending vibration at 1410-1310 cm -1 . The characteristic band of secondary N-H group<br />

showed in the region of 3500-3200 cm -1 with a deformation due to in plane bending at<br />

1650-1550 cm -1 . Aromatic C-H stretching and bending frequencies showed between<br />

3070-3030 cm -1 and 1600-1400 cm -1 respectively. C-H stretching and bending<br />

frequencies for methyl and methylene group were obtained near 2950-2850 cm -1 and<br />

1450-1375 cm -1 . Characteristic frequency of C≡N showed at 2260-2200 cm -1 .<br />

Characteristic frequency of C-N stretching showed near 1350-1280 cm -1 . C-O<br />

stretching frequency showed at 1230-1140 cm -1 .<br />

Mass Spectra<br />

Mass spectra of the synthesized compounds were recorded on Shimadzu GC-MS-QP-<br />

2010 model using Direct Injection Probe technique. The molecular ion peak was<br />

found in agreement with molecular weight of the respective compound.<br />

1 H NMR Spectra<br />

1 H NMR spectra of the synthesized compounds were recorded on Bruker Avance II<br />

400 MHz NMR Spectrometer by making a solution of samples in DMSO-d6/CDCl3<br />

solvent using tetramethylsilane (TMS) as the internal standard unless otherwise<br />

mentioned. Number of protons identified from 1 H NMR spectra and their chemical<br />

shift (δ ppm) were in the agreement of the structure of the molecule. J values were<br />

calculated to identify o, m and p coupling. In some cases, aromatic protons were<br />

obtained as multiplet. Interpretations of representative spectra are discussed as under.<br />

117


Chapter-4 Synthesis and Characterizatin of…<br />

13 C NMR Spectra<br />

13 C NMR spectra of the synthesized compounds were recorded on Bruker Avance II<br />

400 MHz NMR Spectrometer by making a solution of samples in DMSO-d6/CDCl3<br />

solvent using tetramethylsilane (TMS) as the internal standard unless otherwise<br />

mentioned. Types of carbons identified from NMR spectrum and their chemical shifts<br />

(δ ppm) were in the agreement with the structure of the molecule.<br />

Elemental Analysis<br />

Elemental analysis of the synthesized compounds was carried out on Vario EL Carlo<br />

Erba 1108 which showed calculated and found percentage values of Carbon,<br />

Hydrogen and Nitrogen in support of the structure of synthesized compounds.<br />

The analytical data for individual compounds synthesized in this chapter is mentioned<br />

below.<br />

118


Chapter-4 Synthesis and Characterizatin of…<br />

4.10 SPECTRAL CHARACTERIZATION<br />

1,4-dihydro-4-(4-hydroxy-3-((4-methylpiperazin-1-yl)methyl)phenyl)-2,6dimethylpyridine-3,5-dicarbonitrile<br />

(VMMB-101)<br />

Yield: 63%; IR (cm -1 ): 3550 (O-H str.), 3440 (N-H str.), 3124 (Ar C=C-H str.), 2980<br />

(Asym C-H str. -CH3), 2930 (Asym C-H str. -CH2), 2870 (Sym C-H str. -CH3), 2845<br />

(Sym C-H str. -CH2), 2198 (C≡N str.), 1698(N-H bend), 1529,1498, 1500 (Ar C=C<br />

str.), 1437 (C-H bend –CH2), 1375 (C-H bend –CH3), 1340 (C-N sec amine vib), 1261<br />

(C-O str.), 767(C-H oop def); 1 H NMR 400 MHz: (CDCl3, δ ppm): 2.04 (s, 6H),<br />

2.30 (s, 3H), 2.57 (m, 8H), 3.71 (s, 2H), 4.21 (s, 1H), 6.84 (d, 1H), 7.05 (m, 2H). 13 C<br />

NMR 400 MHz: (DMSO-d6, δ ppm): 11.5, 51.1, 51.5, 51.9, 52.0, 109.9, 111.4,<br />

122.1, 123.7, 126.7, 126.8, 140.0, 155.0, 157.7, 163.1 Mass: [m/z (%)], M. Wt.: 363;<br />

Elemental analysis, Calculated: C, 69.40; H, 6.93; N, 19.27; Found: C, 69.67; H,<br />

6.87; N, 19.12.<br />

4-(3-((4-ethylpiperazin-1-yl)methyl)-4-hydroxyphenyl)-1,4-dihydro-2,6dimethylpyridine-3,5-dicarbonitrile<br />

(VMMB-102)<br />

Yield: 66%; IR (cm -1 ): 3615 (O-H str.), 3425(N-H str.), 3090 (Ar C=C-H str.), 2972<br />

(Asym C-H str. -CH3), 2915 (Asym C-H str. -CH2), 2845 (Sym C-H str. -CH3), 2815<br />

(Sym C-H str. -CH2), 2232 (C≡N str.), 1632 (N-H bend), 1595, 1545, 1420 (Ar C=C<br />

str.), 1462 (C-H bend –CH2), 1370 (C-H bend –CH3), 1342 (C-N sec amine vib), 1080<br />

(C-O str.), 799 (C-H oop def); Mass: [m/z (%)], M. Wt.: 377 Elemental analysis,<br />

Calculated: C, 70.00; H, 7.21; N, 18.55; O, 4.24 Found: C, 70.36; H, 7.83; N, 18.17.<br />

4-(3-((4-benzylpiperazin-1-yl)methyl)-4-hydroxyphenyl)-1,4-dihydro-2,6dimethylpyridine-3,5-dicarbonitrile<br />

(VMMB-103)<br />

Yield: 76%; %; IR (cm -1 ): 3655 (O-H str.), 3546 (N-H str.), 3110 (Ar C=C-H str.),<br />

2972 (Asym C-H str. -CH3), 2933 (Asym C-H str. -CH2), 2840 (Sym C-H str. -CH3),<br />

2845 (Sym C-H str. -CH2), 2225 (C≡N str.), 1675 (N-H bend), 1480, 1498, 1500 (Ar<br />

C=C str.), 1460 (C-H bend –CH2), 1375 (C-H bend –CH3), 1340 (C-N sec amine vib),<br />

1180 (C-O str.), 810 (C-H oop def); 1 H NMR 400 MHz: (CDCl3, δ ppm): 2.04 (s,<br />

6H), 2.57 (s, 8 H), 3.52 (s, 2H), 3.70 (s, 2H), 4.20 (s, 1H), 6.78 (m, 2H), 7.02 (d, 1H),<br />

119


Chapter-4 Synthesis and Characterizatin of…<br />

7.27 (m, 5H. 13 C NMR 400 MHz: (DMSO-d6, δ ppm): 11.5, 51.1, 51.5, 51.9, 52.0,<br />

109.9, 111.4, 122.1, 123.7, 126.7, 126.8, 140.0, 155.0, 157.7, 163.1 Mass: [m/z (%)],<br />

M. Wt.: 439 ; Elemental analysis, Calculated: C, 73.78; H, 6.65; N, 15.93; Found:<br />

C, 73.11; H, 6.33; N, 15.40.<br />

1,4-dihydro-4-(4-hydroxy-3-(morpholinomethyl)phenyl)-2,6-dimethylpyridine-3,5dicarbonitrile<br />

(VMMB-104)<br />

Yield: 72%; IR (cm -1 ): 3620 (O-H str.), 3460 (N-H str.), 3017 (Ar C=C-H str.), 2966<br />

(Asym C-H str. -CH3), 2913 (Asym C-H str. -CH2), 2853 (Sym C-H str. -CH3), 2827<br />

(Sym C-H str. -CH2), 2201 (C≡N str.), 1663 (N-H bend), 1561, 1521, 1457 (Ar C=C<br />

str.), 1439 (C-H bend –CH2), 1384 (C-H bend –CH3), 1351-1329 (C-N sec amine<br />

vib), 1206 (C-O str.), 860-790 (C-H oop def); Mass: [m/z (%)], M. Wt.: 350 ;<br />

Elemental analysis, Calculated: C, 68.55; H, 6.33; N, 15.99; Found: C, 68.22; H,<br />

6.29; N, 15.59.<br />

1,4-dihydro-4-(4-hydroxy-3-((4-phenylpiperazin-1-yl)methyl)phenyl)-2,6dimethylpyridine-3,5-dicarbonitrile<br />

(VMMB-105)<br />

Yield: 55%; IR (cm -1 ): 3536 (O-H str.), 3249 (N-H str.), 3140 (Ar C=C-H str.),<br />

2991(Asym C-H str. -CH3), 2937 (Asym C-H str. -CH2), 2862 (Sym C-H str. -CH3),<br />

2855 (Sym C-H str. -CH2), 2245 (C≡N str.), 1594 (N-H bend), 1565, 1485, 1465(Ar<br />

C=C str.), 1474 (C-H bend –CH2), 1359 (C-H bend –CH3), 1340 (C-N sec amine vib),<br />

1151 (C-O str.), 802(C-H oop def); Mass: [m/z (%)], M. Wt.: 425 ; Elemental<br />

analysis, Calculated: C, 73.39; H, 6.40; N, 16.46; Found: C, 73.74; H, 6.48; N,<br />

16.05.<br />

1,4-dihydro-4-(4-hydroxy-3-((piperidin-1-yl)methyl)phenyl)-2,6-dimethylpyridine-<br />

3,5-dicarbonitrile (VMMB-106)<br />

Yield: 62%; IR (cm -1 ): 3586 (O-H str.), 3465 (N-H str.), 3140 (Ar C=C-H str.), 2965<br />

(Asym C-H str. -CH3), 2912(Asym C-H str. -CH2), 2865 (Sym C-H str. -CH3), 2855<br />

(Sym C-H str. -CH2), 2215 (C≡N str.), 1615(N-H bend), 1589, 1555, 1495 (Ar C=C<br />

str.), 1460 (C-H bend –CH2), 1375 (C-H bend –CH3), 1340 (C-N sec amine vib), 1180<br />

(C-O str.), 810 (C-H oop def); ); Mass: [m/z (%)], M. Wt.: 348 ; Elemental<br />

120


Chapter-4 Synthesis and Characterizatin of…<br />

analysis, Calculated: C, 72.39; H, 6.94; N, 16.08; Found: C, 72.63; H, 6.25; N,<br />

16.84.<br />

1,4-dihydro-4-(4-hydroxy-3-((pyrrolidin-1-yl)methyl)phenyl)-2,6-dimethylpyridine-<br />

3,5-dicarbonitrile (VMMB-107)<br />

Yield: 73%; IR (cm -1 ): 3650-3600 (O-H str.), 3500-3200 (N-H str.), 3040 (Ar C=C-H<br />

str.), 2980 (Asym C-H str. -CH3), 2930 (Asym C-H str. -CH2), 2870 (Sym C-H str. -<br />

CH3), 2845 (Sym C-H str. -CH2), 2260-2200 (C≡N str.), 1650-1580 (N-H bend),<br />

1580, 1545, 1500 (Ar C=C str.), 1460 (C-H bend –CH2), 1375 (C-H bend –CH3),<br />

1340 (C-N sec amine vib), 1180 (C-O str.), 810 (C-H oop def);Mass: [m/z (%)], M.<br />

Wt.: 334 ; Elemental analysis, Calculated: C, 71.83; H, 6.63; N, 16.75; Found: C,<br />

71.43; H, 6.88; N, 16.21.<br />

4-(3-((diethylamino)methyl)-4-hydroxyphenyl)-1,4-dihydro-2,6-dimethylpyridine-<br />

3,5-dicarbonitrile (VMMB-108)<br />

Yield: 75%; IR (cm -1 ): 3654 (O-H str.), 3280 (N-H str.), 3124 (Ar C=C-H str.), 2980<br />

(Asym C-H str. -CH3), 2930 (Asym C-H str. -CH2), 2870 (Sym C-H str. -CH3), 2845<br />

(Sym C-H str. -CH2), 2200 (C≡N str.), 1662 (N-H bend), 1580, 1516,1496 (Ar C=C<br />

str.), 1460 (C-H bend –CH2), 1375 (C-H bend –CH3), 1340 (C-N sec amine vib), 1180<br />

(C-O str.), 810 (C-H oop def); 1 H NMR 400 MHz: (CDCl3, δ ppm): 1.10 (s, 6H),<br />

2.04 (s, 6 H), 2.62 (m, 4H), 3.77 (s, 2H), 4.20 (s, 1H), 6.82 (d, 1H), 7.02 (m, 1H),<br />

7.19 (s, 1H) 13 C NMR 400 MHz: (DMSO-d6, δ ppm): 11.5, 51.1, 51.5, 51.9, 52.0,<br />

109.9, 111.4, 122.1, 123.7, 126.7, 126.8, 140.0, 155.0, 157.7, 163.1 Mass: [m/z (%)],<br />

M. Wt.: 336 ; Elemental analysis, Calculated: C, 71.40; H, 7.19; N, 16.65; Found:<br />

C, 71.19; H, 7.24; N, 16.55.<br />

1,4-dihydro-4-(4-hydroxy-3-((2-methylpiperidin-1-yl)methyl)phenyl)-2,6dimethylpyridine-3,5-dicarbonitrile<br />

(VMMB-111)<br />

Yield: 75%; IR (cm -1 ): 3645 (O-H str.), 3462(N-H str.), 3140 (Ar C=C-H str.), 2988<br />

(Asym C-H str. -CH3), 2939 (Asym C-H str. -CH2), 2850 (Sym C-H str. -CH3), 2835<br />

(Sym C-H str. -CH2), 2234 (C≡N str.), 1649 (N-H bend), 1650, 1565, 1555 (Ar C=C<br />

str.), 1467 (C-H bend –CH2), 1375 (C-H bend –CH3), 1349 (C-N sec amine vib), 1087<br />

121


Chapter-4 Synthesis and Characterizatin of…<br />

(C-O str.), 820 (C-H oop def); Mass: [m/z (%)], M. Wt.: 362 ; Elemental analysis,<br />

Calculated: C, 72.90; H, 7.23; N, 15.46; Found: C, 72.74; H, 7.72; N, 15.68.<br />

1,4-dihydro-4-(4-hydroxy-3-((piperazin-1-yl)methyl)phenyl)-2,6-dimethylpyridine-<br />

3,5-dicarbonitrile (VMMB-114)<br />

Yield: 78%; IR (cm -1 ): 3652 (O-H str.), 3412 (N-H str.), 3140 (Ar C=C-H str.), 2972<br />

(Asym C-H str. -CH3), 2932 (Asym C-H str. -CH2), 2842 (Sym C-H str. -CH3), 2812<br />

(Sym C-H str. -CH2), 2260-2200 (C≡N str.), 1650-1580 (N-H bend), 1580, 1545,<br />

1500 (Ar C=C str.), 1460 (C-H bend –CH2), 1375 (C-H bend –CH3), 1340 (C-N sec<br />

amine vib), 1180 (C-O str.), 810 (C-H oop def); Mass: [m/z (%)], M. Wt.: 349 ;<br />

Elemental analysis, Calculated: C, 71.74; H, 7.63; N, 16.04; Found: C, 71.32; H,<br />

7.13; N, 16.58.<br />

1,4-dihydro-4-(3,4-dihydroxy-5-(piperazin-1-yl)phenyl)-2,6-dimethylpyridine-3,5dicarbonitrile<br />

(VMMB-501)<br />

Yield: 64%; IR (cm -1 ): 3596(O-H str.), 3514 (N-H str.), 3140 (Ar C=C-H str.), 2980<br />

(Asym C-H str. -CH3), 2930 (Asym C-H str. -CH2), 2870 (Sym C-H str. -CH3), 2845<br />

(Sym C-H str. -CH2), 2218 (C≡N str.), 1650-1580 (N-H bend), 1580, 1545, 1500 (Ar<br />

C=C str.), 1460 (C-H bend –CH2), 1375 (C-H bend –CH3), 1340 (C-N sec amine vib),<br />

1180 (C-O str.), 810 (C-H oop def); 1 H NMR 400 MHz: (CDCl3, δ ppm): 2.05 (s,<br />

6H), 2.04 (s, 6 H), 2.62 (m, 4H), 3.77 (s, 2H), 4.20 (s, 1H), 6.82 (d, 1H), 7.02 (m, 1H),<br />

7.19 (s, 1H) 13 C NMR 400 MHz: (DMSO-d6, δ ppm): 11.5, 51.1, 51.5, 51.9, 52.0,<br />

109.9, 111.4, 122.1, 123.7, 126.7, 126.8, 140.0, 155.0, 157.7, 163.1 Mass: [m/z (%)],<br />

M. Wt.: = 351; Elemental analysis, Calculated: C, 64.94; H, 6.02; N, 19.93;<br />

Found: C, 64.97; H, 6.57; N, 19.74.<br />

1,4-dihydro-4-(3,4-dihydroxy-5-((4-methylpiperazin-1-yl)methyl)phenyl)-2,6dimethylpyridine-3,5-dicarbonitrile<br />

(VMMB-502)<br />

Yield: 52%; IR (cm -1 ): 3645 (O-H str.), 3311 (N-H str.), 3124 (Ar C=C-H str.), 2984<br />

(Asym C-H str. -CH3), 2821 (Sym C-H str. -CH3), 2214 (C≡N str.), 1662 (N-H bend),<br />

1662, 1498 (Ar C=C str.), 1437 (C-H bend –CH2), 1346 (C-H bend –CH3), 1317 (C-N<br />

122


Chapter-4 Synthesis and Characterizatin of…<br />

sec amine vib), 1188 (C-O str.), 823 (C-H oop def); 1 H NMR 400 MHz: (CDCl3, δ<br />

ppm): 2.07 (s, 6H), 2.14 (s, 3 H), 2.68 (m, 6H), 3.61 (m, 2H), 3.70 (s, 2H), 4.10 (s,<br />

1H), 6.39 (s, 1H), 6.67 (s, 1H), 7.63 (s, 1H), 9.00 (s, 1H) 13 C NMR 400 MHz:<br />

(DMSO-d6, δ ppm): 11.5, 51.1, 51.5, 51.9, 52.0, 109.9, 111.4, 122.1, 123.7, 126.7,<br />

126.8, 140.0, 155.0, 157.7, 163.1 Mass: [m/z (%)], M. Wt.: 379; Elemental<br />

analysis, Calculated: C, 66.47; H, 6.64; N, 18.46; Found: C, 66.26; H, 6.75; N,<br />

18.22.<br />

4-(3-((4-ethylpiperazin-1-yl)methyl)-4,5-dihydroxyphenyl)-1,4-dihydro-2,6dimethylpyridine-3,5-dicarbonitrile<br />

(VMMB-503)<br />

Yield: 55%; IR (cm -1 ): 3621 (O-H str.), 3256 (N-H str.), 3035 (Ar C=C-H str.), 2965<br />

(Asym C-H str. -CH3), 2914 (Asym C-H str. -CH2), 2856 (Sym C-H str. -CH3), 2854<br />

(Sym C-H str. -CH2), 2231 (C≡N str.), 1615 (N-H bend), 1608, 1536, 1512 (Ar C=C<br />

str.), 1452 (C-H bend –CH2), 1381 (C-H bend –CH3), 1347 (C-N sec amine vib), 1179<br />

(C-O str.), 819 (C-H oop def); Mass: [m/z (%)], M. Wt.: 393; Elemental analysis,<br />

Calculated: C, 67.15; H, 6.92; N, 17.80; Found: C, 67.41; H, 6.13; N, 17.20.<br />

1,4-dihydro-4-(3,4-dihydroxy-5-(4-phenylpiperazin-1-yl)phenyl)-2,6dimethylpyridine-3,5-dicarbonitrile<br />

(VMMB-504)<br />

Yield: 66%; IR (cm -1 ): 3625 (O-H str.), 3229 (N-H str.), 3124 (Ar C=C-H str.), 3016<br />

(Asym C-H str. -CH3), 2833 (Sym C-H str. -CH3), 2198 (C≡N str.), 1660 (N-H bend),<br />

1660, 1599 (Ar C=C str.), 1496 (C-H bend –CH2), 1388 (C-H bend –CH3), 1346 (C-N<br />

sec amine vib), 1197 (C-O str.), 862 (C-H oop def); H NMR 400 MHz: (CDCl3, δ<br />

ppm): 2.05 (s, 6H), 2.54 (s, 4H), 3.21 (s, 4H), 3.74 (s, 2H), 4.10 (d, 1H), 6.44 (d, 1H),<br />

6.63 (d, 1H), 6.80 (t, 1H), 6.91 (d, 2H), 7.21 (t, 2H), 9.26 (s, 1H) 13 C NMR 400<br />

MHz: (DMSO-d6, δ ppm): 11.5, 51.1, 51.5, 51.9, 52.0, 109.9, 111.4, 122.1, 123.7,<br />

126.7, 126.8, 140.0, 155.0, 157.7, 163.1 Mass: [m/z (%)], M. Wt.: 427; Elemental<br />

analysis, Calculated: C, 70.24; H, 5.89; N, 16.38; Found: C, 70.35; H, 5.59; N,<br />

16.39.<br />

123


Chapter-4 Synthesis and Characterizatin of…<br />

4-(3-((4-benzylpiperazin-1-yl)methyl)-4,5-dihydroxyphenyl)-1,4-dihydro-2,6dimethylpyridine-3,5-dicarbonitrile<br />

(VMMB-505)<br />

Yield: 72%; IR (cm -1 ): 3650 (O-H str.), 3498 (N-H str.), 3150 (Ar C=C-H str.), 2960<br />

(Asym C-H str. -CH3), 2910 (Asym C-H str. -CH2), 2868 (Sym C-H str. -CH3), 2854<br />

(Sym C-H str. -CH2), 2215 (C≡N str.), 1614 (N-H bend), 1595, 1565, 1502 (Ar C=C<br />

str.), 1468 (C-H bend –CH2), 1355 (C-H bend –CH3), 1345 (C-N sec amine vib), 1180<br />

(C-O str.), 789 (C-H oop def); Mass: [m/z (%)], M. Wt.: 455; Elemental analysis,<br />

Calculated: C, 71.19; H, 6.42; N, 15.37; Found: C, 71.64; H, 6.58; N, 15.81.<br />

1,4-dihydro-4-(3,4-dihydroxy-5-(morpholinomethyl)phenyl)-2,6-dimethylpyridine-<br />

3,5-dicarbonitrile (VMMB-506)<br />

Yield: 78%; IR (cm -1 ): 3622(O-H str.), 3468 (N-H str.), 3014 (Ar C=C-H str.), 2955<br />

(Asym C-H str. -CH3), 2913 (Asym C-H str. -CH2), 2876 (Sym C-H str. -CH3), 2860<br />

(Sym C-H str. -CH2), 2199 (C≡N str.), 1659 (N-H bend), 1560, 1523, 1508 (Ar C=C<br />

str.), 1465 (C-H bend –CH2), 1384 (C-H bend –CH3), 1348 (C-N sec amine vib), 1159<br />

(C-O str.), 870-795 (C-H oop def); Mass: [m/z (%)], M. Wt.: 366; Elemental<br />

analysis, Calculated: C, 65.56; H, 6.05; N, 15.29; Found: C, 65.50; H, 6.26; N,<br />

15.79.<br />

1,4-dihydro-4-(3,4-dihydroxy-5-(piperidin-1-yl)phenyl)-2,6-dimethylpyridine-3,5dicarbonitrile<br />

(VMMB-507)<br />

Yield: 53%; IR (cm -1 ): 3612 (O-H str.), 3514 (N-H str.), 3140 (Ar C=C-H str.), 2982<br />

(Asym C-H str. -CH3), 2930 (Asym C-H str. -CH2), 2870 (Sym C-H str. -CH3), 2845<br />

(Sym C-H str. -CH2), 2205 (C≡N str.), 1650-1580 (N-H bend), 1680, 1555, 1498 (Ar<br />

C=C str.), 1462 (C-H bend –CH2), 1378 (C-H bend –CH3), 1345 (C-N sec amine vib),<br />

1020 (C-O str.), 710 (C-H oop def); Mass: [m/z (%)], M. Wt.: 350; Elemental<br />

analysis, Calculated: C, 68.55; H, 6.33; N, 15.99; Found: C, 68.30; H, 6.98; N,<br />

15.10.<br />

124


Chapter-4 Synthesis and Characterizatin of…<br />

1,4-dihydro-4-(3,4-dihydroxy-5-(2-methylpiperidin-1-yl)phenyl)-2,6dimethylpyridine-3,5-dicarbonitrile<br />

(VMMB-508)<br />

Yield: 69%; IR (cm -1 ): 3642 (O-H str.), 3586 (N-H str.), 3015 (Ar C=C-H str.), 2994<br />

(Asym C-H str. -CH3), 2975 (Asym C-H str. -CH2), 2814 (Sym C-H str. -CH3), 2857<br />

(Sym C-H str. -CH2), 2197 (C≡N str.), 1652 (N-H bend), 1589, 1575, 1585 (Ar C=C<br />

str.), 1465 (C-H bend –CH2), 1378 (C-H bend –CH3), 1365 (C-N sec amine vib),<br />

1210(C-O str.), 815 (C-H oop def); Mass: [m/z (%)], M. Wt.: 364; Elemental<br />

analysis, Calculated: C, 69.21; H, 6.64; N, 15.37; Found: C, 69.95; H, 6.19; N,<br />

15.75.<br />

1,4-dihydro-4-(3,4-dihydroxy-5-(pyrrolidin-1-yl)phenyl)-2,6-dimethylpyridine-3,5dicarbonitrile<br />

(VMMB-509)<br />

Yield: 71%; IR (cm -1 ): 3575 (O-H str.), 3253 (N-H str.), 3007 (Ar C=C-H str.), 2970<br />

(Asym C-H str. -CH3), 2917 (Asym C-H str. -CH2), 2873 (Sym C-H str. -CH3), 2826<br />

(Sym C-H str. -CH2), 2196 (C≡N str.), 1663 (N-H bend), 1543, 1518, 1458 (Ar C=C<br />

str.), 1438 (C-H bend –CH2), 1385 (C-H bend –CH3), 1326 (C-N sec amine vib), 1176<br />

(C-O str.), 805 (C-H oop def); Mass: [m/z (%)], M. Wt.: 336; Elemental analysis,<br />

Calculated: C, 67.84; H, 5.99; N, 16.66; Found: C, 67.64; H, 5.76; N, 16.62.<br />

4-(3-(diethylamino)-4,5-dihydroxyphenyl)-1,4-dihydro-2,6-dimethylpyridine-3,5dicarbonitrile<br />

(VMMB-510)<br />

Yield: 69%; IR (cm -1 ): 3501(O-H str.), 3595 (N-H str.), 3154 (Ar C=C-H str.), 2985<br />

(Asym C-H str. -CH3), 2925 (Asym C-H str. -CH2), 2845(Sym C-H str. -CH3), 2814<br />

(Sym C-H str. -CH2), 2248 (C≡N str.),1580 (N-H bend), 1548, 1535, 1487 (Ar C=C<br />

str.), 1465 (C-H bend –CH2), 1385 (C-H bend –CH3), 1345(C-N sec amine vib),<br />

1012(C-O str.), 805(C-H oop def); Mass: [m/z (%)], M. Wt.: 338; Elemental<br />

analysis, Calculated: C, 71.44; H, 7.55; N, 16.56; Found: C, 71.28; H, 7.33; N,<br />

16.55.<br />

125


Chapter-4 Synthesis and Characterizatin of…<br />

4.11 REPRASENTATIVE SPECTRA<br />

IR Spectrum of 1,4-dihydro-4-(4-hydroxy-3-((4-methylpiperazin-1yl)methyl)phenyl)-2,6-dimethylpyridine-3,5-dicarbonitrile<br />

(VMMB-101)<br />

100<br />

%T<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

110<br />

%T<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

3747.81<br />

NC<br />

10<br />

-0<br />

H3C N<br />

H<br />

4000 3600 3200<br />

VMMB-101<br />

IR Spectrum of 4-(3-((diethylamino)methyl)-4-hydroxyphenyl)-1,4-dihydro-2,6dimethylpyridine-3,5-dicarbonitrile<br />

(VMMB-108)<br />

NC<br />

H 3C<br />

3317.67<br />

OH<br />

3288.74<br />

3230.87<br />

3124.79<br />

OH<br />

N<br />

H<br />

3600 3200<br />

VMMB-108<br />

3248.23<br />

3124.79<br />

CN<br />

2976.26<br />

2854.74<br />

CN<br />

N<br />

CH 3<br />

N<br />

CH 3<br />

2800<br />

2829.67<br />

N<br />

2800<br />

2400<br />

2400<br />

2200.85<br />

2198.92<br />

2000<br />

2000<br />

1800<br />

1800<br />

1662.69<br />

1606.76<br />

1658.84<br />

1599.04<br />

1600<br />

1516.10<br />

1516.10<br />

1496.81<br />

1496.81<br />

1600<br />

1498.74<br />

1437.02<br />

1383.01<br />

1340.57<br />

1400<br />

1438.94<br />

1384.94<br />

1400<br />

1278.85<br />

1282.71<br />

1261.49<br />

1200<br />

1200<br />

1112.96<br />

1062.81<br />

1022.31<br />

1004.95<br />

1000<br />

1000<br />

918.15<br />

891.14<br />

800<br />

765.77<br />

800<br />

767.69<br />

694.40<br />

642.32<br />

642.32<br />

617.24<br />

600 400<br />

1/cm<br />

559.38<br />

470.65<br />

428.21<br />

600 400<br />

1/cm<br />

126


Chapter-4 Synthesis and Characterizatin of…<br />

Mass Spectrum of 1,4-dihydro-4-(4-hydroxy-3-((4-methylpiperazin-1yl)methyl)phenyl)-2,6-dimethylpyridine-3,5-dicarbonitrile<br />

(VMMB-101)<br />

Mass Spectrum of 4-(3-((diethylamino)methyl)-4-hydroxyphenyl)-1,4-dihydro-<br />

2,6-dimethylpyridine-3,5-dicarbonitrile (VMMB-108)<br />

NC<br />

H 3C<br />

NC<br />

H 3C<br />

OH<br />

N<br />

H<br />

OH<br />

N<br />

H<br />

CN<br />

N<br />

CH 3<br />

CN<br />

N<br />

CH 3<br />

N<br />

127


Chapter-4 Synthesis and Characterizatin of…<br />

1H NMR Spectrum of 1,4-dihydro-4-(4-hydroxy-3-((4-methylpiperazin-1yl)methyl)phenyl)-2,6-dimethylpyridine-3,5-dicarbonitrile<br />

(VMMB-101)<br />

Expanded 1H NMR Spectrum of 1,4-dihydro-4-(4-hydroxy-3-((4methylpiperazin-1-yl)methyl)phenyl)-2,6-dimethylpyridine-3,5-dicarbonitrile<br />

(VMMB-101)<br />

NC<br />

H 3C<br />

NC<br />

H 3C<br />

OH<br />

N<br />

H<br />

OH<br />

N<br />

H<br />

CN<br />

N<br />

CH 3<br />

CN<br />

N<br />

CH 3<br />

N<br />

N<br />

128


Chapter-4 Synthesis and Characterizatin of…<br />

1 H NMR Spectrum of 4-(3-((diethylamino)methyl)-4-hydroxyphenyl)-1,4dihydro-2,6-dimethylpyridine-3,5-dicarbonitrile<br />

(VMMB-108)<br />

Expanded 1 H NMR Spectrum of 4-(3-((diethylamino)methyl)-4-hydroxyphenyl)-<br />

1,4-dihydro-2,6-dimethylpyridine-3,5-dicarbonitrile (VMMB-108)<br />

NC<br />

H 3C<br />

OH<br />

N<br />

H<br />

CN<br />

N<br />

CH 3<br />

NC<br />

H 3C<br />

OH<br />

N<br />

H<br />

CN<br />

N<br />

CH 3<br />

129


Chapter-4 Synthesis and Characterizatin of…<br />

1 H NMR Spectrum of 1,4-dihydro-4-(3,4-dihydroxy-5-((4-methylpiperazin-1yl)methyl)phenyl)-2,6-dimethylpyridine-3,5-dicarbonitrile<br />

(VMMB-502)<br />

HO<br />

NC<br />

H 3C<br />

OH<br />

N<br />

H<br />

CN<br />

N<br />

CH 3<br />

N<br />

1<br />

Expanded H NMR Spectrum of 1,4-dihydro-4-(3,4-dihydroxy-5-((4methylpiperazin-1-yl)methyl)phenyl)-2,6-dimethylpyridine-3,5-dicarbonitrile<br />

(VMMB-502)<br />

HO<br />

NC<br />

H 3C<br />

OH<br />

N<br />

H<br />

CN<br />

N<br />

CH 3<br />

N<br />

130


Chapter-4 Synthesis and Characterizatin of…<br />

1 H NMR Spectrum of 1,4-dihydro-4-(3,4-dihydroxy-5-(4-phenylpiperazin-1yl)phenyl)-2,6-dimethylpyridine-3,5-dicarbonitrile<br />

(VMMB-504)<br />

Expanded<br />

1<br />

H NMR Spectrum of 1,4-dihydro-4-(3,4-dihydroxy-5-(4phenylpiperazin-1-yl)phenyl)-2,6-dimethylpyridine-3,5-dicarbonitrile<br />

504)<br />

(VMMB-<br />

HO<br />

NC<br />

H 3C<br />

NC<br />

H 3C<br />

OH<br />

N<br />

H<br />

HO<br />

N<br />

CN<br />

CH 3<br />

OH<br />

N<br />

H<br />

N<br />

N<br />

CN<br />

CH 3<br />

N<br />

131


Chapter-4 Synthesis and Characterizatin of…<br />

13 C NMR Spectrum of 1,4-dihydro-4-(3,4-dihydroxy-5-((4-methylpiperazin-1yl)methyl)phenyl)-2,6-dimethylpyridine-3,5-dicarbonitrile<br />

(VMMB-502)<br />

H 3C<br />

N<br />

H<br />

13<br />

Expanded C NMR Spectrum of 1,4-dihydro-4-(3,4-dihydroxy-5-((4methylpiperazin-1-yl)methyl)phenyl)-2,6-dimethylpyridine-3,5-dicarbonitrile<br />

(VMMB-502)<br />

HO<br />

NC<br />

H 3C<br />

HO<br />

NC<br />

OH<br />

N<br />

H<br />

OH<br />

CN<br />

CN<br />

CH 3<br />

N<br />

CH 3<br />

N<br />

N<br />

N<br />

132


Chapter-4 Synthesis and Characterizatin of…<br />

13 C NMR Spectrum of 1,4-dihydro-4-(3,4-dihydroxy-5-(4-phenylpiperazin-1yl)phenyl)-2,6-dimethylpyridine-3,5-dicarbonitrile<br />

(VMMB-504)<br />

HO<br />

NC<br />

H 3C<br />

OH<br />

N<br />

H<br />

N<br />

CN<br />

CH 3<br />

N<br />

Expanded<br />

13<br />

C NMR Spectrum of 1,4-dihydro-4-(3,4-dihydroxy-5-(4phenylpiperazin-1-yl)phenyl)-2,6-dimethylpyridine-3,5-dicarbonitrile<br />

504)<br />

(VMMB-<br />

HO<br />

NC<br />

H 3C<br />

OH<br />

N<br />

H<br />

N<br />

CN<br />

CH 3<br />

N<br />

133


Chapter-4 Synthesis and Characterizatin of…<br />

4.12 RESULT AND DISCUSSION<br />

Present work covers the synthesis of some novel Mannich base compounds using<br />

hydroxy substituted dihydropyridines and different secondary amines with<br />

formaldehyde. The main significance of the present work is the very rapid and easy<br />

reaction condition, facile work up method, excellent yield and high chemical purity of<br />

the desired compounds for biological as well as pharmacological interest.<br />

4.13 CONCLUSION<br />

Herein we reported a Mannich reaction of 1,4-dihydropyridines at C4 phenyl ring<br />

containing hydroxyl group, as an alternative of N-1 position of 1,4-dihydropyridines.<br />

The newly synthesized compounds are well characterized by IR, Mass, 1 H NMR, 13 C<br />

NMR and Elemental analysis.<br />

134


Chapter-4 Synthesis and Characterizatin of…<br />

4.14 REFERENCES<br />

[1] Chen, J.; Spear, S. K.; Huddleston, J. G.; Rogers, R. D. Green Chem. 2005, 7,<br />

64-82.<br />

[2] Yadav, J. S.; Reddy, B. V. S.; Basak, A. K.; Narsaiah, A. V. Green Chem.<br />

2003, 5, 60-63.<br />

[3] (a) Triggle, D. J. Curr. Pharm. Des. 2006, 12, 443-457. (b) Hopes, P. A.;<br />

Parker, A. J.; Patel, I. Org. Pro. Res. Dev. 2006, 10, 808-813. (c) Stout, D. M.;<br />

Meyers, A. Y. Chem. Rev. 1982, 82, 223-243.<br />

[4] Hantzsch, A. Justus Liebigs Ann. Chem. 1882, 215, 1-82.<br />

[5] (a) Phillips, P. J Am. Chem. Soc. 1949, 71, 4003-4007. (b) Anderson, G. J.;<br />

Berkelhammer, G. J. Am. Chem. Soc. 1958, 80, 992-999. (c) Gordeev, M. F.;<br />

Patel, D. V.; Gordon, E. M. J. Org. Chem. 1996, 61, 924-928. (d) Cotterill, C.;<br />

Usyatinsky, A. Y.; Arnold, J. M.; Clark, D. S.; Dordick, J. S.; Michels, P. C.;<br />

Khemelnitsky, Y. L. Tetrahedron Lett. 1998, 39, 1117-1120. (e)<br />

Breithenbucher, J. G.; Figliozzi, G. Tetrahedron Lett. 2000, 41, 4311-4315. (f)<br />

Ohberg, L.; Westman, J. Synlett 2001, 1296-1298. (g) Yadav, J. S.; Reddy, B.<br />

V. S.; Reddy P. T. Synth. Commun. 2001, 31, 425-430. (h) Correa, W. H.;<br />

Scott, J. L. Green Chem. 2001, 3, 296-301. (i) Balalaie, S.; Kowsari, E.<br />

Monatsh. Chem. 2001, 132, 1551-1555. (j) Lavilla, R. J. Chem. Soc., Perkin<br />

Trans 1 2002, 1141-1156. (k) Kidwani, M.; Saxena, S.; Mohan, R.;<br />

Venkatraman, R. J. Chem. Soc., Perkin Trans 1 2002, 1845-1846.<br />

[6] Shivamurugan, V.; Suresh, R. K.; Palanichamy, M.; Murugesan, V. J.<br />

Heterocycl. Chem. 2005, 42, 969-974.<br />

[7] Shivamurugan, V.; Vinu, A.; Palanichamy, M.; Murugesan, V. Heteroatom<br />

Chem. 2006, 17, 267-271.<br />

[8] Fan, X. S.; Li, Y. Z.; Zhang, X. Y.; Qu, G. R.; Wang, J. J.; Hu, X. Y.<br />

Heteroatom Chem. 2006, 17, 382-388.<br />

[9] Godfraind, T.; Miller, R.; Wibo, M.; Pharmacol. Rev., 1986, 38, 321.<br />

[10] Janis, R. A.; Silver, P. J.; Triggle, D. J.; Adv. Drug Res., 1987, 16, 309.<br />

[11] Sausins, A.; Duburs, G.; Heterocycles, 1988, 27, 269.<br />

[12] Mager, P. P.; Coburn, R. A.; Solo, A. J.; Triggle, D. J.; Rothe, H.; Drug Des<br />

Discovery, 1992, 8, 273.<br />

135


Chapter-4 Synthesis and Characterizatin of…<br />

[13] Mannhold, R.; Jablonka, B.; Voigdt, W.; Schoenafinger, K.; Schraven, E.; J.<br />

Med. Chem., 1992, 27, 229.<br />

[14] Gaudio, A. C.; Korolkovas, A.; Takahata, Y.; J. Pharm. Sci., 1994, 83, 1110<br />

[15] Bossert, F.; Vater, W.; U.S. Patent 3,485,847, Dec 23, 1969<br />

[16] Meyer, V. H.; Bossert, F.; Wehinger, K.; Stoepel, K.; Vater, W.; Arzneim.-<br />

Forsch 1981, 31, 407.<br />

[17] Meyer, V. H.; Bossert, F.; Vater, W.; Stoepel, K.; U.S. Patent 3,799,934, 1974<br />

[18] Galiano, A.; Drugs Fut., 1995, 20, 231.<br />

[19] Alajarin, R.; Vaquero, J. J.; Alvarez- Builla, J.; Pastor, M.; Sunkel, C.; de<br />

Casa-Juana, M. F.; Priego, J.; Statkow, P. R.; Sanz-Aparicio, J.; Tetrahedron:<br />

Asy smetry 1993, 4, 617.<br />

[20] Alajarin, R.; Alvarez-Builla, J.; Vaquero, J. J.; Sunkel, C.; de Casa-Juana, M.<br />

F.; Statkow, P. R.; Sanz-Aparicio, J.; Fonseka, I.; J. Med. Chem., 1995, 38,<br />

830.<br />

[21] Sannita, W. A.; Busico, S.; Di Bon, G.; Ferrari, A. & Riela, S.; Int. J. Clin.<br />

Pharmacol. Res., 1993, 13, 2819.<br />

[22] Uehar, Y.; Kawabata, Y.; Ohshima, N.; Hirawa, N.; Takada, S.; Numabe, A.;<br />

gata, T.; Goto, A.; Yagi, S.; Omata, M.; J. Cardiovasc. Pharmacol., 1994, 23,<br />

970.<br />

[23] Nakagawa, T.; Yamauchi, Y.; Kondo, S.; Fuji, M.; Yokoo, N.; Jpn. J.<br />

Pharmacol. , 1994, 64 (Suppl. 1); Abstr. P-260.<br />

[24] Boer, R.; Gekeler, V.; Drugs Fut., 1995, 20, 499.<br />

[25] Bristolol, J. A.; Ed. In Annu. Rep. Med. Chem., 1992, 27, 330.<br />

[26] Bristolol, J. A.; Ed. In Annu. Rep. Med. Chem., 1992, 27, 322.<br />

[27] Sunkel, C. E.; de Casa-Juana, M. F.; Santos, L.; Garcia, A. G.; Artaljero, C.<br />

R.;Vilaroya, M.; Gonzalez-Morales, M. A.; Lopez, M. G.; Cillero, J.; Alonso,<br />

S.; Priego, J. G.; J. Med. Chem., 1992, 35, 2407.<br />

[28] Vo, D.; Matowe, W. C.; Ramesh, M.; Iqbal, M.; Wolowyk, M. W.; Howlett, S.<br />

E.; Knaus, E. E.; J. Med. Chem., 1995, 38, 2851.<br />

[29] Therapeutic guidelines, cardiovascular, 3rd ed. Victoria: Therapeutic<br />

Guidelines; 1998<br />

136


Chapter-4 Synthesis and Characterizatin of…<br />

[30] Robertson, R.M.; Robertson D.; Drugs used for the treatment of myocardial<br />

ischemia. In: Hardman JG, Limbird JG, editors. Goodman and Gilman’s the<br />

pharmacological basis of therapeutics, 9th ed. New York:McGraw-Hill; p.<br />

759– 78. Chapter 32, 1996.<br />

[31] Calcium channel blocking agents in USP DI. Drug information for the health<br />

care professional, 22nd ed. Colorado: Micromedex; p. 727– 42, 2002.<br />

[32] Antihypertensive drugs. In: Mycek MJ, Harvey R.A. & Chempe PC, editors.<br />

Lippincott’s illustrated reviews: pharmacology. Pennsylvania: Lippincott<br />

Williams & Wilkins; p. 179– 92. Chapter 19, 2000<br />

[33] Klusa,V.; Drugs Fut., 1995, 20, 135.<br />

[34] Cooper, K.; Fray, M. J.; Parry, M. J.; J. Med. Chem., 1992, 35, 3115.<br />

[35] Haneeon, L.; Calcium antagonists: An Overview. Am. Heart J. 1991, 122,<br />

308-311.<br />

[36] Pickard, J. D.; Murray, G. D.; Illingworth, R.; Shaw, M. D. M.; Teasdale, G.<br />

M.; Foy, P. M.; Humphrey, P. R. D.; Lang, D. A.; Nelson, R.; Richards, P.;<br />

Sinar, J.;Bailey, S.; Brit.Med. J., 1989, 298,636-642.<br />

[37] Buchbeit, J. M.; Tremoulet, M.; Neurosurg., 1988, 23,154-167.<br />

[38] Loogna, E.; Sylven, C.; Groth, T.; Mogensen, L.; Eur. Heart J., 1986, 6,114-<br />

119.<br />

[39] SPRINT Study Group. The secondary prevention re-infarction Israeli<br />

nifedipine trial (SPRINT) 11: design and methods, results. Eur. Heart. J.,<br />

1988, 9 (Suppl. I), 360A.<br />

[40] Myocardial Infarction Study Group. Secondary prevention of ischemic heart<br />

disease: a long term controlled lidoflazine study. Acta Cardiol., 1979, 34<br />

(Suppl. 24), 7-46.<br />

[41] Subramanian,V. B.; Excerpta Medica (Amsterdam) , 1983, 97-116.<br />

[42] Mueller, H. S.; Chahine,R. A.; Am. J. Med., 1981, 71, 645-657.<br />

[43] Antman, E.; Muller, J.; Goldberg, S.; McAlpin, R.; Rubenfire, M.; Tabatznik,<br />

B.; Liang, C.-S.; Heupler, F.; Achuff, S.; Reichek, N.; Geltman, E.; Kerin, N.<br />

Z.; Neff, R. K.; Braunwald, E. N.; Engl. J. Med., 1980, 302, 1269-1273.<br />

[44] Ginsburg, R.; Lamb, I. H.; Schroeder, J. S.; Harrison, M. H.; Harrison, D. C.;<br />

Am. Heart. J., 1982, 103,44-48.<br />

[45] Held, P. H.; Yueuf, S.; Furberg, C. D.; Br. Med. J., 1989, 299,1187.<br />

137


Chapter-4 Synthesis and Characterizatin of…<br />

[46] Reicher-Reiss, H.; Baruch, E.; Drugs Today, 1991, 42, 3, 343-364.<br />

[47] Gelmere, H. J.; Henneric, N.; Stroke, 1990, 21 (SUPPI. IV), 81-IV84.<br />

[48] Di Bona, G. F.; Epstein, M.; Mann, J.; Nordlander, M.; Kidney Int., 1991 41<br />

(Suppl. 36)<br />

[49] Triggle, D. J.; Drugs Today, 1991, 27, 3, 147-155.<br />

[50] Zidermane, A.; Duburs, G.; Zilbere, A.; . PSR Zinat. Akad. Vestic 4, 77 1971;<br />

C.A., 1991, 75, 47266,9<br />

[51] Wehinger, W. E.; Horst, M.; Andres, K.; Yoshiharu; Ger. Offen; C.A., 1987,<br />

107, 217482.<br />

[52] Hachiro, S.; Kunizo, H.; Tadao, S.; Hideyuki, A.; Yoshihsru, D.; Eur. Patent<br />

197,488.1986.; JP 68,649, 1985.; C.A., 106, 328559, 1987.<br />

[53] Yan, Z. M., Dong, Y. M. & Xuebao, Y.; EP 220, 653, 1987.; JP 253,909,<br />

1985.; C.A., 116, 173968, 1992<br />

[54] Marco, F.; Andrea, Z.; Carmelo, G.; Bermini, M.; EP 272, 693; C.A. 109,<br />

190259, 1988<br />

[55] Johnson, R. C.; Taylor, D. J.; Hann Kenneth, V.; Sheng, S.; U.S. Patent<br />

4,758,669; C.A. 109, 149366, 1988<br />

[56] Masakatu, H.; Kenichi, K.; Yasuhiko, S.; Masakazu, H.; Osamu, K.;<br />

Hiroyoshi, H.; EP653, 1987; JP 235 909,1985; C.A. 107, 134209. 1987<br />

[57] Cooper K.; Fray M. J.; Parry M. J.; Richardson K.; Steele J.; J. Med. Chem.<br />

1992, 35, 3115-3129.<br />

[58] Van Rhee A. M.; Jiang J. L.; Melman N.; Olah M. E.; Stiles G. L.; Jacobson<br />

K. A.; J. Med. Chem., 1996, 39, 2980-2989.<br />

[59] Shah A.; Gaveriya H.; Motohashi N.; Kawase M.; Anticancer Res., 2000, 20,<br />

373.<br />

[60] Singer, T. P.; Kearney, E. B.; Advan. Enzymol., 1964, 15, 79.<br />

[61] Cozzi, P.;German, C.; Domenico, F.; Mauro, G.; Maria M.; Vittorio, P.;<br />

Roberto, T.; Fabrizio, V.; Patricia, S.; J. Med. Chem., 1993, 36, 2964-2972.<br />

[62] Triggle, D. J.; Langs, D. A.; Janis, R. A.; Med. Res. Rev., 1989, 9, 2, 123-180.<br />

[63] Hernandez-Gallegos, Z.; Lehmann, F.; Hong, E.; Posadas, F.; Ernandez-<br />

Gallegos, E.; Eur. J. Med. Chem., 1995, 30, 355-364.<br />

[64] Christiaans, J.A.M.; Ph.D. Thesis, Vrij <strong>University</strong>, Amsterdam, The<br />

Netherlands, 1994<br />

138


Chapter-4 Synthesis and Characterizatin of…<br />

[65] Carlos E.; Sunkel, L.; J . Med. Chem. 1992, 35, 2407-2414.<br />

[66] Schramm,M.; Towart, R.; Modulation of Calcicum Channel by Drugs Life<br />

Sci., 1985, 37, 1843-60<br />

[67] Swamy, S.K.; Reddy, T.M.; Reddy, V.M.; J. Pharm. Sci., 1998, 60, 2, 102-<br />

106.<br />

[68] Kelvin Cooper. et al, US Patent 4,935,430. EP-A-258033, EP-A-266989<br />

1999.<br />

[69] Christiaans J.A.M.; Timmerman, H.; Eur. J. Pharm. Sci. 1996, 4 , 1-22.<br />

[70] Loogna, E.; Sylven, C.; Groth, T.; Mogensen, L.; Eur. Heart J., 1986 6,114-<br />

119.<br />

[71] Sonja,V.; Barbara, R.; Antonella Di, S.; Roberta, F.; Monica, N.; Emilio, C.;<br />

Christian, R.; Nicolas, V.; Alberto, G.; J. Med. Chem., 2004, 47, 10, 2688 –<br />

2693.<br />

[72] Karnail, S. A.; George, C .R.; Joseph, S.; Suzanne, M.; Anders, H.; Jack, Z.<br />

G.; Mary, F. M.; David, M. F.; J. Med. Chem., 1990, 33, 1510-1515.<br />

[73] Liou, S.F.; Wu, J.R.; Lai, W.T.; Sheu, S.H.; Chen, I.J.; Yeh, J. L.; J<br />

Cardiovasc Pharmacol. 2005, 45, 3, 232-240.<br />

[74] Furukawa T, Nukada T, Miura R, Ooga K, Honda M, Watanabe S,<br />

Koganesawa, S. & Isshiki T. J Cardiovasc. Pharmacol. 2005, 45(3),241-246<br />

[75] Nadezhda, I. R.; Rose, I. G.; Gunars, D.; Joanna, R. Mutation Research, 2005,<br />

587, 52–58.<br />

[76] Desai, B.; Vora, v.; Gaveria, H.; Shah, A. Indian Journal pf Pharmaceutical<br />

Sciences, 2002, 64(1), 59-62.<br />

[77] Shah, A.; Gevariya, H.; Motohashi, N.; Kawase, M.; Saito, S.; Sakagami, H.;<br />

Satoh, K.; Tada, Y.; Solymosi, A.; Walfard, K.; Molnar, J. Anticancer Res.,<br />

2000, 20, 373-378.<br />

[78] Desai, B.; Sureja, D.; Naliyapara, Y.; Shah, A.; Saxena. A. Bio. Org. Med.<br />

Chem., 2001, 9, 1993-1998.<br />

[79] Gyongyi Gunics, Sandor Farkas, Noboru Motohashi, Anamik Shah, Masami<br />

Kawase and Joseph Molnar, International Journal of Antimicrobial Agents.<br />

2002, 227 – 229<br />

[80] Saponara, S.; Ferrara, A.;. Gorelli, B.; Shah, A..; Kawase, M.; Motohashi, N.;<br />

Molnar, J.; Sgaragli, G.; Fusi, F. Eur. J. Pharma. 2007, 563,160-163.<br />

139


Chapter-4 Synthesis and Characterizatin of…<br />

[81] Fusi, F.; Saponara, S.; Valoti, M.; Dragoni, S.; Elia, P.; Sgaragli, T.;<br />

Alderighi, D.; Shah, A.; Molnar, J.; Sgaragli, G. Current Drug Targets 2006,<br />

7, 949-969.<br />

[82] Mannich, C.; and Krosche, W.; Archiv der Pharmazie, 1912, 250, 647.<br />

[83] Blicke, F.; Org. React., 1942.<br />

[84] Arend, M.; Westermann, B.; and Risch, N.; Angew. Chem., Int. Ed., 1998, 37,<br />

1044.<br />

[85] Tramontini, M.; and Angiolini, L.; Tetrahedron, 1990, 46, 1791.<br />

[86] Kleinman, E. F.; Comprehensive Organic Synthesis, 1991, 893.<br />

[87] Cummings, T. F.; and Shelton, J. R.; J. Org. Chem., 1960, 25, 419.<br />

[88] Fernandez, J. E.; and Butler, G. B.; J. Org. Chem., 1963, 28, 3258.<br />

[89] Burckhalter, J. H; Wells, J. N.; and Mayer, W. J.; Tetrahedron Lett., 1964, 21,<br />

1353.<br />

[90] Alexander, E. R.; and Underhill, E. J.; J. Am. Chem. Soc., 1949, 71, 4014.<br />

[91] List, B.; Tetrahedron, 2002, 58, 5573.<br />

[92] Jen, W. S.; Wiener, J. J. M.; and MacMillan, D. W. C.; J. Am. Chem. Soc.,<br />

2000, 122, 9874.<br />

[93] Huang, Y.; Unni, A. K.; Thadani, A. N.; and Rawal, V. H.; Nature, 2003, 424,<br />

146.<br />

[94] Uraguchi, D.; and Terada, M.; J. Am. Chem. Soc., 2004, 126, 5356.<br />

[95] Nakashima, D.; and Yamamoto, H.; J. Am. Chem. Soc., 2006, 128, 9626.<br />

[96] Marion, N.; Díez-González, S.; and Nolan; Angew. Chem., Int. Ed., 2007 46,<br />

2988.<br />

[97] Bourissou, D.; Guerret, O.; Gabbaie, F. P.; and Bertrand, G.; Chem. Rev.,<br />

2000, 100, 39.<br />

[98] Knight, R. L.; and Leeper, F. J.; J. Chem. Soc., Perkin Trans., 1998, 1, 1891.<br />

[99] Enders, D.; and Kallfass, U.; Angew. Chem., Int. Ed., 2002, 41, 1743.<br />

[100] Read de Alaniz, J.; and Rovis, T. J.; Am. Chem. Soc., 2005, 127, 6284.<br />

[101] Vachal, P.; Jacobsen, E. N.; J. Am. Chem. Soc., 2002, 124, 10012.<br />

[102] Dieter, S.; Albert, K. B.; and Alexander, H.; Angew. Chem., Int. Ed., 2001, 40,<br />

92.<br />

140


Chapter-4 Synthesis and Characterizatin of…<br />

[103] Gondi, V. B.; Gravel, M.; and Rawal, V. H.; Org. Lett., 2005, 7, 5657.<br />

[104] Unni, A. K.; Takenaka, N.; Yamamoto, H.; and Rawal, V. H.; J. Am. Chem.<br />

Soc., 2005, 127, 1336.<br />

[105] Akiyama, T.; Itoh, J.; Yokota, K.; and Fuchibe, K.; Angew. Chem., Int. Ed.,<br />

2004, 43, 1566.<br />

[106] Cheon, C. H.; and Yamamoto, H.; J. Am. Chem. Soc., 2008, 130, 9246.<br />

[107] Verkade, J. M. M.; Van Hemert, L. J. C.; Quaedflieg, P. J. L. M.; and Rutjes,<br />

F. P. J. T.; Chem. Soc. Rev., 2007, 37, 29.<br />

[108] Omura, Y.; Taruno, Y.; Irisa, Y.; Morimoto, M.; Saimoto, H.; and Shigemasa,<br />

Y.; Tetrahedron Letters, 2001, 42 , 7273.<br />

[109] Lindsay, Anita, Ph.D. Thesis, Durham <strong>University</strong>, 2010.<br />

[110] Minakawa, M.; Guo, H.; and Tanaka, F.; J Org Chem., 2008, 7; 73(21): 8669.<br />

[111] Aritomi, J.; Ueda, S.; and Nishimura, H.; 28 (11), 3163 1980.<br />

[112] Aritomi, J.; and Nishimura, H.; Chem. Pharma Bull., 1981, 29 (5), 1193.<br />

[113] Dotsenko, V. V.; Krivokolysko, S. G.; and Litvinov, V. P.; Russian Chemical<br />

Bulletin, Int. Ed, 2005, 54(11), 2692.<br />

[114] Dotsenko, V. V.; Krivokolysko, S. G.; Chernega, A. N.; and Litvinov, V. P.;<br />

Russian Chemical Bulletin, Int. Ed, 2007, 56(5), 1053.<br />

[115] Frolov, K. A.; Dotsenko, V. V.; Krivokolysko, S. G.; Litvinov, V. P.;<br />

Chemistry of Heterocyclic Compounds, 2010, 46(9), 1142.<br />

[116] Aanandhi, M. V.; Kalvikkarasi, S.; Navamani, K. A.; and Shanmugasundaram,<br />

P.; RJPBCS, 2010, 1(4), 926.<br />

[117] Subudhi, B. B.; Panda, P. K.; and Bhatta, D.; Indian Journal of Chemistry,<br />

2009, 48(B), 725.<br />

[118] Mane, D. V.; Bhawsar, S. B.; Shinde, D. B.; and Shingare, M. S.; Indian<br />

Journal of Heterocyclic Chemistry, 1995, 4(4), 311.<br />

[119] Sielemann, D.; Keuper, R.; and Risch, N.; European Journal of Organic<br />

Chemistry, 2000, (3), 543.<br />

[120] Michael, V.; Georges, R.; and Michel, L.; Ger. Offen. 1974, 2,405,658; C.A.,<br />

81,169440b.<br />

[121] Triggle, D. J; Drugs acting on ion channels and membranes. Comprehensive<br />

Medicinal Chemistry, 1990, 3, 1047.<br />

[122] Phillips, A. P.; J. Am. Chem. Soc., 1949, 71, 4003.<br />

141


Chapter-4 Synthesis and Characterizatin of…<br />

[123] Phillips, A. P.; J. Am. Chem. Soc., 1951, 73, 3522.<br />

[124] Mariella, R. P.; and Belcher, E. P.; J. Am. Chem. Soc., 1951, 73, 2616.<br />

142


Chapter‐5<br />

FACILE SYNTHESIS OF SOME NOVEL<br />

FURO COUMARINS


Chapter-5 Facile Synthesis of some novel…<br />

5.1 INTRODUCTION<br />

Furanocoumarins or furocoumarins, are a class of organic chemical<br />

compounds produced by a variety of plants. They are biosynthesized partly through<br />

the phenylpropanoid pathway and the mevalonate pathway, which is biosynthesized<br />

by a coupling of dimethylallyl pyrophosphate(DMAPP) and 7-<br />

hydroxycoumarin (umbelliferone).<br />

The chemical structure of furanocoumarins consists of a furan ring fused<br />

with coumarin. The furan may be fused in different ways producing several isomers.<br />

The compounds that form the core structure of the two most common isomers<br />

are psoralen and angelicin. Derivatives of these two core structures are referred to<br />

respectively as linear and angular furanocoumarins. [1]<br />

Many furanocoumarins are toxic and are produced by plants as a defense mechanism<br />

against various types of predators ranging from insects tomammals. [2] This class<br />

of phytochemical is responsible for the phytophotodermatitis seen in exposure to the<br />

juices of the wild parsnip and the Giant Hogweed.<br />

Furanocoumarins have other biological effects as well. For example, in<br />

humans, bergamottin and dihydroxybergamottin are responsible for the "grapefruit<br />

juice effect", in which these furanocoumarins affect the metabolism of certain<br />

drugs. [3]<br />

Furocoumarins, such as psoralene and the angelicine derivatives are naturally<br />

occurring compounds. They are known to possess a high photobiological activity [4] .<br />

Psoralene derivatives have been used for many years in the treatment of skin diseases<br />

[5] . Furocoumarin/ultraviolet therapy, known as photopheresis, has recently become an<br />

effective treatment of cutaneous T cell lymphoma, Sezary syndrome and related<br />

diseases [6, 7] . The photochemotherapeutic effects of furocoumarins are based on<br />

intercalation of the molecules between the pyrimidine bases of the microorganism’s<br />

DNA. The intercalation is then followed by the UV light activated cycloaddition<br />

reactions of furocoumarins with the pyrimidine bases. These [2+2]<br />

photocycloaddition reactions result in a cross-linking of DNA and prevent a<br />

microorganism’s reproduction.<br />

143


Chapter-5 Facile Synthesis of some novel…<br />

Psoralens, which are linear furocoumarins, have the highest photosensitivity. Their<br />

molecules have two active sites in the [2+2] photocycloaddition reactions: the pyrone<br />

ring and furan ring double bonds. This kind of difunctionality of the psoralens (and of<br />

the angelicines in to a lesser extent) has been suggested to cause undesirable side<br />

effects in their medical use. Mutagenicity and carcinogenicity should be mentioned<br />

among these side effects of some psoralens [8‐14] .<br />

Even though some methods of furocoumarin synthesis have been known for a long<br />

time, the<br />

successful use of furocoumarins as effective medicines requires access to as many<br />

new derivatives as possible. For example, it has been found that furocoumarin analogs<br />

that contain other heteroatoms besides the oxygen atom in the lactone ring are free of<br />

some side effects [7] . Better intercalation properties and higher hydrophilicity should<br />

be also specific for new furocoumarins recommended for pharmaceutical testing.<br />

Therefore, the search for new synthetic approaches to the fucoumarins and their<br />

analogous heterocyclic compounds is a promising trend in photochemotherapy [15‐22] .<br />

Natural Furo coumarins:<br />

Linear Furo coumarins<br />

Psoralen [23] (also called psoralene) is the parent compound in a family of natural<br />

products known as furocoumarins. It is structurally related tocoumarin by the addition<br />

of a fused furan ring, and may be considered as a derivative of umbelliferone.<br />

Psoralen occurs naturally in the seeds of Psoralea corylifolia, as well as in<br />

the common fig, celery, parsley and West Indian satinwood. It is widely used<br />

in PUVA (=Psoralen +UVA) treatment for psoriasis, eczema, vitiligo, and cutaneous<br />

T-cell lymphoma. Many furocoumarins are extremely toxic to fish, and some are<br />

indeed used in streams in Indonesia to catch fish.<br />

O O O<br />

Bergamottin [24] is a natural furocoumarin found principally in grapefruit juice. It is<br />

also found in the oil of bergamot, from which it was first isolated and from which its<br />

144


Chapter-5 Facile Synthesis of some novel…<br />

name is derived. To a lesser extent, bergamottin is also present in the essential oils of<br />

other citrus fruits. Along with the chemically related compound 6’,7’dihydroxybergamottin,<br />

it is believed to be responsible for the grapefruit juice effect in<br />

which the consumption of the juice affects the metabolism of a variety of<br />

pharmaceutical drugs.<br />

O<br />

O O<br />

O<br />

Bergapten [25] (5-methoxypsoralen) is a psoralen (also known as furocoumarins)<br />

found in bergamot essential oil and many other citrus essential oils, and is the<br />

chemical in bergamot oil that causes phototoxicity.<br />

O<br />

O O O<br />

Imperatorin [26] is a furocoumarin and a phytochemical that has been isolated from<br />

Urena lobata L. (Malvaceae). It is biosynthesized from umbelliferone, a coumarin<br />

derivative. Psoralen (also called psoralene) is the parent compound in a family of<br />

natural products known as furocoumarins. It is structurally related to coumarin by the<br />

addition of a fused furan ring, and may be considered as a derivative of umbelliferone.<br />

Psoralen occurs naturally in the seeds of Psoralea corylifolia, as well as in the<br />

common fig, celery, parsley and West Indian satinwood. It is widely used in PUVA<br />

(=Psoralen +UVA) treatment for psoriasis, eczema, vitiligo, and Cutaneous T-cell<br />

Lymphoma.<br />

O<br />

O O<br />

O<br />

145


Chapter-5 Facile Synthesis of some novel…<br />

Although safe to mammals, it should be used with care since many furocoumarins are<br />

extremely toxic to fish, and some are indeed used in streams in Indonesia to catch<br />

fish.<br />

Xanthotoxin [27] , also known as Methoxsalen (marketed under the trade name<br />

Oxsoralen) is a drug used to treat psoriasis, eczema, vitiligo, and some cutaneous<br />

Lymphomas in conjunction with exposing the skin to sunlight. Methoxsalen modifies<br />

the way skin cells receive the UVA radiation, allegedly clearing up the disease. The<br />

dosage comes in 10mg tablets, which are taken in the amount of 30mg 75 minutes<br />

before a PUVA light treatment. The substance is also present in bergamot oil which is<br />

used in many perfumes and aromatherapy oils.<br />

Angular Furo coumarins:<br />

O O O<br />

O<br />

Angelicin [28] is an angular furocoumarin, a DNA intercalator and crosslinker with<br />

diverse photobiological effects. Upon long wavelength UV irradiation, forms<br />

monoadduct with double-stranded DNA and react with unsaturated fatty acids.<br />

Inhibits DNA and RNA synthesis and cell replication in Ehrlich ascites tumor cells.<br />

Angelicin is used as tranquilliser, sedative, or anticonvulsant.<br />

O<br />

O O<br />

5,6-Dihydroxyangelicin [29] is a natural angular furocoumarin isolated from the root of<br />

Angelica glabra Makino and from the fruits of Ligusticum acutilobum.<br />

O<br />

OH<br />

OH<br />

O O<br />

146


Chapter-5 Facile Synthesis of some novel…<br />

Lanatin [30] is a natural furocoumarin extracted from Heracleum thomsoni.<br />

O<br />

O<br />

O O<br />

Heratomin [31] is a furocoumarin extracted from Heracleum Thomsoni. Inhibitor of<br />

insect cytochromes P450.<br />

O<br />

O<br />

O O<br />

Synthesis of some Naturally occurring furo coumarins:<br />

O<br />

H 3CO<br />

O<br />

Angelicin<br />

O<br />

O<br />

Sphondin<br />

O<br />

O<br />

O<br />

NH 2<br />

OH<br />

Phenylalanine<br />

HO O O<br />

7-hydroxy coumarin<br />

O O O<br />

O<br />

Imperatorin<br />

O O<br />

Psoralen<br />

O<br />

O O<br />

OCH3 O<br />

Xanthotoxin<br />

OCH 3<br />

O O<br />

Bergapton<br />

O<br />

147


Chapter-5 Facile Synthesis of some novel…<br />

5.2 SYNTHETIC ASPECT<br />

Acylhydroxyheteroarenes are convenient intermediates in furoheteroarene synthesis.<br />

The key reaction for preparation of these intermediates is the Fries rearrangement of<br />

acyloxyheteroarenes.<br />

Nevertheless, this reaction with heteroarene derivatives has not been studied much<br />

when compared with that of benzene derivatives.<br />

Condensation of α-haloketones, as shown in Scheme 14 for the preparation of<br />

angelicine derivative [32] .<br />

HO O O X<br />

O<br />

R 2<br />

O<br />

R 1<br />

R1=CH3, C6H5, p-CH3OC6H4, p-ClC6H4, OC2H5 R2= H, CO2C2H5 X=Cl, Br<br />

K 2CO 3<br />

CH O O<br />

3CN O<br />

Base-catalyzed condensation of acylhydroxycoumarins with ethyl chloroacetate is<br />

also a useful reaction for preparation of psoralen derivatives, as exemplified in<br />

Scheme 15 by the synthesis of a substituted psoralen [32] .<br />

O<br />

HO<br />

O O<br />

Cl<br />

O<br />

OC 2H 5<br />

K 2CO 3<br />

C 2H 5O<br />

R 1<br />

CH3CN O O O O<br />

The microwave promoted tandem Claisen rearrangement-cyclization reaction of<br />

allyloxycoumarins in the presence of BF3 / ether directly produces the<br />

dihydrofuranocoumarins in good yields, the products obtained by microwave<br />

O<br />

148


Chapter-5 Facile Synthesis of some novel…<br />

irradiation in N-methylformamide, NMF, can be purified with more ease, since NMF<br />

is soluble in water. The results clearly show that the rearrangement of<br />

allyloxycoumarins to allylcoumarins and preparation of<br />

dihydrofuranocoumarins via tandem Claisen rearrangement-cyclization reaction of<br />

allyloxycoumarins in the presence of BF3 / ether using microwave irradiation are the<br />

best alternative for preparation of these compounds [33] .<br />

O O O<br />

N,N-DEA<br />

Reflux, 24 h<br />

HO O O<br />

H 2SO 4<br />

HO O O O O O<br />

New derivatives of coumarin and angelicin, 8-acetyl-7-cyanomethoxy-4-methylchromen-2-one,<br />

8-acetyl-7-ethoxycarbonylmethoxy-4-methyl-chromen-2-one, 8-<br />

cyano-4,9-dimethyl-2H-furo[2,3-h]-1-chromen-2-one, and 8-ethoxycarbonyl-4,9-<br />

dimethyl-(2H-furo[2,3-h]-1-chromen-2-one) were obtained by conventional synthesis<br />

and by efficient and high-yielding microwave-assisted synthesis [34] .<br />

R 1O<br />

O<br />

O<br />

O<br />

R 1= -CH 2CN, CH 2COOC 2H 5<br />

chloroacetonitrile or<br />

ethyl chloro acetate<br />

K2CO3 Acetone<br />

HO<br />

O<br />

O<br />

O<br />

chloroacetonitrile or<br />

ethyl chloroacetate<br />

K 2CO 3<br />

1-methyl-2-pyrrolidone<br />

O<br />

R 2<br />

O O<br />

R2= CN, COOC 2H 5<br />

7-Chloroacetoxycoumarins 1a-d undergo unusual Fries rearrangement with<br />

dihydrofuro[2,3-h]coumarin-9-ones 2a-d formation (Scheme 1) [35]<br />

149


Chapter-5 Facile Synthesis of some novel…<br />

Cl<br />

O<br />

R 2<br />

O<br />

R 1<br />

O O<br />

AlCl 3<br />

a: R 1=R 2=H; b: R 1=Me, R 2=H; c: R 1=Me, R2=Cl; d: R 1=Me, R 2=Et<br />

R 2<br />

R 1<br />

O O O<br />

O O O<br />

O<br />

2 a-d 3 a-b<br />

Propargyloxycoumarins with BF3/Et2O and DMF resulted to pyranocoumarins, while<br />

with NMF gave furocoumarins.<br />

The treatment of 8-propargyloxy-benzo[f]coumarin with boron trifluoride diethyl<br />

etherate in N,N-dimethylformamide under reflux or MW irradiation resulted in<br />

pyrano[3,2-h]benzo[f] coumarin , while the furo[3,2-h]benzo[f]coumarin is received<br />

from the treatment with N-methylformamide under MW irradiation [36] .<br />

O<br />

O<br />

BF 3/Et 2O<br />

DMF<br />

NMF<br />

O O O<br />

O<br />

O<br />

O<br />

Regioselective synthesis of dihydrofurocoumarins and dihydropyranocoumarins in<br />

excellent yields from 4-prop-2-ynyloxy coumarin via a thiol mediated radical reaction<br />

is described. Alkenyl radicals are generated from easily available terminal alkynes<br />

and thiophenol. Thiophenol catalyzed the Claisen rearrangement of the 4-prop-2-<br />

ynyloxycoumarin ethers [37] .<br />

R<br />

O<br />

O O<br />

H<br />

SPh<br />

R<br />

O<br />

O O<br />

R<br />

O<br />

O<br />

O O<br />

R 1<br />

150<br />

O<br />

SPh


Chapter-5 Facile Synthesis of some novel…<br />

A simple and efficient synthesis of furo[3,2-c]coumarin derivatives from 4-<br />

hydroxycoumarin and α-haloketones via a tandem O-alkylation/cyclisation protocol is<br />

described [38] .<br />

OH<br />

O O<br />

X R<br />

R 1<br />

O<br />

AcOH/AcONH4 or piperidine<br />

Toluene<br />

O<br />

R<br />

O O<br />

R 1<br />

151


Chapter-5 Facile Synthesis of some novel…<br />

5.3 AIM OF CURRENT WORK<br />

Even though some methods of furocoumarin synthesis have been known for a long<br />

time, the successful use of furocoumarins having effective biological activity requires<br />

access to as many new derivatives as possible. With this aim several furo coumarins,<br />

having substituted aromatics attached to furan ring of furo coumarins were<br />

synthesized.<br />

5.4 REACTION SCHEME<br />

R 1<br />

OH<br />

O<br />

Br<br />

O<br />

R 1 = -CH 3, -diCH 3<br />

OH<br />

O<br />

Br<br />

O<br />

O<br />

R 2 = -OH, -OCH 3, -Cl, -F etc.<br />

HCHO<br />

EtOH<br />

R 2<br />

R 1<br />

EtOH<br />

Reflux<br />

O<br />

OH<br />

O<br />

R 2<br />

O<br />

OH<br />

O<br />

O<br />

O<br />

R 1<br />

O<br />

O<br />

152


Chapter-5 Facile Synthesis of some novel…<br />

5.5 EXPERIMENTAL<br />

Preparation of 2,3-dihydro-2-[2-hydroxybenzoyl]-4H-furo[3,2-c][1]benzopyran-<br />

4-one. (General Method)<br />

3-bromo 4-hydroxy coumarin (0.01 mmol) was dissolved in ethanol (40 ml) and<br />

further water was added (40 ml). To this formaldehyde (0.004 mmol) was added and<br />

the solution heated on boiling water-bath for 15 min. The yellowish mass which<br />

separated was filtered, washed with water, dried and crystallized from methanol to<br />

give 2,3-dihydro-2-[2-hydroxybenzoyl]-4H-furo[3,2-c][1]benzopyran-4-one as<br />

feathery needles. The purity of the compound is checked by TLC. (Chloroform:<br />

Methanol :: 9:1). [39]<br />

Preparation of 2,3-dihydro-2-(2-hydroxybenzoyl)-3-phenyl-4H-furo[3,2c][1]benzopyran-4-one.<br />

(General Method)<br />

To 3-bromo 4-hydroxy coumarin (0.01 mmol) in ethanol (25 ml) was added<br />

substituted benzaldehyde (0.012 mmol) and the mixture refluxed for 10-18 hr. Workup<br />

and crystallization from ethanol yielded 2,3-dihydro-2-(2-hydroxybenzoyl)-3phenyl-4H-furo[3,2-c][1]benzopyran-4-one.<br />

The purity of the compound is checked<br />

by TLC. (Chloroform: Methanol :: 9:1). [39]<br />

Similarly other derivatives were also synthesized on basis of above two general<br />

methods.<br />

153


Chapter-5 Facile Synthesis of some novel…<br />

5.6 PHYSICAL DATA<br />

PHYSICAL DATA TABLE OF 3-((12E)-(SUBSTITUTED 4-HYDROXY-2-<br />

OXO-2H-CHROMEN-3-YLIMINO)METHYL)-4-HYDROXY-2H-<br />

CHROMEN-2-ONES<br />

Sr.<br />

No<br />

Code Structure<br />

1 VNRFC-101<br />

OH<br />

O<br />

OMe<br />

OMe<br />

2 VNRFC-102 O<br />

3 VNRFC-103<br />

OH<br />

O<br />

OH<br />

O<br />

OH<br />

O<br />

O<br />

OMe<br />

O<br />

O<br />

OH<br />

4 VNRFC-104 O<br />

5 VNRFC-105 O<br />

6 VNRFC-106<br />

O<br />

OH<br />

O<br />

OH<br />

O<br />

Cl<br />

OH<br />

7 VNRFC-107 O<br />

8 VNRFC-108<br />

O<br />

O<br />

OH<br />

O<br />

F<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

Molecular<br />

formula<br />

C 26H 20O 7<br />

C24H 16O 6<br />

C 25H 18O 6<br />

C 28H 18O 5<br />

C 24H 16O 5<br />

C 24H 15FO 5<br />

C 24H 15ClO 5<br />

C 21H 18O 5<br />

Molec<br />

u-lar<br />

weight<br />

444.12<br />

400.38<br />

414.41<br />

434.44<br />

384.38<br />

402.37<br />

418.83<br />

350.36<br />

M. P.<br />

( o C)<br />

148-<br />

150<br />

190-<br />

192<br />

135-<br />

137<br />

188-<br />

190<br />

125-<br />

127<br />

187-<br />

189<br />

122-<br />

124<br />

110-<br />

112<br />

%<br />

Yield<br />

35%<br />

18%<br />

35%<br />

27%<br />

55%<br />

26%<br />

28%<br />

30%<br />

154


Chapter-5 Facile Synthesis of some novel…<br />

9 VNRFC-109 O<br />

10 VNRFC-110<br />

11 VNRFC-115<br />

12 VNRFC-116<br />

13 VNRFC-117<br />

14 VNRFC-118<br />

15 VNRFC-119<br />

S<br />

OH<br />

O<br />

O<br />

OH<br />

OH<br />

O<br />

OH<br />

O<br />

OH<br />

OH<br />

O<br />

O<br />

OH<br />

O<br />

Me<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

C 22H 18O 5S 394.44<br />

C 25H 18O 5<br />

C 18H 12O 5<br />

C 20H 16O 5<br />

C 22H 20O 5<br />

C 22H 20O 5<br />

C 22H 20O 5<br />

398.41<br />

308.28<br />

336.34<br />

364.39<br />

364.39<br />

364.39<br />

152-<br />

154<br />

170-<br />

172<br />

212-<br />

214 [39]<br />

198-<br />

200<br />

208-<br />

210<br />

192-<br />

194<br />

180-<br />

182<br />

15%<br />

38%<br />

67%<br />

62%<br />

55%<br />

57%<br />

55%<br />

155


Chapter-5 Facile Synthesis of some novel…<br />

5.7 SPECTRAL STUDY<br />

IR spectra<br />

Infra Red spectra were taken on Shimadzu FT-IR-8400 spectrometer using KBr<br />

pellet method. The characteristic aromatic group in furocoumarin moiety is observed<br />

at 3010-3090 cm -1 . Methylene (-CH2) observed at 1375 cm -1 .<br />

1 H NMR spectra<br />

1<br />

H NMR spectra were recorded on a Bruker AC 400 MHz NMR spectrometer using<br />

TMS (Tetramethyl Silane) as an internal standard and DMSO-d6 as a solvent. In the<br />

NMR spectra of 2-(2-hydroxy benzoyl) 3-(substituted phenyl) 2,3-dihydrofuro[3,2c]chromen-4-one<br />

derivatives various proton values of methylene (-CH2), methyl (-<br />

CH3) and aromatic protons (Ar-H) etc. were observed.<br />

Mass spectra<br />

The mass spectrum of compounds were recorded by Shimadzu GC-MS-QP-2010<br />

spectrometer. The mass spectrum of compounds was obtained by positive chemical<br />

ionization mass spectrometry. The molecular ion peak and the base peak in all<br />

compounds were clearly obtained in mass spectral study. The molecular ion peak<br />

(M + ) values are in good agreement with molecular formula of all the compounds<br />

synthesized.<br />

Elemental analysis<br />

Elemental analysis of the synthesized compounds was carried out on Vario EL-III<br />

Carlo Erba 1108 model at <strong>Saurashtra</strong> <strong>University</strong>, Rajkot which showed calculated<br />

and found percentage values of Carbon, Hydrogen and Nitrogen in support of the<br />

structure of synthesized compounds. The elemental analysis data are given for<br />

individual compounds.<br />

156


Chapter-5 Facile Synthesis of some novel…<br />

5.8 SPECTRAL CHARACTERIZATION<br />

2-(2-hydroxy benzoyl) 3-(3,4-dimethoxy phenyl) 2,3-dihydrofuro[3,2-c]chromen-4one<br />

(VNRFC-101)<br />

Yield: 35%; IR (cm - 1): 3535 (O-H str.), 3052 (Ar C=C-H str.), 2980 (Asym C-H str. -<br />

CH3), 2950 (Asym C-H str. -CH2), 2885 (Sym C-H str. -CH3), 2825 (Sym C-H str. -<br />

CH2), 1740 (-C=O str.), 1632, 1617, 1575 (Ar C=C str.), 1458 (C-H bend –CH2),<br />

1371 (C-H bend –CH3), 1176 (C-O str.) , 965 (-C-Cl str.), 715 (C-H oop def); Mass:<br />

[m/z (%)], M. Wt.: 444; Elemental analysis, Calculated: C, 70.26; H, 4.54; O,<br />

25.20 Found: C, 70.27; H, 4.12; O, 25.67.<br />

2-(2-hydroxy benzoyl) 3-(2-hydroxy phenyl) 2,3-dihydrofuro[3,2-c]chromen-4-one<br />

(VNRFC-102)<br />

Yield: 18%; IR (cm -1 ): 3547 (O-H str.), 3053 (Ar C=C-H str.), 2948 (Asym C-H str. -<br />

CH2), 2833 (Sym C-H str. -CH2), 1727 (-C=O str.), 1648, 1619, 1568 (Ar C=C str.),<br />

1477 (C-H bend –CH2), 1164 (C-O str.), 958 (-C-Cl str.), 721 (C-H oop def); Mass:<br />

[m/z (%)], M. Wt.: 400 Elemental analysis, Calculated: C, 72.00; H, 4.03; O, 23.98<br />

Found: C, 72.09; H, 4.15; O, 23.53.<br />

2-(2-hydroxy benzoyl) 3-(4-methoxy phenyl) 2,3-dihydrofuro[3,2-c]chromen-4-one<br />

(VNRFC-103)<br />

Yield: 35%; %; IR (cm -1 ): 3547 (O-H str.), 3070 (Ar C=C-H str.), 2970 (Asym C-H<br />

str. -CH3), 2938 (Asym C-H str. -CH2), 2882 (Sym C-H str. -CH3), 2833 (Sym C-H<br />

str. -CH2), 1735 (-C=O str.), 1643, 1624, 1562 (Ar C=C str.), 1475 (C-H bend –CH2),<br />

1369 (C-H bend –CH3), 1177 (C-O str.), 722 (C-H oop def); Mass: [m/z (%)], M.<br />

Wt.: 414 ; Elemental analysis, Calculated: C, 72.46; H, 4.38; O, 23.16; Found: C,<br />

72.61; H, 4.33; O, 23.26.<br />

157


Chapter-5 Facile Synthesis of some novel…<br />

2-(2-hydroxy<br />

(VNRFC -104)<br />

benzoyl) 3-(naphthalene) 2,3-dihydrofuro[3,2-c]chromen-4-one<br />

Yield: 27%; IR (cm -1 ): 3544 (O-H str.), 3068 (Ar C=C-H str.), 2946 (Asym C-H str. -<br />

CH2), 2837 (Sym C-H str. -CH2), 1724 (-C=O str.), 1631, 1609, 1565 (Ar C=C str.),<br />

1456 (C-H bend –CH2), 1176 (C-O str.), 712 (C-H oop def); Mass: [m/z (%)], M.<br />

Wt.: 434 ; Elemental analysis, Calculated: C, 77.41; H, 4.18; O, 18.41; Found: C,<br />

77.21; H, 4.28; O, 18.51.<br />

2-(2-hydroxy benzoyl) 3-(phenyl) 2,3-dihydrofuro[3,2-c]chromen-4-one (VNRFC -<br />

105)<br />

Yield: 55%; IR (cm - 1):3556 (O-H str.), 3073 (Ar C=C-H str.), 2949 (Asym C-H str. -<br />

CH2), 2838 (Sym C-H str. -CH2), 1725 (-C=O str.), 1643, 1618, 1577 (Ar C=C str.),<br />

1465 (C-H bend –CH2), 1182 (C-O str.), 724 (C-H oop def); Mass: [m/z (%)], M.<br />

Wt.: 384 ; Elemental analysis, Calculated: C, 74.99; H, 4.20; O, 20.81; Found: C,<br />

74.15; H, 4.27; O, 20.05.<br />

2-(2-hydroxy benzoyl) 3-(4-fluoro phenyl) 2,3-dihydrofuro[3,2-c]chromen-4-one<br />

(VNRFC -106)<br />

Yield: 26%; IR (cm -1 ): 3546 (O-H str.), 3072 (Ar C=C-H str.), 2942 (Asym C-H str. -<br />

CH2), 2841 (Sym C-H str. -CH2), 1723 (-C=O str.), 1642, 1614, 1574 (Ar C=C str.),<br />

1464 (C-H bend –CH2), 1177 (C-O str.), 720 (C-H oop def), 668 (C-F str.); Mass:<br />

[m/z (%)], M. Wt.: 402 ; Elemental analysis, Calculated: C, 71.64; H, 3.76; O,<br />

19.88; Found: C, 71.65; H, 3.44; O, 19.78.<br />

2-(2-hydroxy benzoyl) 3-(2-chloro phenyl) 2,3-dihydrofuro[3,2-c]chromen-4-one<br />

(VNRFC-107)<br />

Yield: 28%; IR (cm -1 ): 3550 (O-H str.), 3068 (Ar C=C-H str.), 2941 (Asym C-H str. -<br />

CH2), 2835 (Sym C-H str. -CH2), 1730 (-C=O str.), 1639, 1612, 1572 (Ar C=C str.),<br />

1469 (C-H bend –CH2), 1176 (C-O str.), 962 (-C-Cl str.), 719 (C-H oop def); 1 H<br />

NMR 400 MHz: (CDCl3, δ ppm): 4.22 (s, 1H), 6.33 (s, 1H), 7.39 (m, 8H), 7.53 (s,<br />

158


Chapter-5 Facile Synthesis of some novel…<br />

1H), 4.20 (s, 1H), 6.82 (d, 1H), 7.02 (m, 1H), 7.19 (s, 1H); Mass: [m/z (%)], M. Wt.:<br />

334(M+), 336(M+2) ; Elemental analysis, Calculated: C, 68.82; H, 3.61; O, 19.10<br />

Found: C, 68.73; H, 3.58; O, 19.05.<br />

2-(2-hydroxy benzoyl) 3-(isopropyl) 2,3-dihydrofuro[3,2-c]chromen-4-one (VNRFC<br />

-108)<br />

Yield: 30%; IR (cm -1 ): 3538 (O-H str.), 3077 (Ar C=C-H str.), 2934 (Asym C-H str. -<br />

CH2), 2857 (Sym C-H str. -CH3), 2833 (Sym C-H str. -CH2), 1738 (-C=O str.), 1642,<br />

1619, 1574 (Ar C=C str.), 1463 (C-H bend –CH2), 1362, 1380 (isopropyl bend.), 1374<br />

(C-H bend –CH3), 1174 (C-O str.), 718 (C-H oop def); Mass: [m/z (%)], M. Wt.:<br />

350 ; Elemental analysis, Calculated: C, 71.99; H, 5.18; O, 22.83; Found: C, 71.89;<br />

H, 5.22; O, 22.67.<br />

2-(2-hydroxy benzoyl) 3-(tetrahydrothiophen-2-yl) 2,3-dihydrofuro[3,2-c]chromen-<br />

4-one (VNRFC -109)<br />

Yield: 15%; IR (cm -1 ): 3553 (O-H str.), 3069 (Ar C=C-H str.), 2937 (Asym C-H str. -<br />

CH2), 2831 (Sym C-H str. -CH2), 1733 (-C=O str.), 1642, 1617, 1576 (Ar C=C str.),<br />

1466 (C-H bend –CH2), 1178 (C-O str.), 732 (C-H oop def); Mass: [m/z (%)], M.<br />

Wt.: 394 ; Elemental analysis, Calculated: C, 66.99; H, 4.60; O, 20.28; Found: C,<br />

66.83; H, 4.62; N, 20.31.<br />

2-(2-hydroxy benzoyl) 3-(tetrahydrothiophen-2-yl) 2,3-dihydrofuro[3,2-c]chromen-<br />

4-one (VNRFC -110)<br />

Yield: 38%; IR (cm -1 ): 3554 (O-H str.), 3078 (Ar C=C-H str.), 2968 (Asym C-H str. -<br />

CH3), 2942 (Asym C-H str. -CH2), 2875 (Sym C-H str. -CH3), 2836 (Sym C-H str. -<br />

CH2), 1742 (-C=O str.), 1644, 1626, 1567 (Ar C=C str.), 1481 (C-H bend –CH2),<br />

1372 (C-H bend –CH3), 1173 (C-O str.), 719 (C-H oop def); Mass: [m/z (%)], M.<br />

Wt.: 398 ; Elemental analysis, Calculated: C, 75.37; H, 4.55; O, 20.08; Found: C,<br />

75.33; H, 4.17; O, 20.12.<br />

159


Chapter-5 Facile Synthesis of some novel…<br />

2-(2-hydroxy benzoyl) 2,3-dihydrofuro[3,2-c]chromen-4-one (VNRFC -115)<br />

Yield: 67%; IR (cm -1 ): 3565 (O-H str.), 3082, 3049 (Ar C=C-H str.), 2906 (Asym C-<br />

H str. -CH2), 2880 (Sym C-H str. -CH2), 1743 (-C=O str.), 1624, 1595, 1546 (Ar C=C<br />

str.), 1450 (C-H bend –CH2), 1153 (C-O str.), 962 (-C-Cl str.), 719 (C-H oop def); 1 H<br />

NMR 400 MHz: (CDCl3, δ ppm): 3.11 (m, 1H), 3.65 (m, 1H), 6.97 (t, 1H), 7.04 (d,<br />

1H), 7.41 (m, 2H), 7.53 (t, 1H), 7.67 (m, 1H), 7.74 (m, 1H), 7.85 (m, 1H) Mass: [m/z<br />

(%)], M. Wt.: = 308; Elemental analysis, Calculated: C, 70.13; H, 3.92; O, 25.95;<br />

Found: C, 70.08; H, 3.85; O, 25.78.<br />

2-(2-hydroxy 6-methyl benzoyl) 2,3-dihydrofuro[3,2-c]chromen-4-one (VNRFC -<br />

116)<br />

Yield: 62%; IR (cm -1 ): 3552 (O-H str.), 3068 (Ar C=C-H str.), 2971 (Asym C-H str. -<br />

CH3), 2935 (Asym C-H str. -CH2), 2883 (Sym C-H str. -CH3), 2829 (Sym C-H str. -<br />

CH2), 1732 (-C=O str.), 1645, 1627, 1559 (Ar C=C str.), 1477 (C-H bend –CH2),<br />

1371 (C-H bend –CH3), 1175 (C-O str.), 721 (C-H oop def); Mass: [m/z (%)], M.<br />

Wt.: 336; Elemental analysis, Calculated: C, 71.42; H, 4.79; O, 23.78 Found: C,<br />

71.35; H, 4.74; O, 23.82.<br />

2-(2-hydroxy 3,4-dimethyl benzoyl) 2,3-dihydrofuro[3,2-c]chromen-4-one (VNRFC<br />

-117)<br />

Yield: 55%; IR (cm -1 ): 3546 (O-H str.), 3073 (Ar C=C-H str.), 2975 (Asym C-H str. -<br />

CH3), 2942 (Asym C-H str. -CH2), 2884 (Sym C-H str. -CH3), 2836 (Sym C-H str. -<br />

CH2), 1732 (-C=O str.), 1641, 1628, 1566 (Ar C=C str.), 1471 (C-H bend –CH2),<br />

1371 (C-H bend –CH3), 1174 (C-O str.), 722 (C-H oop def); Mass: [m/z (%)], M.<br />

Wt.: 364; Elemental analysis, Calculated: C, 72.51; H, 5.53; O, 21.95; Found: C,<br />

72.38; H, 5.85; O, 21.77.<br />

160


Chapter-5 Facile Synthesis of some novel…<br />

2-(2-hydroxy 3,5-dimethyl benzoyl) 2,3-dihydrofuro[3,2-c]chromen-4-one (VNRFC<br />

-118)<br />

Yield: 57%; IR (cm -1 ): 3550 (O-H str.), 3074(Ar C=C-H str.), 2968 (Asym C-H str. -<br />

CH3), 2935 (Asym C-H str. -CH2), 2883 (Sym C-H str. -CH3), 2835 (Sym C-H str. -<br />

CH2), 1732 (-C=O str.), 1644, 1627, 1561 (Ar C=C str.), 1476 (C-H bend –CH2),<br />

1373 (C-H bend –CH3), 1174 (C-O str.), 720 (C-H oop def); Mass: [m/z (%)], M.<br />

Wt.: 364; Elemental analysis, Calculated: C, 72.51; H, 5.53; O, 21.95; Found: C,<br />

72.63; H, 5.59; O, 21.44.<br />

2-(2-hydroxy 4,6-dimethyl benzoyl) 2,3-dihydrofuro[3,2-c]chromen-4-one (VNRFC<br />

-119)<br />

Yield: 55%; IR (cm -1 ): 3545 (O-H str.), 3068 (Ar C=C-H str.), 2971 (Asym C-H str. -<br />

CH3), 2942 (Asym C-H str. -CH2), 2885 (Sym C-H str. -CH3), 2837 (Sym C-H str. -<br />

CH2), 1732 (-C=O str.), 1638, 1614, 1557 (Ar C=C str.), 1478 (C-H bend –CH2),<br />

1374 (C-H bend –CH3), 1175 (C-O str.), 719 (C-H oop def); Mass: [m/z (%)], M.<br />

Wt.: 364; Elemental analysis, Calculated: C, 72.51; H, 5.53; O, 21.95; Found: C,<br />

72.45; H, 5.59; O, 21.88.<br />

161


Chapter-5 Facile Synthesis of some novel…<br />

5.9 REPRESENTATIVE SPECTRA<br />

IR spectrum of 2-(2-hydroxy benzoyl) 3-(2-chloro phenyl) 2,3-dihydrofuro[3,2c]chromen-4-one<br />

(VNRFC-107)<br />

105<br />

%T<br />

90<br />

75<br />

60<br />

45<br />

30<br />

15<br />

0<br />

-15<br />

3600 3200<br />

VNRFC-107<br />

3068.85<br />

2912.61<br />

2800<br />

2400<br />

1938.52<br />

1919.24<br />

2000<br />

1795.79<br />

1730.21<br />

1800<br />

600 400<br />

1/cm<br />

IR spectrum of 2-(2-hydroxy benzoyl) 2,3-dihydrofuro[3,2-c]chromen-4-one<br />

(VNRFC-115)<br />

100<br />

%T<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

OH<br />

O<br />

3600 3200<br />

VNRFC-115<br />

OH<br />

O<br />

3196.15<br />

3055.35<br />

2924.18<br />

O<br />

O<br />

O<br />

O<br />

Cl<br />

O<br />

2800<br />

O<br />

2357.09<br />

2341.66<br />

2400<br />

2000<br />

1707.06<br />

1800<br />

1670.41<br />

1639.55<br />

1572.04<br />

1600<br />

1649.19<br />

1606.76<br />

1600<br />

1494.88<br />

1442.80<br />

1384.94<br />

1572.04<br />

1487.17<br />

1417.73<br />

1338.64<br />

1400<br />

1332.86<br />

1400<br />

1309.71<br />

1284.63<br />

1217.12<br />

1176.62<br />

1111.03<br />

1051.24<br />

1200<br />

1298.14<br />

1263.42<br />

1238.34<br />

1190.12<br />

1159.26<br />

1091.75<br />

1033.88<br />

1200<br />

962.51<br />

922.00<br />

1000<br />

1000<br />

920.08<br />

871.85<br />

835.21<br />

761.91<br />

800<br />

825.56<br />

800<br />

719.47<br />

696.33<br />

650.03<br />

582.52<br />

754.19<br />

729.12<br />

694.40<br />

611.45<br />

553.59<br />

534.30<br />

466.79<br />

443.64<br />

449.43<br />

600 400<br />

1/cm<br />

162


Chapter-5 Facile Synthesis of some novel…<br />

Mass spectrum of 2-(2-hydroxy benzoyl) 3-(2-chloro phenyl) 2,3dihydrofuro[3,2-c]chromen-4-one<br />

(VNRFC-101)<br />

OH<br />

O<br />

OMe<br />

OMe<br />

O<br />

O<br />

O<br />

Mass spectrum of 2-(2-hydroxy benzoyl) 2,3-dihydrofuro[3,2-c]chromen-4-one<br />

(VNRFC -115)<br />

OH<br />

O<br />

O<br />

O<br />

O<br />

163


Chapter-5 Facile Synthesis of some novel…<br />

1 H NMR spectrum of 2-(2-hydroxy benzoyl) 3-(2-chloro phenyl) 2,3dihydrofuro[3,2-c]chromen-4-one<br />

(VNRFC-107)<br />

OH<br />

O<br />

O<br />

O<br />

Expanded 1 H NMR spectrum of 2-(2-hydroxy benzoyl) 3-(2-chloro phenyl) 2,3dihydrofuro[3,2-c]chromen-4-one<br />

(VNRFC-107)<br />

OH<br />

O<br />

O<br />

O<br />

Cl<br />

O<br />

Cl<br />

O<br />

164


Chapter-5 Facile Synthesis of some novel…<br />

1<br />

H NMR spectrum of 2-(2-hydroxy benzoyl) 2,3-dihydrofuro[3,2-c]chromen-4one<br />

(VNRFC -115)<br />

Expanded 1 H NMR spectrum of 2-(2-hydroxy benzoyl) 2,3-dihydrofuro[3,2c]chromen-4-one<br />

(VNRFC -115)<br />

OH<br />

O<br />

OH<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

165


Chapter-5 Facile Synthesis of some novel…<br />

5.10 RESULT & DISCUSSION<br />

Present work covers the synthesis of some novel furocoumarin compounds. The main<br />

significance of the present work is that the said molecules are synthesized in a one pot<br />

synthetic process with reaction time ranging from 10 hr to 18 hr. It was found that<br />

VNRFC-102 and VNRFC-109 were obtained in extremely less yields.<br />

5.11 CONCLUSION<br />

Total 15 derivatives of 2-(substituted 2-hydroxy benzoyl) 2,3-dihydrofuro[3,2c]chromen-4-one<br />

and 2-(2-hydroxy benzoyl) 3-(substituted phenyl) 2,3dihydrofuro[3,2-c]chromen-4-one<br />

were synthesized. All the newly synthesized<br />

compounds were characterized by IR, 1 H NMR, 13 C NMR, Mass spectral data and<br />

elemental analysis.<br />

166


Chapter-5 Facile Synthesis of some novel…<br />

5.12 REFERENCES<br />

[1] IUPAC, Compendium of Chemical Terminology, 1997, 2 nd ed. (the "Gold<br />

Book"). Online corrected version: 2006 "furanocoumarins".<br />

[2] Professor May Berenbaum's research page - <strong>University</strong> of Illinois at Urbana-<br />

Champaign<br />

[3] Kakar SM, Paine MF, Stewart PW, Watkins PB Clinical Pharmacology and<br />

Therapeutics, 2004, 75 (6): 569-579.<br />

[4] Murray, R.D.H. The Natural Coumarins, Occurrence, Chemistry and<br />

Biochemistry; Wiley-Interscience: New York, 1982.<br />

[5] Fahr, E. Pharmazeutische Zeitung 1982, 127, 163.<br />

[6] Edelson, R.L. J. Photochem. Photobiol., B: Biol. 1991, 10, 165.<br />

[7] Guiotto, A.; Chilin, A.; Manzini, P.; Dall’Aqua, F.; Bordin, F.; Rodighiero, P.<br />

Il Farmaco 1995,50, 479.<br />

[8] Saffran, W.A. In Psoralen DNA Photobiology; Gasparro, F.P., Ed.; CRC<br />

Press, Inc.: Boca Raton, Fl, 1988; vol.11, Chapter 6, p. 73.<br />

[9] Dall’Aqua, F.; Vedaldi, D.; Caffieri, S.; Guiotto, A.; Rodighiero, P.;<br />

Carrlassare, F.; Bordin, F. J.Med. Chem. 1981, 24, 178.<br />

[10] Guiotto, A.; Rodighiero, P.; Manzini, P.; Pfstorini, G.; Carlassare, F.; Vedaldi,<br />

D. J. Med. Chem.1984, 27, 959.<br />

[11] Bordin, F.; Carlassare, F.; Baccichetti, F.; Guiotto, A.; Rodighiero, P.;<br />

Vedaldi, D.; Dall’Aqua, F.Photochem. Photobiol. 1979, 29, 1063.<br />

[12] Dall’Aqua, F.; Vedaldi, D.; Guiotto, A.; Rodighiero, P.; Carlassare, F.;<br />

Baccichetti, F.; Bordin, F.J. Med. Chem. 1981, 24, 806.<br />

[13] Guiotto, A.; Rodighiero, P.; Pastorini, G.; Manzini, P.; Bordin, F.; Baccichetti,<br />

F.; Carlassare, F.;Vedaldi, D.; Dall’Aqua, F. Eur. J. Med., Chem-Chim. Ther.<br />

1981, 16, 489.<br />

[14] Dall’Aqua, F.; Vedaldi, D.; Bordin, Baccichetti, F.;Carlassare, F.; Tamaro, M.;<br />

Guiotto, A.;Rodighiero, P.; Pastorini, G.; Recchia, G.; Cristofolini, M. J. Med.<br />

Chem. 1983, 26, 870.<br />

[15] Vedaldi, D.; Dall’Aqua, F.; Baccichetti, F.;Carlassare, F.; Bordin, F.;<br />

Baccichetti, F.;Guiotto, A.;Rodighiero, P.; Manzini, P. Il Farmaco 1991, 46,<br />

1381.<br />

167


Chapter-5 Facile Synthesis of some novel…<br />

[16] Demaret, J.-P.; Brunie, S.; Ballini, J.-P.; Cadet, J.; Vigny, P. J. Photochem.<br />

Photobiol., B: Biol.1990, 6, 207.<br />

[17] Caffieri, S.; Vedaldi, D.; Chilin, A.; Pozzan, A. J. Photochem. Photobiol., B:<br />

Biol., 1994, 22, 151.<br />

[18] Chen, X.; Kagan, J. J. Photochem. Photobiol., B: Biol. 1994, 23, 27.<br />

[19] Csik, G.; Ronto G.; Nocentini, S; Averbeck, S; Averbeck, D. J. Photochem.<br />

Photobiol., B: Biol. 1994, 24, 129.<br />

[20] Chen, X.; Kagan, J. J. Photochem. Photobiol., B: Biol. 1994, 22, 51.<br />

[21] Chilin, A.; Marzano, C.; Guiotto, A.; Manzini, P.; Baccichetti, F.;Carlassare,<br />

F.; Bordin, F. J. Med.Chem. 1999, 42, 2936.<br />

[22] Dallavia, L.; Gia, O.; Magno, S.M.; Santana, L.; Teijeira, M.; Uriarte, E. J.<br />

Med. Chem. 1999, 42,4405.<br />

[23] Pathak, M. A.; Fitzpatrick, T. B. The evolution of photo-chemotherapy with<br />

psoralens and UVA; 2000 BC to 1992AD. J. Photochem. Photobiol. 1999, 14,<br />

3-22.<br />

[24] Leonardi, T.; Vanamala, J.; Taddeo, S. S.; Murphy, M. E.; Patil, B. S.; Wang,<br />

N.; Chapkin, R. S.; Lupton, J. R.; Turner, N. D. Apigenin and naringenin<br />

suppress high multiplicity aberrant crypt foci formation and cell proliferation<br />

in rate colon. FASEB J. 2004, 18, A348.344.<br />

[25] Texas House Concurrent Resolution No. 75, 73rd Legislature, Regular<br />

Session, 1993.<br />

[26] Keshab G., Molbank 2004, 2004(1), M382<br />

[27] C. M. Wu et al, Appl Microbiol. 1972 May; 23(5): 852–856.<br />

[28] Chem. Abstr., 1986, 40, 291<br />

[29] R. Mahajan, Nematol. Medit., 1992, 20, 217-219.<br />

[30] Banerjee S.K. et al, Phytochemistry, 1980, 19(6), 1256 - 1258.<br />

[31] William D. Wulff et al J. Am. Chem. Soc., 1988, 110(22), 7419–7434.<br />

[32] Valery F. Traven, Molecules 2004, 9, 50-66.<br />

[33] Mohammad S., ECSOC-5, 2001, paper-e0002.<br />

[34] Elżbieta Hejchman et. al., Synthetic Communications, 2011, 41(16), 2392-<br />

2402.<br />

168


Chapter-5 Facile Synthesis of some novel…<br />

[35] Valery F. Traven, Arkivoc, 2000 (iv) 523-562.<br />

[36] Konstantinos E. Litinas et. al Tetrahedron, 66, 2010, 6, 1289-1293.<br />

[37] K.C. Majumdar; P. Debnath; P.K. Maji; Tetrahedron Letters, 2007, 48(30),<br />

5265-5268.<br />

[38] Francesco Risitano, Tetrahedron Letters, 2001, 42(20), 3503-3505.<br />

[39] Rahman K.; Khan K.; Indian Journal of Chemistry, 1990, 29B, 941-943.<br />

169


Chapter‐6<br />

PREPARATION OF NOVEL<br />

PYRIDO PYRIMIDINE‐2‐ONE DERIVATIVES


Chapter-6 Preparation of novel pyrido pyrimidine-2-one…<br />

6.1 INTRODUCTION<br />

Pyrimidine is a heterocyclic aromatic organic compound similar<br />

to benzene and pyridine, containing two nitrogen atoms at positions 1 and 3 of the six-<br />

member ring. [1] It is isomeric with two other forms of diazine: Pyridazine, with the<br />

nitrogen atoms in positions 1 and 2; and Pyrazine, with the nitrogen atoms in<br />

positions 1 and 4.<br />

N<br />

N<br />

pyrimidine<br />

A pyrimidine has many properties in common with pyridine, as the number of<br />

nitrogen atoms in the ring increases the ring pi electronsbecome less energetic<br />

and electrophilic aromatic substitution gets more difficult while nucleophilic aromatic<br />

substitution gets easier. An example of the last reaction type is the displacement of<br />

the amino group in 2-aminopyrimidine by chlorine [2] and its reverse. [3] Reduction<br />

inresonance stabilization of pyrimidines may lead to addition and ring cleavage<br />

reactions rather than substitutions. One such manifestation is observed in the Dimroth<br />

rearrangement.<br />

Compared to pyridine, N-alkylation and N-oxidation is more difficult, and<br />

pyrimidines are also less basic: The pKa value for protonated pyrimidine is 1.23<br />

compared to 5.30 for pyridine. Pyrimidine also is found in meteorites, although<br />

scientists still do not know its origin. Pyrimidine also photolytically decomposes into<br />

Uracil under UV light. [4]<br />

Heterocyclic rings have played an important role in medicinal chemistry, serving as<br />

key templates central to the development of numerous important therapeutic agents<br />

[5]<br />

. Pyrimidine derivatives have found application in a wide range of medicinal<br />

chemistry because of their diverse biological activities, such as antimicrobial [6] ,<br />

antitumor and antifungal activities [7] , also these compounds are considered to be<br />

important for drugs and agricultural chemicals [8-10] . These chemotherapeutic<br />

applications of pyrimidine derivatives prompted us to the synthesis of some<br />

170


Chapter-6 Preparation of novel pyrido pyrimidine-2-one…<br />

substituted pyrimidines in a facil pathway. Recently, several methods have been<br />

reported for the synthesis of pyrimidine derivatives. In one method aldehydes, βdicarbonyl<br />

compounds, and urea/thiourea were reacted in the presence of a catalytic<br />

amount of tetrachlorosilane in DMF at normal ambient temperature [11] . The synthesis<br />

of 2-thiopyrimido benzimidazole derivatives under condensation of 4-isothiocyanato-<br />

4-methyl-2-pentanone and 3,3-diaminobenzidine in absolute methanol under refluxing<br />

conditions is the other method [12] . Pyrimidine derivatives also can be prepared by<br />

reaction of certain amides with carbonitriles under electrophilic activation of the<br />

amide with 2-chloro-pyridine and trifluoromethanesulfonic anhydride [13] . However,<br />

these methods suffer from drawbacks, such as longer reaction time, complicated<br />

workup, and low yield.<br />

In recent years, dihydropyrimidine-2(1H)one derivatives have gained much interest<br />

for their biological and pharmaceuticals Properties such as HIV gp-120-CD4<br />

inhibitors [14] , calcium channel blockers [15] , α-adrenergic and neuropeptide Y<br />

antagonists [16] , as well as antihypertensive, antitumor, antibacterial, antiinflammatory<br />

[17] agent. The scope of this pharmacophore has been further increased<br />

by the identification of the Monostrol as a novel as a cell-permeable lead compound<br />

for the development of the new anticancer drugs [18] bearing the dihydropyrimidones<br />

core. Thus the development of facile and environmental friendly synthetic method<br />

towards dihydropyrimidines constitute active area of investigation of in organic<br />

synthesis, the first synthetic method for the preparation of dihydropyrimidine-2(1H)<br />

ones (DHPMs) was recorded by Biginelli [19] , that involves the one pot three<br />

component condensation of aldehyde, 1, 3-dicarbonyl compounds and urea or<br />

thiourea in ethanol under strongly acidic conditions producing DHPMs, albeit in low<br />

yields. In the view of the pharmaceuticals importance of these compounds many<br />

improved catalytic methods have been developed [20-24] . Although these methods have<br />

their long reaction time, harsh reaction conditions, unsatisfactory yield and use of<br />

large quantity of catalyst. Therefore improvements with respect to the above have<br />

been continuously sought. In this paper we wish to report an efficient environment<br />

friendly procedure for the synthesis of DHPMs for aryl aldehyde using 5sulphosalicyclic<br />

acid catalyst in microwave irradiation system.<br />

171


Chapter-6 Preparation of novel pyrido pyrimidine-2-one…<br />

Several catalysts like PPA, AlCl3, H3BO3, conc., BF3OEt, NH4Cl, CAN, NBS,<br />

triflates of lanthanide compounds and In, Bi, Cu, along with microwave irradiation<br />

etc. have been tried [25-29] to improve yields and conditions of Biginelli reaction.<br />

However, all these several methods involving these various catalyst suffer from one<br />

or the other drawback like, expensive reagents i.e., triflates of Bi, Cu, lanthanides etc.,<br />

prolonged reaction time, and strongly acidic conditions, unsatisfactory yields and<br />

tedious workup procedures (e.g. acidic alumina) for the isolation of the pure product<br />

in good yields. Catalysts like, ferric oxide nano composites is effective and give good<br />

result, but the preparation procedure of this catalyst is very difficult. This requires the<br />

development of a new catalyst for high yield and the lack of inexpensive reagent,<br />

which requires shorter reaction time and with easier workup procedure. In this paper<br />

we wish to report an efficient environment friendly procedure for the synthesis of<br />

DHPMs for aryl aldehyde using 5-<br />

sulphosalicyclic acid catalyst in microwave irradiation system.<br />

Three nucleobases found in nucleic acids, cytosine (C), thymine (T), and uracil (U),<br />

are pyrimidine -2-ones:<br />

NH 2<br />

N<br />

O<br />

NH<br />

NH<br />

N<br />

H<br />

O N<br />

H<br />

O N<br />

H<br />

O<br />

Cytosine Thymine Uracil<br />

P. Biginelli reported the synthesis of functionalized 3,4-dihydropyrimidin-2(1H)-ones<br />

(DHPMs) via three-component condensation reaction of an aromatic aldehyde, urea,<br />

and ethyl acetoacetate. In the past decade, this multicomponent reaction has<br />

experienced a remarkable revival, mainly due to the interesting pharmacological<br />

properties associated with this dihydropyrimidine scaffold.<br />

O<br />

O<br />

O<br />

+<br />

H<br />

H3C O H2N R<br />

NH 2<br />

O<br />

H +<br />

EtOH/Heat<br />

O<br />

O<br />

O<br />

H 3C<br />

N<br />

H<br />

R<br />

NH<br />

O<br />

172


Chapter-6 Preparation of novel pyrido pyrimidine-2-one…<br />

H<br />

O N O<br />

HN<br />

a<br />

F<br />

H<br />

O N O<br />

HN<br />

b<br />

H<br />

O N O<br />

Gielen-Haertwig, et. al., have reported diaryl-dihydropyrimidin-2-ones as human<br />

neutrophil elastase inhibitors [30] .<br />

Coskun et. al., has reported N-Substituted pyrimidines - quinazolin-1-oxides [31]<br />

R<br />

N<br />

Ozaki, et. al., has reported pyrimidine derivative having potential anti-inflammatory<br />

activity [32].<br />

R<br />

Lowe, et. al., have reported quinazolinedione inhibitors of calcium independent<br />

phosphodiesterase [33]<br />

N<br />

NH<br />

N<br />

N<br />

SH<br />

O<br />

CF 3<br />

N<br />

O<br />

O<br />

HN<br />

O<br />

c<br />

173


Chapter-6 Preparation of novel pyrido pyrimidine-2-one…<br />

OH<br />

N<br />

N<br />

O<br />

COOMe<br />

Tuan P. has reported A facile synthesis of substituted 3-amino-1H quinazoline-2,4diones<br />

[34]<br />

F<br />

F<br />

Me<br />

Baraka, et. al., have reported 2,4(1H,3H)-quinaolinedione derivatives with analgesic<br />

and antiinflammatory activities [35]<br />

Kashima, et. al., have reported Antiinflammatory activity of 2(1H)-pyrimidinones and<br />

their salts [36]<br />

N<br />

O<br />

N<br />

OH<br />

N<br />

NH<br />

N<br />

NH<br />

R<br />

O<br />

O<br />

OEt<br />

O<br />

174


Chapter-6 Preparation of novel pyrido pyrimidine-2-one…<br />

6.2 SYNTHETIC ASPECT<br />

Synthesis of functionalized 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) via three-component<br />

condensation reaction of an aromatic aldehyde, urea, and ethyl acetoacetate [37] .<br />

R 1<br />

O<br />

H<br />

O<br />

H 2N<br />

R 2<br />

O<br />

O<br />

O R 3<br />

NH 2<br />

EtOH<br />

H<br />

H<br />

R 1<br />

N<br />

O<br />

N<br />

O O<br />

Pyrimidine-2-one reacted with all three alkylating agents furnishing the respective N1alkylated<br />

products (a), (b) and (c) in 60, 95, and 60% yields, respectively [38] .<br />

CCl 3<br />

N<br />

H<br />

N<br />

O<br />

(i)<br />

60%<br />

95%<br />

60%<br />

H 2N<br />

O<br />

CCl 3<br />

N<br />

N<br />

CCl 3<br />

N<br />

O<br />

R 3<br />

N O<br />

EtO OEt<br />

Cl 3C<br />

O<br />

O<br />

CCl 3<br />

N<br />

OMe<br />

(i) 2-chloroacetamide<br />

(ii) Diethyl 2-bromomalonate<br />

(iii) 5-bromo-1,1,1-trichloro-4-methoxypent-3-en-2one<br />

(ii)<br />

(iii)<br />

O<br />

N<br />

O<br />

(a)<br />

H<br />

R 2<br />

(b)<br />

(c)<br />

175


Chapter-6 Preparation of novel pyrido pyrimidine-2-one…<br />

S. Balalaie reported reaction with 1,3-dicarbonyl compound, phenylglyoxal<br />

monohydrate, urea and zinc chloride by heating in ethanol under reflux condition to<br />

obtain dihydropyrimidine-2-ones [39] .<br />

O<br />

O<br />

O O<br />

Ph O<br />

H2N NH2 H<br />

A:ZnCl2, EtOH, Reflux<br />

B:ZnCl2;AlCl3(1:3), Silica gel, M.W<br />

J. Ghomi, showed approach to synthesis of pyrimidine-2-ones under ultrasound<br />

irradiation by reacting chalcone derivatives with urea in the presence of potassium<br />

hydroxide in ethanol to produce the pyrimidine-2-one derivatives [40] .<br />

O<br />

R H 2N NH 2<br />

O<br />

R<br />

KOH<br />

EtOH<br />

R= H,2-CH 3,3 -CH 3, 4 -CH 3, 2 -OCH 3, 4 -OCH 3, 2,4 -OCH 3, N(Me) 2<br />

A<br />

B<br />

R<br />

O<br />

O<br />

N<br />

H<br />

Ph<br />

NH<br />

HN NH<br />

The facile preparation of 3,4-dihydropyrimidine-2-one derivatives with traceless<br />

solid-phase sulfone linker strategy is described. Key steps involved in the solid-phase<br />

synthetic procedure include (i) sulfinate acidification, (ii) condensation of urea or<br />

thiourea with aldehydes and sulfinic acid, and (iii) traceless product release via a onepot<br />

cyclization−dehydration process. A library of 18 compounds was synthesized [41] .<br />

SO 2 - Na +<br />

steps<br />

(i) - (iii)<br />

HN<br />

R<br />

O N R3 H<br />

4-Alkyl and 4-cycloalkyl substituted 1H-pyrimidin- 2-ones were prepared from the<br />

corresponding b-keto acetals by reaction with urea. 4-Ph derivative 3 was prepared<br />

R 1<br />

R 2<br />

O<br />

O<br />

176


Chapter-6 Preparation of novel pyrido pyrimidine-2-one…<br />

from 2,4-dichloro-pyrimidine by selective Suzuki coupling and subsequent hydrolysis<br />

of the remaining chloride [42] .<br />

R<br />

Cl<br />

O<br />

Cl<br />

N N<br />

O<br />

H OMe<br />

NaOMe, DEE<br />

H 2SO 4, MeOH<br />

aq. KOH<br />

O<br />

OMe<br />

R OMe<br />

R= (a) Me, (b) cyclopr. (c) cyclobut. (d) cyclohex.<br />

Cl<br />

PhB(OH) 2, Pd(PPh3) 4<br />

K2CO3, PhCH3, MeOH N N<br />

Ph<br />

Urea, HCl<br />

EtOH<br />

conc. HCl<br />

Ph<br />

O<br />

N NH<br />

O<br />

N NH<br />

177


Chapter-6 Preparation of novel pyrido pyrimidine-2-one…<br />

6.3 AIM OF CURRENT WORK<br />

The aim of current work was to synthesize fused Pyrido[4,3-d] pyrimidine-2-ones having<br />

methyl sulfonyl group. These compounds are not reported in literature and therefore, it was<br />

aimed develop methyl sulfonyl bearing compounds.<br />

6.4 REACTION SCHEME<br />

O<br />

N<br />

SO2Me N<br />

H N<br />

PTSA,Toluene<br />

N<br />

SO2CH3 F 3C<br />

O<br />

TEA, Toleune<br />

Cl<br />

R'<br />

O<br />

O<br />

N<br />

SO2CH3 H<br />

N NH 2<br />

R'<br />

O<br />

N<br />

O<br />

N<br />

N<br />

SO2CH3 Ethanol<br />

HCl<br />

178<br />

CF 3<br />

CF 3


Chapter-6 Preparation of novel pyrido pyrimidine-2-one…<br />

6.5 EXPERIMENTAL<br />

Preparation of N-(mathanesulphonyl) 3-ene 4-(4-methyl piperidyl)<br />

piperidine.<br />

Take 1-methane sulfonyl-piperidin-4-one (0.01 mole) and catalytic amount of ptoluene<br />

sulfonic acid (PTSA) monohydrade (0.5 g) in 9 ml toluene at room<br />

temperature and add 4-methyl pyridine (0.011 mole) at room temperature. Raise temp<br />

to 55-60 o C for 90 minutes. Maintain it for 1 hrs with azeotropic distillation and then<br />

maintain for 6 hrs at 80-85 o C. Cool it at 60 o C and then distill toluene under vacuum.<br />

Cool it at 0-5 o C. Add 60 ml Methyl tert-butyl ether (MTBE) and stir for 20 min, filter<br />

and wash with 20 ml MTBE. [43]<br />

Preparation of 1-methanesulfonyl 3-(4-(trifluoromethyl)benzoyl) piperidin-4one.<br />

N-(mathanesulphonyl) 3-ene 4-(4-methyl piperidyl) piperidine (0.01 mole) is<br />

reacted with a 4-(trifluoromethyl) benzoyl chloride (0.011 mole) in presence of tri<br />

ethyl amine (0.015 mole) in 10 ml toluene. The reaction was kept under stirring at 15-<br />

20 o C for 4-5 hours. Completion of reaction was checked with TLC. The slurry<br />

obtained was filtered to obtain 1-methanesulfonyl-piperidin-4-one 3-(4-<br />

(trifluoromethyl)phenyl)methanone. M.P: 122. [43]<br />

Preparation of 4-(4-(trifluoromethyl)phenyl)-5,6,7,8-tetrahydro-6-<br />

(methylsulfonyl)-1-(substituted phenyl)pyrido[4,3-d]pyrimidin-2(1H)-one<br />

Take 30 ml ethanol into RBF, charge 1-methanesulfonyl-piperidin-4-one 3-(4-<br />

(trifluoromethyl)phenyl)methanone (0.005) and substituted urea (0.011 mole).<br />

Dissolve reaction mass under stirring. Slowly add 1 ml HCl into RBF. Heat to reflux<br />

for 20 hrs. Check TLC for completion of reaction. RBF put under cool condition over<br />

night. Precipitated product was filtered and washed with ethanol to obtain 4-(4-<br />

(trifluoromethyl)phenyl)-5,6,7,8-tetrahydro-6-(methylsulfonyl)-1-(substituted<br />

phenyl)pyrido[4,3-d]pyrimidin-2(1H)-one. TLC solvent system: Toluene:Ethyl<br />

acetate - 7:3. M.P: 146. [43]<br />

179


Chapter-6 Preparation of novel pyrido pyrimidine-2-one…<br />

6.6 PHYSICAL DATA<br />

Sr.<br />

No<br />

R'<br />

Code Structure Molecular<br />

formula<br />

N<br />

N<br />

O<br />

N<br />

SO 2CH 3<br />

CF 3<br />

Molecular<br />

weight<br />

M. P.<br />

( o C)<br />

%<br />

Yield<br />

1 VNRUR-101 H C15H14F3N3O3S 373 210-212 70<br />

2 VNRUR-102 C6H5 C21H18F3N3O3S 449 142-144 68<br />

3 VNRUR-103 4-Cl C6H4 C21H17ClF3N3O3S 483 152-154 66<br />

4 VNRUR-104 3- NO2 C6H5 C21H17F3N4O5S 494 178-180 71<br />

5 VNRUR-105 4-F C6H5 C21H17F4N3O3S 467 158-160 70<br />

6 VNRUR-106 3-Cl C6H5 C21H17ClF3N3O3S 483 162-164 66<br />

7 VNRUR-107 3,4Cl C6H5 C21H16Cl2F3N3O3S 517 176-178 58<br />

8 VNRUR-108 2,4 Me C6H5 C23H22F3N3O3S 477 156-158 49<br />

9 VNRUR-109 2-F C6H5 C21H17F4N3O3S 467 172-174 45<br />

10 VNRUR-110 3-Cl C6H5 C21H17ClF3N3O3S 483 204-206 66<br />

180


Chapter-6 Preparation of novel pyrimidine-2-one…<br />

6.7 SPECTRAL STUDY<br />

IR spectra<br />

Infra Red spectra were taken on Shimadzu FT-IR-8400 spectrometer using KBr<br />

pellet method. The characteristic aromatic group in furocoumarin moiety is observed<br />

at 3010-3090 cm -1 . Methylene (-CH2) observed at 1375 cm -1 .<br />

1 H NMR spectra<br />

1<br />

H NMR spectra were recorded on a Bruker AC 400 MHz NMR spectrometer using<br />

TMS (Tetramethyl Silane) as an internal standard and DMSO-d6 as a solvent. In the<br />

NMR spectra of 4-(4-(trifluoromethyl)phenyl)-5,6,7,8-tetrahydro-6-(methylsulfonyl)pyrido[4,3-d]pyrimidin-2(1H)-one<br />

derivatives various proton values of methylene (-<br />

CH2), methyl (-CH3) and aromatic protons (Ar-H) etc. were observed.<br />

Mass spectra<br />

The mass spectrum of compounds were recorded by Shimadzu GC-MS-QP-2010<br />

spectrometer. The mass spectrum of compounds was obtained by positive chemical<br />

ionization mass spectrometry. The molecular ion peak and the base peak in all<br />

compounds were clearly obtained in mass spectral study. The molecular ion peak<br />

(M + ) values are in good agreement with molecular formula of all the compounds<br />

synthesized.<br />

Elemental analysis<br />

Elemental analysis of the synthesized compounds was carried out on Vario EL-III<br />

Carlo Erba 1108 model at <strong>Saurashtra</strong> <strong>University</strong>, Rajkot which showed calculated<br />

and found percentage values of Carbon, Hydrogen and Nitrogen in support of the<br />

structure of synthesized compounds. The elemental analysis data are given for<br />

individual compounds.<br />

181


Chapter-6 Preparation of novel pyrimidine-2-one…<br />

6.8 SPECTRAL CHARACTERIZATION<br />

4-(4-(trifluoromethyl)phenyl)-5,6,7,8-tetrahydro-6-(methylsulfonyl)-pyrido[4,3d]pyrimidin-2(1H)-one<br />

(VNRUR-101)<br />

Yield: 70%; IR (cm - 1): 3529, 3412 (N-H str.), 3010 (Ar C=C-H str.), 2933 (Asym C-<br />

H str. -CH3), 2933 (Asym C-H str. -CH2), 2872 (Sym C-H str. -CH3), 1730 (-C=O<br />

str.), 1643, 1633 (Ar C=C str.), 1404 (C-H bend –CH2), 1329 (C-H bend –CH3), 1165<br />

(C-O str.) , 719 (C-H oop def), 586 (C-F str.); 1 H NMR 400 MHz: (CDCl3, δ ppm):<br />

2.04 (s, 6H), 2.30 (s, 3H), 2.57 (m, 8H), 3.71 (s, 2H), 4.21 (s, 1H), 6.84 (d, 1H), 7.05<br />

(m, 2H); Mass: [m/z (%)], M. Wt.: 444; Elemental analysis, Calculated: C, 70.26;<br />

H, 4.54; O, 25.20 Found: C, 70.27; H, 4.12; O, 25.67.<br />

4-(4-(trifluoromethyl)phenyl)-5,6,7,8-tetrahydro-6-(methylsulfonyl)-1phenylpyrido[4,3-d]pyrimidin-2(1H)-one<br />

(VNRUR -102)<br />

Yield: 68%; IR (cm -1 ): 3583, 3412 (N-H str.), 3072 (Ar C=C-H str.), 2902 (Asym C-<br />

H str. -CH3), 2925 (Asym C-H str. -CH2), 2872 (Sym C-H str. -CH3), 1747 (-C=O<br />

str.), 1568, 1539, 1496 (Ar C=C str.), 1408 (C-H bend –CH2), 1329 (C-H bend –CH3),<br />

1159 (C-O str.) , 707 (C-H oop def), 561 (C-F str.); 1 H NMR 400 MHz: (CDCl3, δ<br />

ppm): 2.93 (s, 1H), 2.95 (s, 3H), 3.14 (s, 1H), 3.48 (s, 2H), 3.84 (s, 2H), 7.07 (d, 1H),<br />

7.27 (s, 1H), 7.35 (d, 1H), 7.51 (m, 3H), 7.66 (d, 2H); Mass: [m/z (%)], M. Wt.: 400<br />

Elemental analysis, Calculated: C, 72.00; H, 4.03; O, 23.98 Found: C, 72.09; H,<br />

4.15; O, 23.53.<br />

4-(4-(trifluoromethyl)phenyl)-5,6,7,8-tetrahydro-6-(methylsulfonyl)-1-(4-chloro<br />

phenyl)pyrido[4,3-d]pyrimidin-2(1H)-one (VNRUR -103)<br />

Yield: 66%; %; IR (cm -1 ): 3577, 3423 (N-H str.), 3081 (Ar C=C-H str.), 2915 (Asym<br />

C-H str. -CH3), 2931 (Asym C-H str. -CH2), 2874 (Sym C-H str. -CH3), 1752 (-C=O<br />

str.), 1648, 1635, 1582 (Ar C=C str.), 1414 (C-H bend –CH2), 1326 (C-H bend –CH3),<br />

1149 (C-O str.) , 705 (C-H oop def), 564 (C-F str.); Mass: [m/z (%)], M. Wt.:<br />

414(M+), 416(M+2) ; Elemental analysis, Calculated: C, 72.46; H, 4.38; O, 23.16;<br />

Found: C, 72.61; H, 4.33; O, 23.26.<br />

182


Chapter-6 Preparation of novel pyrimidine-2-one…<br />

4-(4-(trifluoromethyl)phenyl)-5,6,7,8-tetrahydro-6-(methylsulfonyl)-1-(3-nitro<br />

phenyl)pyrido[4,3-d]pyrimidin-2(1H)-one (VNRUR -104)<br />

Yield: 71%; IR (cm -1 ): 3565, 3418 (N-H str.), 3086 (Ar C=C-H str.), 2906 (Asym C-<br />

H str. -CH3), 2924 (Asym C-H str. -CH2), 2868 (Sym C-H str. -CH3), 1754 (-C=O<br />

str.), 1668, 1643, 1585 (Ar C=C str.), 1415 (C-H bend –CH2), 1332 (C-H bend –CH3),<br />

1145 (C-O str.) , 714 (C-H oop def), 566 (C-F str.); Mass: [m/z (%)], M. Wt.: 434 ;<br />

Elemental analysis, Calculated: C, 77.41; H, 4.18; O, 18.41; Found: C, 77.21; H,<br />

4.28; O, 18.51.<br />

4-(4-(trifluoromethyl)phenyl)-5,6,7,8-tetrahydro-6-(methylsulfonyl)-1-(4-fluoro<br />

phenyl)pyrido[4,3-d]pyrimidin-2(1H)-one (VNRUR -105)<br />

Yield: 70%; IR (cm - 1): 3575, 3411 (N-H str.), 3076 (Ar C=C-H str.), 2914 (Asym C-<br />

H str. -CH3), 2935 (Asym C-H str. -CH2), 2881 (Sym C-H str. -CH3), 1752 (-C=O<br />

str.), 1681, 1665, 1572 (Ar C=C str.), 1417 (C-H bend –CH2), 1326 (C-H bend –CH3),<br />

1148 (C-O str.) , 712 (C-H oop def), 567 (C-F str.); Mass: [m/z (%)], M. Wt.: 384 ;<br />

Elemental analysis, Calculated: C, 74.99; H, 4.20; O, 20.81; Found: C, 74.15; H,<br />

4.27; O, 20.05.<br />

4-(4-(trifluoromethyl)phenyl)-5,6,7,8-tetrahydro-6-(methylsulfonyl)-1-(2-chloro<br />

phenyl)pyrido[4,3-d]pyrimidin-2(1H)-one (VNRUR -106)<br />

Yield: 66%; IR (cm -1 ): 3575, 3424 (N-H str.), 3055 (Ar C=C-H str.), 2917 (Asym C-<br />

H str. -CH3), 2934 (Asym C-H str. -CH2), 2878 (Sym C-H str. -CH3), 1751 (-C=O<br />

str.), 1571, 1545, 1484 (Ar C=C str.), 1418 (C-H bend –CH2), 1325 (C-H bend –CH3),<br />

1162 (C-O str.) , 717 (C-H oop def), 567 (C-F str.); Mass: [m/z (%)], M. Wt.:<br />

402(M+), 404(M+2) ; Elemental analysis, Calculated: C, 71.64; H, 3.76; O, 19.88;<br />

Found: C, 71.65; H, 3.44; O, 19.78.<br />

183


Chapter-6 Preparation of novel pyrimidine-2-one…<br />

4-(4-(trifluoromethyl)phenyl)-5,6,7,8-tetrahydro-6-(methylsulfonyl)-1-(3,4-dichloro<br />

phenyl)pyrido[4,3-d]pyrimidin-2(1H)-one (VNRUR -107)<br />

Yield: 58%; IR (cm -1 ): 3584, 3414 (N-H str.), 3076 (Ar C=C-H str.), 2908 (Asym C-<br />

H str. -CH3), 2926 (Asym C-H str. -CH2), 2874 (Sym C-H str. -CH3), 1750 (-C=O<br />

str.), 1578, 1547, 1492 (Ar C=C str.), 1404 (C-H bend –CH2), 1324 (C-H bend –CH3),<br />

1159 (C-O str.) , 705 (C-H oop def), 562 (C-F str.); Mass: [m/z (%)], M. Wt.:<br />

334(M+), 336(M+2), 338(M+4) ; Elemental analysis, Calculated: C, 68.82; H,<br />

3.61; O, 19.10 Found: C, 68.73; H, 3.58; O, 19.05.<br />

4-(4-(trifluoromethyl)phenyl)-5,6,7,8-tetrahydro-6-(methylsulfonyl)-1-(2,4-dimethyl<br />

phenyl)pyrido[4,3-d]pyrimidin-2(1H)-one (VNRUR -108)<br />

Yield: 49%; IR (cm -1 ): 3574, 3413 (N-H str.), 3074 (Ar C=C-H str.), 2913 (Asym C-<br />

H str. -CH3), 2932 (Asym C-H str. -CH2), 2874 (Sym C-H str. -CH3), 1747 (-C=O<br />

str.), 1617, 1586, 1474 (Ar C=C str.), 1412 (C-H bend –CH2), 1324 (C-H bend –CH3),<br />

1154 (C-O str.) , 704 (C-H oop def), 562 (C-F str.); Mass: [m/z (%)], M. Wt.: 350 ;<br />

Elemental analysis, Calculated: C, 71.99; H, 5.18; O, 22.83; Found: C, 71.89; H,<br />

5.22; O, 22.67.<br />

4-(4-(trifluoromethyl)phenyl)-5,6,7,8-tetrahydro-6-(methylsulfonyl)-1-(2-fluoro<br />

phenyl)pyrido[4,3-d]pyrimidin-2(1H)-one (VNRUR -109)<br />

Yield: 45%; IR (cm -1 ): 3581, 3415 (N-H str.), 3078 (Ar C=C-H str.), 2907 (Asym C-<br />

H str. -CH3), 2924 (Asym C-H str. -CH2), 2877 (Sym C-H str. -CH3), 1752 (-C=O<br />

str.), 1668, 1664, 1497 (Ar C=C str.), 1413 (C-H bend –CH2), 1332 (C-H bend –CH3),<br />

1155 (C-O str.) , 716 (C-H oop def), 567 (C-F str.); Mass: [m/z (%)], M. Wt.: 394 ;<br />

Elemental analysis, Calculated: C, 66.99; H, 4.60; O, 20.28; Found: C, 66.83; H,<br />

4.62; N, 20.31.<br />

184


Chapter-6 Preparation of novel pyrimidine-2-one…<br />

4-(4-(trifluoromethyl)phenyl)-5,6,7,8-tetrahydro-6-(methylsulfonyl)-1-(3-chloro<br />

phenyl)pyrido[4,3-d]pyrimidin-2(1H)-one (VNRUR -110)<br />

Yield: 66%; IR (cm -1 ): 3583, 3420 (N-H str.), 3081 (Ar C=C-H str.), 2916 (Asym C-<br />

H str. -CH3), 2922 (Asym C-H str. -CH2), 2885 (Sym C-H str. -CH3), 1751 (-C=O<br />

str.), 1667, 1634, 1504 (Ar C=C str.), 1418 (C-H bend –CH2), 1392 (C-H bend –CH3),<br />

1157 (C-O str.) , 704 (C-H oop def), 565 (C-F str.); Mass: [m/z (%)], M. Wt.:<br />

398(M+), 400(M+2) ; Elemental analysis, Calculated: C, 75.37; H, 4.55; O, 20.08;<br />

Found: C, 75.33; H, 4.17; O, 20.12.<br />

185


Chapter-6 Preparation of novel pyrimidine-2-one…<br />

6.9 REPRESENTATIVE SPECTRA<br />

IR spectrum of 4-(4-(trifluoromethyl)phenyl)-5,6,7,8-tetrahydro-6-<br />

(methylsulfonyl)-pyrido[4,3-d]pyrimidin-2(1H)-one (VNRUR-101)<br />

100<br />

%T<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

-0<br />

3529.85<br />

3412.19<br />

3298.38<br />

3184.58<br />

3010.98<br />

2933.83<br />

2872.10<br />

2789.16<br />

3600 3200<br />

VNRUR-101<br />

2800<br />

2713.93<br />

2351.30<br />

2400<br />

2000<br />

1730.21<br />

1800<br />

1714.77<br />

1705.13<br />

600 400<br />

1/cm<br />

IR spectrum of 4-(4-(trifluoromethyl)phenyl)-5,6,7,8-tetrahydro-6-<br />

(methylsulfonyl)-1-phenylpyrido[4,3-d]pyrimidin-2(1H)-one (VNRUR -102)<br />

105<br />

%T<br />

90<br />

75<br />

60<br />

45<br />

30<br />

15<br />

0<br />

-15<br />

3583.86<br />

HN<br />

3412.19<br />

O<br />

N<br />

N<br />

SO2CH3 3072.71<br />

N<br />

3600 3200<br />

VNRUR-102<br />

O<br />

2902.96<br />

N<br />

N<br />

SO2CH3 2800<br />

CF 3<br />

2387.95<br />

2306.94<br />

CF 3<br />

2400<br />

2000<br />

1901.88<br />

1747.57<br />

1800<br />

1643.41<br />

1633.76<br />

1600<br />

1568.18<br />

1539.25<br />

1600<br />

1487.17<br />

1448.59<br />

1404.22<br />

1400<br />

1496.81<br />

1408.08<br />

1396.51<br />

1400<br />

1329.00<br />

1352.14<br />

1329.00<br />

1253.77<br />

1165.04<br />

1128.39<br />

1200<br />

1247.99<br />

1159.26<br />

1130.32<br />

1200<br />

1114.89<br />

1068.60<br />

1068.60<br />

1018.45<br />

966.37<br />

1000<br />

1000<br />

935.51<br />

852.56<br />

794.70<br />

1024.24<br />

966.37<br />

941.29<br />

856.42<br />

821.70<br />

781.20<br />

800<br />

771.55<br />

800<br />

719.47<br />

707.90<br />

597.95<br />

586.38<br />

563.23<br />

659.68<br />

547.80<br />

522.73<br />

511.15<br />

561.30<br />

507.30<br />

455.22<br />

600 400<br />

1/cm<br />

186


Chapter-6 Preparation of novel pyrimidine-2-one…<br />

Mass spectrum of 4-(4-(trifluoromethyl)phenyl)-5,6,7,8-tetrahydro-6-<br />

(methylsulfonyl)-pyrido[4,3-d]pyrimidin-2(1H)-one (VNRUR-101)<br />

HN<br />

O<br />

N<br />

N<br />

SO2CH3 CF 3<br />

Mass spectrum of 4-(4-(trifluoromethyl)phenyl)-5,6,7,8-tetrahydro-6-<br />

(methylsulfonyl)-1-phenylpyrido[4,3-d]pyrimidin-2(1H)-one (VNRUR -102)<br />

N<br />

O<br />

N<br />

N<br />

SO2CH3 CF 3<br />

187


Chapter-6 Preparation of novel pyrimidine-2-one…<br />

1 H NMR spectrum of 4-(4-(trifluoromethyl)phenyl)-5,6,7,8-tetrahydro-6-<br />

(methylsulfonyl)-pyrido[4,3-d]pyrimidin-2(1H)-one (VNRUR-101)<br />

HN<br />

O<br />

N<br />

N<br />

SO2CH3 CF 3<br />

Expanded<br />

1<br />

H NMR spectrum of 4-(4-(trifluoromethyl)phenyl)-5,6,7,8tetrahydro-6-(methylsulfonyl)-pyrido[4,3-d]pyrimidin-2(1H)-one<br />

(VNRUR-101)<br />

HN<br />

O<br />

N<br />

N<br />

SO2CH3 CF 3<br />

188


Chapter-6 Preparation of novel pyrimidine-2-one…<br />

1 H NMR spectrum of 4-(4-(trifluoromethyl)phenyl)-5,6,7,8-tetrahydro-6-<br />

(methylsulfonyl)-1-phenylpyrido[4,3-d]pyrimidin-2(1H)-one (VNRUR -102)<br />

N<br />

O<br />

N<br />

N<br />

SO2CH3 CF 3<br />

1<br />

Expanded H NMR spectrum of 4-(4-(trifluoromethyl)phenyl)-5,6,7,8tetrahydro-6-(methylsulfonyl)-1-phenylpyrido[4,3-d]pyrimidin-2(1H)-one<br />

(VNRUR -102)<br />

N<br />

O<br />

N<br />

N<br />

SO2CH3 CF 3<br />

189


Chapter-6 Preparation of novel pyrimidine-2-one…<br />

6.10 RESULT AND DISCUSSION<br />

In the current work, synthesis of some novel pyrimidine-2-one derivatives by reaction<br />

of substituted urea with a diketone was carried out. The main significance of the<br />

present work is that the process for synthesis of pyrimidine-2-one derivatives is novel,<br />

with facile work up method, and high chemical purity. It is for biological as well as<br />

pharmacological screening for further study.<br />

6.11 CONCLUSION<br />

A convenient method for preparation of 4-(4-(trifluoromethyl)phenyl)-5,6,7,8-<br />

tetrahydro-6-(methylsulfonyl)-1-(substitutedphenyl)pyrido[4,3-d]pyrimidin-2(1H)- one was developed. After three step reaction, the final product obtained was pure<br />

along with good yields.<br />

190


Chapter-6 Preparation of novel pyrimidine-2-one…<br />

6.12 REFERENCES<br />

[1] Gilchrist, Thomas Lonsdale; Gilchrist, T. L. Heterocyclic chemistry. 1997,<br />

New York: Longman. ISBN 0-582-27843-0.<br />

[2] Organic Syntheses, 1963, 4, 182; 1955, 35, 34.<br />

[3] Organic Syntheses, 1963, 4, 336; 1955, 35, 58.<br />

[4] Nuevo M, Milam SN, Sandford SA, Elsila JE, Dworkin JP, Astrobiology,<br />

2009, 9(7), 683–695.<br />

[5] C. D. Cox, M. J. Breslin, B. J Mariano, Tetrahedron Lett., 2004, 45, 1489.<br />

[6] B. K. Karale, C. H. Gill, M. Khan, V. P. Chavan, A. S. Mane, M. S. Shingare,<br />

Indian. J.<br />

Chem., 2002, 41, 1957.<br />

[7] M. A. El-Hashash, M. R. Mahmoud, S. A. Madboli, Indian. J. Chem., 1993,<br />

32, 449.<br />

[8] D. J. Brown, the Chemistry of Heterocyclic Compounds, The Pyrimidines,<br />

John Wiley & Sons, New York, 1994, 52.<br />

[9] M. Kidwai, M. Mishra, J. Serb. Chem. Soc., 2004, 69, 247.<br />

[10] D. J. Brown, Comprehensive Heterocyclic Chemistry, 1984, 3, 150.<br />

[11] C. Ramalingan, Y. Kwak, Tetrahedron, 2008, 64, 5023.<br />

[12] S. M. Sondhi, R. N. Goyal, A. M. Lahoti, N. Singh, R. Shukla, R. Raghubir,<br />

Bioorg. & Med. Chem., 2005, 13, 3185.<br />

[13] M. Movassaghi, M. D. Hill, J. Am. Chem. Soc., 2006, 128, 14254.<br />

[14] A. D. Patil, N. V. Kumar, W. C. Kokke , M.F. Bean, A.J. Freyer, C. Bors,<br />

S.Mai, A. Trunch, D.J. Faulkner, B.Carte, A.L.Preen, R.P. Hertzberg, R.K.<br />

Johnson & W.J. Westley, J. Org. Chem, 1995,60,1182.<br />

[15] K.S. Atwal, G.C. Rovnyak, S.D Kimball, D.M. Floyd,. J. Z. Gourgoutas, J.<br />

Sehwartz, K.M. Smillie & M.F. Malley, J. Med. Chem., 1990,33,2629.<br />

[16] C.O. Kappe. Eur. J. Med. Chem., 2000 ,35, 1043.<br />

[17] D.Bozing, P.Benko L.Petocz, M.Szecsey, P.Toempe, G.Gigler, I.Gacsalyi &I.<br />

Gyertyan, (EGIS Gyogyszergyar) Eur. Pat. Appl. EP) 1991,409.233,; Chem.<br />

Absrt, 1991,114, 247302z .<br />

[18] T.U. Mayer, S.J. Haggarty, R.W. King, S.I. Schreiber & T.J. Mitchison,<br />

Science,<br />

191


Chapter-6 Preparation of novel pyrimidine-2-one…<br />

1999,286,971,<br />

[19] P. Biginelli, Gazz. Chim. Ital., 1893, 23, 360.<br />

[20] (a) M. M. Khodaei, A.R. Khosropur, M. Beygzadeh, Synth. Commun., 2004,<br />

34, 1551, (b) S. Tu, F.Fang, S. Zhu, T Li, X. Zhang., Q.Zhuang, Synlett,<br />

2004, 93, 537.(c) M.Gohain, D. Prajapatti, J. S.Sandhu, Synlett 2004. (d) D.<br />

S.Boss, K. Kumar, L. Fatima, Synlett 2004, 279,(e) Z. T. Wang., L. W. Xu.,<br />

C. G.Xia & H. Q. Wang Tetrahedron Lett., 2004, 45,7951.<br />

[21] (a) P.Salehi, M Dabiri., M. Zolfigol , Bodagh Ford,. Tetradedron Lett., 2003,<br />

44. 2889.(b) G. S.Kiran Kumar ,K.Bhaskar.Reddy, C.h.Srinivas,J. S. Yadav,<br />

G.Sabitha, Synlett, 2003, 67. (c) K. R. Reddy., C. V. Reddy, M.Mahesh, P. V.<br />

Raju ., V. N. Reddy Terahedron Lett., 2003, 44, 8173 (d) S.Tu, F.Fang,<br />

C.Mioo, H.Jiang, Y. Feng, D.Shi, X.Wang, Tetrahedron Lett., 2003, 44, 6153.<br />

[22] (a) A. S.Paraskar, G. K.Dewkar & A. Sudalai, Tetrahedron Lett, 2003, 44,<br />

3305 (b) S.D.Boss, L. Fatima & H. B. Mereyala, J. Org. Chem. 2003, 68, 587.<br />

[23] (a)C. V.Reddy, M Mahesh., P. V. K Raju., T. R.BaBu, V.N.Reddy,<br />

Tetrahedron<br />

Lett.,2002.43, 2657.(b) J.Lu, Y.Bai, Synthesis, 2002, 23, 466 (c) T.<br />

S.Zhang,S.L.Zhang,S.Y.Zhang,J.J.Guo, T. Li, J. Chem. Res. (S), 2002, 37.<br />

[24] (a) J.Lu, Y. Bai., Z.Wang., B. Yang.& B. Ma. Tetrahedron Lett., 2000, 41,<br />

9075 (b) C. O Kappe, J. Org. Chem., 1997, 62,7201.<br />

[25] Barluengo J, Thomus M, Rubio V & Gotor V J. J Chem Soc, 1979, 675.<br />

[26] (a) R.Ghosh , S. Maini & A. Chakraborthy, J Mol. Catalyst, 2004, 27, 47. (b)<br />

Yarapathi G C R V, Kurva S, & Tammishetti S. Cat Commun, 2004, 3, 511<br />

(c) K.S. Atwal, O. Rovnyak, B.C. Reilly & Schwartz J. Org. Chem., 1989, 54,<br />

5898,<br />

[27] (a) Guo Q. Salchi H, Synth Commun, 2001, 34(1).171 (b) S.F. Fang, S. Zhu,<br />

T.Li, X. Zhang & Q. Zhuang, Synlent, 2004,537. (c) H. Hazarkhani &<br />

B.Karimi, Synthesis, 2004, 1239.<br />

[28] (a) C.O. Kappe, Acc. Chem Res, 2000, 33, 879. (b) K.V. Srinivas. & B.Das.<br />

Synthesis 2009,13.(c) Q. Sun,Y. Wang, Z. Ge, T. Chang & R. Li. Synthesis,<br />

2004, 1047.<br />

[29] A.R. Gholap, K.Venkatesan, T. Danial, R.I. Lahoti & K.V. Srinivasan, Green<br />

Chem, 2004, 6, 147.<br />

[30] Gielen-Haertwig, Heike et al From PCT Int. Appl., 2005082864, 09 Sep 2005<br />

192


Chapter-6 Preparation of novel pyrimidine-2-one…<br />

[31] Coskun, Necdet and Cetin, Melih, Tetrahedron, 2007, 63(14), 2966-2972<br />

[32] Ozaki, Kenichi et al, Journal of Medicinal Chemistry, 1985, 28(5), 568-76<br />

[33] Lowe, John A., III et al, Journal of Medicinal Chemistry, 1991, 34(2), 624-8.<br />

[34] Tran, Tuan P. et al, Journal of Heterocyclic Chemistry, 2005, 42(4), 669-674.<br />

[35] Baraka, Mohamed M., Bulletin of the Faculty of Pharmacy (Cairo <strong>University</strong>),<br />

2000, 38(1), 145-154.<br />

[36] Kashima, Choji et al From Yakugaku Zasshi, 1982, 102(1), 104-6.<br />

[37] P. Biginelli, Gazz. Chim. Ital. 1893, 23, 360-413.<br />

[38] Zanatta N.; Brondani P. B; Org. Chem. Insig., 2009, 2, 7-14.<br />

[39] Balalaie S.; Journal of Iranian Chemical Society, 2005, 2(4), 319-329.<br />

[40] Ghomi J.; et. al; Digest Journal of Nanomaterials and Biostructures, 2010,<br />

5(2), 303-306<br />

[41] Weiwei L.; Yulin L.; J. Comb. Chem., 2005, 7 (5), 721–725<br />

[42] Herve G.; et. al; Bioorg. & Med. Chem. Let., 2006, 16, 490-494.<br />

[43] Philip S, et. al.; Int. Pub. No. WO 2011/019842 A1. 2011.<br />

193


Chapter‐7<br />

PROCESS DEVELOPMENT AND YIELD<br />

OPTIMIZATION OF SOME IMPORTANT<br />

INTERMEDIATES.


Chapter-7 Rapid Synthesis and Process…<br />

7.1 INTRODUCTION<br />

Heterocycles containing Oxygen and Nitrogen possess many biological and<br />

pharmacological properties. Besides, these they are also known to exhibit properties<br />

and application such as anti-oxidant, heat stabilizers, photo sensitizers, indicator,<br />

lubricants and many more.<br />

Six membered oxygen heterocycles constitute a group of compounds, which occur<br />

widely throughout the plant kingdom. Coumarin (2H-1-benzopyran-2-one) is one of<br />

the naturally occurring heterocycles in many natural products. It is widely distributed<br />

in Plant world either in free state or in combined state. It was first isolated from tonka<br />

beans (Dipteryx odorata). It also occurs in sweet clover (Melilotus Officinalis and<br />

Melilotus Alba) and woodruff (Aperula odorata)<br />

It is the parent substance of a very large group of derivatives, many of which occur<br />

naturally and are of economic importance for example Umbelliferone, Aesculetin,<br />

Herniarin etc.<br />

HO<br />

HO<br />

O O<br />

HO<br />

Coumarin Umbelliferone<br />

Aesculetin<br />

O O<br />

O O MeO<br />

O O<br />

Herniarin<br />

Coumarin chemistry has become important because of the discovery of varied<br />

biochemical properties, industrial uses and analytical applications. Coumarins have<br />

been found to be physiologically a ctive for animals as well as humans. It acts as<br />

narcotic for rabbits, frogs and many other animals. 3-Chlorocoumarin have proved to<br />

be sedative as well as hypnotic for mice and humans. However, it is toxic to dogs and<br />

humans [1] . Werder synthesized over hundred derivatives of coumarin-3-carboxylic<br />

194


Chapter-7 Rapid Synthesis and Process…<br />

acids – they were found to be sedative in small doses and hypnotic in large doses [2]<br />

Coumarin also shows various other biological activities such as antifungal [3] ,<br />

anticoagulants [4] , anti-psorasis [5] , carcinogen [6] , antibacterial [7] and insecticidal [8] .<br />

Some of the commercial drugs having an application as vasodialators are Chromonar<br />

and Visnadin, Haloxon antihelminthics, diuretics like mercumallylic acid, and<br />

systemic insecticidehymecromone. Antibiotic novobiocin produced by streptomyces<br />

spheroids and niveus has been marketed as antibacterial or antimicrobial preparation.<br />

HO<br />

(OEt) 2<br />

O<br />

(ClCH 2CH 2O) 2<br />

O<br />

P<br />

Chromonar<br />

O<br />

Haloxan<br />

O<br />

CH 3<br />

Hymercromone<br />

O O<br />

CH 3<br />

O<br />

O O<br />

ch 3<br />

O<br />

Cl<br />

NEt 2<br />

OMe<br />

O O<br />

Coumarin is also used as synthetic intermediates for preparation of many heterocyclic<br />

compounds of biological and pharmacological importance [9-12] . Some biological<br />

activities such antiHIV [13] and Antitumor agents [14] are also reported.<br />

4-hydroxy coumarins - a metabolite of coumarin are oxygen heterocycles, which are<br />

studied for their tautomeric structures [15] . It can exist in 2 forms as shown below.<br />

H 3C<br />

H 3C<br />

O<br />

O<br />

Visnadin<br />

O Et<br />

OMe<br />

Mercumallylic Acid<br />

O O<br />

OH<br />

NH 2<br />

O O O<br />

CH 3<br />

Novobiocin<br />

Me<br />

O O<br />

OH<br />

O<br />

HgOH<br />

CH 2CH(CH 3) 2<br />

OH<br />

195


Chapter-7 Rapid Synthesis and Process…<br />

O O<br />

OH<br />

4-hydroxy-2H-chromen-2-one<br />

O OH<br />

O<br />

2-hydroxy-4H-chromen-4-one<br />

Chemically, it is acidic in nature and therefore reacts easily at 3 rd position.<br />

196


Chapter-7 Rapid Synthesis and Process…<br />

7.2 SYNTHETIC ASPECT<br />

Preparation of Coumarin:<br />

1) The biosynthesis of coumarin in plants is via hydroxylation, glycolysis and<br />

cyclization of cinnamic acid. Coumarin can be prepared in a laboratory in a Perkin<br />

reaction between salicylaldehyde and acetic anhydride [16]<br />

CHO<br />

OH<br />

H3C O<br />

2-hydroxybenzaldehyde Acetic anhydride<br />

O<br />

O<br />

CH 3<br />

CH 3COONa<br />

O O<br />

+<br />

CH 3COOH<br />

2) One of the most reliable method for preparation of coumarin and it’s derivatives is<br />

Pechmann condensation. It is a condensation starting from a phenol and a carboxylic<br />

acid or ester containing a β-carbonyl group under under acidic conditions. It was<br />

discovered by the German chemist Hans von Pechmann [17]<br />

HOOH C<br />

H 3<br />

3) Cyclization of 3-amino-3-phenyl propanoic acid in presence of HBr results in 58%<br />

of coumarin. [18]<br />

NH 2<br />

C<br />

H 3<br />

O<br />

COOH<br />

O<br />

O<br />

HBr<br />

H 2SO 4<br />

4) O-demethylation and lactonisation of E-Cinnamic acid in presence of Pyridine and<br />

HCl gives 55% of coumarin [19]<br />

RT<br />

HO<br />

3-amino-3-phenylpropanoic acid Coumarin<br />

CH 3<br />

O O<br />

O O<br />

197


Chapter-7 Rapid Synthesis and Process…<br />

COOH O O<br />

O<br />

Coumarin<br />

CH C6H5N, HCl<br />

3<br />

20 min,<br />

E-Cinnamic Acid<br />

5) Malonic acid diethyl ester condenses with salicylaldehyde to give coumarin [20]<br />

6) Manimaran et al synthesized coumarins, thiocoumarins and carbostyrils in presence<br />

of AlCl3 [21]<br />

O<br />

Ph<br />

Phenyl Cinnamate<br />

OH<br />

Cl<br />

Phenol<br />

OH<br />

Phenol<br />

+<br />

Ph<br />

O<br />

cinnamoyl chloride<br />

HO<br />

O<br />

cinnamic acid<br />

Ph<br />

AlCl 3<br />

AlCl 3<br />

AlCl 3<br />

O O<br />

7) Substituted coumarins and benzocoumarins were prepared by esterification of 2furanacrylic<br />

acid with substituted phenols in presence of POCl3 and Pyridine. Further,<br />

cyclisation of furanacrylates were effected in presence of AlCl3 to yield 73% of<br />

coumarin [22]<br />

O O OH<br />

EtO OEt<br />

diethyl malonate<br />

+<br />

CHO<br />

2-hydroxybenzaldehyde Coumarin<br />

O O<br />

198


Chapter-7 Rapid Synthesis and Process…<br />

O<br />

O<br />

2-furanacrylic acid<br />

OH<br />

Phenol<br />

POCl 3<br />

Coumarin<br />

73%<br />

O O<br />

AlCl 3<br />

O<br />

O<br />

Furanacrylate<br />

O Ph<br />

8) Coumarin was also prepared via cyclization-elimination followed by<br />

cyclocondensation reaction between 2-hydroxybenzaldehyde and trimethylsilylketene<br />

in presence of NaH [23]<br />

9) 3-Ethoxy acrolyl chloride with phenol in presence of triethyl amine and diethyl<br />

ether yielded phenyl ester which on treatment with H2SO4 and SO3 cyclised to give<br />

coumarins in good yields (69%) [24]<br />

OH<br />

+<br />

H 3C<br />

H 3C<br />

H 3C<br />

O<br />

Si HC C O<br />

Cl OEt<br />

(E)-3-ethoxyacryloyl chloride<br />

69%<br />

N-Et 3<br />

Et 2O<br />

NaH<br />

O O<br />

PhO<br />

H 2 SO 4<br />

SO 3<br />

O<br />

92%<br />

O<br />

O O<br />

OEt<br />

199


Chapter-7 Rapid Synthesis and Process…<br />

10) Koepp Erich et al used Cs (OAc)2 instead of NaOAc in Perkin synthesis of<br />

cinnamic acid to yield coumarin 79% [25]<br />

OH<br />

CHO<br />

Ac 2 O<br />

Cs(OAc) 2<br />

O O<br />

Some another coworkers discussed a new approach of using aromatic metallation<br />

reaction of aldehydes such as 1 with LiCH2-CO-NMe2 and deblocking and cyclisation<br />

of the adducts with AcOH [26]<br />

11) European patent disclosed preparation of coumarin catalytically by<br />

dehydrogenation followed by cyclization of the cyclohexanoyl propionic acid esters at<br />

100-300 o C in presence of catalyst comprising of a carrier having Pd supported either<br />

on CrO3 or Cr(OH)3. [27]<br />

O<br />

methyl 3-(2-oxocyclohexyl)propanoate<br />

12) Zhou, Chengdong et al described an improved synthesis of coumarin by using<br />

salicylaldehyde. Salicyaldehyde was heated with Ac2O and PEG at 185 o C for 1 hour<br />

to give 2-acetoxy-benzaldehyde. It was further heated with Ac2O and KF at 180-190<br />

o C for 4-5 hours to give 76% of coumarin [28]<br />

OH<br />

+ Ac 2O<br />

CHO<br />

O OMe<br />

H3C CHO<br />

2-(methoxymethoxy)benzaldehyde<br />

+<br />

O<br />

H 3C<br />

180<br />

Polymer<br />

OMe<br />

Pd<br />

O<br />

N Li CH2 OAc<br />

Ac2O OH<br />

THF<br />

AcOH<br />

42%<br />

O O O O<br />

26%<br />

O O<br />

O O<br />

200


Chapter-7 Rapid Synthesis and Process…<br />

13) Flash Vacuum Pyrolysis of Salicylaldehyde and triphenyl phosphine adduct in<br />

presence of methylendichloride gave coumarin in 87% yields [29]<br />

OH<br />

+<br />

CHO<br />

MeO<br />

O<br />

P<br />

87%<br />

Ph 3<br />

O O<br />

Preparation of 4-hydroxycoumarin<br />

CH 2 Cl 2<br />

1) Zeigler and coworkers cyclised malonic acid diphenyl ester in presence of AlCl3<br />

using Friedal Craft’s alkylation to give 4-hydroxycoumarin in 85% yield [30]<br />

O O<br />

PhO OPh<br />

Diphenyl Malonate<br />

AlCl 3<br />

180-185<br />

85%<br />

O O<br />

2) Shah et al synthesized 4-hydroxy coumarin by fusion of equimolar malonic acid<br />

and phenol in 2-3, moles of POCl3 and ZnCl2 – which gave 64% yield [31]<br />

O O<br />

HO OH<br />

Malonic Acid<br />

+<br />

OH<br />

Phenol<br />

ZnCl 2<br />

POCl 3<br />

64%<br />

OH<br />

CHO<br />

O O<br />

OH<br />

O<br />

OMe<br />

201


Chapter-7 Rapid Synthesis and Process…<br />

3) Sheikh et al synthesized trimethoxy and tetramethoxy substituted 4hydroxycoumarins<br />

by Friedal Craft’s acylation [32]<br />

4) Selenium catalysed carbonylation of 4-hydroxy acetophenone in THF containing<br />

PhNO2 under Carbon Monoxide atomosphere at 90 o C for 30 hours giving 68% yield<br />

[33]<br />

5) A facile synthesis of 4-Hydroxycoumarin in presence of sulfur from 2hydroxyacetophenone<br />

with carbon monoxide in presence of triethylamine and THF<br />

yielded 96% of 4-hydroxycoumarin [34]<br />

OH<br />

+ CO<br />

Ac<br />

N-Et 3 , S<br />

THF<br />

96%<br />

O O<br />

6) Coumarins were also prepared by treating malonic acid diesters with MgCl2 and<br />

acetylsalicylic chloride (II) and further cyclisation of resulting dialkyl2-(2acetoxybenzoyl)malonate<br />

by alkali. Di ethylmalonate, MgCl2 and acetylsalicylic<br />

chloride were treated with acetonitrile and triethylamine mixture at 0 o C for one<br />

hour.The product obtained was heated with KOH in MeOH at 50 o C for 3 hours to<br />

give 77.4% target compound [35]<br />

O O<br />

EtO OEt<br />

diethyl malonate<br />

+<br />

OH<br />

C<br />

O<br />

+ CO<br />

O<br />

Se , THF<br />

Cl<br />

MgCl 2<br />

N-Et3<br />

MeCN, KOH in MeOH<br />

Ac<br />

2-acetylbenzoyl chloride<br />

O O<br />

OH<br />

OH<br />

96%<br />

O O<br />

OH<br />

202


Chapter-7 Rapid Synthesis and Process…<br />

7) Intramolecular Claisen Condensation of methylacetylsalicylate with NaOMe in<br />

liquid paraffin at 160-260 o C for 5 hours gave 20% of 4-hydroxycoumarin [36]<br />

OAc<br />

OMe<br />

O<br />

methyl 2-acetoxybenzoate<br />

NaOMe<br />

HCl/H2O 20%<br />

O O<br />

8) Substituted 4-hydroxycoumarin was synthesized via new Baker-Venkatraman<br />

rearrangement [37]<br />

Et<br />

O<br />

N OPh<br />

Et<br />

phenyl diethylcarbamate<br />

+ AcCl<br />

BuLi , THF<br />

ZnCl2 O O<br />

OH<br />

OH<br />

Ac<br />

O<br />

O<br />

2-acetylphenyl butyrate<br />

NaH, THF<br />

CF3-COOH, PhMe<br />

9) One-pot synthesis of coumarin, 4-hydroxythiocoumarin and 2-quinolones by<br />

acylation followed by internal ring closure [38]<br />

OH<br />

OAc<br />

2-hydroxyphenyl acetate<br />

+ Et 2CO 3<br />

NaH, PhMe<br />

O O<br />

10) Salicylic Acid was esterified and acetylated. It was further cyclised with metallic<br />

sodium in dry Toluene [39]<br />

OH<br />

Et<br />

203


Chapter-7 Rapid Synthesis and Process…<br />

OH<br />

+<br />

COOH<br />

2-hydroxybenzoic acid<br />

Ac2O MeOH<br />

Na / Toluene<br />

E) Further reactions of 4-hydroxycoumarins:<br />

O O<br />

4-hydroxycoumarins frequently reaction with aromatic aldehydes to give 3-<br />

benzylidene-2,4-chromandiones [41-44]<br />

O O<br />

OH<br />

4-Hydroxycoumarin<br />

+<br />

R 2<br />

CHO<br />

Substituted Benzaldehyde<br />

However, reactions using Salicyaldehyde or it’s analogues multicyclic compounds as<br />

shown below was obtained either solely or in addition to salicylidene derivatives of<br />

type as shown. [45]<br />

CHO<br />

OH<br />

2-hydroxybenzaldehyde<br />

+<br />

O O<br />

OH<br />

4-Hydroxycoumarin<br />

OH<br />

O O<br />

O<br />

3-benzylidene-2,4-chromanediones<br />

O O<br />

O O<br />

OH<br />

O<br />

O<br />

O<br />

O<br />

+<br />

OH<br />

R 2<br />

204


Chapter-7 Rapid Synthesis and Process…<br />

The proportions of the products were dependent on reaction conditions used – for<br />

example when salicylaldehyde and 4-hydroxycoumarin was refluxed in ethanol were<br />

dimeric type of structure in addition to benzylidene derivative was obtained [46]<br />

Of two moles of salicylaldehyde was reacted with 4-hydroxy-6-iodocoumarins, it<br />

gave appropriate benzylidene derivative only. However, one mole of salicylaldehyde<br />

with two moles of 4-hydroxycoumarin gave the dicoumaryl structure. [47]<br />

2<br />

Similarly, reaction of 4-hydroxycoumarin with acetylated aldehydohexoses in ethanol<br />

for 24 hours gave substance of type below [48]<br />

Reaction between 4-hydroxycoumarin and hydroxylamine hydrochloride gave<br />

corresponding 2,4-chromadione-4-oximes. [49]<br />

O O<br />

OH<br />

CHO<br />

OH<br />

2-hydroxybenzaldehyde<br />

CHO<br />

+<br />

+ 2<br />

OH<br />

2-hydroxybenzaldehyde<br />

4-Hydroxycoumarin<br />

+ NH 2OH<br />

O O<br />

OH<br />

4-Hydroxycoumarin<br />

O O<br />

OH<br />

4-Hydroxycoumarin<br />

O O<br />

OH<br />

O<br />

O<br />

(Z)-3-(hydroxyimino)-3H-chromene-2,4-dione<br />

O<br />

O<br />

O<br />

N<br />

O<br />

O O<br />

O O<br />

OH<br />

CH(CHOAc) 4CH 2OAc<br />

O<br />

OH<br />

OH<br />

205


Chapter-7 Rapid Synthesis and Process…<br />

Reaction of Chlorine with 4-hydroxycoumarins in suitable solvent or sulfuryl chloride<br />

led to formation 3,3-dichloro-2,4-dichromandiones. [50-54] Halogenations of 3substituted<br />

4-hydroxycoumarin afforded 3-chloro-2,4-chromandiones. When 3,3’<br />

methylenebis (4-hydroxycoumarin) was treated with sufuryl chloride, 3,3’<br />

methylenebis (3-chloro-2,4-chromandione) was isolated.<br />

O<br />

OH<br />

O O<br />

OH<br />

+<br />

O O<br />

OH<br />

O<br />

O<br />

+<br />

R<br />

O<br />

OH<br />

Cl 2<br />

Cl 2<br />

SO2Cl 2<br />

SO2Cl 2<br />

Cl 2<br />

O O<br />

OH<br />

Cl<br />

Cl<br />

O O<br />

When 3-amino-4-hydroxycoumarin was reacted with nitrous acid gave 3-diazo-2,4chromandiones.<br />

The same product was also obtained in 72% yield when sodium<br />

nitrite in dilute hydrochloric acid was added to 3-amino-4-hydroxycoumarin. [55]<br />

OH<br />

O O<br />

However, reaction of 4-hydroxycoumarin with aqueous sodium nitrite afforded 2,3,4chromantrione-3-oxime<br />

which forms a silver salt. [56]<br />

OH<br />

O O<br />

OH<br />

N<br />

N 2<br />

O<br />

OH<br />

OH<br />

Cl<br />

R<br />

O<br />

Cl<br />

Cl<br />

O<br />

O<br />

OH<br />

206


Chapter-7 Rapid Synthesis and Process…<br />

7.3 AIM OF CURRENT WORK<br />

Our aim was to exploit the 3 rd position on 4-hydroxy coumarin skeleton and also their<br />

substituted derivatives in the benzenoid part using substitution of various functional<br />

groups i.e –Br, –CHO, -NO2, -NH2, -CN, thereby developing and optimizing the<br />

process, yield and purification techniques for the same.<br />

7.4 REACTION SCHEME<br />

Preparation of various 3-substituted 4-hydroxy coumarins:<br />

Scheme-1<br />

Scheme-2<br />

R<br />

OH<br />

O O<br />

OH<br />

substituted phenol<br />

O<br />

OH<br />

OH<br />

O<br />

malonic acid<br />

ZnCl 2<br />

POCl 3<br />

Triethyl ortho formate<br />

M.W.<br />

180 W<br />

PTSA<br />

R<br />

OH<br />

O O<br />

OH<br />

O O<br />

CHO<br />

207


Chapter-7 Rapid Synthesis and Process…<br />

Scheme-3<br />

OH<br />

Scheme-4<br />

O O<br />

Acetic Acid<br />

HNO 3<br />

OH<br />

O O<br />

OH<br />

O O<br />

OH<br />

O O<br />

Br 2<br />

NO 2<br />

CN<br />

MeOH<br />

H 2O<br />

NaHCO 3<br />

Na2S2O4 HCl<br />

HNO 3<br />

HCl<br />

NaCN CuCN<br />

H 2O<br />

OH<br />

Br<br />

O O<br />

OH<br />

O O<br />

OH<br />

NaOH<br />

H2O<br />

E.A.<br />

O O<br />

NH 2.HCl<br />

NH 2<br />

208


Chapter-7 Rapid Synthesis and Process…<br />

7.5 EXPERIMENTAL<br />

Step 1 –Procedure for synthesizing 4-hydroxycoumarin:<br />

4-hydroxycoumarin was prepared according to the method of Shah and co-workers.<br />

Phenol (0.1 mole) and malonic acid (10.4 gm; 0.1 moles) were added to a mixture of<br />

phosphorous oxychloride (40 ml) and anhydrous zinc chloride (30 gms) which was<br />

preheated to get rid of any moisture. The reaction mixture was heated on a water bath<br />

at 70 o C for 8-10 hours. It was cooled and decomposed with ice and water to afford<br />

buff-yellow coloured solid.<br />

The solid was then filtered and washed thoroughly with water. It was then triturated<br />

with 10% sodium carbonate solution and filtered. The filterate was slowly acidified<br />

with dilute HCl till the effervescence ceased. The product was filtered and dried and<br />

recrystallised with methanol. [31]<br />

Step 2 –Procedure for synthesizing 3-substituted 4-hydroxycoumarins:<br />

3-formyl 4-hydroxy coumarin using microwave irradiation:<br />

4-hydroxy coumarin 1.0 g (0.01 mole) was taken in a 50 ml RBF to which was added<br />

triethyl ortho formate 7 ml (4.21 mol) and 0.02 g p-toluene sulphonic acid. The<br />

reaction mass was then put under microwave irradiation having 180 Watts for 5<br />

minutes. As a result, solid slurry obtained, which was then filtered. This solid slurry<br />

was dissolved in 15 ml saturated solution of sodium bicarbonate and filtered. To the<br />

filtrate was added conc. HCl dropwise until pH 4.0 is achieved. The resulted slurry<br />

was filtered u/v and dried at 50 o C for 3 – 4 hrs. M.P.: 138-140 o C. [57]<br />

3-nitro 4-hydroxy coumarin:<br />

4-hydroxy coumarin 1.62 g (0.01 mole) was taken into a conical flask 50 ml to which<br />

was added 10 ml acetic acid and 1.5 ml nitric acid. The reaction mass was heated to<br />

60 o C on water bath with constant stirring under a fume hood. The reaction mass was<br />

heated for 15-20 minutes until the solids obtained. Completion of reaction was<br />

209


Chapter-7 Rapid Synthesis and Process…<br />

checked using TLC. Slurry filtered u/v and washed with acetic acid followed by<br />

petroleum ether. It was then dried at 50 o C for 2-3 hrs. M.P.: 176-178 o C. [58]<br />

3-amino 4-hydroxy coumarin:<br />

3-nitro 4-hydroxy coumarin (0.01 mol) was dissolved in 100 ml saturated solution of<br />

sodium bicarbonate. Reaction mass was taken in a 500 ml beaker with constant<br />

mechanical stirring under fume hood. To which sodium dithionite 10 g was added in<br />

portions with constant stirring. As a result, solution colour changes from yellow to sea<br />

green to clear. Completion of reaction is checked using TLC. Reation mixture was<br />

then cooled to 0 o C and brought to pH-1 with conc. HCl dropwise. The resulting<br />

precipitates were filtered u/v, dried at 50 o C for 5-6 hours. M.P.: 226-228. [59]<br />

Diazonium salt of 3-amino 4-hydroxy coumarin:<br />

To a stirred reaction of 1:1 (1.61 ml HCl and 1.61 ml H2O) was added 1.0 g 3-amino<br />

4-hydroxy coumarin at 0-5 o C. To this was added sat. solution of NaNO2 dropwise<br />

until starch paper turned blue. Preparation of diazonium salt was tested with Bnaphthol<br />

by doing dye test.<br />

3-cyano 4-hydroxy coumarin:<br />

1.68 g CuCN and 0.68 g NaNO2 in 2 ml H2O were taken in RBF with condenser,<br />

which was heated at 60 o C with continuous stirring. To which was added diazonium<br />

salt of 3-amino 4-hydroxy coumarin portion wise. After completion of addition the<br />

reaction mass was heated to reflux for 30 minutes. Completion of reaction was<br />

checked using TLC. To the reaction mass was added ethyl acetate. Organic layer was<br />

extracted and concentrated u/v to give solid 3-cyano 4-hydroxy coumarin. M.P: 265-<br />

269. [60]<br />

3-bromo 4-hydroxy coumarin:<br />

In a round bottom flask was taken 4-hydroxy coumarin (0.01 mmol) which was<br />

dissolved in 20 ml methanol. The reaction mass was kept under stirring at room<br />

temperature. Bromine (0.02 mmol) was added dropwise from addition funnel in 15-20<br />

minutes. The reaction mass after addition was stirred for 2-3 hours. Completion of<br />

reaction was checked with help of TLC. After completion, reaction mass was poured<br />

210


Chapter-7 Rapid Synthesis and Process…<br />

in water 50ml. Reaction was further stirred for 10-15 minutes. Slurry obtained was<br />

filtered and dried at room temperature to obtain 3-bromo 4-hydroxy coumarin. M.P.:<br />

194-195. [61]<br />

211


Chapter-7 Rapid Synthesis and Process…<br />

7.6 PHYSICAL DATA<br />

PHYSICAL DATA OF 3-SUBSTITUTED 4-HYDROXY COUMARINS<br />

OH<br />

R<br />

O O<br />

R = -Br, -CHO, -NO 2, -NH 2, -CN<br />

Sr.<br />

No<br />

.<br />

Sample<br />

Code<br />

Substitution<br />

Molecular<br />

Formula<br />

M. Wt M.P o R<br />

C<br />

(Reported)<br />

Yield<br />

%<br />

1 VMINT 101 -Br C9H5BrO3 241.04 194-195 94%<br />

2 VMINT 102 -CHO C10H6O4 190.15 138-140 90%<br />

3 VMINT 103 -NO2 C9H5NO5 207.14 176-178 92%<br />

4 VMINT 104 -NH2 C9H7NO3 177.16 226-228 90%<br />

5 VMINT 105 -CN C10H5NO3 187.15 265-269 85%<br />

212


Chapter-7 Rapid Synthesis and Process…<br />

7.7 RESULT AND DISCUSSION<br />

Present work covers the synthesis of some 3-substituted 4-hydroxy coumarins. Sole<br />

purpose for synthesizing these molecules was to explore set of different unreported 4hydroxy<br />

coumarin derivatives. For this, all the intermediates were prepared by<br />

altering classical methods or developing altogether new process, to get intermediates<br />

with very less reaction time, of high chemical purity and better yields.<br />

7.8 CONCLUSION<br />

Total 5 intermediates, 3-bromo 4-hydroxy coumarin, 3-formyl 4-hydroxy coumarin,<br />

3-nitro 4-hydroxy coumarin, 3-amino 4-hydroxy coumarin and 3-cyano 4-hydroxy<br />

coumarin were synthesized. All 5 intermediates were confirmed with their reported<br />

melting points from literature and were used as starting material for synthesizing 4hydroxy<br />

coumarin derivatives.<br />

213


Chapter-7 Rapid Synthesis and Process…<br />

7.11 REFERENCE<br />

[1] Bose P.K., Journal of Indian Chemical Society, 1958, 35, 367.<br />

[2] Werder F.W., Merck’s Jal Resberichit., 1936, 50, 88.<br />

[3] Sangwan N.K., Verma B.S., Malik O.P. and Dhindsa K.S., Indian Journal<br />

of Chemistry, 1990, 29B, 294.<br />

[4] Stahman M.A., Huebner C.F., and Link K.P., Biol. Chem., 1941, 138, 513.<br />

[5] Parrish J.A., Fitzpatrick T.B., Tanenbaum L., Pathak M.A., New English<br />

Journal of Medicinal Chemistry., 1974, 291, 206.<br />

[6] Elderfield C.R. and Roy J., Journal of Medicinal Chemistry, 1967, 10, 918.<br />

[7] Hanmantgad S.S., Kulkarni M.V., Patil V.D., Indian Journal of Chemistry,<br />

1985, 24B, 459.<br />

[8] Hepworth J.D., Comprehensive Heterocyclic Chemistry, 3, edited by J.A.<br />

Boultonand, A. Mikillap (Pergamon Press, Oxford, 1984, 737.<br />

[9] Sethna, S.M, Shah, N.M. ; Chem Rev., 1945, 36, 1.<br />

[10] Dean, F. M..; Naturally occurring oxygen ring compounds, butterworths,<br />

London, 1963, 173.<br />

[11] Murray, R.D.H., Mendez, J., Brown, S.A.; The natural coumarins”<br />

occurance, Chemistry and Biochemistry., John Wiley and Sons Ltd., a<br />

Wiley Science Publications 1982.<br />

[12] Darbarwar, M.V., Sunderamurthy ; Synthesis, 1983, 137.<br />

[13] Romines, K.R., Chrusciel, R.A.; Curr Med. Chem., 2, 1995, 825-838.<br />

[14] Shah, A., Naliapara, Y., Sureja, D., Motohashi, N., Kawase, M., Miskolci,<br />

C., Szabo, D. and Molnar, J. Anticancer Research., 1998, 18, 3001-3004.<br />

[15] Darbarwar, M.V., Sunderamurthy ; Synthesis, 1983, 137.<br />

[16] Perkin W.H., Journal of Chemical Society, 1868, 53; 1877, 388)<br />

[17] H. v. Pechmann. "Neue Bildungsweise der Cumarine. Synthese des<br />

Daphnetins". Berichte der deutschen chemischen Gesellschaft 1884, 17 (1),<br />

929–936.<br />

[18] Suvorov, N. N.; Dudinskaya, A. A. S. Ordzhonikidze Zhurnal Obschchei<br />

Khimii 1958, 28, 1341-4.<br />

[19] Royer, Rene; Bodo, Bernard; Demerseman, Pierre; Clavel, Jean M.<br />

Bulletin de la Societe Chimique de France (8), 1971, 2929-33.<br />

214


Chapter-7 Rapid Synthesis and Process…<br />

[20] Avetisyan, A. A.; Vanyan, E. V.; Dangyan, M. T Armyanskii Khimcheskii<br />

Zhurnal, 1979, 32 (5), 393-6.<br />

[21] Manimaran, T.; Ramakrishnan, V. T., Indian Journal of Chemistry, Section<br />

B, Organic Chemistry including Medicinal Chemistry 18B(4), 1979, 324-<br />

40.<br />

[22] Desai, Dhimant H.; Lakhlani, Pankaj L.; Varma, K. Sukumar; Fernandes,<br />

Peter S.; Journal of Indian Chemical Society, 1981, 58(1), 93-4.<br />

[23] Taylor, Richard T.; Cassell, Roger A.; Synthesis, 1982, 8, 672-3.<br />

[24] Ziegler, Thomas; Moehler, Hans Chemische Berichte, 1987, 120(3), 373-8.<br />

[25] Koepp, Erich; Voegtle, Fritz.Synthesis, 1987, 2, 177-79.<br />

[26] Koepp, Erich; Voegtle, Fritz.; Tetrahedron Letters,1981, 28(49), 6137-8<br />

[27] Shirafuji, Tamio; Sakai, Kiyomi; Okusako, Kensen. , 1991, 7 pp, EP<br />

434410<br />

[28] Zhou, Chengdong; Xie, Guolong; Lin, Fuqin., Yingyong Huaxue, 1992,<br />

9(3), 79-82.<br />

[29] Cartwright, Gary A.; McNab, Hamish, Journal of Chemical Research,<br />

Synopsis, 1997, 8, 296-297.<br />

[30] Ziegler, E.; Junek, H.; Monatshefte fuer Chemie, 1955, 86, 29-38.<br />

[31] Shah, V. R.; Bose, J. L.; Shah, R. C.; Journal of Organic Chemistry, 1960,<br />

25, 677-9.<br />

[32] Shaikh, Y. A.; Trivedi, K. N., Indian Journal of Chemistry 1974, 12(12),<br />

1262-3.<br />

[33] Ogawa, Akiya; Kondo, Kiyoshi; Murai, Shinji; Sonoda, Noboru, Chemical<br />

Communications, 1982, (21), 1283-84<br />

[34] Mizuno, Takumi; Nishiguchi, Ikuzo; Hirashima, Tsuneaki; Ogawa, Akiya;<br />

Kambe, Nobuaki; Sonoda, Noboru, Synthesis 1988, 3, 257-9<br />

[35] Kakimoto, Takehiko; Hirai, Takumi. 1993, 4 pp. JP 05255299<br />

[36] CN-1101045<br />

[37] Kalinin, Alexey V.; Da Silva, Alcides J. M.; Lopes, Claudio C.; Lopes,<br />

Rosangela S. C.; Snieckus, Victor, Tetrahedron Letters, 1998, 39(28),<br />

4995-98.<br />

[38] Jung, Jae-Chul; Jung, Young-Jo; Park, Oee-Sook. Synthetic<br />

communications 2001, 31(8), 1195-1200.<br />

215


Chapter-7 Rapid Synthesis and Process…<br />

[39] Buzariashvili, M. S.; Tsitsagi, M. V.; Mikadze, I. I.; Dzhaparidze, M. G.;<br />

Dolidze, A. V. Sakartvelos Mecnierebata Akademiis Maena Kinmis<br />

Series, 2003, 29(4), 242-244.<br />

[40] Ellis, G.P. Heterocyclic Compounds, J.W.; Interscience, 1977, 430-453.<br />

[41] M. Eckstein and J.Sulko, Ann Chim (Rome), 1965, 55, 365.<br />

[42] M. Eckstein, A. Koewa and H. Pazdro, Rocz. Chem., 1958, 32, 789.<br />

[43] M. Eckstein A. Koewa and H. Pazdro, Rocz. Chem., 1958, 32, 801.<br />

[44] W.R. Sullivan, C.F. Huebner, M.A. Stahmann and K.P Link, Journal of<br />

American Chemical Society, 1943, 65, 2288.<br />

[45] A. Koewa, M. Eckstein and H. Pazdro, Diss Pharm, 1959, 11, 243.<br />

[46] J. Riboulleau, C. Deschamps-Vallet, D. Molho, and C. Mentzer, Bull Soc<br />

Chim. Fr., 1970, 3138.<br />

[47] M. Covello,E. Abignente and A. Manna, Rend Accad. Sci. Fis. Mat.,<br />

Naples, 1971, 38, 259.<br />

[48] M. Ikawa, M.A.Stahmann and K.P Link, Journal of American Chemical<br />

Society, 1944, 66, 902.<br />

[49] Casini, G., Gaultieri, F., Stein, M.L., Journal of Heterocyclic Chem., 1965,<br />

2, 385.<br />

[50] Fucik, K., Koristek, Janicik F., Kakac, B. Chem Listy, 1952, 46, 148 CA,<br />

1953, 47, 8740.<br />

[51] Austrian Patent 1954, 177, 416; Chem Abstr, 1954, 48, 13726.<br />

[52] Fucik, K., Koristek, S., Czech Patent 84, 851, 1955, Chem Abstr, 1956, 50,<br />

9450.<br />

[53] Fucik, K., German (East) Patent 1956, 11, 295 Chem Abs 1958, 50, 17291.<br />

[54] Brit Patent 749742 (1956), Chem Abs 1957, 51, 1293.<br />

[55] Arndt, f., Loewe, R, Un, and Ayca, E., Chem Ber., 1951, 84, 319.<br />

[56] Anchutz, R., Justus Liebigs Ann. Chem. 1909, 367, 169.<br />

[57] Checchi, silvio; Farmaco, Edizione scientific, 1969, 24(6), 630-636<br />

[58] Huebner, C. F.; Link, K. P.; J. Am. Chem. Soc., 1945, 67, 99.<br />

[59] Klosa, Josef; Pharmazie, 1953, 8, 221-223.<br />

[60] Buckle K., Derek R; Journal of Medicinal Chemistry, 1977, 20, 265-269.<br />

[61] Chani; Kenneth K; Tetrahedron, 1977, 33 (8), 899-906.<br />

216


Chapter-7 Rapid Synthesis and Process…<br />

217


Chapter‐8<br />

BIOLOGICAL EVALUATION OF SYNTHESIZED<br />

CHEMICAL ENTITIES


Chapter-8 Biological Evaluation of Synthesized …<br />

8.1 INTRODUCTION<br />

Alexander Fleming discovered penicillin and set in motion a medical revolution. In<br />

1943, penicillin was mass produced and saved many wounded soldiers from death by<br />

bacterial infection. Yet as we enjoy the benefits of antibiotics, their use promotes<br />

antibiotic resistance in bacteria. By confronting bacteria with antibiotics, we select for<br />

those that are resistant and change the course of their evolution. Microbes are<br />

mutating and evolving in their ways that make them resistant in commonly occurring<br />

microbial infections. Knowledge of Antimicrobial activity of newly synthesized<br />

organic compounds is necessary for combating resistance of resistant and virulent<br />

strains. Day by day resistance of commensals and pathogenic strains grow higher and<br />

higher. However, our knowledge is restricted to less than 1% of the facts about causes<br />

of resistant strains and their sensitivity. In present era many antimicrobial drugs have<br />

been rendered ineffective due to the microbial resistance to the then efficient drugs.<br />

This warrants a search for an effective antimicrobial drug against the resistant clinical<br />

strains.<br />

Organic compounds with antimicrobial potential are being synthesized in laboratory and<br />

referred as “Novel Compounds”. The synthetic organic compounds are synthesized and<br />

purified through analytical techniques to get the fine powder. New organic synthetic<br />

compounds synthesized in laboratory are likely to be new on this earth and hence, their<br />

characteristics and activities are never evaluated and analyzed. However, they must be<br />

investigated properly before used as an alternative medicine for in vitro and in vivo antimicrobial<br />

activity.<br />

An anti-microbial is a substance that kills or inhibits the growth of microorganisms<br />

such as bacteria, fungi, or protozoans. Antimicrobial drugs either kill microbes<br />

(microbicidal) or prevent the growth of microbes (microbistatic). Disinfectants are<br />

antimicrobial substances used on non-living objects. [1]<br />

Antibiotic resistance is a serious concern worldwide as it would result in<br />

strains against which currently available antibacterial agents will be ineffective. In<br />

general, bacterial pathogens may be classified as either gram-positive or gram-<br />

218


Chapter-8 Biological Evaluation of Synthesized …<br />

negative pathogens. Antibiotics compounds with effective activity against both grampositive<br />

and gram-negative pathogens are generally regarded as having a broad<br />

spectrum of activity. The synthesized compounds were preliminary screened grampositive<br />

and gram-negative pathogens. For evaluation of antibacterial activity in our<br />

case, we have used Staphylococcus aureus and Bacillus cereus from gram positive<br />

group of bacteria and Escherichia coli and Salmonella Typhimurium from gram<br />

negative Group of bacteria.<br />

BACTERIA:-<br />

In 1928, a German scientist C.E. Chrenberg first used the term “Bacterium” to denote<br />

small microscopic organism with a relatively simple and primitive form of the cellular<br />

organization known as “Prokaryotic”.<br />

Bacteria are generally unicellular e.g. Cocci, Bacilli, etc… Filamentous, Eg.<br />

Actinomycetes, some being sheathed having certain cells specialized for reproduction.<br />

The microorganisms are capable of producing diseases in host are known as<br />

‘Pathogenic’. Most of the microorganisms present on the skin and mucous membrane<br />

are non pathogenic and are often referred to as “Commensals” or if they live on food<br />

residues as in intestine, they may be called “Saprophytes”. Generally, the pathogenic<br />

Cocci and Bacilli are gram positive and the pathogenic coco bacilli are gram negative.<br />

STAPHYLOCOCCUS AUREUS : -<br />

Genus: Staphylococcus [Microccaceae]<br />

Staphylococci are differentiated from micrococcus, a genus of the same family<br />

by its ability to utilize glucose, mannitol and pyruvate anaerobically. Cells of<br />

staphylococci are usually to be found on the skin or mucous membranes of the animal<br />

body, especially of the nose and mouth where they occur in large numbers even under<br />

normal conditions.<br />

219


Chapter-8 Biological Evaluation of Synthesized …<br />

Species: Staphylococcus Aureus<br />

The individual cells of S.Aureus are 0.8 to 0.9 micro in diameter. They are<br />

ovoid or spherical, non motile, non capsulated, non sporing stain with ordinary aniline<br />

dyes and gram positive, typically arranged in groups of irregular clusters like<br />

branches of groups found in pus, singly or in pairs. The optimum temperature for the<br />

growth is 370 C, optimum pH is 7.4 to 7.6. They produce golden yellow pigment,<br />

which develops best at room temperature. They cause pyoregenic of pus forming<br />

[Suppurative] conditions, mastitis of women and cows, boils, carbuncles infantile<br />

impetigo, internal abscess and food poisoning. In recent years, there has been a<br />

dramatic increase in the incidence of hospital associated nosocomial infections caused<br />

by strains of Staphylococcus aureus that are resistant to multiple antibiotics. [2]<br />

ESCHERICHIA COLI : -<br />

Genus: Escherichia [Enterobacteriaceae]<br />

This genus comprises escherichia and several variants and are of particular<br />

interest to the sanitarian since they occur commonly in the formal intestinal tract of<br />

man and animals. Their presence in foods or in drinking water may indicate faecal<br />

pollution. E.Coli is the most distinctively recognized feacal species. [3]<br />

Species: Escherichia coli<br />

E.Coli is the most important type in this species, which contains a number of<br />

other types. Escherichia in 1885 discovered in from the faces of the newborn and<br />

showed the organisms in the infesting within three days after birth. It is a commensals<br />

of the human intestine and found in the intestinal tract of men and animals and is also<br />

found in the sewage water, land, soil contaminated by feacal matters. The gram<br />

negative rods are 2 to 4 micro by 0.4 micro in size, commonly seen in coccobacillary<br />

form and rarely in filamentous form. They are facultative anaerobes and grow in all<br />

laboratory media. Colonies are circular, raised, and smooth and emit a faecal odour.<br />

E.Coli are generally non pathogenic and are incriminated as pathogens because in<br />

certain instances some strains have been found to produce septicemia, inflammations<br />

of liver and gall bladder, appendix, meningitis, pneumonia and other infections and<br />

this species is a recognized pathogen in the veterinary field. [4]<br />

220


Chapter-8 Biological Evaluation of Synthesized …<br />

SALMONELLA TYPHI:-<br />

Salmonella is a genus of rod-shaped, Gram-negative, non-spore-forming,<br />

predominantly motile enterobacteria with diameters around 0.7 to 1.5 µm, lengths<br />

from 2 to 5 µm, and flagella which grade in all directions (i.e. peritrichous). They<br />

are chemoorganotrophs, obtaining their energy from oxidation and reduction reactions<br />

using organic sources, and are facultative anaerobes. Salmonella are found worldwide<br />

in cold- and warm-blooded animals (including humans), and in the environment. They<br />

cause illnesses like typhoid fever, paratyphoid fever, and foodborne illness. [5]<br />

Serovar Typhimurium has considerable diversity and may be very old. The majority<br />

of the isolates belong to a single clonal complex. Isolates are divided into phage types,<br />

but some phage types do not have a single origin as determined using mutational<br />

changes. Phage type DT104 is heterogeneous and represented in multiple sequence<br />

types, with its multidrug-resistant variant being the most successful and causing<br />

epidemics in many parts of the world. [6]<br />

BACILLUS CEREUS:-<br />

Bacillus cereus is an endemic, soil-dwelling, Gram-positive, rod-shaped, beta<br />

hemolyticbacterium. Some strains are harmful to humans and cause foodborne illness,<br />

while other strains can be beneficial as probiotics for animals. B. cereus bacteria<br />

are aerobes, and like other members of the genus Bacillus can produce<br />

protective endospores. Its virulence factors include cereolysin and phospholipase C. [7]<br />

B. cereus is responsible for a minority of foodborne illnesses (2–5%), causing<br />

severe nausea,vomiting and diarrhea. [8] Bacillus foodborne illnesses occur due to<br />

survival of the bacterial endospores when food is improperly cooked. [9] B. cereus is<br />

also known to cause chronic skin infections that are difficult to eradicate though less<br />

aggressive than necrotizing fasciitis. B. cereus can also cause keratitis. [10]<br />

221


Chapter-8 Biological Evaluation of Synthesized …<br />

8.2 METHODS USED FOR SCREENING:<br />

The antimicrobial activity was assayed by Cup plate agar diffusion method by<br />

measuring inhibition zones in mm. In vitro antimicrobial activity of all synthesized<br />

compounds and standard drug have been evaluated against four strains of bacteria<br />

which include two Gram +ve bacteria namely Staphylococcus aureus, Bacillus cereus<br />

and two Gram-ve bacteria such as Escherichia coli, S.typhi. These strains were<br />

selected for their known pathogenesis of Human diseases.<br />

The antibacterial activity was compared with standard drug Ampicillin. It is a beta-<br />

lactam antibiotic that has been used extensively to treat bacterial infections since<br />

1961. Ampicillin is able to penetrate Gram-positive and some Gram-negative bacteria.<br />

Ampicillin acts as a competitive inhibitor of the enzyme transpeptidase, which is<br />

needed by bacteria to make their cell walls. [11] It inhibits the third and final stage of<br />

bacterial cell wall synthesis in binary fission, which ultimately leads to cell lysis.<br />

Ampicillin has received FDA approval for its mechanism of action.<br />

Antibacterial activity<br />

The purified products were screened for their antibacterial activity by using cup-plate<br />

agar diffusion method. The nutrient agar broth prepared by the usual method, was<br />

inoculated aseptically with 0.5 mL of 18 h old actively growing subculture of S.<br />

aureus, B. cereus, E. coli and S.typhi in separate conical flasks at 40-50° C and mixed<br />

well by gentle shaking. About 25 mL of the contents of the flask were poured and<br />

evenly spread in petridish (90 mm in diameter) and allowed to set for two h. The cups<br />

(6 mm in diameter) were formed by the help of sterile borer in agar medium and filled<br />

with 0.04 mL (400μg/mL) solution of sample in DMSO. The compounds were<br />

allowed to diffuse into the plate for 2 h at 2-8˚ C.<br />

The plates were then incubated at 37° C for 24 h. The control was maintained with<br />

0.04 mL of DMSO and Standard drug 0.04 mL (400μg/mL) was prepared in similar<br />

manner. The zone of inhibition of the bacterial growth were measured in millimeter<br />

and recorded in Table.<br />

222


Chapter-8 Biological Evaluation of Synthesized …<br />

Table 8.1<br />

ff 30.00<br />

25.00<br />

20.00<br />

15.00<br />

10.00<br />

5.00<br />

0.00<br />

VMMB 101<br />

VMMB 102<br />

VMMB 103<br />

VMMB 104<br />

VMMB 105<br />

VMMB 106<br />

VMMB 107<br />

VMMB 108<br />

VMMB 109<br />

VMMB 110<br />

B. cereus<br />

S. aureus<br />

control<br />

blank<br />

B. cereus 14 16 0 11 0 0 16 11 0 0 0 0<br />

S. aureus 0 11 0 0 0 0 12 11 10 14 0 25<br />

E.coli 0 0 0 0 0 0 0 0 0 0 0 18<br />

S.typhi B 0 0 0 9 0 0 0 0 0 0 0 0<br />

E.coli<br />

S.typhi B<br />

223<br />

Ampicillin


Chapter-8 Biological Evaluation of Synthesized …<br />

Table 8.2<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

VMMB 501<br />

VMMB 502<br />

VMMB 503<br />

VMMB 504<br />

VMMB 505<br />

VMMB 506<br />

VMMB 507<br />

VMMB 508<br />

VMMB 509<br />

VMMB 510<br />

B. cereus<br />

S. aureus<br />

S.typhi B<br />

E.coli<br />

Contro<br />

Blank<br />

B. cereus 12 10 10 0 18 0 22 23 15 15 0 0<br />

S. aureus 18 12 17 15 22 21 20 14 19 11 0 25<br />

S.typhi B 11 0 12 0 0 0 10 0 0 0 0 0<br />

E.coli 0 0 0 0 0 0 0 0 0 0 0 18<br />

224<br />

Ampicillin


Chapter-8 Biological Evaluation of Synthesized …<br />

8.3 RESULTS & DISCUSSION<br />

Clinical isolates of opportunist and pathogenic cultures of Gram Positive and<br />

Negative bacteria were obtained which were resistant to several antibiotics.<br />

The compounds VMMB 104 and VMMB 110 shown antibacterial activity against<br />

S.typhi. Many compounds of the VMMB series have shown good antibacterial<br />

activity against B. cereus and S. aureus. None of the compounds from the VMMB<br />

Series have been active against E.coli.<br />

All the compounds of VMMB Series have shown good activity against S.aureus.<br />

Compounds have shown high activity equivalent to the standard drug. The<br />

compounds VMMB 501, VMMB 503 and VMMB 507 showed activity against<br />

S.typhi. Many compounds of the VMMB series have shown good antibacterial<br />

activity against B. cereus as compared to Standard drug. None of the compounds from<br />

the VMMB Series have been active against E.coli.<br />

All microbial cultures showed characteristic pattern of their sensitivity for all<br />

synthetic compounds.<br />

The antimicrobial activities of Gram Negative, Gram Positive bacteria which can<br />

grow under normal laboratory conditions were analyzed. Still many other problematic<br />

resistant strains are to be screened for large number of synthetic compounds being<br />

synthesized every day. Among them, several synthetic series and biological extracts<br />

have attracted considerable attention during the last several years. Loss of sensitivity<br />

of microorganism against antimicrobials may be due to many factors including<br />

change in their genetic makeup. The antimicrobial activity of any antimicrobial<br />

depends on many external and internal influences. The major part of their capacity to<br />

inhibit Prokaryotes depends on the major ring structure skeleton of the synthetic<br />

compound and the external moieties – additional groups attached to main skeleton.<br />

The physical and chemical properties of synthetic compound are also detrimental<br />

factor in exhibiting their activity.<br />

225


Chapter-8 Biological Evaluation of Synthesized …<br />

The results were recorded at the end of 24 hours to give complete growth cycle for a<br />

bacterium so that uniformity of growth could be maintained for all bacterial cultures.<br />

Upon further incubation of the Nutrient Agar plates, not a single cell of the bacterial<br />

culture could grow if once proved to be sensitive. The possible reason for no growth<br />

might be the damages to vital cellular parts by the synthetic compounds.<br />

Detailed account of physic-chemical properties of the organic compounds could be<br />

correlated with high antimicrobial activities. Further studies on these aspects could<br />

focus on the DNA profiles of microorganisms. Understanding the genetic and<br />

biochemical basis of sensitivity and resistance of microbes would also be quite<br />

interesting to explore.<br />

Each of the organic compounds under study has generated a typical<br />

antimicrobiogram, reflecting a significant diversity amongst them. Majority of the<br />

synthetic organic compounds were dispersed into the medium when added into Petri<br />

dishes and killed the target organisms and shown no growth at the site of inoculation.<br />

Interestingly, in case of few organic compounds, they could not show inhibition of<br />

microbes and organisms could grow in the form of small colonies which could then be<br />

further investigated for the number of cells present.<br />

Further studies such as finding their physicochemical basis at macromolecular level of<br />

the detection of the cause of their success and failure as antimicrobials, would be<br />

quite interesting.<br />

From the table it can be inferred that most of the compounds from VMMB Series are<br />

active against Gram positive bacteria. The compounds can be studied further for their<br />

activity against other Gram positive organisms and for their mode of action. The<br />

compounds however are less effective against Gram negative bacteria. Coumarin<br />

bearing DHPs, Diazepines and Cyano pyridine are good scaffold for anti<br />

microbial activity. On the basis of the above interesting results, new synthetic<br />

programmes can be planned to develop more active compounds.<br />

226


Chapter-8 Biological Evaluation of Synthesized …<br />

8.4 REFERENCES<br />

[1] Abigail fraser, et. al.; Journal of anti-microbial Chemotherapy, 2006,<br />

58(3), 489-491.<br />

[2] Kluytmans J, van Belkum A, Verbrugh H; "Nasal carriage<br />

of Staphylococcus aureus: epidemiology, underlying mechanisms, and<br />

associated risks", Clin. Microbiol. Rev., 1997, 10(3), 505–20.<br />

[3] Madigan M; Martinko J, Brock Biology of<br />

Microorganisms,2005 (11th ed.), Prentice Hall<br />

[4] Facts about E. coli: dimensions, as discussed in bacteria: Diversity of<br />

structure of bacteria: – Britannica Online Encyclopedia".<br />

Britannica.com. Retrieved, 2011.<br />

[5] Ryan KJ, Ray CG; Sherris Medical Microbiology (4th ed.), 2004,<br />

pp. 362–8<br />

[6] Clark MA, Barret EL "The phs gene and hydrogen sulfide production<br />

by Salmonella typhimurium.". J Bacteriology,1987, 169(6): 2391–2397<br />

[7] Ryan KJ, Ray CG; Sherris Medical Microbiology (4th ed.), 2004.<br />

[8] Kotiranta A, Lounatmaa K, Haapasalo M "Epidemiology and<br />

pathogenesis of Bacillus cereus infections". Microbes Infect,<br />

2000, 2(2): 189–98<br />

[9] Turnbull PCB Bacillus. In: Baron's Medical Microbiology (Barron<br />

S et. al., eds.) (4th ed.). Univ of Texas Medical Branch, 1996.<br />

[10] Pinna A, Sechi LA, Zanetti S et al., "Bacillus cereus keratitis<br />

associated with contact lens wear".Ophthalmology, 2001, 108 (10):<br />

1830–4<br />

[11] AHFS Drug Information, American Society of Health-System<br />

Pharmacists, 2006.<br />

227


Summary<br />

SUMMARY<br />

The work represented in the thesis entitled “Studies On Nitrogen And Oxygen<br />

Containing Heterocyclic Compounds” is divided into seven chapters which can be<br />

summarized as under.<br />

Chapter-1 deals with Microwave protocols for the synthesis of Benzofuran<br />

derivatives linked with 1,3,4 oxadiazoles. Ethyl benzofuran 2-carboxylate was<br />

synthesized via condensation of ethyl bromo acetate and salicaldehyde which was<br />

then reacted with hydrazine hydrate to yield benzofuran-2-carbohydrazide.<br />

Furthermore, reaction of benzofuran-2-carbohydrazide with substituted benzoic acids<br />

in presence of phosphorous oxychloride in microwave gave 2-(benzofuran-2-yl)-5substituted<br />

phenyl - 1,3,4-oxadiazoles in good to excellent yields. The compounds<br />

were well characterized by IR, 1 H and 13 C NMR and Mass spectrometry.<br />

Chapter-2 is related to preparation of various substituted 3-amino 4-hydroxy<br />

coumarins and their reaction with 1-adamantane carboxylic acid chloride in presence<br />

of triethyl amine to give 3-(1-amido adamantyl) 4-hydroxy coumarins. The<br />

synthesized compounds were well characterized by IR, 1 H NMR and Mass<br />

spectrometry.<br />

Chapter-3 deals with grindstone technique used for the synthesis of titled<br />

compounds. This method is superior since it is eco-friendly, high yielding, requires no<br />

special apparatus, non-hazardous, simple and convenient. A series of some new Schiff<br />

bases have been prepared. The synthesized compounds were well characterized by IR,<br />

1H NMR and Mass spectrometry. The major benefit of this approach is solvent free<br />

conditions, easy work up process and shorter reaction time.


Summary<br />

Chapter-4 encompasses the cyclization reaction of 3-aminocrotononitrile with<br />

substituted benzaldehydes to give 4-substituted 2,6-dimethyl 3,5-dicarbonitrile 1,4dihydropyridines.<br />

Futhermore, their reaction with formaldehyde and various<br />

secondary amines yielded various mannich bases. The synthesized compounds were<br />

well characterized by IR, 1 H and 13 C NMR and Mass spectrometry.<br />

Chapter-5 covers the synthesis of some novel furocoumarin compounds. The main<br />

significance of the present work is that the said molecules are synthesized in a one pot<br />

synthetic process with reaction time ranging from 10 hr to 18 hr. Total 15 derivatives<br />

of 2-(substituted 2-hydroxy benzoyl) 2,3-dihydrofuro[3,2-c]chromen-4-one and 2-(2hydroxy<br />

benzoyl) 3-(substituted phenyl) 2,3-dihydrofuro[3,2-c]chromen-4-one were<br />

synthesized. All the newly synthesized compounds were characterized by IR, 1 H<br />

NMR, Mass spectral data and elemental analysis.<br />

Chapter-6 represents some novel pyrimidine-2-one derivatives synthesized by<br />

reaction of substituted urea with a diketone. The main significance of the present<br />

work is that the process for synthesis of pyrimidine-2-one derivatives is novel, with<br />

facile work up method, and high chemical purity for biological as well as<br />

pharmacological interest. A convenient method for preparation of 4-(4-<br />

(trifluoromethyl)phenyl)-5,6,7,8-tetrahydro-6-(methylsulfonyl)-1-(substituted<br />

phenyl)pyrido[4,3-d]pyrimidin-2(1H)-one was developed. After three step reaction,<br />

the final product obtained was pure along with good yields.<br />

Chapter-7 is related to substitution of various functional groups i.e –Br, –CHO, -<br />

NO2, -NH2, -CN, -COOH at 3 rd position of 4-hydroxy coumarin skeletal, thereby<br />

developing and optimizing the process, yield and purification techniques for the same.<br />

The synthesized compounds were well characterized by IR, 1 H and 13 C NMR and<br />

Mass spectrometry.<br />

Chapter-8 covers Biological Activity part, wherein the antimicrobial activity of<br />

VMMB series was assayed by Cup plate agar diffusion method by measuring


Summary<br />

inhibition zones in mm. In vitro antimicrobial activity of all synthesized compounds<br />

and standard drug have been evaluated against four strains of bacteria which include<br />

two Gram +ve bacteria namely Staphylococcus aureus, Bacillus cereus and two<br />

Gram-ve bacteria such as Escherichia coli, S.typhi. These strains were selected for<br />

their known pathogenesis of Human diseases.


CONFERENCES, SEMINARS & WORKSHOPS ATTENDED:<br />

ISCB Conference “International conference on chemical biology for<br />

discovery: perspectives and Challenges” at CDRI, Lucknow, 15-18 Jan.,<br />

2010.<br />

ISCB Conference “Interplay of Chemical and Biological Sciences: Impact<br />

on Health and Environment” at Delhi <strong>University</strong>, on 26 th February - 1 st<br />

March 2009<br />

“International Seminar on Recent Developments in Structure and Ligand<br />

based Drug Design” jointly organized by Schrodinger LLC, USA; National<br />

Facility for Drug Discovery through New Chemicals Entities Development &<br />

Instrumentation support to Small Manufacturing Pharma Enterprises and DST<br />

FIST, UGC-SAP & DST-DPRP Funded Department of Chemistry, <strong>Saurashtra</strong><br />

<strong>University</strong>, Rajkot, dated December, 23 rd , 2009.<br />

“National seminar on Alternative Synthetic Strategies for Drugs & Drug<br />

Intermediates” at Institute of Pharmacy, Nirma <strong>University</strong>, Ahmedabad on<br />

13 th November, 2009.<br />

“Two Days National Workshop on Patents & Intellectual Property Rights<br />

Related Updates” Sponsored by TIFAC & GUJCOST and Organized by<br />

DST-FIST, UGC-SAP & DST-DPRP Funded Department of Chemistry,<br />

<strong>Saurashtra</strong> <strong>University</strong>, Rajkot, dated September, 19-20, 2009.<br />

DST-FIST, UGC (SAP) supported and GUJCOST sponsored “National<br />

Conference on Selected Topics in Spectroscopy and Stereochemistry”<br />

organized by the Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot,<br />

dated March, 18-20, 2009.<br />

“A National Workshop On Updates In Process and Medicinal Chemistry”<br />

jointly organized by National Facility for Drug Discovery through New<br />

Chemicals Entities Development & Instrumentation support to Small<br />

Manufacturing Pharma Enterprises and DST FIST, UGC-SAP & DST-DPRP<br />

Funded Department of Chemistry, <strong>Saurashtra</strong> <strong>University</strong>, Rajkot dated March,<br />

3-4, 2009.


DST-FIST, UGC (SAP) supported and GUJCOST Sponsored “National<br />

Workshop on Management and Use of Chemistry Database and Patent<br />

Literature” organized by GUJCOST & Dept. of Chemistry of <strong>Saurashtra</strong><br />

<strong>University</strong>, Rajkot, (Gujarat), dated February, 27-29, 2008.<br />

PAPER/POSTER PRESENTED AT THE INTERNATIONAL<br />

CONFERENCE:<br />

“Synthesis and antimicrobial screening of some substituted (3E) – 3 –<br />

benzylidene – 2 H – chromene 2,4 (3H) – diones.”<br />

Vaibhav Ramani, Chetna Rajyaguru and Anamik Shah*<br />

Poster presented at 13 th ISCB International Conference was organized on<br />

“Interplay of Chemical and Biological Sciences: Impact on Health and<br />

Environment” at Delhi <strong>University</strong>, Delhi on 26 th February - 1 st March 2009<br />

“Synthesis and anti-bacterial activity of poly-substituted pyrrole derivatives”<br />

Vaibhav Ramani, Chintan Dholakiya and Anamik Shah*<br />

Poster presented at 14 th ISCB International conference on chemical biology for<br />

discovery: perspectives and challenges, CDRI, Lucknow, 15-18 Jan., 2010.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!