19.05.2013 Views

Appendix H1B: Cadiz Groundwater Modeling and Impact Analysis

Appendix H1B: Cadiz Groundwater Modeling and Impact Analysis

Appendix H1B: Cadiz Groundwater Modeling and Impact Analysis

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Prepared for: Brownstein Hya Farber Schreck, LLP<br />

Prepared by:<br />

GEOSCIENCE GEOSCIENCE Support Services, Inc.,<br />

Ground Water Resources Development<br />

P.O. Box 220, Claremont, CA 91711<br />

www.gssiwater.com<br />

P: 909.451.6650 | F: 909.451.6638<br />

VOLUME 2:<br />

APPENDIX A<br />

<strong>Cadiz</strong><br />

<strong>Groundwater</strong><br />

<strong>Modeling</strong><br />

<strong>and</strong> <strong>Impact</strong><br />

<strong>Analysis</strong><br />

September 1, 2011


Prepared for: Brownstein Hya Farber Schreck, LLP<br />

Prepared by:<br />

GEOSCIENCE GEOSCIENCE Support Services, Inc.,<br />

Ground Water Resources Development<br />

P.O. Box 220, Claremont, CA 91711<br />

www.gssiwater.com<br />

P: 909.451.6650 | F: 909.451.6638<br />

VOLUME 2:<br />

APPENDIX A<br />

<strong>Cadiz</strong><br />

<strong>Groundwater</strong><br />

<strong>Modeling</strong><br />

<strong>and</strong> <strong>Impact</strong><br />

<strong>Analysis</strong><br />

September 1, 2011


Prepared for: Brownstein Hya Farber Schreck, LLP<br />

Prepared by:<br />

GEOSCIENCE GEOSCIENCE Support Services, Inc.,<br />

Ground Water Resources Development<br />

P.O. Box 220, Claremont, CA 91711<br />

www.gssiwater.com<br />

P: 909.451.6650 | F: 909.451.6638<br />

VOLUME 2:<br />

APPENDIX A<br />

<strong>Cadiz</strong><br />

<strong>Groundwater</strong><br />

<strong>Modeling</strong><br />

<strong>and</strong> <strong>Impact</strong><br />

<strong>Analysis</strong><br />

September 1, 2011


Prepared for: Brownstein Hya Farber Schreck, LLP<br />

Prepared by:<br />

GEOSCIENCE GEOSCIENCE Support Services, Inc.,<br />

Ground Water Resources Development<br />

P.O. Box 220, Claremont, CA 91711<br />

www.gssiwater.com<br />

P: 909.451.6650 | F: 909.451.6638<br />

VOLUME 2:<br />

APPENDIX A<br />

<strong>Cadiz</strong><br />

<strong>Groundwater</strong><br />

<strong>Modeling</strong><br />

<strong>and</strong> <strong>Impact</strong><br />

<strong>Analysis</strong><br />

September 1, 2011


Prepared for: Brownstein Hya Farber Schreck, LLP<br />

Prepared by:<br />

GEOSCIENCE GEOSCIENCE Support Services, Inc.,<br />

Ground Water Resources Development<br />

P.O. Box 220, Claremont, CA 91711<br />

www.gssiwater.com<br />

P: 909.451.6650 | F: 909.451.6638<br />

VOLUME 2:<br />

APPENDIX A<br />

<strong>Cadiz</strong><br />

<strong>Groundwater</strong><br />

<strong>Modeling</strong><br />

<strong>and</strong> <strong>Impact</strong><br />

<strong>Analysis</strong><br />

September 1, 2011


Prepared for: Brownstein Hya Farber Schreck, LLP<br />

Prepared by:<br />

GEOSCIENCE GEOSCIENCE Support Services, Inc.,<br />

Ground Water Resources Development<br />

P.O. Box 220, Claremont, CA 91711<br />

www.gssiwater.com<br />

P: 909.451.6650 | F: 909.451.6638<br />

VOLUME 2:<br />

APPENDIX A<br />

<strong>Cadiz</strong><br />

<strong>Groundwater</strong><br />

<strong>Modeling</strong><br />

<strong>and</strong> <strong>Impact</strong><br />

<strong>Analysis</strong><br />

September 1, 2011


Prepared for: Brownstein Hya Farber Schreck, LLP<br />

Prepared by:<br />

GEOSCIENCE GEOSCIENCE Support Services, Inc.,<br />

Ground Water Resources Development<br />

P.O. Box 220, Claremont, CA 91711<br />

www.gssiwater.com<br />

P: 909.451.6650 | F: 909.451.6638<br />

VOLUME 2:<br />

APPENDIX A<br />

<strong>Cadiz</strong><br />

<strong>Groundwater</strong><br />

<strong>Modeling</strong><br />

<strong>and</strong> <strong>Impact</strong><br />

<strong>Analysis</strong><br />

September 1, 2011


Prepared for: Brownstein Hya Farber Schreck, LLP<br />

Prepared by:<br />

GEOSCIENCE GEOSCIENCE Support Services, Inc.,<br />

Ground Water Resources Development<br />

P.O. Box 220, Claremont, CA 91711<br />

www.gssiwater.com<br />

P: 909.451.6650 | F: 909.451.6638<br />

VOLUME 2:<br />

APPENDIX A<br />

<strong>Cadiz</strong><br />

<strong>Groundwater</strong><br />

<strong>Modeling</strong><br />

<strong>and</strong> <strong>Impact</strong><br />

<strong>Analysis</strong><br />

September 1, 2011


Prepared for: Brownstein Hya Farber Schreck, LLP<br />

Prepared by:<br />

GEOSCIENCE GEOSCIENCE Support Services, Inc.,<br />

Ground Water Resources Development<br />

P.O. Box 220, Claremont, CA 91711<br />

www.gssiwater.com<br />

P: 909.451.6650 | F: 909.451.6638<br />

VOLUME 2:<br />

APPENDIX A<br />

<strong>Cadiz</strong><br />

<strong>Groundwater</strong><br />

<strong>Modeling</strong><br />

<strong>and</strong> <strong>Impact</strong><br />

<strong>Analysis</strong><br />

September 1, 2011


Prepared for: Brownstein Hya Farber Schreck, LLP<br />

Prepared by:<br />

GEOSCIENCE GEOSCIENCE Support Services, Inc.,<br />

Ground Water Resources Development<br />

P.O. Box 220, Claremont, CA 91711<br />

www.gssiwater.com<br />

P: 909.451.6650 | F: 909.451.6638<br />

VOLUME 2:<br />

APPENDIX A<br />

<strong>Cadiz</strong><br />

<strong>Groundwater</strong><br />

<strong>Modeling</strong><br />

<strong>and</strong> <strong>Impact</strong><br />

<strong>Analysis</strong><br />

September 1, 2011


Prepared for: Brownstein Hya Farber Schreck, LLP<br />

Prepared by:<br />

GEOSCIENCE GEOSCIENCE Support Services, Inc.,<br />

Ground Water Resources Development<br />

P.O. Box 220, Claremont, CA 91711<br />

www.gssiwater.com<br />

P: 909.451.6650 | F: 909.451.6638<br />

VOLUME 2:<br />

APPENDIX A<br />

<strong>Cadiz</strong><br />

<strong>Groundwater</strong><br />

<strong>Modeling</strong><br />

<strong>and</strong> <strong>Impact</strong><br />

<strong>Analysis</strong><br />

September 1, 2011


Prepared for: Brownstein Hya Farber Schreck, LLP<br />

Prepared by:<br />

GEOSCIENCE GEOSCIENCE Support Services, Inc.,<br />

Ground Water Resources Development<br />

P.O. Box 220, Claremont, CA 91711<br />

www.gssiwater.com<br />

P: 909.451.6650 | F: 909.451.6638<br />

VOLUME 2:<br />

APPENDIX A<br />

<strong>Cadiz</strong><br />

<strong>Groundwater</strong><br />

<strong>Modeling</strong><br />

<strong>and</strong> <strong>Impact</strong><br />

<strong>Analysis</strong><br />

September 1, 2011


Prepared for: Brownstein Hya Farber Schreck, LLP<br />

Prepared by:<br />

GEOSCIENCE GEOSCIENCE Support Services, Inc.,<br />

Ground Water Resources Development<br />

P.O. Box 220, Claremont, CA 91711<br />

www.gssiwater.com<br />

P: 909.451.6650 | F: 909.451.6638<br />

VOLUME 2:<br />

APPENDIX A<br />

<strong>Cadiz</strong><br />

<strong>Groundwater</strong><br />

<strong>Modeling</strong><br />

<strong>and</strong> <strong>Impact</strong><br />

<strong>Analysis</strong><br />

September 1, 2011


WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015<br />

<strong>Cadiz</strong> <strong>Groundwater</strong><br />

Conservation <strong>and</strong> Storage<br />

Project<br />

Prepared for<br />

<strong>Cadiz</strong>, Inc.<br />

550 South Hope Street, Suite 2850<br />

Los Angeles, California 90071<br />

July 2010<br />

325 East Hillcrest Drive, Suite 125<br />

Thous<strong>and</strong> Oaks, California 91360


Contents<br />

Section Page<br />

Acronyms <strong>and</strong> Abbreviations ..................................................................................................... vi<br />

Executive Summary ................................................................................................................. ES-1<br />

1.0 Introduction .................................................................................................................... 1-1<br />

1.1 Purpose .................................................................................................................. 1-1<br />

1.2 Scope....................................................................................................................... 1-2<br />

2.0 Setting ............................................................................................................................. 2-1<br />

2.1 Physiography ......................................................................................................... 2-1<br />

2.1.1 Overview of Setting.................................................................................... 2-1<br />

2.1.2 Topography ................................................................................................ 2-1<br />

2.1.3 Vegetation ................................................................................................... 2-2<br />

2.1.4 Dry Lakes (Playas)...................................................................................... 2-2<br />

2.2 Climate ................................................................................................................... 2-2<br />

2.2.1 Precipitation ................................................................................................ 2-3<br />

2.2.2 Temperature ............................................................................................... 2-3<br />

2.3 Geology .................................................................................................................. 2-4<br />

2.3.1 Regional Geology ....................................................................................... 2-4<br />

2.3.2 Structural Geology ..................................................................................... 2-6<br />

2.3.3 Surficial Geology <strong>and</strong> Soils ........................................................................ 2-7<br />

2.4 Hydrogeology ........................................................................................................ 2-7<br />

2.4.1 Hydrogeologic Units .................................................................................. 2-9<br />

2.4.2 <strong>Groundwater</strong> Movement ........................................................................... 2-9<br />

3.0 <strong>Groundwater</strong> in Storage................................................................................................ 3-1<br />

4.0 Recoverable Water ......................................................................................................... 4-1<br />

4.1 Application of INFIL3.0 - Watershed Soil Mositure Budget Model .................. 4-1<br />

4.1.1 Model Geometry <strong>and</strong> Grid ........................................................................ 4-3<br />

4.1.2 Topography ................................................................................................ 4-3<br />

4.1.3 Climate Parameters .................................................................................... 4-4<br />

4.1.4 Soil Parameters ........................................................................................... 4-6<br />

4.1.5 Hydrogeologic Parameters ........................................................................ 4-6<br />

4.1.6 Vegetation <strong>and</strong> Root Zone Parameters ..................................................... 4-7<br />

4.1.7 INFIL3.0 Simulation Results ...................................................................... 4-7<br />

4.1.8 Discussion of Recoverable Water Results ................................................. 4-8<br />

4.2 <strong>Groundwater</strong> Flow through Fenner Gap........................................................... 4-10<br />

4.2.1 Local Hydrogeology of the Fenner Gap Area ........................................ 4-11<br />

4.2.2 Numerical Model Development.............................................................. 4-13<br />

4.2.3 Application of PEST to Estimating <strong>Groundwater</strong> Flow through<br />

Fenner Gap ........................................................................................................... 4-14<br />

4.2.4 Discussion of <strong>Groundwater</strong> Flow Model Results .................................. 4-17<br />

5.0 References Cited ............................................................................................................ 5-1<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 I


Tables<br />

2-1 Summary of Precipitation Stations In the Area of Study<br />

3-1 <strong>Cadiz</strong> Study Area <strong>Groundwater</strong> Storage Calculations<br />

4-1 Monthly Atmospheric-Parameters Used in INFIL3.0 Simulations<br />

4-2 Monthly Climate-Regression Models Coefficients used in INFIL3.0 Simulations<br />

4-3 Soil Parameter Values Used in INFIL3.0 Simulations<br />

4-4 Root-zone Porosity, Initial <strong>and</strong> Calibrated Saturated Hydraulic Conductivity for<br />

Bedrock <strong>and</strong> Deep Soil Used in INFIL3.0<br />

4-5 Vegetation Properties Used in INFIL3.0 Simulations<br />

4-6 Geologic Units In Fenner Gap Area<br />

4-7 Summary of Aquifer Test Data – Fenner Gap Area<br />

CONTENTS<br />

4-8 Summary of Survey Data <strong>and</strong> <strong>Groundwater</strong> Elevation Measurements – Fenner Gap<br />

Area<br />

Figures<br />

1-1 Overall <strong>Cadiz</strong> <strong>and</strong> Fenner Valleys Location Map<br />

2-1 Overall <strong>Cadiz</strong> <strong>and</strong> Fenner Valleys Location Map<br />

2-2 Topography<br />

2-3 Drainage Map<br />

2-4 Vegetation<br />

2-4b Vegetation Coverage<br />

2-5 Climate Stations<br />

2-6 PRISM Isohyets for the 1971-2000 Period<br />

2-7 Cumulative Departure from Mean Precipitation for Selected Precipitation Stations<br />

2-8 Simplified Geologic Map<br />

2-9 Geology of Fenner Gap Area<br />

2-10 STATSCO Soil Map<br />

2-11 Percentage of Grains Greater Than 2mm<br />

2-12 Percentage of Clay from Fines<br />

2-13 Conceptualization of <strong>Groundwater</strong> Occurrence <strong>and</strong> Movement in Area of Study<br />

2-14 Schematic Cross Section showing Occurrence <strong>and</strong> Movement of Water<br />

2-15 Wells <strong>and</strong> Springs Map<br />

2-16 <strong>Groundwater</strong> Level<br />

3-1 Base of Alluvial Aquifer Elevation<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 II


3-2 Storage Zone<br />

4-1 Schematic of Water Balance Processes Simulated In INFIL3.0<br />

4-2 INFIL3.0 Grid – Fenner Watershed<br />

4-3 INFIL3.0 Grid – Orange Blossom Wash Area<br />

4-4 INFIL3.0 Flow Accumulation/Routing – Fenner Watershed<br />

4-5 INFIL3.0 Flow Accumulation/Routing – Orange Blossom Watershed<br />

4-6 Climate Stations Used in INFIL3.0 for Fenner Watershed <strong>and</strong> Orange Blossom<br />

Wash Areas<br />

4-7 Monthly Precipitation Versus elevation Regressions Used in INFIL3.0<br />

4-8 Soil Depths Determined from STATSGO Database<br />

4-9a INFIL3.0 Modeled Average Annual Precipitation for 1971-2000 Period<br />

Compared with PRISM – Fenner Watershed<br />

4-9b INFIL3.0 Modeled Average Annual Precipitation for 1971-2000 Period<br />

Compared with PRISM – Orange Blossom Watershed<br />

4-9c INFIL3.0 Modeled Average Annual Precipitation for 1958-2007 Period<br />

Compared with PRISM – Fenner Watershed<br />

4-9d INFIL3.0 Modeled Average Annual Precipitation for 1958-2007 Period<br />

Compared with PRISM – Orange Blossom Watershed<br />

4-10a INFIL3.0 Average Annual Infiltration for 1958-2007 – Fenner Watershed<br />

4-10b INFIL3.0 Average Annual Infiltration for 1958-2007 – Orange Blossom Watershed<br />

4-11 Fenner Watershed Recoverable Water INFIL3.0 Simulation Results<br />

4-12 Orange Blossom Watershed Recoverable Water INFIL3.0 Simulation Results<br />

4-13 Fenner Watershed Recoverable Water INFIL3.0 Versus GSSI High Estimate<br />

4-14 Fenner Watershed Recoverable Water INFIL3.0 Versus GSSI Low Estimate<br />

CONTENTS<br />

4-15 Orange Blossom Watershed Recoverable Water INFIL3.0 Versus GSSI High Estimate<br />

4-16 Orange Blossom Watershed Recoverable Water INFIL3.0 Versus GSSI Low Estimate<br />

4-17 NDVI for May 16, 1990<br />

4-18 NDVI for March 16, 1991<br />

4-19 NDVI for May 19, 1991<br />

4-20 NDVI for March 10, 1992<br />

4-21 NDVI for May 14, 1995<br />

4-22 NDVI for August 13, 1995<br />

4-23 Geology of Fenner Gap Area, Location of Cross Sections <strong>and</strong> Test Borings/Wells<br />

4-24 Generalized Stratigraphic Column of Fenner Gap Area<br />

4-25 Cross Section E-E’<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 III


4-26 Cross Section B1-B1’<br />

4-27 Cross Section D1-D1’<br />

4-28 Cross Section B-B’<br />

4-29 Cross Section F-F’<br />

4-30 Cross Section I-I’<br />

4-31 Cross Section H-H’<br />

4-32 Cross Section J-J’<br />

4-33 Structure Contour Map of Base of Alluvium in the Fenner Gap Area<br />

4-34 Isopach Map Saturated Alluvium<br />

4-35 Estimated Extent of Consolidated Fanglomerates in the Fenner Gap Area<br />

4-36 Isopach Map of Carbonate Rock Unit in the Fenner Gap Area<br />

4-37 TO BE PROVIDED UNDER SEPARATE COVER<br />

4-38 <strong>Groundwater</strong> Elevation Contour Map in the Fenner Gap Area<br />

4-39 <strong>Groundwater</strong> Flow Model Extents, Grid <strong>and</strong> Boundary Conditions<br />

4-40 PEST Pilot Points <strong>and</strong> Targets in Layer 1<br />

CONTENTS<br />

4-41 PEST Pilot Points <strong>and</strong> Targets in Layer 3<br />

4-42 PEST Simulated <strong>Groundwater</strong> Contours <strong>and</strong> Target Residuals – K Limit = 600 ft/d<br />

4-43 PEST Computed Hydraulic Conductivity Distribution in Layer 1 with<br />

K Upper Limit = 600 ft/d<br />

4-44 PEST Computed Hydraulic Conductivity Distribution in Layer 3 with<br />

K Upper Limit = 600 ft/d<br />

4-45 PEST Simulated <strong>Groundwater</strong> Contours <strong>and</strong> Target Residuals – K Limit = 400 ft/d<br />

4-46 PEST Computed Hydraulic Conductivity Distribution in Layer 1 with<br />

K Upper Limit = 400 ft/d<br />

4-47 PEST Computed Hydraulic Conductivity Distribution in Layer 3 with<br />

K Upper Limit = 400 ft/d<br />

4-48 Scatter Plot Showing Observed Versus Simulated <strong>Groundwater</strong> Levels from PEST<br />

Simulations<br />

4-49 Hydrogeologic zones <strong>and</strong> Catchment Area of the Edwards Aquifer, San Antonio<br />

region Texas (from Lindgren et al., 2004)<br />

4-50 Simulated distribution of horizontal hydraulic conductivity for calibrated Edwards<br />

Aquifer model, San Antonio region Texas (from Lindgren et al.., 2004)<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 IV


Plates<br />

CONTENTS<br />

1 Preliminary Surficial Geologic Map Database of the Amboy 30x60 Minute Quadrangle<br />

2 Estimated Extent of Pediments <strong>and</strong> Adjacent Areas of Thin Alluvial Cover –<br />

East Mojave National Scenic Area<br />

<strong>Appendix</strong>es<br />

A Field Investigation Report (CD)<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 V


Acronyms <strong>and</strong> Abbreviations<br />

AF acre-feet<br />

AFY acre-feet per year<br />

ASP aspect<br />

BRGAP USGS’ Biological Resources National Gap <strong>Analysis</strong> Program<br />

BLM Bureau of L<strong>and</strong> Management<br />

bgs below ground surface<br />

cm/d centimeters per day<br />

CPC Climate Prediction Center<br />

DEM digital elevation model/map<br />

ELEV elevation<br />

ft/yr feet per year<br />

GIS geographic information system<br />

gpm gallons per minute<br />

HUC hydrologic unit codes<br />

km kilometers<br />

km2 square kilometers<br />

LLNL Lawrence Livermore National Laboratory<br />

m meters<br />

mg/l milligrams per liter<br />

mi2 square miles<br />

MUID map unit identifier<br />

NED National Elevation Dataset<br />

NDVI Normalized Difference Vegetation Index<br />

NGVD National Geodetic Vertical Datum<br />

NOAA National Oceanic <strong>and</strong> Atmospheric Administration<br />

PEST parameter estimator<br />

PRISM Parameter-Elevation Regressions on Independent Slopes Model<br />

SL slope<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 VI


TDS total dissolved solids<br />

USGS United States Geological Survey<br />

UTM Universe Transverse of Mercator<br />

WESTVEG western region vegetation map<br />

ACRONYMS AND ABBREVIATIONS<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 VII


Executive Summary<br />

<strong>Cadiz</strong>, Inc. owns 34,000 acres of largely contiguous l<strong>and</strong> in the <strong>Cadiz</strong> <strong>and</strong> Fenner valleys,<br />

located in the eastern Mojave Desert, where they have farmed successfully for more than<br />

15 years (Figure ES-1). <strong>Cadiz</strong> desires to develop a water conservation project that involves<br />

capturing natural recharge in the Fenner <strong>and</strong> northern Bristol valleys that would otherwise<br />

discharge to the Bristol <strong>and</strong> <strong>Cadiz</strong> dry lakes <strong>and</strong> then evaporate. In addition, <strong>Cadiz</strong> proposes<br />

to implement a groundwater storage component of the project that involves extraction of<br />

native groundwater from subsurface groundwater in storage. The company’s intent is to<br />

develop storage conditions that would allow native water to be conserved <strong>and</strong> imported<br />

water to be transported, stored, <strong>and</strong> recaptured in the project area for beneficial uses,<br />

including environmental mitigation purposes.<br />

<strong>Cadiz</strong> requested CH2M HILL to review previous studies <strong>and</strong> conduct additional studies to<br />

provide an updated assessment of 1) potential recoverable water that could be conserved over<br />

the long term (by intercepting water that would otherwise discharge by evapotranspiration<br />

from Bristol <strong>and</strong> <strong>Cadiz</strong> dry lakes) <strong>and</strong> 2) groundwater in storage in the Fenner Valley <strong>and</strong><br />

northern Bristol Valley area. This updated assessment included collection of additional field<br />

data, development of a watershed soil-moisture budget model based on the USGS INFIL3.0<br />

model, <strong>and</strong> development of a three-dimensional groundwater flow model, based on the USGS<br />

MODFLOW-2000 computer code, of the Fenner Gap area. The purpose of the update was to<br />

assess the quantity of groundwater flowing through the gap. The groundwater is expected to<br />

be a large part of the long-term average annual recharge to the Fenner Watershed, which is<br />

flowing toward the Bristol <strong>and</strong> <strong>Cadiz</strong> dry lakes. These assessments indicated that a reasonable<br />

estimate of potential recoverable water is 32,000 acre-feet per year <strong>and</strong> the volume of<br />

groundwater in storage is reasonably estimated to be between about 17 million to 34 million<br />

acre-feet in the alluvium of the Fenner Valley <strong>and</strong> northern Bristol Valley area.<br />

Summary of Field Investigations<br />

Field investigations were a part of this study <strong>and</strong> included the following activities:<br />

Geologic reconnaissance to directly observe geologic, hydrologic, <strong>and</strong> geomorphic<br />

features <strong>and</strong> conditions in the field<br />

Drilling of four boreholes to better delineate the subsurface geology <strong>and</strong> hydrogeology<br />

Three aquifer tests <strong>and</strong> one packer test to provide estimates of hydrogeologic properties<br />

Survey of wells <strong>and</strong> measurements of groundwater levels to define hydraulic gradients<br />

<strong>and</strong> groundwater level fluctuations<br />

Collection of water samples from new wells to assess groundwater quality<br />

Figure ES-2 shows a geologic map of the Fenner Gap area <strong>and</strong> locations of wells, including<br />

new wells completed as a part of this study. <strong>Appendix</strong> A presents the details of the field<br />

investigations completed as part of this study. Following is a summary of findings from<br />

these field investigations.<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 ES-1


EXECUTIVE SUMMARY<br />

The primary purpose of well TW-1 was to assess the hydrogeologic properties of the<br />

carbonate rock units in the Fenner Gap. A video log of the open borehole from 454 feet<br />

below ground surface (bgs) to about 1,000 feet bgs shows extensive fracturing, cavities, <strong>and</strong><br />

dissolution features, resulting in significant secondary porosity <strong>and</strong> permeability.<br />

Approximately 500 feet of the carbonate rock unit was pumped for 3 days at 1,160 gallons<br />

per minute (gpm), which resulted in about 0.5 foot of drawdown (after an initial rise in<br />

groundwater level), demonstrating the substantial water transmitting properties of this<br />

hydrogeologic unit. This test indicated that hydraulic conductivity values of the carbonate<br />

rock units can be in excess of 1,000 feet per day.<br />

The purpose of well TW-2 was to assess the thickness <strong>and</strong> hydrogeologic properties of the<br />

alluvium in its thicker section through the Fenner Gap. Wells TW-2 <strong>and</strong> TW-2B confirm a<br />

thickness of about 860 to 810 feet of alluvium, respectively. An aquifer test conducted for<br />

3 days at 1,130 gpm on TW-2 indicated an average hydraulic conductivity value of about<br />

600 feet per day, demonstrating substantial water transmitting capacity of the younger<br />

alluvium in the Fenner Gap.<br />

Well TW-3 indicated that the eastern side of the Fenner Gap is underlain by older alluvium<br />

(fanglomerates) that are consolidated <strong>and</strong> less permeable than the younger alluvium.<br />

Packer tests in this hydrogeologic unit indicate an average hydraulic conductivity of<br />

3.1 x 10 -3 feet per day.<br />

A recent well survey <strong>and</strong> groundwater-level measurements confirm a steep hydraulic<br />

gradient upstream of the Fenner Gap <strong>and</strong> a flattening of the gradient in <strong>and</strong> downstream of<br />

the gap, which is consistent with an increase in water transmitting properties of those<br />

hydrogologic units through <strong>and</strong> downstream of the gap.<br />

<strong>Groundwater</strong> samples were collected from wells TW-1 <strong>and</strong> TW-2. Total dissolved solids<br />

(TDS) in groundwater samples collected from wells TW-1 <strong>and</strong> TW-2 screened in the alluvial<br />

aquifer range from 260 to 300 milligrams per liter (mg/l). The TDS of groundwater in the<br />

carbonate rock unit from well TW-1 is 220 mg/l. Overall, groundwater quality meets all<br />

primary <strong>and</strong> secondary maximum contaminant levels for those constituents analyzed in the<br />

samples collected as a part of this study (see <strong>Appendix</strong> A).<br />

Summary of <strong>Groundwater</strong> in Storage<br />

Estimates of the volume of groundwater in storage were updated from those developed<br />

previously by Geoscience Support Services Inc. (GSSI, 1999). These estimates were updated<br />

based on more recent field investigations conducted as a part of this study, as previously<br />

described, <strong>and</strong> recent studies conducted by the United States Geological Survey (USGS). As<br />

a part of their assessment of the geology <strong>and</strong> mineral resources of the East Mojave Scenic<br />

Area, the USGS (2006) developed estimates of the thickness of the alluvial sediments north<br />

of Interstate 40that were used in this study to refine the distribution of alluvial sediments in<br />

the Fenner Watershed. The volume of groundwater in storage is reasonably estimated to be<br />

about 17 million to 34 million acre-feet in the alluvium of the Fenner Valley <strong>and</strong> northern<br />

Bristol Valley area. Section 3 provides the details of the estimates of groundwater in storage.<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 ES-2


Summary of Recoverable Water<br />

EXECUTIVE SUMMARY<br />

Section 4 presents estimates of potentially recoverable water, water that would otherwise<br />

discharge to the Bristol <strong>and</strong> <strong>Cadiz</strong> dry lakes <strong>and</strong> then evaporate. The estimates were<br />

developed using the USGS INFIL3.0 watershed soil moisture budget model <strong>and</strong> then tested<br />

through application of the USGS MODFLOW-2000 model of groundwater flow through the<br />

Fenner Gap. Figure ES-3 conceptually illustrates groundwater occurrence <strong>and</strong> movement in<br />

the Fenner <strong>and</strong> Bristol valley areas. <strong>Groundwater</strong> originates as precipitation falling on the<br />

surrounding mountains. A portion of this precipitation infiltrates into the groundwater<br />

system as recharge, then flows, principally through alluvial <strong>and</strong> carbonate rock units <strong>and</strong> to<br />

a lesser extent through volcanic deposits, towards <strong>and</strong> through the Fenner Gap on its way to<br />

the Bristol <strong>and</strong> <strong>Cadiz</strong> dry lakes, where it ultimately evapotranspires, leaving behind salts<br />

that are carried with the groundwater.<br />

Total recoverable water, therefore, is equal to the amount of recharge to the groundwater<br />

system in the Fenner Watershed, which is approximately equal to the amount of<br />

groundwater flow through Fenner Gap through the alluvial <strong>and</strong> carbonate rock units<br />

(flow through other rock units is expected to be substantially less than through these two<br />

hydrogeologic units). By intercepting this groundwater flow through the gap, a reduction of<br />

evapotranspiration from Bristol <strong>and</strong> <strong>Cadiz</strong> dry lakes is expected, but there would be no<br />

reduction in groundwater storage.<br />

The USGS computer program INFIL3.0 was used to assess the quantity of recharge to the<br />

groundwater system <strong>and</strong>, therefore, recoverable water. The USGS released INFIL3.0 in 2008.<br />

INFIL3.0 is a grid-based, distributed–parameter, deterministic water-balance watershed<br />

model used to estimate the areal <strong>and</strong> temporal net infiltration below the root zone<br />

(USGS, 2008). The model is based on earlier versions of INFIL code that were developed by<br />

the USGS in cooperation with the Department of Energy to estimate net infiltration <strong>and</strong><br />

groundwater recharge at the Yucca Mountain high-level nuclear-waste repository site in<br />

Nevada. Net infiltration is the downward movement of water that escapes below the root<br />

zone <strong>and</strong> is no longer affected by evapotranspiration <strong>and</strong> is capable of percolating to, <strong>and</strong><br />

recharging, groundwater. Net infiltration may originate as three sources: rainfall, snow<br />

melt, <strong>and</strong> surface water runon (runoff <strong>and</strong> streamflow).<br />

INFIL3.0 requires a number of inputs including (1) a grid (based on uniform squares over<br />

the watershed); (2) an estimate of the initial root-zone water contents; (3) a daily time-series<br />

input of total daily precipitation <strong>and</strong> maximum <strong>and</strong> minimum temperatures; <strong>and</strong> (4) a set of<br />

model input variables that define drainage basin characteristics, model coefficients for<br />

simulating evapotranspiration, drainage, <strong>and</strong> spatial distribution of daily precipitation <strong>and</strong><br />

air temperature, average monthly atmospheric conditions, <strong>and</strong> user-defined runtime<br />

options. INFIL3.0 will compute daily, monthly, <strong>and</strong> annual average water-balance<br />

components for multi-year simulations.<br />

Input required for INFIL3.0 was obtained from the following sources:<br />

National Elevation Dataset (NED) to define topography<br />

National Hydrologic Unit Codes (HUCs) to define watershed <strong>and</strong> sub-watershed<br />

boundaries<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 ES-3


EXECUTIVE SUMMARY<br />

San Bernardino County <strong>and</strong> the National Oceanic <strong>and</strong> Atmospheric Administration<br />

(NOAA) Climate Data Center to develop temporal <strong>and</strong> spatial distributions of daily<br />

precipitation <strong>and</strong> temperatures<br />

STATSGO soil database (STATSGO2, 2009) to define the distribution of soils <strong>and</strong> soil<br />

properties<br />

USGS <strong>and</strong> the state of California for geologic mapping, including the recent map,<br />

Preliminary Surficial Geologic Map Database of the Amboy 30x60 Minute Quadrangle,<br />

California (Bedford et al., 2006)<br />

WESTVEG GAP regional vegetation mapping to characterize vegetation in the area<br />

The average annual recoverable water quantities for Fenner Watershed, Orange Blossom<br />

Wash area <strong>and</strong> combined (Fenner <strong>and</strong> Orange Blossom wash area) in total are: 30,191 acrefeet<br />

per year (AFY); 2,256 AFY; <strong>and</strong> 32,447 AFY, respectively, based on calendar years 1958<br />

through 2007. The annual quantities vary with annual precipitation. In general, the period<br />

prior to about 1975 was much drier than the long-term average, while the period after 1975<br />

was much wetter than average. So, the period 1958 through 2007 covers both a long-term<br />

dry <strong>and</strong> long-term wet periods.<br />

Validation of Recoverable Water Estimate<br />

Fenner Gap is the path of groundwater flow through alluvial <strong>and</strong> bedrock aquifers (such as<br />

carbonate units) from Fenner Valley into Bristol <strong>and</strong> <strong>Cadiz</strong> valleys. The long-term steadystate<br />

flow of groundwater through the gap is expected to be similar to long-term<br />

groundwater recharge in the Fenner Watershed. A three-dimensional groundwater flow<br />

model of the Fenner Gap area was developed for the purposes of validating the 30,000 AFY<br />

estimate of steady-state groundwater flow through Fenner Gap, previously described. The<br />

model is used to solve the inverse problem, that is, given a boundary inflow of groundwater<br />

at the north end of the gap of 30,000 AFY, <strong>and</strong> measured steady-state groundwater levels,<br />

what distribution of aquifer properties (specifically hydraulic conductivity) is required to<br />

allow for this flow <strong>and</strong> is this distribution likely given available information on aquifer<br />

properties?<br />

The question was answered using a software program called PEST, which is often used in<br />

inverse modeling to aid in calibrating groundwater flow models. PEST is a modelindependent<br />

parameter estimator (PEST) computer program that provides for nonlinear<br />

parameter estimation for use with almost any numerical model. PEST has been widely used<br />

<strong>and</strong> extensively tested since 1994 by scientists <strong>and</strong> engineers around the world working in<br />

many different fields, including biology, geophysics, geotechnical, mechanical, aeronautical<br />

<strong>and</strong> chemical engineering, ground <strong>and</strong> surface water hydrology, <strong>and</strong> other fields (Doherty,<br />

2004). PEST is used to estimate groundwater model parameter values, such as hydraulic<br />

conductivity, where measurements of groundwater levels <strong>and</strong> stresses (such as pumping or<br />

recharge) are known. PEST calculates values of hydraulic conductivity that makes the<br />

groundwater flow model “calibrate” to the measured values. PEST makes many (often<br />

thous<strong>and</strong>s) model simulation runs to find the best set of parameter values that minimizes the<br />

residuals (differences) in simulated <strong>and</strong> observed measurements (e.g., groundwater levels).<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 ES-4


EXECUTIVE SUMMARY<br />

PEST was used in the Fenner Gap groundwater model to estimate hydraulic conductivity<br />

distributions for the alluvial aquifer <strong>and</strong> carbonate rock units in the Fenner Gap given the<br />

following constraints (1) areal <strong>and</strong> vertical distribution of alluvial <strong>and</strong> carbonate rock units<br />

as previously described, (2) constant head values (groundwater elevations) of 660 feet <strong>and</strong><br />

590 feet on the northern <strong>and</strong> west-southern boundaries, respectively, (3) a target flux across<br />

the northern boundary of 30,000 AFY, (4) target groundwater-level measurements from<br />

monitoring wells in the Fenner Gap area based on recent groundwater levels <strong>and</strong>,<br />

(5) estimates of hydraulic conductivity from aquifer tests from previous studies <strong>and</strong> as a<br />

part of this study. These PEST-estimated hydraulic conductivity values are evaluated in the<br />

context of the hydrogeology of the gap, including available aquifer test data, to determine if<br />

these parameter estimates are reasonable. If these hydraulic conductivity values are<br />

considered reasonable, then it is reasonable that groundwater flow through the Fenner Gap<br />

is 30,000 AFY.<br />

PEST results produced two distributions of hydraulic conductivity that are both reasonable<br />

<strong>and</strong> consistent with observed data from aquifer tests, while maintaining 30,000 AFY of<br />

groundwater flow through the gap <strong>and</strong> matching observed groundwater levels in<br />

monitoring wells. Because of this match, it is reasonable to assume that 30,000 AFY is<br />

flowing through the gap <strong>and</strong>, therefore, that 30,000 AFY is a reasonable estimate of<br />

potentially recoverable water.<br />

In total, data obtained from field investigations, INFIL3.0 watershed soil-moisture budget<br />

assessments, <strong>and</strong> Fenner Gap three-dimensional groundwater flow model simulations<br />

support a 32,000 AFY estimate of potentially recoverable water from the Fenner <strong>and</strong><br />

northern Bristol Valley area. However, numerical models are based on simplified<br />

conceptual models of the more complex physical groundwater system <strong>and</strong> processes.<br />

Model construction <strong>and</strong> calibration results in non-unique models, which is demonstrated<br />

herein, in that two conceptual models provide a good fit to observed data (groundwater<br />

levels <strong>and</strong> range of hydraulic conductivity values). The Fenner Gap models suggest a large<br />

area of highly transmissive alluvium <strong>and</strong> carbonate rock units, especially along the eastern<br />

side of the gap, extending into the Bristol Valley. This area should be the focus of any<br />

additional field investigations as might be required for development of an operations plan<br />

<strong>and</strong> subsequent environmental impacts assessments, which also will provide further<br />

support of these potentially recoverable water estimates.<br />

It is important to note that it was not the purpose, or within the scope, of the present study<br />

to develop an operations plan for development of the water resources or to provide an<br />

assessment of those environmental impacts associated with this development. Findings<br />

of this study are intended only to serve as a foundation for defining a groundwater<br />

conservation <strong>and</strong> storage project on l<strong>and</strong>s owned by <strong>Cadiz</strong>, Inc. An operations plan that<br />

would include locations, quantities <strong>and</strong> timing of extractions, recharge, <strong>and</strong> storage <strong>and</strong><br />

recovery operations would be the logical next step, followed by assessments of<br />

environmental impacts associated with the proposed operations. Those environmental<br />

assessments could include additional field investigations to further confirm the findings of<br />

this study <strong>and</strong> provide additional data as may be required to complete the environmental<br />

assessments.<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 ES-5


3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000<br />

36°0'0"N<br />

34°0'0"N<br />

32°0'0"N<br />

5 90000<br />

I15<br />

5 90000<br />

120°0'0"W<br />

120°0'0"W<br />

California<br />

Los Angeles<br />

San Diego<br />

B U L L I O N M O U N TA I N S<br />

116°0'0"W<br />

6 00000<br />

6 00000<br />

Nevada I15<br />

Las Vegas<br />

Twentynine Palms<br />

Palm Springs<br />

116°0'0"W<br />

Bagdad<br />

112°0'0"W<br />

Utah<br />

I40<br />

Arizona<br />

112°0'0"W<br />

6 10000<br />

6 10000<br />

GRANITE<br />

MTNS,<br />

B R I S T O L M T N S .<br />

Amboy<br />

6 20000<br />

BRISTOL DRY LAKE<br />

36°0'0"N<br />

34°0'0"N<br />

32°0'0"N<br />

6 20000<br />

Kelso<br />

M ARB L E M T N S .<br />

S H E E P H O L E M T N S<br />

Legend<br />

6 30000<br />

C A L U M E T M T N S .<br />

6 30000<br />

<strong>Cadiz</strong> Study Area<br />

Interstates<br />

Highways<br />

Roads<br />

Rail Roads<br />

6 40000<br />

Cima<br />

P R O V I D E N C E M O U N TA I N S<br />

<strong>Cadiz</strong><br />

CADIZ Inc.<br />

Agricultural Fields<br />

CADIZ DRY LAKE<br />

6 40000<br />

CLIPPER<br />

MTNS,<br />

FENNER<br />

GAP<br />

6 50000<br />

SHIP<br />

MTNS,<br />

DANBY DRY LAKE<br />

NEW YORK<br />

MTNS<br />

WOODS MTNS.<br />

COXCOMB<br />

MTNS<br />

6 50000<br />

6 60000<br />

F E N N E R VA L L E Y<br />

HACKBERRY<br />

MTNS.<br />

Essex<br />

Chubbuck<br />

6 60000<br />

O L D W O MAN M T N S .<br />

IRON<br />

MTNS<br />

6 70000<br />

Fenner<br />

6 70000<br />

I40<br />

P I U T E M T N S .<br />

6 80000<br />

Goffs<br />

6 80000<br />

Figure ES-1<br />

Location Map<br />

6 90000<br />

6 90000<br />

0 2 4 8 Miles<br />

0 2.5 5 10 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\FigES-1_CADIZ_TM_StudyArea_V1_MH.mxd<br />

3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000


3 826000<br />

3 825000<br />

3 824000<br />

3 823000<br />

3 822000<br />

3 821000<br />

3 820000<br />

3 819000<br />

3 818000<br />

3 817000<br />

3 816000<br />

3 815000<br />

3 814000<br />

Legend<br />

6 39000<br />

6 39000<br />

Test Wells<br />

Test Borings<br />

Fault<br />

Interstates<br />

Roads<br />

Rail Roads<br />

45<br />

45<br />

6 40000<br />

45<br />

6 40000<br />

55 35<br />

Geology Units<br />

Alluvium<br />

Teritary Volcanics<br />

6 41000<br />

35<br />

6 41000<br />

Modified from Liggett (2010) <strong>and</strong> Bishop (1963)<br />

20<br />

6 42000<br />

6 42000<br />

TW-1<br />

TW-2B<br />

TW-2<br />

Mesozoic Granitic Rocks<br />

Permian/Pennsylvanian Carbonate Rock Units<br />

Cambrian Carbonate Rock Units<br />

Precambrian Granitic Rocks<br />

6 43000<br />

6 43000<br />

6 44000<br />

6 44000<br />

TW-3<br />

40<br />

6 45000<br />

80<br />

6 45000<br />

25<br />

6 46000<br />

25<br />

60<br />

80<br />

45<br />

6 46000<br />

25<br />

6 47000<br />

20<br />

0 0.25 0.5 1 Miles<br />

0 0.25 0.5 1Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

Vertical Datum NAVD88<br />

6 47000<br />

45<br />

6 48000<br />

25<br />

6 48000<br />

25<br />

25<br />

30<br />

60<br />

Figure ES-2<br />

Field Map of New Boreholes <strong>and</strong><br />

Test Wells Locations<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\FigES-2_CADIZ_TM_Location_of_New_Boreholes_TestWells _V1_MH1.mxd<br />

3 826000<br />

3 825000<br />

3 824000<br />

3 823000<br />

3 822000<br />

3 821000<br />

3 820000<br />

3 819000<br />

3 818000<br />

3 817000<br />

3 816000<br />

3 815000<br />

3 814000


WB052009005SCO386303 AA 05 <strong>Cadiz</strong> conceptual v3 rev ai 3/10<br />

Existing Agriculture<br />

SOUTHWEST<br />

Bristol<br />

Mountains<br />

Bristol<br />

Dry<br />

Lake<br />

Bristol<br />

Mountains<br />

Brine<br />

INTERSTATE<br />

40<br />

Portion of <strong>Cadiz</strong> Inc. L<strong>and</strong> Ownership<br />

in the <strong>Cadiz</strong> & Fenner Valleys<br />

5 miles<br />

Fenner<br />

Gap<br />

Marble<br />

Mountains<br />

Orange<br />

Blossom<br />

Wash<br />

Carbonate<br />

Rock Unit<br />

Providence Mountains<br />

Clipper<br />

Mountains<br />

Natural<br />

Recharge<br />

Bedrock<br />

LOOKING NORTHWEST<br />

Fenner Watershed<br />

INTERSTATE<br />

40<br />

NORTHEAST<br />

FIGURE ES-3<br />

Conceptualization of <strong>Groundwater</strong><br />

Occurrence <strong>and</strong> Movement<br />

In the Area of Study


1.0 Introduction<br />

<strong>Cadiz</strong>, Inc. (<strong>Cadiz</strong>) owns 34,000 acres of largely contiguous l<strong>and</strong> in the <strong>Cadiz</strong> <strong>and</strong> Fenner<br />

valleys, located in the eastern Mojave Desert (Figure 1-1). Under l<strong>and</strong> use approvals issued<br />

by San Bernardino County, <strong>Cadiz</strong> has successfully farmed about 1,000 acres of l<strong>and</strong> on the<br />

property for more than 15 years.<br />

<strong>Cadiz</strong> recognized the potential for developing a water supply project on its properties in the<br />

early 1990s <strong>and</strong> reached out to partner with water supply agencies. <strong>Cadiz</strong> selected the<br />

Metropolitan Water District of Southern California (Metropolitan) to evaluate the feasibility<br />

of operating a groundwater storage <strong>and</strong> transfer project. The project would have involved<br />

transporting surplus Colorado River water to the project site, recharging it through a series<br />

of recharge basins, storing the water, <strong>and</strong> then extracting the stored water during times of<br />

drought. A pipeline would have been constructed from the Colorado River aqueduct to the<br />

project site to convey water across Bureau of L<strong>and</strong> Management (BLM) l<strong>and</strong> to <strong>and</strong> from the<br />

project site. This project was referred to as the “<strong>Cadiz</strong> <strong>Groundwater</strong> Storage <strong>and</strong> Dry-Year<br />

Supply Program.” The United States Department of Interior issued a right of entry for the<br />

pipeline after finding the proposed project would not cause any significant environmental<br />

harm. However, although the feasibility studies completed under the partnership<br />

demonstrated a significant potential for water supply development, Metropolitan decided<br />

not to pursue the project in 2001.<br />

<strong>Cadiz</strong> continues to pursue partnerships to develop a water supply project in a different<br />

manner than the project previously contemplated with Metropolitan. In particular, <strong>Cadiz</strong><br />

desires to emphasize water conservation that involves capturing natural recharge in the<br />

Fenner <strong>and</strong> northern Bristol valleys that would otherwise discharge to the Bristol <strong>and</strong> <strong>Cadiz</strong><br />

dry lakes <strong>and</strong> then evaporate. The groundwater storage component involves extraction of<br />

native groundwater from groundwater in storage to develop storage conditions that would<br />

allow native water to be conserved <strong>and</strong> imported water to be transported, stored, <strong>and</strong><br />

recaptured in the project area for beneficial uses, including environmental mitigation<br />

purposes.<br />

<strong>Cadiz</strong> is a publicly traded renewable resources company founded in 1983. Between 1984<br />

<strong>and</strong> 1994, <strong>Cadiz</strong> installed seven production wells to support irrigated agriculture that now<br />

extends to approximately 1,600 acres <strong>and</strong> includes table grapes, lemons, <strong>and</strong> various row<br />

crops. Currently, <strong>Cadiz</strong> is actively pursuing options to site utility-scale solar energy projects<br />

at their properties <strong>and</strong> to utilize renewable energy to power project-related facilities (such as<br />

well pumps <strong>and</strong> booster pump stations).<br />

1.1 Purpose<br />

The purpose of the current study is two-fold: (1) to develop an estimate of the recoverable<br />

water that can be prudently conserved over the long term (water that can be intercepted <strong>and</strong><br />

that would otherwise flow to the Bristol <strong>and</strong> <strong>Cadiz</strong> dry lakes <strong>and</strong> evaporate) <strong>and</strong> (2) develop<br />

an estimate of groundwater in storage in the Fenner Valley <strong>and</strong> northern Bristol Valley area.<br />

This work is intended to complement <strong>and</strong> update the substantial earlier technical work<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 1-1


1.0 2BINTRODUCTION<br />

conducted in connection with the evaluation the proposed joint project with Metropolitan.<br />

These recoverable water <strong>and</strong> storage estimates are a refinement on earlier work <strong>and</strong> also<br />

provide an independent basis for the ultimate development of a scope of a water supply<br />

project that includes water supply <strong>and</strong> storage components. It is not the scope of the current<br />

study to assess potential environmental impacts associated with development of a water<br />

supply project. The analysis of potential environmental impacts will be the subject of<br />

subsequent studies, based on the definition of a specific water supply project.<br />

1.2 Scope<br />

The scope of this study includes review of a substantial body of existing technical<br />

information developed in connection with the joint <strong>Cadiz</strong>/Metropolitan project, access to<br />

recent published reliable information from federal databases, including the United States<br />

Geological Service (USGS), the development of new data, including new field investigations,<br />

to assess recoverable water <strong>and</strong> groundwater in storage that can be used to establish the basis<br />

for defining a groundwater conservation project in the <strong>Cadiz</strong> area.<br />

A large body of information, including data from project-specific field investigations was<br />

compiled as part of the <strong>Cadiz</strong> <strong>Groundwater</strong> Storage <strong>and</strong> Dry-Year Supply Program<br />

feasibility study. The feasibility study is presented in a report entitled <strong>Cadiz</strong> <strong>Groundwater</strong><br />

Storage <strong>and</strong> Dry-Year Supply Program, Environmental Planning Technical Report, <strong>Groundwater</strong><br />

Resources, prepared by Geoscience Support Services, Inc. (GSSI) in November 1999.<br />

GSSI included an evaluation of recoverable water <strong>and</strong> groundwater in storage as a part of<br />

their study. GSSI estimated the range of groundwater recharge to the Fenner, Bristol, <strong>and</strong><br />

<strong>Cadiz</strong> watershed areas to be 20,000 to 58,000 acre-feet per year (AFY) <strong>and</strong> the amount of<br />

groundwater available to the project area to be 30,000 AFY. The volume of groundwater in<br />

storage within aquifers of the Fenner Watershed was estimated by GSSI to range from 13 to<br />

23 million acre-feet (AF) <strong>and</strong> the volume of groundwater in storage in the aquifers of the<br />

project area ranges from 4 to 7 million acre-feet. Although thorough, GSSI’s 1999 report was<br />

subject to review <strong>and</strong> evaluation by third parties.<br />

The current study is focused on providing a new independent assessment of recoverable<br />

water <strong>and</strong> groundwater storage estimates presented by GSSI (1999), including their<br />

responses to critiques of their 1999 report. The specific scope of work of this study includes<br />

the following elements:<br />

1. Review of previous studies on hydrology, geology, hydrogeology, groundwater<br />

conditions, vegetation, <strong>and</strong> l<strong>and</strong> use in the Fenner, Bristol <strong>and</strong> <strong>Cadiz</strong> valleys,<br />

including the third-party reviews of the GSSI 1999 report.<br />

2. Compilation of information regarding climate data (e.g., precipitation <strong>and</strong><br />

temperature data), geologic investigations, data on wells, springs <strong>and</strong> groundwater<br />

conditions, soils mapping <strong>and</strong> characterization, <strong>and</strong> vegetation studies since the<br />

publishing of the earlier 1999 GSSI study.<br />

3. Revisions to the depth to bedrock contour map <strong>and</strong> groundwater-level contour map<br />

to update estimates to groundwater in storage.<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 1-2


1.0 2BINTRODUCTION<br />

4. Application of a soil-moisture budget model, specifically INFIL3.0 published by the<br />

USGS (2008), to estimate net infiltration of water below the root zone <strong>and</strong><br />

recoverable water in the Fenner Watershed <strong>and</strong> Orange Blossom Wash areas.<br />

5. Survey of monitoring wells in the Fenner Gap area <strong>and</strong> measurement of<br />

groundwater levels.<br />

6. Drilling of four deep boreholes <strong>and</strong> installation <strong>and</strong> testing of three deep wells in the<br />

Fenner Gap to further assess hydrogeologic properties <strong>and</strong> groundwater conditions<br />

in the gap, including characterization of the alluvial aquifer unit <strong>and</strong> carbonate units<br />

underlying the alluvial aquifer.<br />

7. Preparation of detailed geologic cross-sections through the Fenner Gap based on<br />

previously published work <strong>and</strong> field investigation conducted as a part of this study.<br />

8. Development of a local three-dimensional groundwater flow model of the Fenner<br />

Gap to estimate the likely flow of groundwater through the gap.<br />

9. Comparison <strong>and</strong> discussion of recoverable water estimates, groundwater flow<br />

through Fenner Gap, <strong>and</strong> evaporation of water from Bristol <strong>and</strong> <strong>Cadiz</strong> dry lakes.<br />

10. Preparation of a report to summarize information <strong>and</strong> present findings <strong>and</strong><br />

conclusions of this study.<br />

It is important to note that it was not the purpose or within the scope of the present study to<br />

develop an operations plan for development of the water resources or to provide <strong>and</strong><br />

assessment of those environmental impacts associated with this development. Findings of<br />

this study are intended only to serve as a foundation for defining a groundwater<br />

conservation <strong>and</strong> storage project on l<strong>and</strong>s owned by <strong>Cadiz</strong>. An operations plan that would<br />

include locations, quantities, <strong>and</strong> timing of extractions, recharge, <strong>and</strong> storage <strong>and</strong> recovery<br />

operations would be the logical next step, followed by assessments of environmental<br />

impacts associated with the proposed operations. Those environmental assessments could<br />

include additional field investigations to further confirm the findings of this study <strong>and</strong><br />

provide additional data as may be required to complete the environmental assessments.<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 1-3


3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000<br />

36°0'0"N<br />

34°0'0"N<br />

32°0'0"N<br />

5 90000<br />

I15<br />

Bagdad<br />

Bagdad<br />

5 90000<br />

120°0'0"W<br />

120°0'0"W<br />

California<br />

Los Angeles<br />

San Diego<br />

B U L L I O N M O U N T A I N S<br />

116°0'0"W<br />

6 00000<br />

6 00000<br />

Nevada I15<br />

Las Vegas<br />

Twentynine Palms<br />

Palm Springs<br />

116°0'0"W<br />

Bagdad<br />

Bagdad<br />

29 Palms<br />

112°0'0"W<br />

Utah<br />

I40<br />

Arizona<br />

112°0'0"W<br />

6 10000<br />

6 10000<br />

GRANITE<br />

MTNS,<br />

B R I S T O L M T N S .<br />

Amboy<br />

6 20000<br />

BRISTOL DRY LAKE<br />

36°0'0"N<br />

34°0'0"N<br />

32°0'0"N<br />

6 20000<br />

Kelso<br />

M A R B L E M T N S .<br />

S H E E P H O L E M T N S<br />

Legend<br />

6 30000<br />

C A L U M E T M T N S .<br />

6 30000<br />

<strong>Cadiz</strong> Study Area<br />

Interstates<br />

Highways<br />

Roads<br />

Rail Roads<br />

6 40000<br />

Cima<br />

P R O V I D E N C E M O U N T A I N S<br />

<strong>Cadiz</strong><br />

CADIZ Inc.<br />

Agricultural Fields<br />

CADIZ DRY LAKE<br />

6 40000<br />

CLIPPER<br />

MTNS,<br />

FENNER<br />

GAP<br />

6 50000<br />

SHIP<br />

MTNS,<br />

DANBY DRY LAKE<br />

NEW YORK<br />

MTNS<br />

WOODS MTNS.<br />

National Trails<br />

COXCOMB<br />

MTNS<br />

6 50000<br />

6 60000<br />

F E N N E R V A L L E Y<br />

HACKBERRY<br />

MTNS.<br />

Essex<br />

Chubbuck<br />

6 60000<br />

O L D W O MAN M T N S .<br />

IRON<br />

MTNS<br />

6 70000<br />

Fenner<br />

6 70000<br />

I40<br />

P I U T E M T N S .<br />

6 80000<br />

Goffs<br />

6 80000<br />

6 90000<br />

6 90000<br />

0 2 4 8Miles<br />

0 2.5 5 10 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

Figure 1-1<br />

Overall <strong>Cadiz</strong> <strong>and</strong> Fenner<br />

Valleys Location Map<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig1-1_CADIZ_TM_StudyArea_V3_MR.mxd<br />

3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000


2.0 Setting<br />

This section presents an overview of the setting of the larger area of study that includes the<br />

Fenner, Bristol, <strong>and</strong> <strong>Cadiz</strong> watersheds, <strong>and</strong> the focused area of study, which includes the<br />

Fenner Watershed, Orange Blossom Wash, <strong>and</strong> northwestern <strong>Cadiz</strong> Valley areas. Following<br />

is a brief overview of the physiography, climate, geology, <strong>and</strong> hydrogeology of the larger<br />

area of study. More comprehensive discussions of each of these topics can be found in GSSI’s<br />

1999 report <strong>and</strong> references cited therein, as well as references listed in each section below.<br />

2.1 Physiography<br />

2.1.1 Overview of Setting<br />

Figure 2-1 shows the location of the larger area of study that includes the Fenner, Bristol,<br />

<strong>and</strong> <strong>Cadiz</strong> watersheds. These watersheds are located in the Eastern Mojave Desert, which is<br />

a part of the Basin <strong>and</strong> Range Province of the western United States. The Basin <strong>and</strong> Range<br />

Province is characterized by a series of northwest/southeast trending mountain <strong>and</strong> valleys<br />

formed largely by faulting (Burchfiel et al., 1980). One of the prominent features of the area<br />

is the Bristol Trough, a major structural depression caused by faulting (Thompson, 1929;<br />

Bassett et al., 1964; Jachens et al., 1992). The Bristol Trough encompasses the Bristol <strong>and</strong><br />

<strong>Cadiz</strong> watersheds that together form a relatively low l<strong>and</strong> area that extends from just south<br />

of Ludlow, California, on the northwest to a topographic <strong>and</strong> surface drainage divide<br />

between the Coxcomb <strong>and</strong> Iron mountains on the southwest. The Bristol <strong>and</strong> <strong>Cadiz</strong> valleys<br />

are bounded on the southwest by the Bullion, Sheep Hole, Calumet, <strong>and</strong> Coxcomb<br />

mountains <strong>and</strong> on the northeast by the Bristol, Marble, Ship, Old Woman, <strong>and</strong> Iron<br />

mountains. The <strong>Cadiz</strong> <strong>and</strong> Bristol dry lakes are separated by a low topographic <strong>and</strong> surface<br />

drainage divide.<br />

The Fenner Watershed is located north of the Bristol Trough. This watershed encompasses<br />

approximately 1,100 square miles (mi 2). It is bounded by the Granite, Providence, <strong>and</strong><br />

New York mountains on the west <strong>and</strong> north <strong>and</strong> the Piute, Ship, <strong>and</strong> Marble mountains on<br />

the east <strong>and</strong> south. Fenner Gap occurs between the Marble <strong>and</strong> Ship mountains, where the<br />

surface drainage exits Fenner Watershed <strong>and</strong> enters the Bristol <strong>and</strong> <strong>Cadiz</strong> watersheds. The<br />

Clipper Mountains rise from the southern portion of the watershed, just northwest of<br />

Fenner Gap.<br />

2.1.2 Topography<br />

Figure 2-2 shows a topographic map of the larger area of study based on the National<br />

Elevation Dataset (NED) (USGS, 2006). Figure 2-3 shows drainage areas within the Fenner,<br />

Bristol, <strong>and</strong> <strong>Cadiz</strong> watersheds based on the National Hydrologic Unit Codes (HUC)<br />

(NRCS, 2009).<br />

The New York Mountains rise to elevations of approximately 7,532 feet above the National<br />

Geodetic Vertical Datum of 1988 (NGVD). The Granite <strong>and</strong> Providence mountains range<br />

from 6,786 feet to 7,178 feet above NVGD, respectively. The Piute Mountains range up to<br />

4,165 feet above NVGD. The Clipper Mountains rise to an elevation of more than 4,600 feet<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 2-1


above NVGD. Finally, the Marble <strong>and</strong> Ship mountains range up to 3,842 <strong>and</strong> 3,239 feet<br />

above NGVD, respectively. Generally, the Fenner Valley slopes southward toward the<br />

Fenner Gap, which is the surface water outlet from the valley, at an elevation of about<br />

900 feet above NGVD.<br />

2.0 3BSETTING<br />

Mountain ranges surrounding the Bristol <strong>and</strong> <strong>Cadiz</strong> watersheds are lower in elevation than<br />

those mountain ranges surrounding the Fenner Watershed. Peak elevations for these<br />

mountains include the following: Bristol, 3,422 feet above NGVD; Iron, 3,296 feet above<br />

NGVD; Bullion, 4,187 feet above NGVD; Sheep Hole, 4,685 feet above NGVD; Calumet,<br />

1,751 feet above NGVD; <strong>and</strong> Coxcomb, 4,416 feet above NGVD.<br />

The Bristol <strong>and</strong> <strong>Cadiz</strong> dry lakes represent the lowest elevations at 595 <strong>and</strong> 545 feet above<br />

NGVD, respectively.<br />

2.1.3 Vegetation<br />

Figures 2-4 <strong>and</strong> 2-4b show the distribution of vegetation in the larger area of study based on<br />

a western region vegetation map (WESTVEG) compiled as a part of the USGS’s Biological<br />

Resources National Gap <strong>Analysis</strong> Program (BRGAP, 2009). The BRGAP digital vegetation<br />

maps are developed using satellite imagery <strong>and</strong> other records based on the National<br />

Vegetation Classification System (Hevesi, 2003). The WESTVEG plant associations in the<br />

larger area of study include the following: blackbush scrub, desert dry wash woodl<strong>and</strong>,<br />

desert saltbrush scrub, Mojave creosote bush scrub, Mojave mixed steppe, Mojave mixed<br />

woodl<strong>and</strong> <strong>and</strong> succulent scrub, Mojave mixed woody scrub, Mojavean pinyon <strong>and</strong> juniper<br />

woodl<strong>and</strong>, semi-desert chaparral, <strong>and</strong> Sonoran creosote bush scrub. The Mojave creosote<br />

bush shrub is the most prevalent plant association <strong>and</strong> covers most of the valley floors;<br />

however, it is relatively sparse even in these areas. The Pinyon <strong>and</strong> juniper woodl<strong>and</strong>s<br />

vegetation association occurs at higher elevations where precipitation is higher <strong>and</strong><br />

temperatures are cooler.<br />

2.1.4 Dry Lakes (Playas)<br />

The Bristol <strong>and</strong> <strong>Cadiz</strong> dry lake playas are located at the lowest elevations in the larger area<br />

of study. The Bristol <strong>and</strong> <strong>Cadiz</strong> watersheds are closed, so the only natural outlets for<br />

surface water <strong>and</strong> groundwater are evaporation from the dry lake surfaces. The lake<br />

surfaces are normally dry but flash flooding from sudden spring snow thaws <strong>and</strong>/or late<br />

summer thunderstorms of high intensity can result in st<strong>and</strong>ing water (Bassett et al., 1959;<br />

Koehler, 1983; GSSI, 1999; Liggett, 2009).<br />

The playas are made up of a variety of surface types, including salt crust <strong>and</strong> soft puffy<br />

porous surfaces <strong>and</strong> are largely devoid of vegetation. Clay <strong>and</strong> silts are the predominant<br />

soil types beneath the surface. Puffy surfaces are believed to be formed from capillary<br />

groundwater movement causing salts to precipitate <strong>and</strong> clays to swell on the surface,<br />

resulting in a network of polygons <strong>and</strong> hummocky relief (Czarnecki, 1997). This puffy surface<br />

is reported to cover more than 60 percent of Bristol Dry Lake (Kupfur <strong>and</strong> Basset, 1962).<br />

2.2 Climate<br />

The eastern Mojave Desert is characterized as an arid desert climate with low annual<br />

precipitation, low humidity, <strong>and</strong> relatively high temperatures. Winters are mild <strong>and</strong><br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 2-2


2.0 3BSETTING<br />

summers are hot, with a relatively large range in daily temperatures. Temperature <strong>and</strong><br />

precipitation vary greatly with altitude, with higher temperatures <strong>and</strong> lower precipitation at<br />

low altitudes <strong>and</strong> lower temperatures <strong>and</strong> higher precipitation at higher altitudes.<br />

2.2.1 Precipitation<br />

Davisson <strong>and</strong> Rose (2000) describe environmental factors that complicate the distribution of<br />

precipitation through southeastern California <strong>and</strong> western Nevada. These factors include<br />

the rain-shadow effect of the Sierra Nevada, San Gabriel, <strong>and</strong> San Bernardino mountains,<br />

<strong>and</strong> storms moving up from the Gulf of California that create more precipitation in the<br />

eastern Mojave Desert than in the western Mojave Desert. The rain-shadow effect of the<br />

Sierra Nevada Mountains has its greatest impact on precipitation just east of the Sierra<br />

Nevadas <strong>and</strong> decreases eastward into Nevada. In general, Davisson <strong>and</strong> Rose (2000) show<br />

that precipitation versus elevation is higher east of the 116 o W longitude than west of it. The<br />

Fenner Watershed lies to the east of this demarcation, so this watershed is expected to have<br />

higher precipitation with increases in elevation as compared to watersheds in the western<br />

Mojave Desert.<br />

Figure 2-5 shows precipitation <strong>and</strong> temperature stations in the study area. Those stations<br />

with relatively long <strong>and</strong> complete records in the immediate area of study include Mitchell<br />

Caverns <strong>and</strong> Amboy stations. Stations with short <strong>and</strong> less complete records in the area <strong>and</strong><br />

vicinity include the San Bernardino County stations of Goffs, Essex, <strong>and</strong> Kelso. Table 2-1<br />

summarizes the records available for these stations. The long-term annual average<br />

precipitation at Mitchell Caverns, located at an altitude of 4,350 feet, is 10.47 inches. Amboy<br />

is represented by two stations, Amboy – Saltus Number 1, with an elevation of 624 feet <strong>and</strong><br />

a long-term annual average precipitation of 3.28 inches (from 1967 through 1988) <strong>and</strong><br />

Amboy – Saltus Number 2, with an elevation of 595 feet <strong>and</strong> long-term annual average<br />

precipitation of 2.71 inches (1972 through 1992)<br />

Figure 2-6 shows isohyets of average annual precipitation for the larger area of study based<br />

on the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) map for the<br />

period 1971 through 2000. PRISM was developed by Dr. Christopher Daly of Oregon State<br />

University starting in 1991. PRISM uses point estimates of climate data <strong>and</strong> a digital elevation<br />

model (DEM) to generate estimates of climate elements, such as average annual, monthly, <strong>and</strong><br />

event-based precipitation among other elements (www.prism.oregonstate.edu). This isohyet<br />

map shows average annual precipitation that varies from about 4 inches in Bristol Valley to<br />

more than 12 inches in the New York Mountains.<br />

Figure 2-7 shows the cumulative departure from mean precipitation for the Mitchell<br />

Caverns <strong>and</strong> Amboy stations. The trend of relatively dry conditions prior to the mid-1970s<br />

(overall declining trend in the cumulative departure curve) <strong>and</strong> relatively wet conditions<br />

(overall rising trend in the cumulative departure curve) since the mid-1970s is typical of<br />

much of southern California.<br />

2.2.2 Temperature<br />

Air temperature in the eastern Mojave Desert reaches highs in the summer <strong>and</strong> lows in the<br />

winter. The average winter temperature is between 50 oF <strong>and</strong> 55 oF, with average daily<br />

maximum near 65 oF <strong>and</strong> average daily minimum near 40 o F. Average daily temperature in<br />

the summer months is over 85 oF, with maximum temperatures hovering around 100 oF <strong>and</strong><br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 2-3


2.0 3BSETTING<br />

occasionally exceeding 120 oF. Average daily minimum temperatures in the summer are<br />

around 70 oF, so the range of daily temperatures may exceed 20 oF to 30 oF.<br />

The two weather stations in the area, Amboy <strong>and</strong> Mitchell Caverns, record air temperature.<br />

The minimum monthly temperature at Amboy is reported to be 50.7 oF in December <strong>and</strong> the<br />

maximum monthly temperature is 94.7 oF in July. The minimum monthly temperature at<br />

Mitchell Caverns is reported to be 46.3 oF in January <strong>and</strong> the maximum monthly<br />

temperature is 82.1 oF in July. The average annual temperatures at Amboy <strong>and</strong> Mitchell<br />

Caverns are 71.8 oF <strong>and</strong> 62.6 oF, respectively.<br />

2.3 Geology<br />

Information on the regional geology <strong>and</strong> structure is excerpted largely from the Final<br />

Environmental <strong>Impact</strong> Report/Environmental <strong>Impact</strong> Statement on the <strong>Cadiz</strong> <strong>Groundwater</strong> Storage<br />

<strong>and</strong> Dry-Year Supply Program (“Final EIR/EIS,” Metropolitan, 2001) <strong>and</strong> summarized below.<br />

A recent report published by the USGS entitled: Geology <strong>and</strong> Mineral Resources of the East<br />

Mojave National Scenic Area, San Bernardino County, California, U.S. Geological Survey Bulletin<br />

2160 (USGS, 2006) provides additional detail on the geology <strong>and</strong> geologic structure of the<br />

northern part of the larger area of study. This report also provides additional information on<br />

the vertical extents of alluvial deposits in northern Fenner Valley that was not available<br />

during the GSSI study. In 2002, the USGS published the Sheep Hole Mountains 30x60 Minute<br />

Quadrangle, Riverside <strong>and</strong> San Bernardino County, California (Howard, 2002), which provides<br />

geologic details through the Bristol <strong>and</strong> <strong>Cadiz</strong> troughs, for most of the southern portion of<br />

the larger area of study. In addition, the USGS published a surficial geologic map entitled:<br />

Preliminary Surficial Geologic Map Database of the Amboy 30x60 Minute Quadrangle, California<br />

(Bedford et al., 2006), which covers a large portion of the area of study. This map is<br />

reproduced as Plate 1, provided in the pocket attached to this report. This later map<br />

provides valuable information on the surficial geology in the area of study.<br />

2.3.1 Regional Geology<br />

The larger area of study is located within the Basin <strong>and</strong> Range province of North America.<br />

Figure 2-8 is a simplified geologic map of the larger area of study showing the distribution<br />

of bedrock <strong>and</strong> alluvial/dune/lacustrine deposits. Bedrock includes igneous, metamorphic,<br />

<strong>and</strong> consolidated sedimentary rocks (including carbonates). Alluvial/dune/lacustrine<br />

deposits are unconsolidated sediments deposited by streams, wind, or in playa lakes for the<br />

purposes of this map. In general, bedrock forms the perimeter of the major watersheds.<br />

Large bedrock masses occur within watersheds, such as Clipper Mountains, which are<br />

located in the Fenner Watershed.<br />

The Bristol <strong>and</strong> <strong>Cadiz</strong> watersheds form a broad depression that is referred to as the Bristol<br />

Trough (Thompson, 1929; Bassett et al., 1964; Jachens et al., 1992). This depression is<br />

thought to be six to ten million years old (Rosen, 1989), having formed as a result of regional<br />

movement along faults.<br />

The crystalline basement rocks exposed in the mountain ranges of the project area consist<br />

primarily of Precambrian granitic <strong>and</strong> metamorphic rocks that are locally overlain by a<br />

sequence of Paleozoic sedimentary rocks. The Paleozoic rocks consist of s<strong>and</strong>stones, shales,<br />

slates, limestones <strong>and</strong> dolomites. These Paleozoic sediments <strong>and</strong> the underlying basement<br />

rocks have been faulted <strong>and</strong> folded by numerous periods of regional tectonism.<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 2-4


2.0 3BSETTING<br />

The crystalline basement rocks are generally much less permeable than alluvium <strong>and</strong><br />

typically yield only small quantities of water to wells (Freiwald, 1984). Some of the<br />

Paleozoic sedimentary sections, particularly those limestone <strong>and</strong> dolomites sections that are<br />

fractured or contain solution cavities, can <strong>and</strong> do yield large quantities of water to wells, as<br />

further described in Section 4.2. Mictchell Caverns, located on the eastern side of the<br />

Providence Mountains, occur in karstic limestone of this section. The widespread<br />

distribution of these carbonate units can be seen by the distribution of other outcrops that<br />

can be found on the eastern slope of the New York Mountains, in Lanfair Valley, just north<br />

of Clipper Mountains, in the Marble Mountains, in the Ship Mountains, in the southeast end<br />

of Bristol Mountains, the Kilbeck Hills on the south, <strong>and</strong> the Old Woman Mountains on the<br />

east (see USGS, 2006; Howard, 2002; <strong>and</strong> Bedford et al., 2006, Hazzard, 1956) for locations of<br />

these carbonate units). These carbonate units are expected to be significant aquifers where<br />

dissolution features are present in the subsurface.<br />

The basement complex <strong>and</strong> the overlying Paleozoic section were locally metamorphosed<br />

<strong>and</strong> intruded by granitic plutons during Mesozoic time. In the Old Woman Mountains, the<br />

Precambrian <strong>and</strong> Paleozoic section was also intensely deformed by ductile thrusting that<br />

accompanied the Mesozoic plutonism (Karlstrom et al., 1993). Throughout the project area,<br />

mostly fractured crystalline basement rocks form the boundaries of the groundwater aquifer<br />

system.<br />

In the Fenner Valley, the Paleozoic section is unconformably overlain by clastic sediments<br />

<strong>and</strong> interbedded volcanic rocks of mid- to late-Tertiary age. The Tertiary volcanic rocks<br />

consist of lava flows of basaltic to <strong>and</strong>esitic composition, <strong>and</strong> pyroclastic tuffs of rhyolitic to<br />

dacitic composition. The USGS (2006) reports that a shallow trap-door caldera roughly 10<br />

kilometers (km) in diameter is centered in the eastern Woods Mountains, based on gravity<br />

<strong>and</strong> aeromagnetic anomalies, <strong>and</strong> was formed from a major eruption 15.8 million years ago,<br />

with resurgent eruptions filling the caldera with rhyolitic flows <strong>and</strong> tuffs. Dikes of similar<br />

composition are exposed in the Marble <strong>and</strong> Ship mountains. The Tertiary sediments consist<br />

of conglomerate, fanglomerate, s<strong>and</strong>stone, siltstone, water-laid tuff, <strong>and</strong> lake sediments,<br />

which form a composite section more than 7,000 feet thick (Dibblee, 1980). The Tertiary<br />

sediments <strong>and</strong> interlayered volcanic rocks are gently dipping, due to extensional normal<br />

faulting of late-Tertiary age.<br />

The Quaternary <strong>and</strong> late-Tertiary alluvial fill in the basins is largely derived from the<br />

Precambrian basement rocks, Paleozoic sediments, <strong>and</strong> Tertiary volcanic rocks. The USGS<br />

(2006) mapped alluvial deposits exceeding 300 meters (m) in thickness in the northern<br />

Fenner Valley (see Plate 2 provided in the pocket attached to this report <strong>and</strong> reproduced<br />

from USGS, 2006). Geophysical evidence indicates this alluvial fill locally exceeds 3,500 feet<br />

in thickness beneath a portion of the southern Fenner Valley (Maas, 1994) <strong>and</strong> even greater<br />

under Bristol Valley; a depth-to-bedrock map is shown in Section 3. These alluvial<br />

sediments form one of the principal aquifers in the study area.<br />

The playa sediments underlying the Bristol, <strong>Cadiz</strong> <strong>and</strong> Danby dry lakes consist of brinesaturated<br />

clay, silt, fine-grained s<strong>and</strong>, <strong>and</strong> evaporite deposits. The clastic sediments were<br />

deposited when stream flow <strong>and</strong> sheet flow from the surrounding alluvial fans spread onto<br />

the playas during major storm events (Gale, 1951). The evaporite deposits formed from<br />

evaporation of both surface water <strong>and</strong> groundwater that seeps into the playa sediments<br />

from the adjacent alluvial fans (Rosen, 1989).<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 2-5


2.0 3BSETTING<br />

Bristol, <strong>Cadiz</strong> <strong>and</strong> Danby dry lakes have static groundwater levels at or near the playa<br />

surfaces (Moyle, 1967; Rosen, 1989). Sodium chloride <strong>and</strong>/or calcium chloride are currently<br />

being recovered from trenches <strong>and</strong> brine wells on all three of these playas. Thompson<br />

(1929), Gale (1951), Bassett et al. (1959), H<strong>and</strong>ford (1982), <strong>and</strong> Rosen (1989) concur that the<br />

principal recharge to the playas occurs as diffuse seepage of groundwater onto the playas<br />

from the adjacent alluvial fans.<br />

<strong>Cadiz</strong> <strong>and</strong> Bristol dry lakes are locally bordered by active dunes formed by fine to mediumgrained<br />

windblown s<strong>and</strong>. These Holocene deposits overlie older playa deposits of<br />

differentiated Quaternary age (Moyle, 1967).<br />

Amboy Crater, located near the western margin of Bristol Dry Lake, is a basaltic cinder cone<br />

<strong>and</strong> lava field believed to be as young as 6,000 years (Parker, 1963; Hazlett, 1992).<br />

2.3.2 Structural Geology<br />

The larger area of study is located at the eastern margin of the eastern California shear zone,<br />

a broad seismically active region dominated by northwest-trending right-lateral strike-slip<br />

faulting (Dokka <strong>and</strong> Travis, 1990). Roughly a dozen fault zones showing evidence of<br />

Quarternary movement (during the last 1.6 million years) have been identified in <strong>and</strong><br />

adjacent to Bristol, <strong>Cadiz</strong>, <strong>and</strong> Fenner valleys (Howard <strong>and</strong> Miller, 1992).<br />

<strong>Cadiz</strong> Valley is underlain by two major northwest-trending faults, inferred on the basis of<br />

gravity <strong>and</strong> magnetic data (Simpson et al., 1984). These fault zones have strike lengths of at<br />

least 25 miles, <strong>and</strong> may merge to the north <strong>and</strong> northwest with extensions of the Bristol-<br />

Granite Mountains <strong>and</strong> South Bristol Mountains fault zones (Howard <strong>and</strong> Miller, 1992;<br />

see the Final EIR/EIS for locations).<br />

Right-lateral slip of as much as 16 miles along the <strong>Cadiz</strong> Valley fault zone has been<br />

postulated on the basis of correlation of a distinctive Precambrian gneiss unit across the<br />

zone (Howard <strong>and</strong> Miller, 1992). Slickenside surfaces produced by fault movement <strong>and</strong><br />

steeply dipping sediments recovered from cored drill holes beneath <strong>Cadiz</strong> Dry Lake suggest<br />

the fault zone displaces sediments of Pleistocene age (Bassett et al., 1959).<br />

Bristol Dry Lake is bordered by probable extensions of the <strong>Cadiz</strong> Valley <strong>and</strong> South Bristol<br />

Mountains fault zones to the east, <strong>and</strong> by probable extensions of the Broadwell Lake <strong>and</strong><br />

Dry Lake fault zones to the west (Howard <strong>and</strong> Miller, 1992). Geophysical data indicate this<br />

structural depression may exceed 6,000 feet in depth (Simpson et al., 1984; Maas, 1994).<br />

Drill cores recovered from depths of more than 1,000 feet beneath Bristol Dry Lake suggest<br />

that subsidence of this basin began by Pliocene time <strong>and</strong> continues to the present (Rosen,<br />

1989), <strong>and</strong> therefore may be tectonically active.<br />

Fenner Gap appears to be a structural half-graben, formed by a system of northeasttrending,<br />

northwest-dipping normal faults, some of which are exposed in outcrops of the<br />

bedrock that flank the gap, as shown in Figure 2-9. The presence of these northeast-trending<br />

faults beneath the alluvial deposits that underlay the gap can be inferred from surface<br />

geology mapping, gravity surveys, a seismic reflection survey conducted across the gap by<br />

NORCAL Geophysical Consultants, Inc. (1997), <strong>and</strong> recent test wells drilled as a part of the<br />

this current study (see Section 4.2).<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 2-6


2.0 3BSETTING<br />

The system of normal faults that formed the half-graben of Fenner Gap displace <strong>and</strong> tilt<br />

volcanic rocks of mid- to late- Tertiary age, as shown in Figure 2-9. However, these faults do<br />

not displace Quarternary sediments <strong>and</strong> are, therefore, not considered to be either active nor<br />

potentially active.<br />

2.3.3 Surficial Geology <strong>and</strong> Soils<br />

This section summarizes information on surficial geology <strong>and</strong> soils in the study area.<br />

2.3.3.1 Surficial Geology<br />

Traditional geologic mapping often does not provide details on erosional surfaces <strong>and</strong><br />

surface hillslope deposits. These deposits can serve as important conduits of precipitation<br />

for enhancing infiltration <strong>and</strong> groundwater recharge. Bedford et al. (2006) present a surficial<br />

geologic map of the Amboy 30x60 minute quadrangle, California. This map covers<br />

significant portions of the area of study (Plate 1 in attached pocket). Bedford et al. (2006)<br />

map two types of erosional <strong>and</strong> hillslope type deposits: abundant hillslope deposits<br />

(Holocene <strong>and</strong> Pleistocene) <strong>and</strong> Sparse hillslope deposits (Holoecene <strong>and</strong> Pleistocene).<br />

Definitions of these deposits are as follows:<br />

Abundant hillslope deposits - Hillslope materials such as colluvium, talus, weathering<br />

products, <strong>and</strong> l<strong>and</strong>slide deposits; disaggregated cover greater than rock exposure.<br />

Generally less than 2 meters thick or patchy distribution with a small fraction of the area<br />

covered by deposits thicker than 2 meters.<br />

Sparse hillslope deposits – Hillslope materials such as colluvium, talus, weathering<br />

products, <strong>and</strong> l<strong>and</strong>slide deposits; disaggregated cover less than rock exposure.<br />

Generally less than 2 meters thick <strong>and</strong> patchy distribution.<br />

As shown on Plate 1 most bedrock in the area of study is mapped as abundant hillslope<br />

deposits.<br />

2.3.3.2 Soils<br />

The Soil Conservation Service has developed a geographical database of soils for each state<br />

called STATSGO. STATSGO provides information on soil types by a single map unit<br />

identifier (MUID). Each MUID represents a group of similar soil types. Figure 2-10 shows<br />

the distribution of MUIDs in the larger area of study from the STATSGO database.<br />

There are 19 unique soil MUIDs in the larger area of study. Figures 2-11 <strong>and</strong> 2-12 show the<br />

percentage of grain sizes larger than 2 mm <strong>and</strong> percentage of clay for that grain size fraction<br />

less than 2 mm, respectively. In general, the soils in the area contain high percentages of<br />

coarse-grained materials <strong>and</strong> little clay in the fines (based on the fraction of materials that<br />

are less than 2 mm), based on averages using the combined weight of layer thickness <strong>and</strong><br />

area for the soil components in each MUID. Additional soil moisture characteristics are<br />

given in Section 4.1.<br />

2.4 Hydrogeology<br />

The primary sources of replenishment to the groundwater system in the project area include<br />

direct infiltration of precipitation (both rainfall <strong>and</strong> snowfall) in fractured bedrock exposed<br />

in mountainous terrain <strong>and</strong> infiltration of ephemeral stream flow in s<strong>and</strong>-bottomed washes,<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 2-7


particularly in the higher elevations of the watershed. The source of much of the<br />

groundwater recharge within the regional watershed occurs in the higher elevations<br />

(Metropolitan, 2001; USGS, 2000; Davisson <strong>and</strong> Rose, 2000).<br />

2.0 3BSETTING<br />

Figure 2-13 presents a conceptualization of groundwater occurrence <strong>and</strong> movement in the<br />

area of study. Figure 2-14 presents a schematic cross-section showing occurrence of<br />

groundwater in fractured bedrock that is recharged by precipitation. Precipitation infiltrates<br />

<strong>and</strong> moves downward to the water table. In some cases, the infiltrating water may be<br />

diverted to the l<strong>and</strong> surface or groundwater may intersect l<strong>and</strong> surface creating a spring.<br />

Otherwise, this infiltrating water moves vertically downward where it ultimately reaches<br />

the regional groundwater system <strong>and</strong> continues to flow downgradient through principal<br />

aquifer systems.<br />

<strong>Groundwater</strong> occurrence in fractured bedrock of the watershed-perimeter mountains has<br />

been known since before the turn of the twentieth century (Mendenhall, 1909). The USGS<br />

documented the occurrence of wells <strong>and</strong> springs (referred to as “some desert watering<br />

places”) throughout southeastern California <strong>and</strong> southwestern Nevada for the benefit of<br />

travelers <strong>and</strong> prospectors (Mendenhall, 1909). The USGS documented at least 10 wells <strong>and</strong><br />

springs in the mountains <strong>and</strong> hills around the Fenner Watershed <strong>and</strong> a number of wells<br />

drilled into the alluvium by the Santa Fe Railroad. Another USGS study by Thompson<br />

(1929) provided additional information on more wells <strong>and</strong> springs in the study area i to<br />

survey, mark, <strong>and</strong> provide protection of watering places. Additional wells <strong>and</strong> springs were<br />

identified in the area of study <strong>and</strong> described by Thompson (1929). A more recent USGS<br />

survey of wells <strong>and</strong> springs in the area of study was conducted by Freiwald (1984).<br />

Figure 2-15 includes the distribution of wells <strong>and</strong> springs inventoried as a part of that study<br />

(USGS, 2009). These studies provide evidence of the fractured nature of the surrounding<br />

bedrock <strong>and</strong> the continuous infiltration of precipitation <strong>and</strong> movement of water through<br />

these perimeter rocks.<br />

Although some groundwater is tapped by vegetation near the range fronts, the remainder<br />

moves slowly downgradient through Fenner Valley <strong>and</strong> Orange Blossom Wash into the<br />

Bristol <strong>and</strong> <strong>Cadiz</strong> depressions, where it eventually discharges to Bristol <strong>and</strong> <strong>Cadiz</strong> dry lakes.<br />

Evaporation of groundwater <strong>and</strong> surface water from the dry lakes over the past several<br />

million years has resulted in thick deposits of salt (primarily calcium chloride <strong>and</strong> sodium<br />

chloride) <strong>and</strong> brine-saturated sediments (Rosen, 1989).<br />

Bristol, <strong>Cadiz</strong>, <strong>and</strong> Danby dry lakes have static groundwater levels at or near the playa<br />

surfaces (Moyle, 1967; Rosen, 1989). Sodium chloride <strong>and</strong>/or calcium chloride are currently<br />

being recovered from trenches <strong>and</strong> brine wells on all three of these playas. Thompson<br />

(1929), Gale (1951), Bassett et al. (1959), H<strong>and</strong>ford (1982), <strong>and</strong> Rosen (1989) concur that the<br />

principal source of groundwater recharge to the playas occurs as diffuse seepage of<br />

groundwater into the playa sediments from the adjacent alluvial fans.<br />

The mountain ranges that define the boundaries of the regional watersheds are comprised<br />

predominantly of granitic <strong>and</strong> metamorphic basement rock, as described previously. This<br />

less permeable basement complex forms the margins <strong>and</strong> bottoms of the aquifer systems<br />

(Freiwald, 1984). More permeable carbonate bedrock of Paleozoic age occurs locally within<br />

the boundaries of these watersheds (see previous discussion for general distribution <strong>and</strong><br />

Section 4.2 for details in the Fenner Gap).<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 2-8


2.4.1 Hydrogeologic Units<br />

2.0 3BSETTING<br />

Based on available geologic, hydrologic, <strong>and</strong> geophysical data, the principal formations in<br />

the study area that can readily store <strong>and</strong> transmit groundwater (aquifers) have been divided<br />

into three general units: an upper (younger) alluvial aquifer; a lower (older) alluvial aquifer;<br />

<strong>and</strong> a carbonate rock unit aquifer (principally carbonate units are aquifers, but the unit<br />

contains interbedded quartzite <strong>and</strong> shale, see Section 4.2).<br />

The younger alluvial aquifer consists of Quaternary <strong>and</strong> late-Tertiary alluvial sediments,<br />

including stream-deposited s<strong>and</strong> <strong>and</strong> gravel with lesser amounts of silt (Moyle, 1967; GSSI,<br />

1999). The thickness of the upper alluvial sediments ranges to approximately 1,000 feet<br />

(GSSI, 1999; Section 4.2 of this report). The lower alluvial aquifer consists of older sediments,<br />

including interbedded s<strong>and</strong>, gravel, silt, <strong>and</strong> clay of mid- to late-Tertiary age. Where these<br />

materials extend below the water table, they yield water freely to wells but generally may be<br />

less permeable than the upper aquifer sediments (Moyle, 1967; GSSI, 1999; <strong>Appendix</strong> A of<br />

this report). Production well PW-1, located in Fenner Gap, draws water primarily from the<br />

upper <strong>and</strong> lower aquifers <strong>and</strong> yields 3,000 gallons per minute (gpm) with less than 20 feet of<br />

drawdown (GSSI, 1999). The <strong>Cadiz</strong>, Inc. agricultural wells draw water from the alluvial<br />

aquifers <strong>and</strong> typically yield 1,000 to more than 2,000 gpm.<br />

Based on findings from recent drilling in Fenner Gap, carbonate bedrock of Paleozoic age,<br />

located beneath the alluvial aquifers, contains groundwater <strong>and</strong> is considered a significant<br />

aquifer (GSSI, 1999; findings of this study as described in Section 4.2). <strong>Groundwater</strong><br />

movement <strong>and</strong> storage in this carbonate bedrock aquifer primarily occurs in secondary<br />

porosity features (i.e., joints, faults, <strong>and</strong> dissolution cavities that have developed over time).<br />

The full extent, potential yield, <strong>and</strong> storage capacity of this carbonate aquifer have not been<br />

quantified at this time.<br />

As previously noted, granite <strong>and</strong> metamorphic basement rock form the subsurface margins<br />

of the aquifer system. This basement rock is generally less permeable <strong>and</strong> typically yields<br />

smaller quantities of water to wells (Freiwald, 1984).<br />

2.4.2 <strong>Groundwater</strong> Movement<br />

In general, groundwater within the watersheds flows in the same direction as the slope of<br />

the l<strong>and</strong> surface. In the Fenner Valley, groundwater generally flows southward <strong>and</strong><br />

discharges through Fenner Gap toward Bristol <strong>and</strong> <strong>Cadiz</strong> dry lakes.<br />

In Orange Blossom Wash, located between the Marble <strong>and</strong> Bristol mountains, groundwater<br />

flows generally southward from the Granite Mountains into Bristol Dry Lake.<br />

Figure 2-16 presents a generalized contour map of groundwater elevations <strong>and</strong> horizontal<br />

flow directions in the area of study. The contours in this figure are based on water levels<br />

measured in more than 80 wells (GSSI, 1999). In some cases, published water level<br />

elevations have been adjusted to reflect more accurate reference elevations, obtained from<br />

updated topographic maps of the area (GSSI, 1999).<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 2-9


3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000<br />

36°0'0"N<br />

34°0'0"N<br />

32°0'0"N<br />

5 90000<br />

I15<br />

Bagdad<br />

Bagdad<br />

5 90000<br />

120°0'0"W<br />

120°0'0"W<br />

California<br />

Los Angeles<br />

San Diego<br />

B U L L I O N M O U N T A I N S<br />

116°0'0"W<br />

6 00000<br />

6 00000<br />

Nevada I15<br />

Las Vegas<br />

Twentynine Palms<br />

Palm Springs<br />

116°0'0"W<br />

Bagdad<br />

Bagdad<br />

29 Palms<br />

112°0'0"W<br />

Utah<br />

I40<br />

Arizona<br />

112°0'0"W<br />

6 10000<br />

6 10000<br />

GRANITE<br />

MTNS,<br />

B R I S T O L M T N S .<br />

Amboy<br />

6 20000<br />

BRISTOL DRY LAKE<br />

36°0'0"N<br />

34°0'0"N<br />

32°0'0"N<br />

6 20000<br />

Kelso<br />

M A R B L E M T N S .<br />

S H E E P H O L E M T N S<br />

Legend<br />

6 30000<br />

C A L U M E T M T N S .<br />

6 30000<br />

<strong>Cadiz</strong> Study Area<br />

Interstates<br />

Highways<br />

Roads<br />

Rail Roads<br />

6 40000<br />

Cima<br />

P R O V I D E N C E M O U N T A I N S<br />

<strong>Cadiz</strong><br />

CADIZ Inc.<br />

Agricultural Fields<br />

CADIZ DRY LAKE<br />

6 40000<br />

CLIPPER<br />

MTNS,<br />

FENNER<br />

GAP<br />

6 50000<br />

SHIP<br />

MTNS,<br />

DANBY DRY LAKE<br />

NEW YORK<br />

MTNS<br />

WOODS MTNS.<br />

National Trails<br />

COXCOMB<br />

MTNS<br />

6 50000<br />

6 60000<br />

F E N N E R V A L L E Y<br />

HACKBERRY<br />

MTNS.<br />

Essex<br />

Chubbuck<br />

6 60000<br />

O L D W O MAN M T N S .<br />

IRON<br />

MTNS<br />

6 70000<br />

Fenner<br />

6 70000<br />

I40<br />

P I U T E M T N S .<br />

6 80000<br />

Goffs<br />

6 80000<br />

6 90000<br />

6 90000<br />

0 2 4 8Miles<br />

0 2.5 5 10 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

Figure 2-1<br />

Overall <strong>Cadiz</strong> <strong>and</strong> Fenner<br />

Valleys Location Map<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig2-1_CADIZ_TM_StudyArea_V3_MR.mxd<br />

3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000


3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000<br />

I15<br />

Soda Dry Lake<br />

250 0<br />

2500<br />

Mesquite Lake<br />

2500<br />

1000<br />

1500<br />

20 00<br />

4000<br />

4000<br />

5 90000<br />

2500<br />

2 500<br />

5 90000<br />

300 0<br />

Legend<br />

1500<br />

4 0 0 0<br />

3500<br />

3500<br />

2000<br />

30 00<br />

3500<br />

3000<br />

300 0<br />

20 0<br />

4000<br />

3 000<br />

2500<br />

3000<br />

6 00000<br />

3000<br />

Bagdad<br />

Bagdad Lake (Dry)<br />

3000<br />

3500<br />

2500<br />

3 5 00<br />

2500<br />

2000<br />

6 00000<br />

Cities/Communities<br />

Elevation<br />

1000 ft interval<br />

500 ft interval<br />

250 ft interval<br />

3<br />

000<br />

3000<br />

6 10000<br />

GRANITE<br />

MTNS,<br />

3 5 00<br />

350 0<br />

3000<br />

3000<br />

4 500<br />

2 000<br />

3000<br />

B R I S T O L M T N S .<br />

3000<br />

6 10000<br />

3000<br />

3500<br />

30 00<br />

30 00<br />

2 5 00<br />

4 000<br />

55 00<br />

6000<br />

Amboy<br />

55 00<br />

Bristol Lake (Dry)<br />

1500<br />

250<br />

Interstates<br />

WaterBodies<br />

Rail Roads<br />

<strong>Cadiz</strong> Study Area<br />

4000<br />

5000<br />

0<br />

3500<br />

6 20000<br />

2 500<br />

4500<br />

4000<br />

4000<br />

2500<br />

4500<br />

3500<br />

6 20000<br />

2 500<br />

2500<br />

3000<br />

300 0<br />

Kelso<br />

3000<br />

4000<br />

M A R B L E M T N S .<br />

200<br />

2 0 00<br />

5 50 0<br />

4000<br />

0<br />

6 30000<br />

1500<br />

500 0<br />

5000<br />

2 500<br />

6 30000<br />

5 500<br />

5000<br />

5500<br />

5000<br />

Cima<br />

P R O V I D E N C E M O U N T A I N S<br />

15 00<br />

2500<br />

<strong>Cadiz</strong><br />

2 500<br />

6 40000<br />

200 0<br />

3000<br />

6 40000<br />

5500<br />

5000<br />

CLIPPER<br />

MTNS,<br />

National Trails<br />

FENNER<br />

GAP<br />

3500<br />

450 0<br />

4 000<br />

4 00 0<br />

1500<br />

5500<br />

3000<br />

35 00<br />

2000<br />

SHIP<br />

MTNS,<br />

1000<br />

<strong>Cadiz</strong> Lake(Dry)<br />

3 500<br />

2500<br />

6 50000<br />

5000<br />

2000<br />

3500<br />

6 50000<br />

5 500<br />

60 00<br />

3 0 00<br />

6500<br />

4500<br />

6 60000<br />

F E N N E R V A L L E Y<br />

4 500<br />

Essex<br />

4500<br />

Chubbuck<br />

6 60000<br />

2000<br />

25<br />

350 0<br />

O L D W OMA N M T N S .<br />

2500<br />

3000<br />

Fenner<br />

4500<br />

Danby Lake<br />

00<br />

20 00<br />

150 0<br />

2500<br />

1000<br />

4 00 0<br />

3500<br />

3 500<br />

3000<br />

6 70000<br />

4000<br />

2500<br />

I40<br />

P I U T E M T N S .<br />

3000<br />

Goffs<br />

Danby Lake(Dry)<br />

150 0<br />

6 70000<br />

50 00<br />

1500<br />

3000<br />

2500<br />

3500<br />

6 80000<br />

3000<br />

4500<br />

3 5 0 0<br />

20 00<br />

6 80000<br />

3500<br />

2000<br />

3 0 00<br />

6 90000<br />

2500<br />

150 0<br />

2000<br />

1 500<br />

6 90000<br />

0 2 4 8 Miles<br />

0 2 4 8Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

Figure 2-2<br />

Topography<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig2-2_CADIZ_TM_ElevationContourMap_V3_MR.mxd<br />

3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000


3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000<br />

5 90000<br />

I15<br />

Soda Dry Lake<br />

Mesquite Lake<br />

Bagdad Lake (Dry)<br />

181001003002<br />

Shadow Mountain<br />

Wonder Valley<br />

Twentynine Palms<br />

5 90000<br />

6 00000<br />

6 00000<br />

Legend<br />

Watershed Boundaries<br />

HUC10<br />

1810010025<br />

1810010026<br />

1810010027<br />

1810010028<br />

1810010029<br />

1810010030<br />

6 10000<br />

181001002601<br />

181001002502<br />

Amboy - Saltus #2<br />

6 10000<br />

1810010031<br />

1810010032<br />

1810010033<br />

1810010034<br />

1810010035<br />

1810010036<br />

1810010037<br />

Climate Stations<br />

181001002901<br />

181001002902<br />

6 20000<br />

181001002701<br />

181001002602<br />

181001003003<br />

181001002802<br />

181001003401<br />

Amboy - Saltus #1<br />

Bristol Lake (Dry)<br />

181001002703<br />

181001002803<br />

Wonder Valley F.S. - East<br />

Dale Lake - Craine<br />

6 20000<br />

Kelso (Soda Lake Valley)<br />

Mitchell Caverns<br />

181001002702<br />

181001003001<br />

181001003202<br />

181001003402<br />

181001003706<br />

181001002801<br />

181001003203<br />

181001003201<br />

Dale Dry Lake - Barnett'S Trading Pos<br />

USGS CA Flow Gages<br />

<strong>Cadiz</strong> Study Area<br />

Interstates<br />

Rail Roads<br />

WaterBodies<br />

Drainage<br />

6 30000<br />

6 30000<br />

6 40000<br />

6 40000<br />

181001003302<br />

181001003204<br />

181001003504<br />

181001003505<br />

181001003701<br />

181001003707<br />

181001003605<br />

181001003603<br />

6 50000<br />

181001003101<br />

181001003304<br />

181001003205<br />

181001003301<br />

181001003501<br />

181001003502<br />

181001003702<br />

<strong>Cadiz</strong> Lake(Dry)<br />

6 50000<br />

CARUTHERS C NR IVANPAH CA New York Mountains<br />

181001003303<br />

181001003503<br />

181001003305<br />

181001003704<br />

181001003705<br />

181001003606<br />

181001003604<br />

181001003602<br />

181001003601<br />

6 60000<br />

181001003102<br />

Essex Cal Trans Yard<br />

6 60000<br />

181001003703<br />

181001003103<br />

181001003104<br />

181001003308<br />

6 70000<br />

181001003105<br />

181001003307<br />

I40<br />

Ivanpah County Yard<br />

Danby Lake<br />

181001003306<br />

Goffs<br />

Danby Lake(Dry)<br />

6 70000<br />

6 80000<br />

Iron Mountain<br />

6 80000<br />

6 90000<br />

6 90000<br />

0 2 4 8Miles<br />

0 2.5 5 10Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

Figure 2-3<br />

Drainage Map<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig2-3_CADIZ_TM_WatershedBoundaries_V4_MR.mxd<br />

3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000


3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000<br />

5 90000<br />

I15<br />

5 90000<br />

Legend<br />

6 00000<br />

6 00000<br />

6 10000<br />

Urban or Built-up L<strong>and</strong><br />

Desert Saltbrush Scrub<br />

Bare Exposed Rock<br />

Bare Exposed Rock<br />

6 10000<br />

<strong>Cadiz</strong> Study Area Vegetation<br />

Interstates Common Name<br />

Rail Roads<br />

Agricultural L<strong>and</strong><br />

Alkali Playa<br />

Bare Exposed Rock<br />

Big Sagebrush Scrub<br />

Blackbush Scrub<br />

Desert Dry Wash Woodl<strong>and</strong><br />

Desert Dunes<br />

6 20000<br />

Alkali Playa<br />

6 20000<br />

6 30000<br />

Mojavean Pinyon <strong>and</strong> Juniper Woodl<strong>and</strong>s<br />

Mojave Mixed Woody Scrub<br />

Mojave Mixed Woody <strong>and</strong> Succulent Scrub<br />

Desert Saltbrush Scrub<br />

Desert Dunes<br />

Alkali Playa<br />

6 30000<br />

6 40000<br />

Mojave Mixed Steppe<br />

Mojave Mixed Woody <strong>and</strong> Succulent Scrub<br />

Agricultural L<strong>and</strong><br />

Desert Dry Wash Woodl<strong>and</strong><br />

6 40000<br />

Mojavean Pinyon <strong>and</strong> Juniper Woodl<strong>and</strong>s<br />

Big Sagebrush Scrub<br />

Alkali Playa<br />

6 50000<br />

Mojave Mixed Woody <strong>and</strong> Succulent Scrub<br />

Big Sagebrush Scrub<br />

Mojave Mixed Steppe<br />

Blackbush Scrub<br />

Desert Dry Wash Woodl<strong>and</strong><br />

Desert Saltbrush Scrub<br />

Mojave Creosote Bush Scrub<br />

Mojave Mixed Steppe<br />

Mojave Mixed Woody Scrub<br />

Mojave Mixed Woody <strong>and</strong> Succulent Scrub<br />

Mojavean Pinyon <strong>and</strong> Juniper Woodl<strong>and</strong>s<br />

Semi-Desert Chaparral<br />

Sonoran Creosote Bush Scrub<br />

Urban or Built-up L<strong>and</strong><br />

Mojave Creosote Bush Scrub<br />

Desert Saltbrush Scrub<br />

Desert Dunes<br />

Sonoran Creosote Bush Scrub<br />

6 50000<br />

6 60000<br />

Mojave Mixed Woody Scrub<br />

Semi-Desert Chaparral<br />

Urban or Built-up L<strong>and</strong><br />

Desert Dunes<br />

6 60000<br />

6 70000<br />

I40<br />

Mojave Mixed Woody Scrub<br />

Mojavean Pinyon <strong>and</strong> Juniper Woodl<strong>and</strong>s<br />

Desert Dry Wash Woodl<strong>and</strong><br />

6 70000<br />

6 80000<br />

6 80000<br />

6 90000<br />

6 90000<br />

0 2 4 8 Miles<br />

0 2.5 5 10 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

Figure 2-4<br />

Vegetation<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig2-4_CADIZ_TM_VegetationMap_V3_MR.mxd<br />

3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000


3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000<br />

5 90000<br />

I15<br />

5 90000<br />

Legend<br />

6 00000<br />

6 00000<br />

Urban or Built-up L<strong>and</strong><br />

Interstates Vegetation<br />

Rail Roads Percentage Cover<br />

0<br />

1 - 5<br />

6 - 25<br />

26 - 35<br />

36 - 50<br />

6 10000<br />

Desert Saltbrush Scrub<br />

Bare Exposed Rock<br />

Bare Exposed Rock<br />

6 10000<br />

6 20000<br />

Alkali Playa<br />

6 20000<br />

6 30000<br />

Mojavean Pinyon <strong>and</strong> Juniper Woodl<strong>and</strong>s<br />

Mojave Mixed Woody Scrub<br />

Mojave Mixed Woody <strong>and</strong> Succulent Scrub<br />

Desert Saltbrush Scrub<br />

Desert Dunes<br />

Alkali Playa<br />

6 30000<br />

6 40000<br />

Mojave Mixed Steppe<br />

Mojave Mixed Woody <strong>and</strong> Succulent Scrub<br />

Agricultural L<strong>and</strong><br />

Desert Dry Wash Woodl<strong>and</strong><br />

6 40000<br />

Mojavean Pinyon <strong>and</strong> Juniper Woodl<strong>and</strong>s<br />

Big Sagebrush Scrub<br />

Alkali Playa<br />

6 50000<br />

Mojave Mixed Woody <strong>and</strong> Succulent Scrub<br />

Big Sagebrush Scrub<br />

Mojave Mixed Steppe<br />

Blackbush Scrub<br />

Desert Dry Wash Woodl<strong>and</strong><br />

Mojave Creosote Bush Scrub<br />

Desert Saltbrush Scrub<br />

Desert Dunes<br />

Sonoran Creosote Bush Scrub<br />

6 50000<br />

6 60000<br />

Mojave Mixed Woody Scrub<br />

Semi-Desert Chaparral<br />

Urban or Built-up L<strong>and</strong><br />

Desert Dunes<br />

6 60000<br />

6 70000<br />

I40<br />

Mojave Mixed Woody Scrub<br />

Mojavean Pinyon <strong>and</strong> Juniper Woodl<strong>and</strong>s<br />

Desert Dry Wash Woodl<strong>and</strong><br />

6 70000<br />

6 80000<br />

6 80000<br />

6 90000<br />

6 90000<br />

0 2 4 8Miles<br />

0 2.5 5 10Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

Figure 2-4b<br />

Vegetation Coverage<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig2-4b_CADIZ_TM_VegetationMap_V3_MR.mxd<br />

3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000


35°30'0"N<br />

35°15'0"N<br />

35°0'0"N<br />

34°45'0"N<br />

34°30'0"N<br />

34°15'0"N<br />

34°0'0"N<br />

33°45'0"N<br />

33°30'0"N<br />

Dry Lake<br />

Silver Lake (Dry)<br />

Legend<br />

Soda Dry Lake<br />

Broadwell Lake(Dry)<br />

116°0'0"W<br />

TWENTYNINE PALMS U.S.M.C.<br />

Mesquite Lake<br />

Temperature Data<br />

Salton Sea<br />

I15<br />

YUCCA GROVE<br />

Bagdad Lake (Dry)<br />

NOAA3450-11575AMB_1<br />

AMBOY - SALTUS #2 Bristol Lake (Dry)<br />

SHADOW MOUNTAIN<br />

TWENTYNINE PALMS COU<br />

TWENTYNINE PALMS<br />

116°0'0"W<br />

NOAA Grid Precipitation<br />

San Bernardino County Precipitation<br />

115°45'0"W<br />

I10<br />

Ivanpah Lake<br />

MOUNTAIN PASS MOUNTAIN PASS<br />

NOAA3525-11575<br />

NOAA3525-11550<br />

NOAA3500-11575<br />

NOAA3500-11550<br />

KELSO (SODA LAKE VALLEY)<br />

NOAA3475-11575<br />

AMBOY - SALTUS #1<br />

NOAA3425-11575<br />

MITCHELL CAVERNS<br />

NOAA3475-11550<br />

NOAA3450-11550<br />

NOAA3425-11550<br />

WONDER VALLEY F.S. - EAST<br />

DALE DRY LAKE - BARNE<br />

115°45'0"W<br />

115°30'0"W<br />

115°30'0"W<br />

interstates Elevation<br />

states<br />

metes<br />

Rail Roads<br />

Dry Lake Beds<br />

High : 2394<br />

<strong>Cadiz</strong> Study Area Low : -87<br />

<strong>Cadiz</strong> Lake(Dry)<br />

115°15'0"W<br />

I40<br />

NEVADA<br />

CALIFORNIA<br />

NOAA3525-11525<br />

NOAA3525-11500<br />

NEW YORK MOUNTAINS<br />

NOAA3500-11525<br />

NOAA3475-11525<br />

ESSEX CAL TRANS YARD<br />

NOAA3450-11525<br />

NOAA3425-11525<br />

115°15'0"W<br />

IRON MOUNTAIN<br />

115°0'0"W<br />

GOFFS<br />

Danby Lake(Dry)<br />

NOAA3500-11500<br />

NOAA3475-11500<br />

NOAA3450-11500<br />

NOAA3425-11500<br />

115°0'0"W<br />

114°45'0"W<br />

114°30'0"W<br />

NEEDLES COUNTY HIGY YARDNEEDLES<br />

114°45'0"W<br />

NEEDLES F.A.A.<br />

PARK MOABI REGIONAL PARK 34°45'0"N<br />

NEEDLES PUMPING PLANT<br />

Name Station# EAST NORTH ELEV(m)<br />

TWENTYNINE PALMS 6048 588520.1861 3776986.3786 602.0<br />

NEEDLES PUMPING PLANT 6059 718933.3123 3841265.8182 426.7<br />

MOUNTAIN PASS 6063 632465.8634 3926145.7808 1441.7<br />

YUCCA GROVE 6109 609877.2024 3918075.1628 1204.3<br />

NEEDLES F.A.A. 6110 717833.2488 3849008.8513 278.6<br />

NEEDLES 6156 719478.4432 3856817.2860 146.3<br />

NEEDLES COUNTY HIGY YARD 6178 719478.4432 3856817.2860 137.5<br />

GOFFS 6179 677212.1024 3865889.1957 788.5<br />

KELSO (SODA LAKE VALLEY) 6193 623178.6727 3874984.6796 654.7<br />

MITCHELL CAVERNS 6215 636069.4599 3867402.7543 1319.8<br />

DALE DRY LAKE - BARNE 6245 619844.5862 3779551.1851 371.9<br />

AMBOY - SALTUS #1 6298 619305.1409 3821691.1470 190.5<br />

AMBOY - SALTUS #2 6300 615703.0829 3816099.8078 181.4<br />

SHADOW MOUNTAIN 6397 594008.5786 3781475.5129 414.5<br />

NEW YORK MOUNTAINS 6398 670151.0362 3901261.1581 1408.2<br />

TWENTYNINE PALMS U.S.M.C. 6402 578219.6903 3795747.1719 610.8<br />

IRON MOUNTAIN 7114 673319.7591 3780384.4573 285.9<br />

TWENTYNINE PALMS COU 9004 586655.5319 3779186.9426 577.6<br />

PARK MOABI REGIONAL PARK 9006 727985.8352 3845925.1453 164.6<br />

MOUNTAIN PASS 9008 632465.8634 3926145.7808 1443.2<br />

WONDER VALLEY F.S. - EAST 9016 615207.7280 3781711.4063 373.1<br />

ESSEX CAL TRANS YARD 9020 660221.9816 3844496.0097 524.3<br />

AMB_1 1001 617504.1119 3818895.4774 185.9<br />

NOAA Grid Node Number EAST NORTH ELEV(m)<br />

NOAA3425-11575 5001 615098.8957 3790582.7344 809.1<br />

NOAA3425-11550 5002 638120.4564 3790893.7326 567.0<br />

NOAA3425-11525 5003 661142.9887 3791261.3197 273.6<br />

NOAA3425-11500 5004 684166.6542 3791685.5176 276.3<br />

NOAA3450-11575 5005 614757.3470 3818306.3473 184.2<br />

NOAA3450-11550 5006 637710.5534 3818618.4062 244.0<br />

NOAA3450-11525 5007 660664.7070 3818987.2467 680.2<br />

NOAA3450-11500 5008 683619.9655 3819412.8905 480.8<br />

NOAA3475-11575 5009 614413.6096 3846031.0427 1073.1<br />

NOAA3475-11550 5010 637298.0240 3846344.1386 767.6<br />

NOAA3475-11525 5011 660183.3614 3846714.2043 535.0<br />

NOAA3475-11500 5012 683069.7753 3847141.2617 674.7<br />

NOAA3500-11575 5013 614067.6898 3873756.8242 647.4<br />

NOAA3500-11550 5014 636882.8759 3874070.9332 1349.5<br />

NOAA3500-11525 5015 659698.9606 3874442.1962 1056.0<br />

NOAA3500-11500 5016 682516.0936 3874870.6346 860.6<br />

NOAA3525-11575 5017 613719.5940 3901483.6954 1177.1<br />

NOAA3525-11550 5018 636465.1166 3901798.7937 1282.8<br />

NOAA3525-11525 5019 659211.5136 3902171.2256 1499.0<br />

NOAA3525-11500 5020 681958.9307 3902601.0125 987.3544<br />

0 2 4 8Miles<br />

0 5 10 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

Figure 2-5<br />

Climate Stations<br />

114°30'0"W<br />

35°30'0"N<br />

35°15'0"N<br />

35°0'0"N<br />

34°30'0"N<br />

34°15'0"N<br />

34°0'0"N<br />

33°45'0"N<br />

33°30'0"N<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig2-5_CADIZ_TM_ClimateStations_V4_MR.mxd


3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000<br />

5 90000<br />

I15<br />

Soda Dry Lake<br />

5 90000<br />

Legend<br />

4 in<br />

6 in<br />

8 in<br />

6 in<br />

6 in<br />

5 in<br />

7 in<br />

7 in<br />

6 i n<br />

4 in<br />

6 in<br />

5 in<br />

6 00000<br />

6 in<br />

Bagdad Lake (Dry)<br />

6 in<br />

6 00000<br />

5 in<br />

5 in<br />

Interstates<br />

Rail Roads<br />

Fenner Valley Model Boundary<br />

Orange Blossom Model Boundary<br />

Dry Lake Beds<br />

Geology<br />

Rock<br />

dune s<strong>and</strong>; Alluvium<br />

6 in<br />

6 10000<br />

6 in<br />

4 in<br />

6 10000<br />

9 in<br />

10 in<br />

Bristol Lake (Dry)<br />

4 in<br />

6 20000<br />

8 in<br />

5 i n<br />

8 in<br />

4 in<br />

6 20000<br />

6 in<br />

5 in<br />

6 in<br />

6 30000<br />

9 in<br />

5 in<br />

9 in<br />

8 in<br />

6 30000<br />

9 in<br />

9 in<br />

8 in<br />

6 in<br />

5 in<br />

5 in<br />

7 in<br />

6 in<br />

PRISM Annual Average Precipitation from 1971-2000<br />

Inches<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6 40000<br />

6 40000<br />

4 in<br />

Isohyets created from PRISM data<br />

PRISM Climate Group, Oregon State University, http://www.prismclimate.org, created 4 Feb 2004.<br />

7 in<br />

7 in<br />

6 50000<br />

9 in 10 in<br />

5 i n<br />

11 in<br />

<strong>Cadiz</strong> Lake(Dry)<br />

7 in<br />

5 in<br />

6 50000<br />

5 in<br />

8 in<br />

8 in<br />

6 60000<br />

8 in<br />

6 in<br />

6 60000<br />

8 i n<br />

4 in<br />

9 in<br />

9 in<br />

8 in<br />

6 70000<br />

6 70000<br />

I40<br />

9 in<br />

7 in<br />

Danby Lake(Dry)<br />

5 i n<br />

6 80000<br />

6 80000<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

0 5 10<br />

12 Figure 2-6<br />

7 in<br />

4 in<br />

6 90000<br />

7 i n<br />

7 in<br />

6 in<br />

4 in<br />

6 90000<br />

0 2 4 8 Miles<br />

2.5 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000<br />

PRISM Isohyets for the 1971-2000 period<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig2-6_CADIZ_TM_PRISM_IsohyetMap_V5_MR.mxd


Annual Cummulative Departure from Mean (mm)<br />

500<br />

0<br />

-500<br />

-1000<br />

-1500<br />

-2000<br />

1935<br />

1940<br />

1945<br />

Figure 2-7<br />

Cumulative Departure From Mean Precipitation For Selected Precipitation Stations<br />

1950<br />

Annual Cumulative Departure from Mean Plot<br />

Twentynine Palms Mitchell Caverns Amboy#1 Amboy#2<br />

1955<br />

1960<br />

1965<br />

1970<br />

Year<br />

1975<br />

1980<br />

1985<br />

1990<br />

1995<br />

2000<br />

2005


3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000<br />

5 90000<br />

I15<br />

Soda Dry Lake<br />

5 90000<br />

Legend<br />

6 00000<br />

Bagdad<br />

Bagdad Lake (Dry)<br />

6 00000<br />

<strong>Cadiz</strong> Study Area<br />

Cities/Communities<br />

Interstates<br />

Rail Roads<br />

6 10000<br />

6 10000<br />

Dry Lake Beds<br />

Geology<br />

Rock<br />

Alluvium<br />

Dune S<strong>and</strong><br />

Amboy<br />

6 20000<br />

Bristol Lake (Dry)<br />

6 20000<br />

Kelso<br />

6 30000<br />

6 30000<br />

6 40000<br />

Cima<br />

<strong>Cadiz</strong><br />

6 40000<br />

6 50000<br />

<strong>Cadiz</strong> Lake(Dry)<br />

6 50000<br />

6 60000<br />

Essex<br />

Chubbuck<br />

6 60000<br />

6 70000<br />

Fenner<br />

Danby Lake<br />

6 70000<br />

I40<br />

Goffs<br />

Danby Lake(Dry)<br />

6 80000<br />

6 80000<br />

6 90000<br />

6 90000<br />

0 2 4 8 Miles<br />

0 2.5 5 10 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

Figure 2-8<br />

Simplified Geologic Map<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig2-8_CADIZ_TM_AluviumBedrockMap_V3_MR.mxd<br />

3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000


3 826000<br />

3 825000<br />

3 824000<br />

3 823000<br />

3 822000<br />

3 821000<br />

3 820000<br />

3 819000<br />

3 818000<br />

3 817000<br />

3 816000<br />

3 815000<br />

3 814000<br />

Legend<br />

6 39000<br />

6 39000<br />

Fault<br />

Interstates<br />

Roads<br />

Rail Roads<br />

45<br />

45<br />

6 40000<br />

45<br />

6 40000<br />

55 35<br />

6 41000<br />

35<br />

6 41000<br />

20<br />

6 42000<br />

6 42000<br />

Geology Units<br />

Alluvium<br />

Teritary Volcanics<br />

Mesozoic Granitic Rocks<br />

Permian/Pennsylvanian Carbonate Rock Units<br />

Cambrian Carbonate Rock Units<br />

Precambrian Granitic Rocks<br />

Modified from Liggett (2010) <strong>and</strong> Bishop (1963)<br />

6 43000<br />

6 43000<br />

6 44000<br />

6 44000<br />

40<br />

6 45000<br />

80<br />

6 45000<br />

25<br />

6 46000<br />

25<br />

60<br />

80<br />

45<br />

6 46000<br />

25<br />

6 47000<br />

20<br />

0 0.25 0.5 1 Miles<br />

0 0.25 0.5 1Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

Vertical Datum NAVD88<br />

6 47000<br />

45<br />

6 48000<br />

25<br />

6 48000<br />

25<br />

25<br />

30<br />

60<br />

Figure 2-9<br />

Geology of Fenner Gap Area<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig2-9_CADIZ_TM_GeologyofFennerGap_V1_MH.mxd<br />

3 826000<br />

3 825000<br />

3 824000<br />

3 823000<br />

3 822000<br />

3 821000<br />

3 820000<br />

3 819000<br />

3 818000<br />

3 817000<br />

3 816000<br />

3 815000<br />

3 814000


3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000<br />

5 90000<br />

I15<br />

5 90000<br />

6 00000<br />

6 00000<br />

Bagdad<br />

CA913<br />

6 10000<br />

CA916<br />

CA913<br />

CA919<br />

CA909<br />

CA919<br />

6 10000<br />

Legend<br />

STATSGO Soil Types<br />

MUNAME<br />

ARMOINE-LOMOINE-PETSPRING (CA782)<br />

BADLAND-BITTERWATER-CAJON (CA910)<br />

BLACKTOP-DOWNEYVILLE-ROCK OUTCROP (CA788)<br />

CAJON-ARIZO-VICTORVILLE VARIANT (CA931)<br />

CALVISTA-ROCK OUTCROP-TRIGGER (CA919)<br />

CARRIZO-ROSITAS-GUNSIGHT (CA922)<br />

GUNSIGHT-RILLITO-CHUCKAWALLA (CA927)<br />

MCCULLOUGH-RILLITO-BLUEPOINT (CA933)<br />

NICKEL-ARIZO-BITTER (CA930)<br />

CA931<br />

CA907<br />

6 20000<br />

CA782<br />

CA927<br />

Amboy<br />

CA923<br />

CA922<br />

6 20000<br />

Kelso<br />

CA909<br />

CA930<br />

CA927<br />

CA907<br />

CA913<br />

6 30000<br />

CA909<br />

CA907<br />

CA921<br />

CA782<br />

CA918 CA927<br />

CA921<br />

6 30000<br />

CA905<br />

CA906<br />

CA930<br />

Cima<br />

CA913<br />

6 40000<br />

CA907<br />

<strong>Cadiz</strong><br />

CA909<br />

CA919<br />

CA909<br />

CA930<br />

CA927<br />

6 40000<br />

CA919<br />

CA926<br />

CA923<br />

PENELAS-UBEHEBE-RODAD (CA906)<br />

PLAYAS-ROSITAS-MELOLAND (CA923)<br />

ROCK OUTCROP-HYDER-LOMITAS (CA916)<br />

ROCK OUTCROP-LAPOSA-QUILOTOSA (CA918)<br />

ROCK OUTCROP-LITHIC TORRIORTHENTS-CALVISTA (CA913)<br />

ROCK OUTCROP-LOMOINE-ARMOINE (CA926)<br />

ROCK OUTCROP-ST. THOMAS-TECOPA (CA905)<br />

ROCK OUTCROP-TECOPA-LITHIC TORRIORTHENTS (CA907)<br />

ROCK OUTCROP-UPSPRING-SPARKHULE (CA909)<br />

ROSITAS-CARSITAS-DUNE LAND (CA921)<br />

CA913<br />

CA927<br />

6 50000<br />

CA788<br />

CA913<br />

CA909<br />

CA921 CA907<br />

CA913<br />

CA909<br />

6 50000<br />

<strong>Cadiz</strong> Study Area<br />

Interstates<br />

Rail Roads<br />

Cities/Communities<br />

CA933<br />

CA927<br />

6 60000<br />

CA909<br />

CA907<br />

CA919<br />

CA927<br />

Essex<br />

Chubbuck<br />

6 60000<br />

CA931<br />

CA919<br />

CA931<br />

CA927<br />

CA907 CA910<br />

CA913<br />

6 70000<br />

Fenner<br />

6 70000<br />

I40<br />

6 80000<br />

Goffs<br />

6 80000<br />

6 90000<br />

6 90000<br />

0 2 4 8 Miles<br />

0 2.5 5 10 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

Figure 2-10<br />

STATSGO Soil Map<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig2-10_CADIZ_TM_SoilsMap_SoilTypes_V3_MR.mxd<br />

3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000


3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000<br />

5 90000<br />

I15<br />

5 90000<br />

Legend<br />

6 00000<br />

6 00000<br />

Bagdad<br />

CA913<br />

6 10000<br />

CA916<br />

CA913<br />

CA919<br />

CA909<br />

CA919<br />

6 10000<br />

CA931<br />

CA907<br />

CA927<br />

Amboy<br />

Cities/Communities STATSGO Soil Types<br />

Interstates Percentage of grains >2mm<br />

Rail Roads<br />

0.0 - 10.0<br />

10.1 - 20.0<br />

20.1 - 30.0<br />

6 20000<br />

CA782<br />

CA923<br />

CA922<br />

6 20000<br />

Kelso<br />

CA909<br />

CA930<br />

CA927<br />

CA907<br />

30.1 - 40.0<br />

40.1 - 50.0<br />

50.1 - 60.0<br />

60.1 - 70.0<br />

70.1 - 80.0<br />

CA913<br />

6 30000<br />

CA909<br />

CA782<br />

CA907<br />

CA921<br />

CA918 CA927<br />

CA921<br />

6 30000<br />

CA905<br />

CA906<br />

CA930<br />

Cima<br />

CA913<br />

6 40000<br />

CA907<br />

<strong>Cadiz</strong><br />

CA909<br />

CA919<br />

CA909<br />

CA930<br />

CA927<br />

6 40000<br />

CA919<br />

CA926<br />

CA923<br />

CA913<br />

CA927<br />

6 50000<br />

CA788<br />

CA931<br />

CA913<br />

CA909<br />

CA921 CA907<br />

CA913<br />

CA909<br />

6 50000<br />

CA933<br />

CA927<br />

6 60000<br />

CA909<br />

CA907<br />

CA919<br />

CA927<br />

Essex<br />

Chubbuck<br />

6 60000<br />

CA931<br />

CA919<br />

CA927<br />

CA907 CA910<br />

CA913<br />

6 70000<br />

Fenner<br />

6 70000<br />

I40<br />

6 80000<br />

Goffs<br />

6 80000<br />

6 90000<br />

6 90000<br />

0 2 4 8Miles<br />

0 2.5 5 10Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000<br />

Figure 2-11<br />

Percentage of grains greater than 2mm<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig2-11_CADIZ_TM_SoilsMap_SoilTypes_V3_MR.mxd


3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000<br />

5 90000<br />

I15<br />

5 90000<br />

Legend<br />

6 00000<br />

6 00000<br />

Bagdad<br />

CA913<br />

6 10000<br />

CA916<br />

CA913<br />

CA919<br />

CA909<br />

CA919<br />

6 10000<br />

CA931<br />

CA907<br />

6 20000<br />

CA782<br />

CA927<br />

Amboy<br />

CA923<br />

CA922<br />

6 20000<br />

CA909<br />

CA930<br />

CA927<br />

CA907<br />

Cities/Communities STATSGO Soil Types<br />

Interstates Percentage of Clay from grains


WB052009005SCO386303 AA 05 <strong>Cadiz</strong> conceptual v3 rev ai 3/10<br />

Existing Agriculture<br />

SOUTHWEST<br />

Bristol<br />

Mountains<br />

Bristol<br />

Dry<br />

Lake<br />

Bristol<br />

Mountains<br />

Brine<br />

INTERSTATE<br />

40<br />

Portion of <strong>Cadiz</strong> Inc. L<strong>and</strong> Ownership<br />

in the <strong>Cadiz</strong> & Fenner Valleys<br />

5 miles<br />

Fenner<br />

Gap<br />

Marble<br />

Mountains<br />

Orange<br />

Blossom<br />

Wash<br />

Carbonate<br />

Rock Unit<br />

Providence Mountains<br />

Clipper<br />

Mountains<br />

Natural<br />

Recharge<br />

Bedrock<br />

LOOKING NORTHWEST<br />

Fenner Watershed<br />

INTERSTATE<br />

40<br />

NORTHEAST<br />

FIGURE 2-13<br />

Conceptualization of <strong>Groundwater</strong><br />

Occurrence <strong>and</strong> Movement<br />

In the Area of Study


Northwest<br />

WB052009005SCO386303.AA.05 <strong>Cadiz</strong>_CrossSection_v2.ai 11/09<br />

Providence<br />

Mountains Clipper<br />

Looking Northeast<br />

Mountains<br />

Mitchell<br />

Caverns<br />

Clipper Valley<br />

Clipper Wash<br />

Interstate 40<br />

Southeast<br />

FIGURE 2-14<br />

Schematic Cross Section<br />

Showing Occurrence <strong>and</strong><br />

Movement of Water


3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000<br />

5 90000<br />

I15<br />

Soda Dry Lake<br />

Mesquite Lake<br />

5 90000<br />

Legend<br />

6 00000<br />

Bagdad Lake (Dry)<br />

6 00000<br />

CADIZ Wells<br />

CADIZ AG Wells<br />

Springs<br />

Wells<br />

003N010E34J001S<br />

Bristol Lake (Dry)<br />

014N013E10D003S014N013E10D004S<br />

014N013E10D002S<br />

014N013E10D001S<br />

014N013E11P001S<br />

HBP2 27 DEG BE<br />

<strong>Cadiz</strong> Lake(Dry)<br />

014N016E03F003S<br />

014N016E07L001S 014N016E03R001S<br />

014N016E09A001S<br />

014N016E17B001S<br />

014N014E18E002S 014N014E19C001S<br />

014N013E23R003S014N013E23R001S<br />

014N013E23R002S<br />

014N013E25M004S 014N013E25M003S<br />

014N013E25M002S<br />

014N013E25M001S<br />

014N016E14P001S<br />

014N016E22G001S 014N016E14Q001S<br />

014N015E23K001S<br />

014N016E22M002S<br />

014N016E22M001S<br />

014N016E28J001S 014N016E28JS02S<br />

014N016E29MS01S<br />

014N016E30LS01S<br />

014N017E14F001S<br />

014N017E23L001S<br />

014N017E27A001S<br />

013N014E06J002S013N014E05J001S<br />

013N015E04E001S<br />

013N014E06J001S<br />

013N015E04M001S 013N016E06P001S<br />

013N014E05P001S<br />

013N015E09G001S013N015E02P001S<br />

013N014E11N003S 013N015E09H001S 013N015E09NS01S 013N016E07B001S<br />

013N015E11G001S013N015E11F001S<br />

013N014E11N002S<br />

013N014E10R001S<br />

013N015E13C001S<br />

013N015E22D001S<br />

013N015E22G001S<br />

013N015E22J001S<br />

013N017E18N001S<br />

013N018E18H001S<br />

013N017E31B001S<br />

013N015E36A001S013N015E36A002S<br />

013N015E34K001S013N015E34M001S<br />

013N015E34N001S 012N015E01ES01S<br />

013N015E36N001S<br />

012N015E36N001S<br />

012N015E07A001S<br />

012N015E03L001S<br />

012N015E03M001S 012N015E11B001S<br />

013N017E31J001S<br />

012N017E04D001S<br />

012N017E04P001S012N017E04N001S<br />

012N017E18A001S<br />

012N015E08D001S012N015E08D002S 012N015E11G001S<br />

012N014E13N001S012N015E09Q002S<br />

012N015N09Q003S 012N016E18L001S<br />

012N015E17N001S<br />

012N016E19C001S<br />

012N015E19H002S<br />

012N015E17N002S<br />

012N016E19C002S<br />

012N014E24E001S 012N015E20P001S 012N015E27BS01S<br />

012N015E20P002S<br />

012N015E29C001S 012N015E34AS01S<br />

012N014E36J001S 012N015E33D002S<br />

012N017E17J001S<br />

012N018E30E002S012N018E30C001S<br />

012N018E30E001S<br />

012N018E24DS01S<br />

012N015E33M001S 012N015E33D001S<br />

012N014E36R001S<br />

012N015E31M001S<br />

011N015E06C001S<br />

011N014E11FS01S 011N015E06J001S<br />

011N014E11C001S 011N015E08K001S<br />

011N015E17M001S<br />

011N015E08R001S<br />

011N015E08R003S<br />

011N015E08R002S<br />

011N015E17M002S<br />

011N017E05R002S011N017E05R003S<br />

011N017E05R001S<br />

011N016E01PS01S 011N017E04RS01S<br />

011N018E09L001S<br />

011N012E25G002S<br />

011N014E27E001S<br />

011N014E26RS01S<br />

011N014E35M001S 011N015E32DS01S<br />

011N014E33N001S<br />

010N011E06R001S 010N015E07B001S<br />

006N011E30G001S<br />

001N010E36P001S<br />

6 10000<br />

010N014E22K001S<br />

009N014E08R001S<br />

009N014E29ES01S<br />

009N014E29P001S<br />

008N014E08D001S 008N014E05N001S<br />

008N013E10E001S<br />

008N013E08QS01S<br />

008N013E18FS02S008N013E18F001S<br />

008N013E08RS01S<br />

008N013E17MS01S 008N013E15P002S<br />

008N013E08QS02S<br />

008N013E15P003S<br />

008N013E17GS01S<br />

008N013E15P001S<br />

008N013E17BS01S<br />

008N013E15N001S<br />

008N013E23DS01S<br />

007N012E01F001S<br />

006N012E35F001S<br />

006N012E32R001S<br />

001N012E20D002S001N012E17N002S<br />

001N011E21C001S 001N012E20D001S<br />

001N012E20D004S<br />

6 10000<br />

<strong>Cadiz</strong> Study Area<br />

Interstates<br />

Water Bodies (Dry/Wet)<br />

Rail Roads<br />

Rock<br />

Dune S<strong>and</strong>; Alluvium<br />

6 20000<br />

6 20000<br />

6 30000<br />

006N014E35B001S<br />

010N015E29A003S<br />

010N015E29A001S<br />

010N015E29A002S<br />

008N017E02D001S<br />

009N017E35N001S<br />

008N017E04E001S<br />

008N015E12D001S008N017E02D002S<br />

008N016E13M001S<br />

008N016E13M002S<br />

010N018E35B003S010N018E26R002S<br />

010N018E26R001S<br />

010N018E35B001S<br />

I40<br />

009N018E36D001S009N018E36D002S<br />

009N018E36E001S<br />

008N016E36R001S<br />

008N017E31N001S<br />

007N016E01A001S<br />

007N018E08E002S007N018E08E001S<br />

006N017E02M001S<br />

006N015E01H001S<br />

007N015E35R001S<br />

006N016E06Q002S<br />

006N016E06K001S<br />

006N016E06Q001S<br />

006N017E11H001S<br />

006N016E06Q003S<br />

006N017E13DS01S<br />

005N015E04F001S005N015E04G001S<br />

005N014E15K001S005N014E13M001S<br />

005N013E22J002S005N013E22J001S<br />

011N014E02B001S<br />

D-SWIMMING POOL<br />

010N016E18GS01S<br />

010N014E32GS02S010N014E32G001S<br />

010N018E35B002S<br />

010N014E28PS01S<br />

009N014E03F001S009N014E03C001S<br />

009N014E03CS02S<br />

009N014E03FS02S<br />

6 30000<br />

6 40000<br />

6 40000<br />

6 50000<br />

008N015E23GS01S<br />

007N015E22DS01S<br />

6 50000<br />

008N016E30KS01S<br />

004N015E24E001S<br />

HBP1 41.5 DEG BE<br />

6 60000<br />

6 60000<br />

6 70000<br />

007N017E13DS01S<br />

006N017E26E001S<br />

006N017E27LS01S<br />

002N017E11M001S<br />

6 70000<br />

008N018E28FS01S<br />

Danby Lake(Dry)<br />

6 80000<br />

6 80000<br />

0 1.5 3 6 Miles<br />

0 1.5 3 6 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

Figure 2-15<br />

Wells <strong>and</strong> Springs Map<br />

6 90000<br />

6 90000<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig2-15_CADIZ_TM_WellLocationMap_V5_MH.mxd<br />

3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000


3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000<br />

5 90000<br />

§¨¦ I15<br />

Soda Dry Lake<br />

Mesquite Lake<br />

5 90000<br />

Legend<br />

6 00000<br />

Bagdad Lake (Dry)<br />

6 00000<br />

Fenner_BND<br />

<strong>Cadiz</strong> Study Area<br />

Interstates<br />

Rail Roads<br />

<strong>Groundwater</strong> Level ft<br />

WaterBodies<br />

6 10000<br />

1000<br />

900<br />

6 10000<br />

800<br />

700<br />

640<br />

620<br />

3200 3300<br />

2300<br />

2000<br />

1700 3400<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

Bristol Lake (Dry)<br />

Simplified Geology<br />

Alluvium/S<strong>and</strong>Dunes<br />

Rock<br />

6 20000<br />

6 20000<br />

1000<br />

900<br />

800<br />

700<br />

680<br />

6 30000<br />

6 30000<br />

1800<br />

660<br />

1700<br />

1600<br />

580<br />

1500<br />

1200<br />

6 40000<br />

2700<br />

580<br />

1900<br />

800<br />

690<br />

670<br />

640<br />

6 40000<br />

1400<br />

1300<br />

1100<br />

1000<br />

700<br />

650<br />

680<br />

630<br />

610<br />

2800<br />

2500 2400<br />

2200<br />

660<br />

6 50000<br />

3700<br />

3600<br />

2100<br />

<strong>Cadiz</strong> Lake(Dry)<br />

6 50000<br />

900<br />

600<br />

2900<br />

1000<br />

800<br />

1400<br />

6 60000<br />

900<br />

700<br />

3000<br />

1800<br />

1700<br />

1600<br />

6 60000<br />

1400<br />

3100<br />

2600<br />

1500<br />

3500<br />

3400<br />

6 70000<br />

6 70000<br />

§¨¦ I40<br />

3800<br />

Danby Lake(Dry)<br />

6 80000<br />

6 80000<br />

¯<br />

6 90000<br />

6 90000<br />

0 2 4 8 Miles<br />

Figure 2-16<br />

<strong>Groundwater</strong> Level<br />

3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000<br />

0 2.5 5 10 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters. Vertical Datum NAVD88<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig2-16_CADIZ_TM_<strong>Groundwater</strong>Level_V3_MH.mxd


3.0 <strong>Groundwater</strong> in Storage<br />

This section presents estimated volumes of groundwater in storage in the focused area of<br />

study: Fenner Valley <strong>and</strong> in the fresh (approximately less than 1,000 milligrams per liter<br />

[mg/l] of total dissolved solids) groundwater portion of the Orange Blossom Wash <strong>and</strong><br />

northern Bristol Dry Lake area. GSSI (1999) estimated groundwater in storage for the<br />

alluvium of these approximate areas. Their estimate of groundwater in storage for the<br />

Fenner Valley ranges from 12,762,000 AF to 23,340,000 AF <strong>and</strong> in the area described as the<br />

“area of influence of proposed program operations,” it ranges from 3,646,000 AF to<br />

6,689,509 AF. Approximately 432,596 AF are for the carbonate unit.<br />

Updated estimates of groundwater in storage are provided in Table 3-1. These estimates<br />

are for groundwater in storage in the alluvial aquifers <strong>and</strong> should not be taken as a total<br />

volume that could be pumped out of these alluvial aquifers. These estimates are based on<br />

independent mapping of groundwater levels <strong>and</strong> depth to bedrock as a part of this study.<br />

<strong>Groundwater</strong>-level contours were drawn from available groundwater-level data for the<br />

study area. <strong>Groundwater</strong> levels are generally consistent with GSSI (1999) groundwater-level<br />

contour maps in the southern part of Fenner Valley, Orange Blossom Wash, <strong>and</strong> northern<br />

Bristol Dry Lake area. Figure 2-16 presents this updated groundwater-level contour map.<br />

Figure 3-1 is a structure contour map on top of bedrock (or on the base of alluvial aquifers)<br />

based on geophysical surveys of Maas (1994), USGS (2006), <strong>and</strong> NORCAL (1997), <strong>and</strong> drill<br />

intercepts in the Fenner Gap (GSSI, 1999; Section 4.2.1 of this study). In addition, detailed<br />

cross-sections prepared of the Fenner Gap subsurface geology were used to develop<br />

detailed bedrock contours in the Fenner Gap area (see Section 4.2).<br />

Figure 3-2 shows the storage zones used in the calculations of groundwater in storage.<br />

Table 3-1 also includes estimates of the following variables: volume of aquifer, determined<br />

as the volume between the groundwater table <strong>and</strong> the base of the alluvium (saturated<br />

thickness), percent of aquifer saturated thickness that is expected to be an aquifer (to<br />

exclude clay <strong>and</strong> silt intervals that do not yield water readily), <strong>and</strong> estimated specific yield.<br />

Low <strong>and</strong> high ranges are provided for each of these variables based on GSSI’s (1999)<br />

previous estimates. The range of groundwater in storage in the focus area of study ranges<br />

from 16,981,600 AF to 34,415,000 AF. Approximately 12,533,800 AF to 24,407,400 AF of<br />

groundwater is in storage in the Fenner Watershed, which is comparable to those estimates<br />

provided by GSSI (1999).<br />

These estimates of groundwater in storage are very conservative because (1) this estimate<br />

does not include the northernmost area of the Fenner Watershed due to the paucity of<br />

groundwater-level data for completing a groundwater-level contour map <strong>and</strong> (2) it does not<br />

include any storage in the carbonate aquifer or other bedrock units. Storage of groundwater<br />

in these latter units is likely to be very large. As a simple example calculation, if one<br />

assumes 500 feet of geologic materials with an effective porosity of 0.02 (2 percent) over the<br />

approximate 1,100 mi 2 watershed, the volume of groundwater in these materials would be<br />

more than 7 million AF. Again, this is not groundwater that could be completely dewatered,<br />

but it provides an indication of the vast quantities of groundwater in the watershed.<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 3-1


3.0 4BGROUNDWATER IN STORAGE<br />

The quantities of groundwater in the area of study can be put into perspective by<br />

comparison to volumes of groundwater in storage in some of the larger groundwater basins<br />

in Southern California. Following are estimated volumes of groundwater in storage for a<br />

few basins in Southern California (Metropolitan, 2007) <strong>and</strong> for the Mojave Desert<br />

(CDWR, 2010).<br />

Basin<br />

Area of Basin<br />

mi 2<br />

<strong>Groundwater</strong> Storage<br />

Capacity (AF)<br />

Main San Gabriel 167 8,600,000<br />

Los Angeles Coastal Plain 435 21,800,000<br />

Orange County Basin 350 66,000,000<br />

Chino Basin 240 6,000,000<br />

Ventura County Basins 177 3 to >6 million<br />

Upper Los Angeles River Area 226 3,670,000<br />

Upper, Middle, <strong>and</strong> Lower Mojave 1,422 23,850,000<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 3-2


3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000<br />

5 90000<br />

I15<br />

5 90000<br />

Legend<br />

6 00000<br />

6 00000<br />

Fenner_BND<br />

<strong>Cadiz</strong> Study Area<br />

Interstates<br />

Rail Roads<br />

Simplified Geology<br />

Alluvium/S<strong>and</strong>Dunes<br />

Rock<br />

6 10000<br />

-1500<br />

0<br />

6 10000<br />

500<br />

-3000<br />

-500<br />

-2500<br />

-3500<br />

500<br />

2500<br />

-3500<br />

0<br />

-5000<br />

2000<br />

-2500<br />

-4500<br />

-5500<br />

-2000<br />

-500<br />

3000<br />

2500<br />

2000<br />

-5000<br />

6 20000<br />

2000<br />

500<br />

-6000<br />

-3000<br />

3000<br />

0<br />

-4000<br />

-7500<br />

-6500<br />

6 20000<br />

-1000<br />

500 ft interval Base of Alluvium<br />

-4500<br />

500<br />

-500<br />

-1500<br />

-2000<br />

-500<br />

-1000<br />

-1500<br />

-1500<br />

-1000<br />

6 30000<br />

-1500<br />

-2500<br />

6 30000<br />

1500<br />

2000<br />

-2000<br />

-2000<br />

3000<br />

-1000<br />

2500<br />

0<br />

-1500<br />

2000<br />

1500<br />

500<br />

-2000<br />

-500<br />

3000<br />

500<br />

2500<br />

-3000<br />

500<br />

6 40000<br />

500<br />

1500<br />

1500<br />

-1500<br />

-500<br />

6 40000<br />

2000<br />

-2000<br />

-2000<br />

500<br />

-2500<br />

-500<br />

1000<br />

-2500<br />

500<br />

500<br />

1000<br />

1000<br />

1000<br />

1000<br />

-1500<br />

1000<br />

-1000<br />

6 50000<br />

2000<br />

2000<br />

1500<br />

-1500<br />

2000<br />

-500<br />

6 50000<br />

2000<br />

-2000<br />

500<br />

-500<br />

-1000<br />

1000<br />

1500<br />

1500<br />

-500<br />

-1500<br />

1500<br />

-1000<br />

-500<br />

-2000<br />

0<br />

0<br />

1000<br />

-500<br />

1000<br />

1500<br />

1000<br />

1500<br />

2000<br />

2000<br />

500<br />

2500<br />

0 0<br />

6 60000<br />

1500<br />

6 60000<br />

500<br />

1000<br />

1500<br />

1000<br />

6 70000<br />

1000<br />

500<br />

6 70000<br />

500<br />

1000<br />

I40<br />

1500 1500<br />

6 80000<br />

6 80000<br />

6 90000<br />

6 90000<br />

0 2 4 8 Miles<br />

3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000<br />

0 2.5 5 10 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters. Vertical Datum NAVD88<br />

Figure 3-1<br />

Base of Alluvial Aquifer Elevation<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig3-1_CADIZ_TM_StructureContourBAlluv_V2_MR


3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000<br />

5 90000<br />

I15<br />

5 90000<br />

Legend<br />

6 00000<br />

6 00000<br />

Fenner_BND<br />

<strong>Cadiz</strong> Study Area<br />

Interstates<br />

Rail Roads<br />

6 10000<br />

6 10000<br />

Fenner Valley Storage Zones<br />

Fenner<br />

Goffs<br />

Zones 1 & 2a<br />

Zone2<br />

Zone3<br />

6 20000<br />

Zone4<br />

6 20000<br />

<strong>Cadiz</strong>Valley_Zones<br />

Zone4<br />

Zone5<br />

6 30000<br />

Zone5<br />

6 30000<br />

6 40000<br />

6 40000<br />

Zone3<br />

Fenner<br />

Zones 1 & 2a<br />

6 50000<br />

6 50000<br />

6 60000<br />

Zone2<br />

6 60000<br />

6 70000<br />

Goffs<br />

6 70000<br />

I40<br />

6 80000<br />

6 80000<br />

6 90000<br />

6 90000<br />

0 2 4 8 Miles<br />

0 2.5 5 10 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

Figure 3-2<br />

Storage Zones<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig3-2_CADIZ_TM_<strong>Groundwater</strong>StorageZones_V1_MR.mxd<br />

3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000


4.0 Recoverable Water<br />

A number of attempts have been made to estimate recoverable water in the area of study.<br />

The most recent estimates are presented by GSSI (1999), USGS (2000), <strong>and</strong> Davisson <strong>and</strong><br />

Rose (2000). GSSI (1999) based their estimates of recoverable water on a watershed model<br />

that accounts for variables affecting the daily water balance of the watershed, including<br />

precipitation, runoff, vegetation interception, infiltration, evapotranspiration, soil moisture,<br />

<strong>and</strong> percolation. GSSI estimated recoverable water for the entire Bristol, <strong>Cadiz</strong>, <strong>and</strong> Fenner<br />

watersheds to range between 19,886 to 58,268 AFY. Their estimate for the Fenner Watershed<br />

ranges from 14,646 to 37,254 AFY <strong>and</strong> for the Orange Blossom Wash area, they give a range<br />

of 1,193 to 4,285 AFY, for a combined total (Fenner <strong>and</strong> Orange Blossom) of 15,839 to<br />

41,539 AFY.<br />

The USGS (2000) developed a preliminary modified Maxey-Eakin model of the entire<br />

Bristol, <strong>Cadiz</strong>, <strong>and</strong> Fenner watersheds <strong>and</strong> estimated a median recharge rate of 2,550 to<br />

11,800 AFY (2,070 to 10,343 AFY for the Fenner Watershed only). The modified model is<br />

based on a continuous exponential curve fitted to the original Maxey-Eakin step function,<br />

which is used to estimate recharge as a percentage of average annual precipitation within<br />

discrete elevation-precipitation-recharge zones.<br />

Davisson <strong>and</strong> Rose (2000) of the Lawrence Livermore National Laboratory (LLNL) reviewed<br />

the USGS (2000) Maxey-Eakin estimates <strong>and</strong> concluded that the USGS (2000) underestimated<br />

recharge to the Fenner Watershed due to lack of geographic scale <strong>and</strong> context in their<br />

analysis of precipitation-elevation data, use of an uncalibrated Maxey-Eakin model, <strong>and</strong> lack<br />

of observational experience in the Fenner Watershed. Davisson <strong>and</strong> Rose (2000) developed a<br />

separate new Maxey-Eakin model of the Fenner Watershed. They estimated a recharge rate<br />

of 29,815 AFY based on local precipitation, but noted a worse-case scenario lower limit of<br />

7,864 AFY, which they state is unlikely, but provided this lower number as a risk-based<br />

lower limit for use in analyses of potential environmental impacts.<br />

Presented below is an updated estimate of recoverable water for the Fenner Watershed <strong>and</strong><br />

Orange Blossom Wash area based on the recently released USGS (2008) INFIL3.0 model.<br />

This analysis is followed by an evaluation of groundwater flow through the Fenner Gap,<br />

which is the outlet for groundwater flow from the Fenner Watershed into the Bristol <strong>and</strong><br />

<strong>Cadiz</strong> valleys. The analysis of groundwater flow through the Fenner Gap is used to<br />

substantiate the likely long-term quantity of recoverable water generated in the Fenner<br />

Watershed.<br />

4.1 Application of INFIL3.0 - Watershed Soil Moisture Budget<br />

Model<br />

INFIL3.0 is a grid-based, distributed–parameter, deterministic water-balance watershed<br />

model, released for public use by the USGS in 2008, <strong>and</strong> used to estimate the areal <strong>and</strong><br />

temporal net infiltration below the root zone (USGS, 2008). The model is based on earlier<br />

versions of INFIL code that were developed by the USGS in cooperation with the<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 4-1


4.0 5BRECOVERABLE WATER<br />

Department of Energy to estimate net infiltration <strong>and</strong> groundwater recharge at the<br />

Yucca Mountain high-level nuclear-waste repository site in Nevada. Net infiltration is the<br />

downward movement of water that escapes below the root zone <strong>and</strong> is no longer affected<br />

by evapotranspiration <strong>and</strong> is capable of percolating to <strong>and</strong> recharging groundwater. Net<br />

infiltration may originate as three sources: rainfall, snow melt, <strong>and</strong> surface water run-on<br />

(runoff <strong>and</strong> streamflow).<br />

Figure 4-1 shows a schematic of the water balance processes controlling net infiltration in<br />

the INFIL3.0 model. These processes can be described in mathematical terms as follows:<br />

Where:<br />

d is day<br />

NI<br />

i<br />

d<br />

SM<br />

RAIN<br />

RI<br />

D<br />

i is the cell number, grid location for the computation<br />

i<br />

d<br />

i<br />

d<br />

i<br />

d<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 4-2<br />

i<br />

d<br />

<br />

6<br />

<br />

j1<br />

i<br />

( w<br />

) <br />

NI is the total net infiltration from the bottom of the root zone<br />

SM is snowmelt<br />

RAIN is precipitation occurring as rain<br />

RI is water that infiltrated the root zone from surface-water runon<br />

D is surface-water discharge (outflow)<br />

d<br />

6<br />

<br />

j1<br />

( ET<br />

w is the change in the root-zone water storage for layer j (up to 6 layers)<br />

ET is the evapotranspiration from layer j<br />

INFIL3.0 computes a daily water balance on a grid overlay of a given watershed. There are<br />

several other second-level equations in the model that calculate each one of the components<br />

of Equation 1. A more detailed description of all model equations is presented in the<br />

INFIL3.0 documentation (USGS, 2008).<br />

INFIL3.0 requires a number of inputs including (1) a grid (based on uniform squares over<br />

the watershed), (2) an estimate of the initial root-zone water contents, (3) a daily time-series<br />

input of total daily precipitation <strong>and</strong> maximum <strong>and</strong> minimum temperatures, <strong>and</strong> (4) a set of<br />

model input variables that define drainage basin characteristics, model coefficients for<br />

simulating evapotranspiration, drainage, <strong>and</strong> spatial distribution of daily precipitation <strong>and</strong><br />

air temperature, average monthly atmospheric conditions, <strong>and</strong> user-defined runtime<br />

options. INFIL3.0 will compute daily, monthly, <strong>and</strong> annual average water-balance<br />

components for multi-year simulations.<br />

The following section provides a summary of key inputs to INFIL3.0 for the Fenner<br />

Watershed <strong>and</strong> Orange Blossom Wash areas, used to compute recoverable water for these<br />

specific areas.<br />

i<br />

d<br />

)<br />

j


4.1.1 Model Geometry <strong>and</strong> Grid<br />

4.0 5BRECOVERABLE WATER<br />

Two model grids are used to cover the Fenner Watershed <strong>and</strong> Orange Blossom Wash areas.<br />

The model area of the Fenner Watershed is defined based on the watershed area<br />

contributing to the Fenner Gap, that is, the surface water discharge area of the Fenner<br />

Watershed. The watershed boundaries are based on the National HUCs that are extensively<br />

used throughout the United States <strong>and</strong> that were extensively reviewed to match, to a<br />

minimum, the USGS topographical 7.5 minute quads. The Fenner Watershed modeled area<br />

comprises part of the 8-digit national HUC drainage area 18100100, all the 10-digit HUC<br />

watersheds 1810010031, 1810010032, 1810010033, 1810010034, <strong>and</strong> subwatersheds located<br />

within the 1810010027 <strong>and</strong> 181001003135 watersheds. The total Fenner Watershed modeled<br />

area equals 2,816 square kilometers (km 2) or 695,845 acres.<br />

The Orange Blossom Wash area is a much smaller area. The total Orange Blossom Wash<br />

area equals 412.75 km 2 or 101,992 acres, approximately 15 percent of the Fenner Watershed<br />

area.<br />

Initially, the model grid resolution was defined based on the total number of cells that<br />

would have to be modeled. INFIL3.0 allows a maximum of 60,005 cells. A very fine terrain<br />

resolution is available (10-m resolution). A 500 m by 500 m grid cell resolution is selected as<br />

the input grid for the INFIL3.0 model simulations. This resolution is small enough to<br />

spatially represent all the soil, vegetation, <strong>and</strong> climate data, without major generalization of<br />

their boundaries, <strong>and</strong> large enough to provide reasonable runtimes for simulations.<br />

Figures 4-2 <strong>and</strong> 4-3 show the grid overlays used in the INFIL3.0 model simulations.<br />

4.1.2 Topography<br />

Topography is used in INFIL3.0 for the following purposes: estimate evapotranspiration as<br />

a function of location in the watershed (see INFIL3.0 documentation for detailed discussion<br />

of simulated evapotranspiration processes), estimate precipitation as a function of elevation<br />

(see additional details on precipitation versus elevation, below), <strong>and</strong> route runoff through<br />

the watershed.<br />

Topography of the Fenner Watershed <strong>and</strong> Orange Blossom Wash areas, represented by a<br />

digital elevation map (DEM) file, was obtained from the National Elevation Dataset (NED)<br />

at a horizontal resolution of 10 m times 10 m. The NED is derived from diverse source data<br />

that are processed to a common coordinate system <strong>and</strong> unit of vertical measure. NED data<br />

are distributed in geographic coordinates in units of decimal degrees, <strong>and</strong> in conformance<br />

with the North American Datum of 1983 (NAD 83). All elevation values are in meters <strong>and</strong>,<br />

over the conterminous United States, are referenced to the North American Vertical Datum<br />

of 1988 (NAVD 88)(USGS, 2006a). NED data set coordinates where projected into the<br />

Universe Transverse of Mercator (UTM) Zone 11 projection, so these data could be used in<br />

INFIL3.0.<br />

The DEM for both areas had to be converted into a x,y,z file format to be used in INFIL3.0.<br />

The Geospatial Watershed-Characteristics (GWC) file is one of the main files of the INFIL3.0<br />

model. The GWC file requires the following parameters: CELLCODE, EASTING <strong>and</strong><br />

NORTHING; LAT <strong>and</strong> LONG; ROW <strong>and</strong> COL; ELEV; SL; ASP; LOCID; IWAT; UPCELLS;<br />

SOILTYPE; DEPTH; ROCKTYPE; VEGTYPE: SKYVIEW RIDGE (36). Following is a brief<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 4-3


4.0 5BRECOVERABLE WATER<br />

explanation of each of these parameters. A more detailed discussion can be found in Hevesi<br />

(2008).<br />

CELLCODE, EASTING, NORTHING, LAT, LON, grid ROW <strong>and</strong> COL are all location input<br />

parameters that are extracted from the DEM file.<br />

Elevation (ELEV), slope (SL) (in degrees) <strong>and</strong> aspect(ASP) are all parameters derived from<br />

the DEM file <strong>and</strong> geographic information system (GIS) processing.<br />

LOCID, is an ID number for each cell given that the DEM is sorted in descending order;<br />

therefore, the highest cell will have LOCID value 1. IWAT represents the LOCID ID of the<br />

cell that will be receiving flows from the current watershed simulation (cell at the lowest<br />

point in the watershed). UPCELLS represents the number of cells upstream from that<br />

location. All these three variable values are obtained from the DEM file using GIS<br />

processing techniques. The grid cell numbering is accomplished using a GIS flow<br />

accumulation/routing routine to ensure that INFIL3.0 routes runoff downstream through<br />

the watershed domain. Figures 4-4 <strong>and</strong> 4-5 show the flow accumulation/routing for<br />

Fenner Watershed <strong>and</strong> Orange Blossom Wash areas, respectively.<br />

SOILTYPE is an integer code number that represents a soil type with unique properties that<br />

can be assigned to different cells in the grid. The code is linked to a soils table with specific<br />

soil parameters for each soil type within the model boundaries. DEPTH refers to soil depth<br />

in meters. Soil parameters are discussed further in Section 4.1.4.<br />

ROCK is an integer code number that represents a unique rock type (which are geologic<br />

materials below the soil zone, so these are not necessarily rocks, but may include alluvium<br />

or other unconsolidated deposits). Each rock type code is linked to a rock type file with<br />

unique parameters of porosity, unsaturated <strong>and</strong> saturated vertical hydraulic conductivity.<br />

Rock parameters are discussed in Section 4.1.5.<br />

VEG is an integer representing a vegetation code with unique vegetation characteristics.<br />

Vegetation parameters are discussed further below in Section 4.1.6.<br />

SKYVIEW is total fraction of viewable sky, as fraction of hemisphere (dimensionless)<br />

(see Hevesi, 2008), which affects evapotranspiration.<br />

RIDGE(36) are the 36 blocking ridge angles related to the SKYVIEW parameter (see Hevesi,<br />

2008), which affects evapotranspiration.<br />

Both SKYVIEW <strong>and</strong> RIDGE parameters are derived from a FORTRAN program that was<br />

obtained from USGS INFIL3.0 authors (Flint, 2009).<br />

4.1.3 Climate Parameters<br />

Two sets of climate parameters are required for INFIL3.0: monthly atmospheric conditions<br />

<strong>and</strong> daily precipitation <strong>and</strong> air temperatures (daily pairs of maximum <strong>and</strong> minimum<br />

temperature).<br />

4.1.3.1 Monthly Atmospheric Conditions<br />

Monthly atmospheric conditions are needed in INFIL3.0 <strong>and</strong> include monthly values of<br />

ozone layer thickness in centimeters, precipitable atmospheric water in centimeters, mean<br />

atmospheric turbidity, circumsolar radiation, <strong>and</strong> surface reflectivity. These conditions are<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 4-4


4.0 5BRECOVERABLE WATER<br />

assumed to be the same as those conditions used in previous USGS studies realized for<br />

the Death Valley, Yucca Mountain, <strong>and</strong> Joshua Tree areas in San Bernardino County<br />

(Hevesi et al., 2003; Hevesi et al., 2002; Nishikawa et al., 2004; <strong>and</strong> Rewis et al, 2006).<br />

Table 4-1 shows the model input values for each of these atmospheric conditions.<br />

4.1.3.2 Precipitation <strong>and</strong> Air Temperature<br />

Data sources for precipitation <strong>and</strong> air temperature include San Bernardino County, PRISM,<br />

<strong>and</strong> the National Oceanic <strong>and</strong> Atmospheric Administration (NOAA). Figure 4-6 shows all<br />

the stations, including NOAA grid locations, for which precipitation <strong>and</strong> temperature data<br />

<strong>and</strong> estimates are available <strong>and</strong> used in INFIL3.0 simulations, as described below.<br />

San Bernardino County has six stations with precipitation <strong>and</strong> minimum <strong>and</strong> maximum<br />

temperature data. A summary of the date ranges of available data from these stations is<br />

given in Table 2-1. As indicated in Section 2, there are only a few stations in the larger area<br />

of study with long-term precipitation records.<br />

A second source of precipitation data accessed for this study is NOAA Climate Prediction<br />

Center (CPC) .25 x .25 Daily US UNIFIED Precipitation data. The data description can be<br />

obtained from the CPC website (CPC, 2009). The CDC of NOAA dataset is derived from<br />

3 sources: NCDC daily co-op stations (1948 through 1998), CPC dataset (River Forecast<br />

Centers data + 1st order stations - 1992 through 1998), <strong>and</strong> daily accumulations from hourly<br />

precipitation dataset (1948 through 1998). There are about 13,000 station reports each day for<br />

1992 through 1998, <strong>and</strong> about 8,000 reports before that yielding about three times the reports<br />

of any existing historic <strong>and</strong> operational analyses as of 2000. The data were reviewed to<br />

eliminate duplicates <strong>and</strong> overlapping stations, <strong>and</strong> st<strong>and</strong>ard deviation <strong>and</strong> buddy checks<br />

were applied. Then they were gridded into 0.25 x 0.25, 140W-60W, 20N-60N using a<br />

Cressman Scheme. A grid of points was created in a 0.25 x 0.25 degree interval to cover<br />

areas that did not have any historical climate data <strong>and</strong> to provide interpolated values within<br />

the area of study.<br />

CDC data were not available after 1998. Data sets after 1998 (1998 through 2008) were<br />

extrapolated by comparing annual precipitation values for Mitchell Caverns with annual<br />

precipitation values from the CDC data set. Those years from the CDC data set<br />

corresponding to comparable precipitation to Mitchell Caverns were selected as a surrogate<br />

time series <strong>and</strong> then multiplied by a scale factor so that the year average matches the true<br />

year average observed at Mitchell Caverns.<br />

Figure 4-6 shows all the stations, including NOAA grid locations, for which precipitation<br />

<strong>and</strong> temperature data <strong>and</strong> estimates are available.<br />

INFIL3.0 also requires monthly regression model for precipitation <strong>and</strong> air temperature to<br />

calculate daily values at each grid cell of the model. INFIL3.0 has an internal subroutine that<br />

takes into consideration grid cell elevation <strong>and</strong> the surrounding monthly precipitation from<br />

available stations when computing precipitation for a specific cell. The precipitation as a<br />

function of elevation can be estimated by a linear or quadratic function.<br />

Average monthly precipitation <strong>and</strong> average minimum <strong>and</strong> maximum temperatures were<br />

calculated for available climate stations in the region. These monthly average data were<br />

used to develop linear equations that estimate precipitation <strong>and</strong> minimum <strong>and</strong> maximum<br />

temperature as a function of elevation for each month. Regression coefficients are derived<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 4-5


4.0 5BRECOVERABLE WATER<br />

for each month <strong>and</strong> entered into INFIL3.0’s monthmod file. The equation used by INFIL3.0<br />

is as follows:<br />

where,<br />

Em i – Am (ELEV i) + Cm<br />

Em i is the estimated monthly climate parameter (daily precipitation or air<br />

temperature for grid location, i, <strong>and</strong> month, m<br />

Am <strong>and</strong> Cm are regression coefficients for each month, m<br />

ELEV i is the elevation for grid location, i<br />

Figure 4-7 shows the linear regression of monthly precipitation values in the area of study.<br />

Table 4-2 shows the regression coefficients used in the monthmod table of INFIL3.0 for this<br />

study.<br />

4.1.4 Soil Parameters<br />

Soil data used in INFIL3.0 model simulations are obtained from the STATSGO soil database<br />

(STATSGO2, 2009) as described in Section 2. The STATSGO soil database has two<br />

components: a spatial map with polygons representing soil units (also called map units),<br />

<strong>and</strong> a database containing several tables that link to soil polygon map units. Each individual<br />

soil map polygon, or map unit, can have multiple soil components with multiple layers.<br />

A FORTRAN program referred to as STATSGO36 (Hevesi, 2009) was used to process the<br />

STATSGO soils data <strong>and</strong> obtain soil parameters in the study area for use in INFIL3.0.<br />

STATSGO36 computes the necessary soil parameters for INFIL3.0 including, soil thickness,<br />

soil porosity, wilting-point water content, field capacity, saturated hydraulic conductivity,<br />

<strong>and</strong> drainage curve coefficient from the STATSGO database <strong>and</strong> those map units found in<br />

the modeled area. The soil thickness computed by the STATSGO36 procedure was checked<br />

against a second source that also computed weighted average soil thickness for the entire<br />

U.S. The second soils data source is available online <strong>and</strong> uses the STATSGO database to<br />

compute soil parameters that are commonly used in environmental modeling (Miller <strong>and</strong><br />

White, 1998). The two results compare favorably for soil thicknesses of the various soil units<br />

in the study area.<br />

There are a total of 15 different map units for the Fenner Watershed <strong>and</strong> nine for the Orange<br />

Blossom Wash area. Figure 2-10 shows the distribution of soil types in the area of study.<br />

Figure 4-8 shows the thickness of each soil map unit in the study area. Soil porosity is<br />

estimated in STATSGO36 using bulk density data from STATSGO <strong>and</strong> modified for coarse<br />

fractions (Maidment, 1993). Soil texture data are used with equations from Campbell (1985)<br />

to estimate the drainage coefficient, wilting point <strong>and</strong> field capacity. Saturated hydraulic<br />

conductivity is the layer-weighted average of the high <strong>and</strong> low values provided in the<br />

STATSGO database (Hevesi, 2009). Table 4-3 lists the soil parameter values for each soil<br />

map unit.<br />

4.1.5 Hydrogeologic Parameters<br />

Available geologic mapping is used to define the spatial distribution of different rock types<br />

(those geologic materials below the soil zone) in the area of study. These maps include the<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 4-6


4.0 5BRECOVERABLE WATER<br />

geologic map of California for the northernmost portion of the area <strong>and</strong> the Preliminary<br />

Surficial Geologic Map Database of the Amboy 30x60 Minute Quadrangle, California<br />

(Bedford et al., 2006). The spatial distribution of geologic units determines the values for<br />

saturated hydraulic conductivity <strong>and</strong> root zone storage capacities assigned to the bottom<br />

root zone (layer 6 in INFIL3.0) for all model grid cells.<br />

Site-specific values of hydraulic conductivity <strong>and</strong> porosity values are not available for each<br />

lithology occurring in the area of study, except for the percolation testing in the alluvium<br />

that was completed as a part of the <strong>Cadiz</strong> <strong>Groundwater</strong> Storage <strong>and</strong> Dry-Year Supply<br />

Program (GSSI, 1999). Hydraulic conductivity <strong>and</strong> porosity values assigned to various rock<br />

types are based on a field reconnaissance <strong>and</strong> literature values for similar rock types.<br />

Bedinger et al. (1989) present hydraulic properties of rocks in the Basin <strong>and</strong> Range Province<br />

<strong>and</strong> a later study by Belcher et al., (2002) provides additional data on hydraulic conductivity<br />

distributions for comparable rocks in Death Valley as part of a regional groundwater system<br />

assessment. These studies, as well as the GSSI (1999) percolation test in the alluvium, are<br />

used as guides to defining the parameters for Table 4-4, which presents estimates of porosity<br />

<strong>and</strong> hydraulic conductivity for rock types in the area of study. In general, the saturated<br />

hydraulic conductivity is assumed to be one order of magnitude higher than the<br />

unsaturated hydraulic conductivity.<br />

In addition to the basic rock types, the surficial geologic map of Bedford et al. (2006)<br />

discussed in Section 2.3.3 shows extensive hillslope deposits, including colluvium, talus,<br />

<strong>and</strong> other coarse-grained porous deposits throughout the area of study. These hillslope<br />

deposits are anticipated to provide conduits for precipitation to reach bedrock <strong>and</strong> infiltrate<br />

more readily than for bare exposed rocks. Therefore, those parameters given in Table 4-4 are<br />

likely to be generally more conservative than compared to parameter values that more<br />

directly accounts for these deposits.<br />

4.1.6 Vegetation <strong>and</strong> Root Zone Parameters<br />

The WESTVEG GAP regional vegetation map (Figure 2-4) of vegetation types is used to<br />

define estimates of vegetation cover <strong>and</strong> root zone density. Vegetation types were grouped<br />

into estimated vegetation associations that have similar root-zone depths <strong>and</strong> densities,<br />

comparable to those used by Hevesi et al., (2003) for the Death Valley region. Vegetation<br />

cover was estimated from the GAP vegetation types, using the higher values for cover.<br />

INFIL3.0 parameters for vegetation include percentage of l<strong>and</strong> covered by a given type of<br />

vegetation, root density of each vegetation type for six layers, root-zone depth from l<strong>and</strong><br />

surface for Layers 1 through 5, <strong>and</strong> root-zone thickness for Layer 6. Table 4-5 shows the<br />

vegetation root zone parameters for each vegetation type in the area of study.<br />

4.1.7 INFIL3.0 Simulation Results<br />

Figures 4-9a through 4-9d show modeled average annual precipitation over the area of<br />

study for two time periods: 1971 through 2000 <strong>and</strong> 1958 through 2007. The first time period<br />

allows for comparison with PRISM average annual isohyets. The second time period is for<br />

the period over which recoverable water is estimated for the area of study. As shown in<br />

Figure 4-9a <strong>and</strong> 4-9b, the distribution of precipitation compares favorably with the more<br />

regional PRISM isohyets. INFIL3.0 shows slightly higher values of precipitation over the<br />

Clipper Mountains compared to PRISM. INFIL3.0 uses local elevation <strong>and</strong> precipitation<br />

relations to refine the distribution of precipitation over mountainous areas, such as the<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 4-7


4.0 5BRECOVERABLE WATER<br />

Clipper Mountains. INFIL3.0 simulated precipitation over the Clipper Mountains is<br />

consistent with PRISM precipitation over the Old Woman Mountains, which are comparable<br />

in altitude. INFIL3.0 simulated precipitation in the Providence Mountains is also slightly<br />

higher than PRISM values, which are also due to the refinement in precipitation versus<br />

elevation modeling at this local scale <strong>and</strong> are consistent with the findings of the Davisson<br />

<strong>and</strong> Rose (2000) analysis of local precipitation compared to more regional analyses of<br />

precipitation. In general, INFIL3.0 modeled precipitation has overall lower annual average<br />

precipitation for the period 1958 through 2007, compared with the period 1971 through<br />

2000, which is consistent with the cumulative departure from mean analysis discussed in<br />

Section 2.2.1.<br />

INFIL3.0 simulation results for Fenner Watershed <strong>and</strong> Orange Blossom Wash Area are<br />

shown in Figures 4-10a <strong>and</strong> 4-10b, respectively. As expected, the majority of recharge occurs<br />

at higher altitudes in the mountains, where precipitation is highest <strong>and</strong> temperatures are<br />

lowest (thus lower evapotranspiration). This trend, highest infiltration at higher altitudes, is<br />

consistent for other INFIL3.0 simulations in the Basin <strong>and</strong> Range Province <strong>and</strong> southern<br />

California (e.g., Hevesi et al., 2003; Hevesi et al., 2002; Nishikawa et al., 2004; <strong>and</strong> Rewis<br />

et al, 2006).<br />

Figures 4-11 <strong>and</strong> 4-12 show estimated annual recoverable water quantities for each area.<br />

The average annual recoverable water quantities for Fenner Watershed, Orange Blossom<br />

Wash area, <strong>and</strong> in total are 30,191 AFY, 2,256 AFY, <strong>and</strong> 32,447 AFY, respectively, based on<br />

calendar years 1958 through 2007.<br />

4.1.8 Discussion of Recoverable Water Results<br />

Simulation results of recoverable water using INFIL3.0 are compared to those most recent<br />

estimates of GSSI (1999), USGS (2000), <strong>and</strong> Davisson <strong>and</strong> Rose (2000) <strong>and</strong> to estimates of<br />

groundwater discharge from Bristol <strong>and</strong> <strong>Cadiz</strong> dry lakes.<br />

4.1.8.1 Comparison to Most Recent Recoverable Water Estimates<br />

INFIL3.0 simulation results compare favorably to GSSI (1999) watershed water balance<br />

modeling results <strong>and</strong> the Davisson <strong>and</strong> Rose (2000) Maxey-Eakin recoverable water estimate<br />

of 29,815 AFY, <strong>and</strong> are much higher than the USGS (2000) Maxey-Eakin model estimates of<br />

2,070 to 10,343 AFY (for the Fenner Watershed only).<br />

Figures 4-13 through 4-16 compare the INFIL3.0 simulation results against GSSI (1999) high<br />

<strong>and</strong> low estimates of recoverable water for the Fenner Watershed <strong>and</strong> Orange Blossom Wash<br />

areas. GSSI (1999) presented estimates of recoverable water for a range of model input<br />

parameters, with field capacity <strong>and</strong> soil thickness showing the greatest impacts on their<br />

estimates. GSSI (1999) changed parameters over the entire watershed to observe sensitivities,<br />

when in actuality, those changes would not likely change from the mean values over the<br />

entire watershed, but likely vary lower <strong>and</strong> higher around the mean value across the<br />

watershed, which is why GSSI (1999) selected the middle or mean value as the expected<br />

value of recoverable water. In general, INFIL3.0 results, which also uses expected values<br />

(or means) for input parameters, tracks between these two recoverable water estimates as<br />

expected, even though results are based on a completely different set of numerical<br />

algorithms. However, INFIL3.0 simulation results show significantly less spiking in<br />

infiltration during wet years as compared to GSSI’s (1999) high infiltration case. The<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 4-8


4.0 5BRECOVERABLE WATER<br />

INFIL3.0 annual spikes (highest infiltration rates) compare more closely to the highest spikes<br />

(highest infiltration) of GSSI’s low-estimate case. This is true for both the Fenner Watershed<br />

<strong>and</strong> Orange Blossom Wash area.<br />

The INFIL3.0 simulation results are based on setting IROUT equal to 1 (see USGS, 2008, for<br />

full discussion of model input options). By setting IROUT equal to 1, INFIL3.0 will route<br />

daily runoff to downstream cells as surface water runon. Runon can infiltrate back to the<br />

root zone <strong>and</strong> contribute to net infiltration. The INFIL3.0 simulation, with IROUT equal to 1,<br />

results in no surface water outflow from the watershed; that is, all runoff generated at<br />

model cells is infiltrated downstream before it can leave the watershed. INFIL3.0<br />

simulations were conducted using IROUT equal to 0 for both the Fenner <strong>and</strong> Orange<br />

Blossom Wash watersheds. For the case with IROUT equal to 0, INFIL3.0 routes all<br />

generated runoff downstream <strong>and</strong> out of the watershed so it is not allowed to infiltrate at<br />

downstream grid cells. These INFIL3.0 simulations generated 28,380 AFY <strong>and</strong> 2,060 AFY of<br />

net infiltration <strong>and</strong> runoff out of the watershed, respectively, for the Fenner Watershed <strong>and</strong><br />

2,170 AFY <strong>and</strong> 90 AFY of net infiltration <strong>and</strong> runoff out of the watershed, respectively, for<br />

the Orange Blossom Wash area. Field observations after rainfall events indicate generation<br />

of runoff in washes in the Fenner Gap area, as reported in previous studies <strong>and</strong> observed<br />

during this study. Therefore, the division of total recoverable water is likely to lie between<br />

these two extremes of runoff conditions.<br />

As stated in the introduction to this section, the USGS (2000) used precipitation data from a<br />

very large regional area, including data from precipitation stations west of the 116 o W<br />

longitude to compute an elevation-precipitation relation for their Maxey-Eakin model. As<br />

demonstrated by Davisson <strong>and</strong> Rose (2000), the USGS (2000) estimates are too low due to<br />

lack of geographic scale <strong>and</strong> context in their analysis of precipitation-elevation data, use of<br />

an uncalibrated Maxey-Eakin model, <strong>and</strong> lack of observational experience in the Fenner<br />

Watershed. The Davisson <strong>and</strong> Rose (2000) estimate of 29,815 AFY of recoverable water is<br />

similar to the estimate developed in this <strong>and</strong> GSSI (1999) studies.<br />

4.1.8.2 <strong>Groundwater</strong> Discharge at Dry Lakes<br />

Bristol <strong>and</strong> <strong>Cadiz</strong> dry lake playas are areas of groundwater discharge in the larger area of<br />

study. <strong>Groundwater</strong> flow from the Fenner Watershed is expected to be the most significant<br />

source of groundwater that is evapotranspired at these dry lake playas. The relative<br />

significance is shown by GSSI (1999), who estimated that Fenner <strong>and</strong> Orange Blossom wash<br />

areas contributed approximately 74 percent of the recoverable water in the larger area of<br />

study.<br />

A qualitative assessment was undertaken to assess the occurrence of moist soils at Bristol<br />

<strong>and</strong> <strong>Cadiz</strong> dry lake. This assessment was made using a Normalized Difference Vegetation<br />

Index (NDVI). NDVI gives a measure of vegetation cover on the l<strong>and</strong> surface over wide<br />

areas. Dense vegetation shows up very strongly in the imagery <strong>and</strong> areas with little or no<br />

vegetation are also clearly identified. Negative NDVI values indicate the presence of water,<br />

snow, or clouds.<br />

Vegetation differs from other l<strong>and</strong> surfaces because it tends to strongly absorb the red<br />

wavelengths of sunlight <strong>and</strong> reflect in the near-infrared wavelengths. Water <strong>and</strong> moist soils<br />

have more reflectance in the red wavelengths than the near infrared, while the difference is<br />

almost zero for rock <strong>and</strong> bare soil. NDVI takes values between -1 <strong>and</strong> 1, with vegetation<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 4-9


4.0 5BRECOVERABLE WATER<br />

NDVI values typically from 0.1 up to 0.6, with higher values associated with greater density<br />

<strong>and</strong> greenness of the plant canopy. Surrounding soil <strong>and</strong> rock values are close to zero while<br />

the differential for water bodies such as rivers <strong>and</strong> lakes have the opposite trend to<br />

vegetation <strong>and</strong> the index is negative.<br />

The NDVI formula is given by the equation (NIR-RED/NIR+RED), where RED <strong>and</strong> NIR<br />

correspond to Channels 3 <strong>and</strong> 4, respectively, for L<strong>and</strong>sat TM Satellite images.<br />

In this study, we have used six L<strong>and</strong>sat TM satellite images to produce NDVIs.<br />

A classification system was designed using the unsupervised classification method <strong>and</strong><br />

ERDAS software to differentiate between the l<strong>and</strong> cover types within the larger area of<br />

study. Four NDVI classes were created for each subset image. Class 1 NDVI values range<br />

between -1 to -0.2 <strong>and</strong> indicate the presence of water; Class 2 values (-0.2 to 0) indicate the<br />

presence of moist <strong>and</strong> humid soils. Class 3 (0 to 0.1) is a combination of bare soil <strong>and</strong> rocks.<br />

NDVI values higher than 0.1 were combined in Class 4 <strong>and</strong> classified as vegetation.<br />

Figures 4-17 through 4-22 present the results of this analysis for L<strong>and</strong>sat TM Satellite<br />

images, including: May 16, 1990, March 16, 1991, May 19, 1991, March 10, 1992, May 14,<br />

2005, <strong>and</strong> August 13, 2005. In all of these images, Bristol <strong>and</strong> <strong>Cadiz</strong> dry lakes st<strong>and</strong> out as<br />

having the lowest NDVI values (indicating very moist soils or water near the surface).<br />

GSSI (2000) developed a range of estimates of evapotranspiration from Bristol <strong>and</strong> <strong>Cadiz</strong><br />

dry lakes, using three different methods. They estimate a range of 11,665 AFY to<br />

105,436 AFY. The upper range of values are based on evapotranspiration estimates at<br />

Franklin Dry Lake playa by Czarnecki (1997), who used energy-balance eddy-correlation<br />

techniques to estimate evapotranspiration from the playa lake surface, which resulted in<br />

evapotranspiration rates of 0.1 to 0.3 centimeters per day (cm/d) (approximately 1.2 to<br />

3.6 feet per year [ft/yr]).<br />

The USGS (Laczniak et al., 2001) has estimated evapotranspiration for a number of areas in<br />

the Death Valley regional flow system, which includes estimates for open playas similar to the<br />

Bristol <strong>and</strong> <strong>Cadiz</strong> dry lakes. The USGS estimated evapotranspiration rates range from 0.1 to<br />

0.7 ft/yr . They adjust these evapotranspiration rates by the estimated long-term average<br />

annual precipitation rate (by subtracting the precipitation rate) to get evapotranspiration<br />

rates ranging from 0.15 to 0.21 ft/yr. However, Laczniak et al. (2001) state that the<br />

contribution of precipitation to evapotranspiration is uncertain. Given the high rate of<br />

evaporation in these arid environments, precipitation may not effect the evapotranspiration<br />

rates as estimated from micrometerological measurements. Using a range of 0.1 to 0.7 ft/yr<br />

(which are those estimated evapotranspiration rates from measured micrometeorological<br />

parameters) gives a range of evapotranspiration rates of 5,965 to 41,755 AFY for the Bristol<br />

<strong>and</strong> <strong>Cadiz</strong> dry lakes. Actual evapotranspiration rates are determined by site-specific<br />

conditions; however, it seems plausible that groundwater discharge from the Bristol <strong>and</strong><br />

<strong>Cadiz</strong> dry lakes exceeds the recoverable water estimates for Fenner Watershed <strong>and</strong><br />

Orange Blossom Wash area.<br />

4.2 <strong>Groundwater</strong> Flow through Fenner Gap<br />

Fenner Gap is the path of groundwater flow through alluvial <strong>and</strong> bedrock aquifers (such as<br />

carbonate rock units) from Fenner Valley into the Bristol <strong>and</strong> <strong>Cadiz</strong> valleys. The long-term<br />

steady-state flow of groundwater through the gap is expected to be similar to, <strong>and</strong> represent<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 4-10


4.0 5BRECOVERABLE WATER<br />

long-term groundwater recharge in the Fenner Watershed. A three-dimensional<br />

groundwater flow model of the Fenner Gap area was developed for the purposes of<br />

validating the 30,000 AFY estimate of steady-state groundwater flow through Fenner Gap,<br />

as previously described. The following sections provide a brief description of the local<br />

hydrogeology of the Fenner Gap, development of a three-dimensional groundwater flow<br />

model, <strong>and</strong> inverse modeling to assess the potential groundwater flow through the gap.<br />

4.2.1 Local Hydrogeology of the Fenner Gap Area<br />

The Fenner Gap occurs between the Marble Mountains on the west <strong>and</strong> the Ship Mountains<br />

on the east, with an alluvial plain in between these mountains as shown in Figure 4-23.<br />

Available geologic maps (e.g., GSSI, 1999; Liggett, 2010; Bishop, 1963), surface geophysical<br />

surveys (GSSI, 1999), field mapping done as part of this study, previous drilling <strong>and</strong> aquifer<br />

test data, <strong>and</strong> drilling <strong>and</strong> aquifer testing as a part of this study were synthesized to develop<br />

a conceptual model of the hydrogeology of the Fenner Gap area.<br />

The following formations are present in the Fenner Gap area (Hall, 2007; Hazzard, 1933;<br />

Murbach <strong>and</strong> Baldwin, 1994; <strong>and</strong> Bishop, 1963): Precambrian granitic rocks in the southern<br />

Marble Mountains; Lower Cambrian rocks, including Zabriskie quartzite, Latham shale, <strong>and</strong><br />

Chambless limestone; Middle Cambrian rocks, including the <strong>Cadiz</strong> Formation <strong>and</strong> Bonanza<br />

King Formation; Upper Paleozoic (Pennsylvanian <strong>and</strong> Permian(?)) carbonate rocks<br />

(Goodsprings Formation(?) (Hazzard, 1933, <strong>and</strong> Bishop, 1963); Mesozoic granitic rocks<br />

(Ship Mountains); Tertiary volcanics, Plio-Peistocene older alluvium, <strong>and</strong> Holocene<br />

alluvium. Figure 4-24 provides a generalized stratigraphic column of geologic units in the<br />

Fenner Gap area, <strong>and</strong> Table 4-6 summarizes the characteristics of these units, including their<br />

range of thickness.<br />

In general, those geologic units considered most important for transmitting <strong>and</strong> storing<br />

groundwater in the Fenner Gap are the younger alluvium (referred to as “alluvium” herein)<br />

<strong>and</strong> those carbonate rocks (limestone <strong>and</strong> dolomite) within the Paleozoic sequence.<br />

Carbonate rocks in this region have been subjected to dissolution <strong>and</strong> karstification, which<br />

is evidenced by the Mitchell Caverns in the nearby Providence Mountains (Hall, 2007) <strong>and</strong><br />

in field <strong>and</strong> well video log observations made as a part of this study (see <strong>Appendix</strong> A).<br />

Field testing, as done in previous studies <strong>and</strong> as a part of this study, demonstrate substantial<br />

water transmitting <strong>and</strong> storage properties of these units (see <strong>Appendix</strong> A). Those granitic<br />

rocks, Cambrian shales <strong>and</strong> metamorphic rocks, Tertiary volcanics <strong>and</strong> older alluvium are<br />

not expected to transmit or store water in significant quantities as compared to these other<br />

geologic units; however, there could be significant flow along fracture zones, possibly<br />

associated with faulting. For purposes of this study, the younger alluvium <strong>and</strong> carbonates<br />

rocks (limestones <strong>and</strong> dolomites) are considered aquifers. The Paleozoic sequence includes a<br />

series of carbonate units, quartzites, <strong>and</strong> shales, however, it is not practical to differentiate<br />

the various lithologic units into multiple hydrogeologic units, so the whole sequence is<br />

treated as one hydrogeologic unit <strong>and</strong> referred to as the Carbonate Rock unit. In addition,<br />

Younger Alluvium transitions to a more complex sequence of younger alluvium, older<br />

alluvium, interbedded volcanics, <strong>and</strong> possibly lacustrine deposits to the north <strong>and</strong> south of<br />

the Fenner Gap area. However, for purposes of this assessment, these finer details are not<br />

considered significant for assessing groundwater flow through the Fenner Gap as discussed<br />

in Subsection 4.2.4 below.<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 4-11


4.0 5BRECOVERABLE WATER<br />

A series of normal faults underlie the Fenner Gap area (see Figure 4-23) <strong>and</strong> have a<br />

significant effect on the distribution of the Carbonate Rock units. Figures 4-25 through 4-32<br />

are cross-sections through the Fenner Gap, showing the distribution of hydrogeologic units<br />

in the subsurface. These cross-sections illustrate the significant occurrence of Carbonate<br />

Rock units in the southern Marble Mountains <strong>and</strong> along the western flank of Ship<br />

Mountain. Thick sections of Carbonate Rock units dip easterly off of the northern <strong>and</strong><br />

eastern flanks of the Marble Mountains, extending northward under the Fenner Watershed.<br />

Similarly, Carbonate Rock units dip easterly (steeply in most cases), with significant fault<br />

offsets (as much as 2,500 feet) beneath Fenner Gap. In some cases, faulting has resulted in<br />

basement rock being in direct contact with the Alluvial aquifer unit. For example, granitic<br />

rocks were encountered below about 860 feet below ground surface (bgs) in test well TW-2<br />

<strong>and</strong> exploratory borehole TW-2B (see <strong>Appendix</strong> A). These Carbonate Rock units are<br />

projected to terminate just south of the Fenner Gap due to down-cutting <strong>and</strong> erosion by an<br />

ancestral stream through the gap. Cross-sections I-I’ <strong>and</strong> J-J’ show our projection of a few<br />

remaining remnants of the Carbonate Rock units at these section lines.<br />

The Alluvium unit extends north-south through the gap. The Alluvial aquifer unit is thicker<br />

to the north, in the Fenner Watershed, <strong>and</strong> south of the gap, in the Bristol <strong>and</strong> <strong>Cadiz</strong> valleys.<br />

Cross-section D-D’ appears to be located along the apparent crest of the bedrock high across<br />

the gap. Older alluvium is shown in Cross-sections E-E’, B1-B1’, <strong>and</strong> D-D’ on the Ship<br />

Mountain side. Highly consolidated fanglomerates were encountered during drilling of<br />

TW-3 as a part of this study. These fanglomerates are interpreted to be Plio-Pliestocene<br />

alluvial deposits that have undergone consolidation over time. Core from TW-3 show<br />

fractures that extend through the matrix <strong>and</strong> even across individual cobbles. As shown in<br />

the cross-sections, it is interpreted that these fanglomerates were likely removed by downcutting<br />

<strong>and</strong> erosion from an ancestral stream; younger alluvium was then deposited across<br />

the gap. The deepest part of the Alluvial aquifer unit appears to be somewhat coincident<br />

with the current Schulyler Wash.<br />

Figures 4-33 through 4-37 show contour maps of the base of the Alluvial aquifer unit,<br />

saturated thickness of the Alluvial aquifer unit, base of older alluvium, thickness of the<br />

Carbonate Rock unit, <strong>and</strong> base of Carbonate Rock unit, respectively. As shown in<br />

Figures 4-33 <strong>and</strong> 4-34, the Alluvial aquifer unit is deepest (<strong>and</strong> thicker) along an axis that<br />

roughly parallels the Schulyler Wash though the gap. Figure 4-35 shows the extent of the<br />

old alluvium, but more specifically the projected extents of the consolidated fanglomerates<br />

encountered in TW-3. Figure 4-36 <strong>and</strong> 4-37 shows the extent of the Carbonate Rock unit<br />

<strong>and</strong> its variation in thickness in the Fenner Gap area, which is largely controlled by the<br />

series of normal faults across the gap. The absence of the Carbonate Rock units extending<br />

southwesterly from TW-2 is likely due to faulting of basement rocks upward along normal<br />

faults <strong>and</strong> down-cutting <strong>and</strong> erosion along an ancestral stream(s) in this deepest part of<br />

the gap.<br />

Aquifer tests have been completed in the Alluvium, Carbonate Rock, <strong>and</strong> Older Alluvium<br />

units. GSSI (1995, 1999, <strong>and</strong> 2000) summarizes available aquifer test information, including<br />

aquifer testing they preformed as a part of the <strong>Cadiz</strong> <strong>Groundwater</strong> Storage <strong>and</strong> Dry-Year<br />

Supply Program. Additional aquifer tests were conducted as a part of this current study <strong>and</strong><br />

described in detail in <strong>Appendix</strong> A. The aquifer test completed at TW-1, in the carbonate rock<br />

unit, demonstrates the highly permeable nature of this unit, which is consistent with<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 4-12


4.0 5BRECOVERABLE WATER<br />

significant dissolution <strong>and</strong> karstification of those carbonate rock units in the area. An<br />

aquifer test completed at TW-2 also demonstrates the highly transmissive nature of the<br />

Alluvial aquifer unit. TW-2 is completed in what is thought to be the axis of the deeper part<br />

of the Alluvial aquifer unit, which is likely the coarser part of the Alluvium unit. Table 4-7<br />

summarizes aquifer test data for wells in the vicinity of the Fenner Gap.<br />

4.2.2 Numerical Model Development<br />

The Fenner Gap three-dimensional groundwater flow model described herein is based on<br />

the USGS MODFLOW-2000 numerical model. MODFLOW-2000 is a computer program that<br />

numerically solves the three-dimensional groundwater flow equation for a porous medium<br />

by using a finite-difference method (Harbaugh et al., 2000). MODFLOW-2000 is an<br />

enhancement to the previous MODFLOW numerical model originally documented by the<br />

USGS in 1984. MODFLOW-2000 requires that a conceptual model be developed of the<br />

groundwater system to be simulated, including, lateral <strong>and</strong> vertical extents of the system,<br />

definition of top <strong>and</strong> bottom of aquifers <strong>and</strong> confining units, boundary conditions (such as<br />

no-flow rock, specified inflows <strong>and</strong> outflows, constant heads where groundwater levels are<br />

maintained as constant, or some combination of these), hydrogeologic properties of<br />

aquifers, <strong>and</strong> observations to calibrate against (e.g., measured groundwater levels).<br />

The purpose of the Fenner Gap groundwater flow model in this study is to assess whether it<br />

is likely that 30,000 AFY of groundwater is flowing through Fenner Gap, which is the<br />

expected long-term average recoverable water estimated to occur in the Fenner Watershed.<br />

Therefore, the numerical model is being used to test the hypothesis that 30,000 AFY is<br />

flowing through the gap. The model is used to solve the inverse problem, that is, given a<br />

boundary inflow of groundwater at the north end of the gap of 30,000 AFY, <strong>and</strong> measured<br />

steady-state groundwater levels, what distribution of aquifer properties (specifically<br />

hydraulic conductivity) is required to allow for this flow <strong>and</strong> is this distribution likely given<br />

available information on aquifer properties?<br />

The conceptual model of the hydrogeology of the Fenner Gap described in Section 4.2.1<br />

provides the basis for defining the lateral <strong>and</strong> vertical distribution of hydrogeologic units in<br />

the Fenner Gap <strong>and</strong> for use in mapping the distribution of these units in the numerical<br />

groundwater flow model.<br />

Figure 4-38, a groundwater-level contour map, <strong>and</strong> historical groundwater-level data are<br />

used to define the lateral extents of the Fenner Gap groundwater flow model. Existing<br />

monitoring wells were surveyed for location <strong>and</strong> elevation <strong>and</strong> groundwater levels in wells<br />

were measured to obtain accurate groundwater levels in the gap. Table 4-8 shows survey<br />

results <strong>and</strong> groundwater levels for monitoring wells in the Fenner Gap, as obtained during<br />

this study. These groundwater levels, along with available groundwater-level data from the<br />

area, were used to construct the groundwater-level contour map shown in Figure 4-38.<br />

Historical groundwater-level data were reviewed to assess changes in groundwater levels in<br />

the area, in order to establish a steady-state groundwater-level condition through the<br />

Fenner Gap.<br />

Figure 4-39 shows the lateral extents <strong>and</strong> grid selected for the Fenner Gap groundwater flow<br />

model. The lateral extents are defined by the 660-foot elevation groundwater contour on the<br />

north. This contour appears to be a stable groundwater level north of the Fenner Gap based<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 4-13


4.0 5BRECOVERABLE WATER<br />

on review of historical groundwater levels. The southern <strong>and</strong> western boundary is taken as<br />

a 590-foot elevation groundwater-level contour, that is a hybrid between the map presented<br />

in Figure 4-38 <strong>and</strong> a groundwater-level contour map provided by GSSI (1999). This hybrid<br />

map takes into account more recent survey data <strong>and</strong> historical groundwater levels that are<br />

possibly more representative of historical steady-state conditions. Given the distance of this<br />

boundary from Fenner Gap, the model simulations are not expected to be sensitive to the<br />

actual delineation of this boundary. Outcrops of bedrock (granitic rocks or unsaturated<br />

carbonate rocks) define the extents of the model on the northern <strong>and</strong> eastern boundaries of<br />

the model. Outside of these boundaries, the model assumes there is no groundwater flow<br />

(no-flow boundary) into or out of these no-flow areas.<br />

The model grid is divided into square cells of 200 feet by 200 feet. Three layers are<br />

represented: Alluvial aquifer unit, Old Alluvium unit, <strong>and</strong> Carbonate Rock unit. PEST is<br />

used to estimate the hydraulic conductivity distribution of the Alluvial aquifer <strong>and</strong><br />

Carbonate Rock units. The hydraulic conductivity of the Old Alluvium unit is set at 1 x 10 -3<br />

ft/d. The Carbonate Rock unit is represented as a single unit made up of variable rock<br />

types, as previously described. In actuality, those carbonate rocks are the principal watertransmitting<br />

units; however, for modeling purposes, these variable units are lumped<br />

together <strong>and</strong> average water transmitting properties are averaged in the model across the<br />

whole layer. <strong>Groundwater</strong> levels are simulated in the model at the center of each cell. This<br />

grid-cell resolution allows for good approximation of boundaries, both vertically <strong>and</strong><br />

laterally, <strong>and</strong> for good resolution of variations in hydrogeologic properties <strong>and</strong> at the same<br />

time providing for reasonable simulation run times.<br />

As indicated above, the purpose of the Fenner Gap groundwater flow model is to assess the<br />

likelihood that 30,000 AFY of groundwater is flowing through the gap. Therefore, the<br />

following boundary conditions are imposed on the north <strong>and</strong> west-southern boundaries.<br />

<strong>Groundwater</strong> levels along the 660-foot groundwater elevation contour are assumed to be<br />

constant at the 660-foot level. In addition, 30,000 AFY of groundwater inflow is assumed to<br />

occur through this boundary into the gap from Fenner Watershed, which is the long-term<br />

average annual recharge in the watershed, as previously described. <strong>Groundwater</strong> levels<br />

along the 590-foot groundwater-level contour are expected to be constant <strong>and</strong> steady at this<br />

590-foot level. Also, there are no other sources of recharge or discharge within the Fenner<br />

Gap model domain area.<br />

4.2.3 Application of PEST to Estimating <strong>Groundwater</strong> Flow through Fenner Gap<br />

PEST is a model-independent parameter estimator (PEST) computer program that provides<br />

nonlinear parameter estimation for use with almost any numerical model. PEST has been<br />

widely used <strong>and</strong> extensively tested since 1994 by scientists <strong>and</strong> engineers all over the world<br />

working in many different fields, including biology, geophysics, geotechnical, mechanical,<br />

aeronautical <strong>and</strong> chemical engineering, ground <strong>and</strong> surface water hydrology <strong>and</strong> other<br />

fields (Doherty, 2004). PEST is often used in inverse modeling to aid in calibrating<br />

groundwater flow models. That is, PEST is used to estimate groundwater model parameter<br />

values, such as hydraulic conductivity, where measurements of groundwater levels <strong>and</strong><br />

stresses (such as pumping or recharge) are known, so PEST calculates values of hydraulic<br />

conductivity that makes the groundwater flow model “calibrate” to the measured values.<br />

PEST makes many (often thous<strong>and</strong>s) model-simulation runs to find the best set of parameter<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 4-14


4.0 5BRECOVERABLE WATER<br />

values that minimizes the residuals (differences) in simulated <strong>and</strong> observed measurements<br />

(e.g., groundwater levels).<br />

PEST is used in the case of the Fenner Gap groundwater model to estimate hydraulic<br />

conductivity values of the Alluvial aquifer <strong>and</strong> Carbonate Rock units in the Fenner Gap<br />

given the following constraints (1) areal <strong>and</strong> vertical distribution of Alluvial <strong>and</strong> Carbonate<br />

Rock units as described above, (2) constant head values (groundwater elevations) of 660 feet<br />

<strong>and</strong> 590 feet on the northern <strong>and</strong> west-southern boundaries, respectively, (3) a target flux<br />

across the northern boundary of 30,000 AFY, (4) target groundwater-level measurements<br />

from monitoring wells in the Fenner Gap area based on recent groundwater levels, <strong>and</strong><br />

(5) estimates of hydraulic conductivity from aquifer tests from previous studies <strong>and</strong> as a<br />

part of this study. These PEST-estimated hydraulic conductivity values are evaluated in the<br />

context of the hydrogeology of the gap, including available aquifer test data, to determine if<br />

these parameter estimates are reasonable. If these hydraulic conductivity values are<br />

considered reasonable, then it is reasonable that groundwater flow through the Fenner Gap<br />

is 30,000 AFY.<br />

Regularization in combination with pilot points (Doherty, 2004) is used in the Fenner Gap<br />

groundwater flow model to estimate hydraulic conductivity value distributions in the<br />

Alluvial <strong>and</strong> Carbonate Rock unit aquifers. Regularization provides smoothing of parameter<br />

estimates, so that each grid cell is not considered to have a unique independent value <strong>and</strong><br />

there is a smooth transition across the grid from high to low values. In addition, prior<br />

information is used to tell PEST the preferred values for each parameter <strong>and</strong> a range over<br />

which PEST may vary parameter values in order to match target values (i.e., measured<br />

groundwater levels). Parameter values are estimated by PEST at pilot points; then, kriging<br />

techniques are employed to spatially interpolate parameter values to all cells in the<br />

MODFLOW-2000 numerical finite-difference grid.<br />

Figures 4-40 <strong>and</strong> 4-41 show the distribution of pilot points in Layer 1 (Alluvial aquifer unit)<br />

<strong>and</strong> Layer 3 (Carbonate Rock unit), respectively. Also shown are the target wells with water<br />

levels obtained from monitoring wells in the area (see Table 4-8).<br />

Figures 4-42, 4-43, <strong>and</strong> 4-44 show simulated groundwater levels <strong>and</strong> target residuals, <strong>and</strong><br />

hydraulic conductivity distributions for Layer 1 (Alluvial aquifer) <strong>and</strong> Layer 3 (Carbonate<br />

Rock unit), respectively, as determined from a PEST run. In this PEST run, hydraulic<br />

conductivity values of both the Alluvial aquifer <strong>and</strong> Carbonate Rock unit were bounded by<br />

a range between 1 to 600 ft/d. <strong>Groundwater</strong> levels <strong>and</strong> residuals (difference between<br />

measured groundwater levels <strong>and</strong> simulated groundwater levels) are posted at each<br />

monitoring well in Figure 4-42. The residuals are extremely low, indicating that the<br />

simulated groundwater levels are representative of measured groundwater levels.<br />

Hydraulic conductivity values in the alluvial aquifer range from less than 20 to<br />

approximately 600 ft/d. The lowest values occur along the northern boundary, where the<br />

Alluvial aquifer is thickest. The Alluvial aquifer unit is represented as one layer in the<br />

model, when in actuality, it is likely several layers, with some layers having high hydraulic<br />

conductivity <strong>and</strong> other layers having lower values of hydraulic conductivity. The modelsimulated<br />

values should be considered as vertically integrated averages of the true<br />

hydraulic conductivity. Again, these simulated values are those required to allow<br />

30,000 AFY of groundwater flow into the gap area, assuming the granitic <strong>and</strong> metamorphic<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 4-15


4.0 5BRECOVERABLE WATER<br />

rock units form the base of the groundwater flow system in this area. PEST iterated to<br />

values of hydraulic conductivity close to those starting values, 110 ft/d provided as input at<br />

pilot points, in the western <strong>and</strong> southern areas of the model domain. The highest values of<br />

hydraulic conductivity, ranging to just over 600 ft/d are found in the east-central portion of<br />

the groundwater flow model. This part of the gap includes thinner alluvium <strong>and</strong> underlying<br />

carbonate units that vary greatly in thickness. PEST likely adjusts the alluvial hydraulic<br />

conductivity values in this area to accommodate groundwater flow across the gap.<br />

Regardless, the hydraulic conductivity values are within the range of values determined<br />

from aquifer tests in the alluvial aquifer, so these values are reasonable.<br />

Hydraulic conductivity values in the carbonate rock unit aquifer range from less than 5 to<br />

approximately 600 ft/d. The highest values are located in the central portion of the model<br />

area. These values occur in the thinnest sections of alluvial <strong>and</strong> carbonate rock unit aquifers.<br />

PEST indicates that for 30,000 AFY of groundwater flow to occur through the gap, <strong>and</strong> to<br />

match observed groundwater levels, then average hydraulic conductivity values up to<br />

600 ft/d are required in the Carbonate Rock unit aquifer, given the constraints on the<br />

Alluvial aquifer unit. Based on aquifer testing of the carbonate rock unit aquifer at TW-1<br />

these values are reasonable.<br />

Figures 4-45, 4-46, <strong>and</strong> 4-47 show simulated groundwater levels <strong>and</strong> target residuals, <strong>and</strong><br />

hydraulic conductivity distributions for Layer 1 (Alluvial aquifer) <strong>and</strong> Layer 3 (Carbonate<br />

Rock unit), respectively, as determined from a second PEST run. In this PEST run,<br />

hydraulic conductivity values of both the Alluvial aquifer <strong>and</strong> Carbonate Rock unit were<br />

bounded by a range between 1 to 400 ft/d. <strong>Groundwater</strong> levels <strong>and</strong> residuals (difference<br />

between measured groundwater levels <strong>and</strong> simulated groundwater levels) are posted at<br />

each monitoring well in Figure 4-45. Again, residuals are low, indicating that the simulated<br />

groundwater levels are representative of measured groundwater levels.<br />

Hydraulic conductivity values in the Alluvial aquifer range from less than 20 to<br />

approximately 400 ft/d. The lowest values occur along the northern boundary, where the<br />

Alluvial aquifer is thickest, similar to the previous PEST run. PEST iterated to values of<br />

hydraulic conductivity close to those starting values, 110 ft/d provided as input at pilot<br />

points, in the western <strong>and</strong> extreme southern areas of the model domain. The highest values<br />

of hydraulic conductivity, ranging to just over 400 ft/d are found in the central <strong>and</strong> eastern<br />

portion of the groundwater-flow model, which is larger than the extent of high conductivity<br />

values in the previous PEST run. PEST adjusts the alluvial hydraulic conductivity values in<br />

this area to accommodate groundwater flow across the gap. These hydraulic conductivity<br />

values are within the range of values determined from aquifer tests in the Alluvial aquifer,<br />

so these values are reasonable.<br />

Hydraulic conductivity values in the carbonate rock unit aquifer range from less than 5 to<br />

approximately 400 ft/d. The highest values are located in the central portion of the model<br />

area. These values occur in the thinnest sections of alluvial <strong>and</strong> carbonate rock unit aquifers.<br />

PEST indicates that for 30,000 AFY of groundwater flow to occur through the gap, <strong>and</strong> to<br />

match observed groundwater levels, then average hydraulic conductivity values up to<br />

400 ft/d are required in the Carbonate Rock unit aquifer, given the constraints on the<br />

Alluvial aquifer unit. Based on aquifer testing of the carbonate rock unit aquifer at TW-1<br />

these values are reasonable.<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 4-16


4.0 5BRECOVERABLE WATER<br />

Figure 4-48 shows a scatter plot of observed groundwater levels with simulated<br />

groundwater levels from the two PEST runs. This plot further demonstrates the good fit<br />

between the simulated <strong>and</strong> observed groundwater levels, i.e., the slope of the line is one to<br />

one. With 600 ft/d as the maximum hydraulic conductivity, the range of residuals was -<br />

0.27 to 0.19 feet, with a mean of -0.002 feet <strong>and</strong> a st<strong>and</strong>ard deviation of 0.10 feet. With<br />

400 ft/d as the maximum hydraulic conductivity, the range of residuals was -0.52 to<br />

0.62 feet, with a mean of -0.04 feet <strong>and</strong> a st<strong>and</strong>ard deviation of 0.34 feet. In addition, the<br />

residual st<strong>and</strong>ard deviation over the range is 0.008 <strong>and</strong> 0.026 for the first <strong>and</strong> second PEST<br />

runs, which are well within the 10 percent considered to be an industry st<strong>and</strong>ard.<br />

The PEST results for hydraulic conductivity are considered possible sets of hydraulic<br />

conductivity values that can accommodate 30,000 AFY of groundwater flow through the<br />

Fenner Gap <strong>and</strong> match groundwater levels in monitoring wells <strong>and</strong> the range of hydraulic<br />

conductivity values observed from available aquifer tests.<br />

4.2.4 Discussion of <strong>Groundwater</strong> Flow Model Results<br />

The Fenner Gap groundwater flow model relies heavily on relatively high hydraulic<br />

conductivity values for the Carbonate Rock unit aquifer. Carbonate rock aquifers are not<br />

common in California, so there are not many examples to use for comparison <strong>and</strong> as a<br />

reality check on the groundwater flow model results; therefore, it is necessary to look<br />

outside the area for comparable hydrogeologic settings.<br />

A carbonate rock aquifer that has been extensively studied <strong>and</strong> modeled is the Edwards<br />

aquifer in the San Antonio region of Texas. This aquifer is described as one of the most<br />

permeable <strong>and</strong> productive aquifers in the world (Lindgren, et al., 2004). Figure 4-49 shows<br />

hydrogeologic zones <strong>and</strong> catchment area of the Edwards aquifer from Lindgren (2004). The<br />

Edwards aquifer ranges to over 1,000 feet in thickness. Three types of permeability are<br />

recognized: matrix, fracture, <strong>and</strong> conduit. Matrix permeability is typically dwarfed by the<br />

fracture <strong>and</strong> conduit permeability <strong>and</strong> hydraulic conductivity <strong>and</strong> transmissivity vary over<br />

eight orders of magnitude <strong>and</strong> are multimodal.<br />

Lindgren et al. (2004) <strong>and</strong> Painter et al. (2007) show the need to upscale hydraulic<br />

conductivity values from single-borehole tests. They have found that hydraulic conductivity<br />

values need to be increased substantially for use in numerical models, compared to those<br />

hydraulic conductivity values obtained from single-well tests. They found that geostatistical<br />

methods, such as kriging <strong>and</strong> cokriging during upscaling of hydraulic conductivity<br />

followed by Bayesian updating based on calibration to groundwater levels provided the<br />

best estimation of transmissivity <strong>and</strong> hydraulic conductivity values (Painter, 2007) for use in<br />

numerical groundwater flow models. Two component sets of hydraulic conductivity values<br />

are used in the Edwards aquifer model: a base component set <strong>and</strong> a conduit component set.<br />

The base component set of values of hydraulic conductivity simulated in a MODFLOW-2000<br />

numerical groundwater flow model, using 0.25-mile grid spacings, of the Edwards aquifer<br />

range from less than or equal to 20 to 7,347 ft/d (Lindgren et al., 2004). The conduit<br />

component set ranges from 1,000 ft/d in the recharge area to as high as 300,000 ft/d in the<br />

confined portions of the aquifer <strong>and</strong> near spring discharge areas (Lindgren et al., 2004).<br />

Figure 4-50 shows the calibrated hydraulic conductivity distribution presented by<br />

Lindgren et al., (2004).<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 4-17


4.0 5BRECOVERABLE WATER<br />

The carbonate rock units in Fenner Gap are not necessarily as permeable or productive as<br />

the Edwards aquifer; however, it may serve as a relatively representative analog for the<br />

Fenner Gap carbonate rock unit. Significant permeability, including the potential for<br />

conduit permeability, is evidenced by dissolution features in video logs of test wells,<br />

minimal drawdown during constant-rate aquifer tests <strong>and</strong> flattening of hydraulic gradients<br />

(as between MW-7 <strong>and</strong> MW-5). In addition, Mitchell Caverns itself demonstrates the<br />

occurrence of caverns in these Paleozoic carbonates in the area of study. Occurrence of<br />

highly permeable dissolution cavities <strong>and</strong> preferential pathways are expected to exist in the<br />

carbonate rock units underlying Fenner Gap. The hydraulic conductivity of these zones is<br />

expected to exceed hundreds of feet per day <strong>and</strong> perhaps approach thous<strong>and</strong>s of feet per<br />

day, when upscaled to numerical model grid cells. So, hydraulic conductivity values<br />

simulated in the Fenner Gap model are considered reasonable estimates for the actual<br />

hydraulic conductivity values.<br />

In total, data obtained from field investigations, INFIL3.0 watershed soil-moisture budget<br />

assessments, <strong>and</strong> Fenner Gap three-dimensional groundwater flow model simulations<br />

support a 32,000 AFY estimate of potentially recoverable water from the Fenner <strong>and</strong><br />

northern Bristol Valley area. However, numerical models are based on simplified<br />

conceptual models of the more complex physical groundwater system <strong>and</strong> processes.<br />

Model construction <strong>and</strong> calibration results in nonunique models, which is demonstrated<br />

above in that two conceptual models (i.e., hydraulic conductivity distributions for Layers 1<br />

<strong>and</strong> 3) provide a good fit to the observed data (groundwater levels <strong>and</strong> range of hydraulic<br />

conductivity values). The Fenner Gap models suggest a large area of highly transmissive<br />

alluvium <strong>and</strong> carbonate rock units, especially along the eastern side of the gap, extending<br />

into Bristol Valley. This area should be the focus of any additional field investigations as<br />

might be required for development of an operations plan <strong>and</strong> subsequent environmental<br />

impacts assessments, which also will provide further support of these potentially<br />

recoverable water estimates.<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 4-18


Snowfall<br />

accumulation<br />

Water table<br />

WB052009005SCO386303.AA.05 <strong>Cadiz</strong>_processes.ai 11/09<br />

Unsaturated Zone Unconsolidated<br />

Valley Fill<br />

Saturated Zone<br />

Precipitation<br />

Transpiration<br />

Infiltration<br />

Change in water storage<br />

Recharge<br />

Rain<br />

Stream<br />

channel<br />

Evaporation<br />

Soil<br />

Net<br />

infiltration<br />

Bedrock<br />

surface<br />

Run-on/<br />

runoff<br />

Bedrock<br />

Snowfall<br />

accumulation,<br />

sublimation,<br />

<strong>and</strong> melt<br />

Net infiltration boundary<br />

(lower boundary of root zone)<br />

FIGURE 4-1<br />

Schematic of Water Balance<br />

Processes Simulated in INFIL3.0


3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

6 20000<br />

6 20000<br />

Legend<br />

Kelso<br />

6 30000<br />

6 30000<br />

Model 500m Grid<br />

Cities/Communities<br />

<strong>Cadiz</strong> Study Area<br />

Interstates<br />

Rail Roads<br />

Fenner Valley Model Boundary<br />

Cima<br />

<strong>Cadiz</strong><br />

6 40000<br />

6 40000<br />

6 50000<br />

6 50000<br />

6 60000<br />

6 60000<br />

Essex<br />

6 70000<br />

FennerI40<br />

6 70000<br />

Goffs<br />

6 80000<br />

6 80000<br />

0 1.25 2.5 5Miles<br />

0 1.5 3 6Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

Figure 4-2<br />

INFIL3.0 Grid - Fenner Watershed<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig4-2_CADIZ_TM_INFIL_FNRModelGrid_V3_MR.mxd


3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

Legend<br />

6 10000<br />

6 10000<br />

I40<br />

500m INFIL cell resolution<br />

Cities/Communities<br />

<strong>Cadiz</strong> Study Area<br />

Interstates<br />

Rail Roads<br />

Orange Blossom Model Boundary<br />

Amboy<br />

6 20000<br />

6 20000<br />

6 30000<br />

6 30000<br />

<strong>Cadiz</strong><br />

6 40000<br />

6 40000<br />

0 0.5 1 2 Miles<br />

0 1 2 4Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

Figure 4-3<br />

INFIL3.0 Grid - Orange Blossom<br />

Wash Area<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig4-3_CADIZ_TM_INFILF_ORBModelGrid_v1_MR.mxd


3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

6 20000<br />

6 20000<br />

Legend<br />

Kelso<br />

6 30000<br />

6 30000<br />

Cities/Communities<br />

<strong>Cadiz</strong> Study Area<br />

Interstates<br />

Rail Roads<br />

Fenner Valley Model Boundary<br />

Cima<br />

<strong>Cadiz</strong><br />

6 40000<br />

6 40000<br />

Model Drainage<br />

(Number of upstream cells)<br />

0.0 - 10.0<br />

6 50000<br />

6 50000<br />

6 60000<br />

6 60000<br />

Essex<br />

6 70000<br />

FennerI40<br />

6 70000<br />

Goffs<br />

6 80000<br />

6 80000<br />

0 1.25 2.5 5Miles<br />

10.1 - 20.0<br />

20.1 - 30.0<br />

30.1 - 40.0<br />

>40 Figure 4-4<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

0 5 10Kilometers<br />

INFIL3.0 Flow Accumulation/Routing -<br />

Fenner Watershed<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig4-4_CADIZ_TM_INFILFlowwAccFenner_v1_MR.mxd


3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

Legend<br />

6 10000<br />

6 10000<br />

I40<br />

Amboy<br />

6 20000<br />

6 20000<br />

Cities/Communities<br />

Model Drainage<br />

<strong>Cadiz</strong> Study Area<br />

Upstream number of Cells<br />

Interstates<br />

0.0 - 50.0<br />

Rail Roads<br />

50.1 - 100.0<br />

Orange Blossom Model Boundary 100.1 - 150.0<br />

>150<br />

6 30000<br />

6 30000<br />

<strong>Cadiz</strong><br />

6 40000<br />

6 40000<br />

0 0.5 1 2 Miles<br />

0 1 2 4 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

Figure 4-5<br />

INFIL3.0 Flow Accumulation/Routing -<br />

Orange Blossom Watershed<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig4-5_CADIZ_TM_INFILFlowwAccOB_v1_MR.mxd


35°30'0"N<br />

35°15'0"N<br />

35°0'0"N<br />

34°45'0"N<br />

34°30'0"N<br />

34°15'0"N<br />

34°0'0"N<br />

33°45'0"N<br />

33°30'0"N<br />

Dry Lake<br />

Silver Lake (Dry)<br />

Legend<br />

Soda Dry Lake<br />

Broadwell Lake(Dry)<br />

116°0'0"W<br />

TWENTYNINE PALMS U.S.M.C.<br />

Mesquite Lake<br />

Temperature Data<br />

Salton Sea<br />

I15<br />

YUCCA GROVE<br />

Bagdad Lake (Dry)<br />

NOAA3450-11575AMB_1<br />

AMBOY - SALTUS #2 Bristol Lake (Dry)<br />

SHADOW MOUNTAIN<br />

TWENTYNINE PALMS COU<br />

TWENTYNINE PALMS<br />

116°0'0"W<br />

NOAA Grid Precipitation<br />

San Bernardino County Precipitation<br />

115°45'0"W<br />

I10<br />

Ivanpah Lake<br />

MOUNTAIN PASS MOUNTAIN PASS<br />

NOAA3525-11575<br />

NOAA3525-11550<br />

NOAA3500-11575<br />

NOAA3500-11550<br />

KELSO (SODA LAKE VALLEY)<br />

NOAA3475-11575<br />

AMBOY - SALTUS #1<br />

NOAA3425-11575<br />

MITCHELL CAVERNS<br />

NOAA3475-11550<br />

NOAA3450-11550<br />

NOAA3425-11550<br />

WONDER VALLEY F.S. - EAST<br />

DALE DRY LAKE - BARNE<br />

115°45'0"W<br />

115°30'0"W<br />

115°30'0"W<br />

Interstates Elevation<br />

States<br />

Meters<br />

Rail Roads<br />

Dry Lake Beds<br />

High : 2394<br />

<strong>Cadiz</strong> Study Area Low : -87<br />

<strong>Cadiz</strong> Lake(Dry)<br />

115°15'0"W<br />

I40<br />

NEVADA<br />

CALIFORNIA<br />

NOAA3525-11525<br />

NOAA3525-11500<br />

NEW YORK MOUNTAINS<br />

NOAA3500-11525<br />

NOAA3475-11525<br />

ESSEX CAL TRANS YARD<br />

NOAA3450-11525<br />

NOAA3425-11525<br />

115°15'0"W<br />

IRON MOUNTAIN<br />

115°0'0"W<br />

GOFFS<br />

Danby Lake(Dry)<br />

NOAA3500-11500<br />

NOAA3475-11500<br />

NOAA3450-11500<br />

NOAA3425-11500<br />

115°0'0"W<br />

114°45'0"W<br />

114°30'0"W<br />

NEEDLES COUNTY HIGY YARDNEEDLES<br />

114°45'0"W<br />

NEEDLES F.A.A.<br />

PARK MOABI REGIONAL PARK 34°45'0"N<br />

NEEDLES PUMPING PLANT<br />

Name Station# EAST NORTH ELEV(m)<br />

TWENTYNINE PALMS 6048 588520.1861 3776986.3786 602.0<br />

NEEDLES PUMPING PLANT 6059 718933.3123 3841265.8182 426.7<br />

MOUNTAIN PASS 6063 632465.8634 3926145.7808 1441.7<br />

YUCCA GROVE 6109 609877.2024 3918075.1628 1204.3<br />

NEEDLES F.A.A. 6110 717833.2488 3849008.8513 278.6<br />

NEEDLES 6156 719478.4432 3856817.2860 146.3<br />

NEEDLES COUNTY HIGY YARD 6178 719478.4432 3856817.2860 137.5<br />

GOFFS 6179 677212.1024 3865889.1957 788.5<br />

KELSO (SODA LAKE VALLEY) 6193 623178.6727 3874984.6796 654.7<br />

MITCHELL CAVERNS 6215 636069.4599 3867402.7543 1319.8<br />

DALE DRY LAKE - BARNE 6245 619844.5862 3779551.1851 371.9<br />

AMBOY - SALTUS #1 6298 619305.1409 3821691.1470 190.5<br />

AMBOY - SALTUS #2 6300 615703.0829 3816099.8078 181.4<br />

SHADOW MOUNTAIN 6397 594008.5786 3781475.5129 414.5<br />

NEW YORK MOUNTAINS 6398 670151.0362 3901261.1581 1408.2<br />

TWENTYNINE PALMS U.S.M.C. 6402 578219.6903 3795747.1719 610.8<br />

IRON MOUNTAIN 7114 673319.7591 3780384.4573 285.9<br />

TWENTYNINE PALMS COU 9004 586655.5319 3779186.9426 577.6<br />

PARK MOABI REGIONAL PARK 9006 727985.8352 3845925.1453 164.6<br />

MOUNTAIN PASS 9008 632465.8634 3926145.7808 1443.2<br />

WONDER VALLEY F.S. - EAST 9016 615207.7280 3781711.4063 373.1<br />

ESSEX CAL TRANS YARD 9020 660221.9816 3844496.0097 524.3<br />

AMB_1 1001 617504.1119 3818895.4774 185.9<br />

NOAA Grid Node Number EAST NORTH ELEV(m)<br />

NOAA3425-11575 5001 615098.8957 3790582.7344 809.1<br />

NOAA3425-11550 5002 638120.4564 3790893.7326 567.0<br />

NOAA3425-11525 5003 661142.9887 3791261.3197 273.6<br />

NOAA3425-11500 5004 684166.6542 3791685.5176 276.3<br />

NOAA3450-11575 5005 614757.3470 3818306.3473 184.2<br />

NOAA3450-11550 5006 637710.5534 3818618.4062 244.0<br />

NOAA3450-11525 5007 660664.7070 3818987.2467 680.2<br />

NOAA3450-11500 5008 683619.9655 3819412.8905 480.8<br />

NOAA3475-11575 5009 614413.6096 3846031.0427 1073.1<br />

NOAA3475-11550 5010 637298.0240 3846344.1386 767.6<br />

NOAA3475-11525 5011 660183.3614 3846714.2043 535.0<br />

NOAA3475-11500 5012 683069.7753 3847141.2617 674.7<br />

NOAA3500-11575 5013 614067.6898 3873756.8242 647.4<br />

NOAA3500-11550 5014 636882.8759 3874070.9332 1349.5<br />

NOAA3500-11525 5015 659698.9606 3874442.1962 1056.0<br />

NOAA3500-11500 5016 682516.0936 3874870.6346 860.6<br />

NOAA3525-11575 5017 613719.5940 3901483.6954 1177.1<br />

NOAA3525-11550 5018 636465.1166 3901798.7937 1282.8<br />

NOAA3525-11525 5019 659211.5136 3902171.2256 1499.0<br />

NOAA3525-11500 5020 681958.9307 3902601.0125 987.3544<br />

0 2 4 8 Miles<br />

0 5 10 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

114°30'0"W<br />

35°30'0"N<br />

35°15'0"N<br />

35°0'0"N<br />

34°30'0"N<br />

34°15'0"N<br />

34°0'0"N<br />

33°45'0"N<br />

33°30'0"N<br />

Figure 4-6<br />

Climate Stations Used in INFIL3.0<br />

For Fenner Watershed <strong>and</strong> Orange<br />

Blossom Wash Area<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig4-6_CADIZ_TM_ClimateStations_V4_MR.mxd


Month hly Precipitation (mm)<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Regression coefficients are<br />

given in Table 4-2.<br />

Figure 4-7.<br />

Monthly Precipitation Versus Elevation Regressions Used In INFIL3.0<br />

0 200 400 600 800 1000 1200 1400<br />

Elevation (m)<br />

jan<br />

feb<br />

mar<br />

apr<br />

may<br />

jun<br />

jul<br />

aug<br />

sep sep<br />

oct<br />

nov<br />

dec


3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000<br />

5 90000<br />

I15<br />

5 90000<br />

6 00000<br />

6 00000<br />

Bagdad<br />

Legend<br />

STATSGO Soil Types<br />

Average Depth to Bedrock (m)<br />

0.0381<br />

0.1524<br />

0.1778<br />

0.2286<br />

6 10000<br />

6 10000<br />

0.2413<br />

0.3048<br />

0.3175<br />

0.4318<br />

0.762<br />

1.524<br />

Amboy<br />

6 20000<br />

6 20000<br />

Kelso<br />

<strong>Cadiz</strong> Study Area<br />

Interstates<br />

Rail Roads<br />

Cities/Communities<br />

6 30000<br />

6 30000<br />

6 40000<br />

Cima<br />

<strong>Cadiz</strong><br />

6 40000<br />

6 50000<br />

6 50000<br />

6 60000<br />

Essex<br />

Chubbuck<br />

6 60000<br />

6 70000<br />

Fenner<br />

6 70000<br />

I40<br />

6 80000<br />

Goffs<br />

6 80000<br />

6 90000<br />

6 90000<br />

0 2 4 8 Miles<br />

0 2.5 5 10 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

Figure 4-8<br />

Soil Depths Determined From<br />

STATSGO Database<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig4-8_CADIZ_TM_SoilsMap_SoilDepths_V3_MR.mxd<br />

3 910000<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

3 800000<br />

3 790000<br />

3 780000<br />

3 770000<br />

3 760000


3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

100<br />

6 20000<br />

2 50<br />

6 20000<br />

Legend<br />

200<br />

Kelso<br />

1 00<br />

250<br />

1 00<br />

6 30000<br />

6 30000<br />

250<br />

25 0<br />

100<br />

Cima<br />

150<br />

<strong>Cadiz</strong><br />

100<br />

100<br />

6 40000<br />

6 40000<br />

Cities/Communities<br />

INFIL<br />

Interstates<br />

AVG Precipitation mm/yr (1971-2000)<br />

Rail Roads<br />

75.3<br />

Fenner Valley Model Boundary 75.4 - 100.0<br />

PRISM Isohyets mm<br />

100.1 - 150.0<br />

100<br />

200<br />

6 50000<br />

250<br />

6 50000<br />

150.1 - 200.0<br />

200.1 - 250.0<br />

250.1 - 300.0<br />

300.1 - 350.0<br />

350.1 - 400.0<br />

300<br />

150<br />

200<br />

6 60000<br />

200<br />

6 60000<br />

Essex<br />

200<br />

200<br />

6 70000<br />

2 00<br />

FennerI40<br />

6 70000<br />

200<br />

200<br />

200<br />

Goffs<br />

6 80000<br />

6 80000<br />

0 1.25 2.5 5 Miles<br />

0 1.5 3 6 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

Figure 4-9a<br />

INFIL3.0 Modeled Average Annual<br />

Precipitation For 1971 Through 2000 Period<br />

Compared with PRISM - Fenner Watershed<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig4-9a_CADIZ_TM_INFIL_Precip_V1_MR.mxd


3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

Legend<br />

6 10000<br />

6 10000<br />

I40<br />

200<br />

Amboy<br />

250<br />

150<br />

6 20000<br />

100<br />

6 20000<br />

Cities/Communities<br />

INFIL<br />

Interstates<br />

AVG Precipitation mm/yr (1971-2000)<br />

Rail Roads<br />

46.5 - 50.0<br />

Orange Blossom Model Boundary 50.1 - 100.0<br />

PRISM Isohyets mm<br />

100.1 - 200.0<br />

100<br />

200.1 - 242.9<br />

243.0 - 250.0<br />

250.1 - 300.0<br />

300.1 - 350.0<br />

350.1 - 400.0<br />

100<br />

10 0<br />

100<br />

6 30000<br />

6 30000<br />

100<br />

2 50<br />

100<br />

150<br />

<strong>Cadiz</strong><br />

6 40000<br />

100<br />

100<br />

6 40000<br />

100<br />

0 0.5 1 2 Miles<br />

0 0.5 1 2 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

Figure 4-9b<br />

INFIL3.0 Modeled Average Annual<br />

Precipitation For 1971 Through 2000 Period<br />

Compared with PRISM - Orange Blossom<br />

Wash<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig4-9b_CADIZ_TM_INFIL_Precip_V1_MR.mxd


3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

6 20000<br />

6 20000<br />

Legend<br />

Kelso<br />

6 30000<br />

6 30000<br />

Cima<br />

<strong>Cadiz</strong><br />

6 40000<br />

6 40000<br />

Cities/Communities<br />

INFIL<br />

Interstates<br />

AVG Precipitation mm/yr (1958-2007)<br />

Rail Roads<br />

75.3<br />

Fenner Valley Model Boundary 75.4 - 100.0<br />

100.1 - 150.0<br />

6 50000<br />

6 50000<br />

150.1 - 200.0<br />

200.1 - 250.0<br />

250.1 - 300.0<br />

300.1 - 350.0<br />

350.1 - 400.0<br />

6 60000<br />

6 60000<br />

Essex<br />

6 70000<br />

FennerI40<br />

6 70000<br />

Goffs<br />

6 80000<br />

6 80000<br />

0 1.25 2.5 5Miles<br />

0 1.5 3 6Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

Figure 4-9c<br />

INFIL3.0 Modeled Average Annual<br />

Precipitation For 1958 Through 2007<br />

Period - Fenner Watershed<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig4-9c_CADIZ_TM_INFIL_Precip_V1_MR.mxd


3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

Legend<br />

6 10000<br />

6 10000<br />

I40<br />

Amboy<br />

6 20000<br />

6 20000<br />

Cities/Communities<br />

INFIL<br />

Interstates<br />

AVG Precipitation mm/yr (1958-2007)<br />

Rail Roads<br />

46.5 - 50.0<br />

Orange Blossom Model Boundary 50.1 - 100.0<br />

100.1 - 200.0<br />

200.1 - 242.9<br />

243.0 - 250.0<br />

250.1 - 300.0<br />

300.1 - 350.0<br />

350.1 - 400.0<br />

6 30000<br />

6 30000<br />

<strong>Cadiz</strong><br />

6 40000<br />

6 40000<br />

0 0.5 1 2 Miles<br />

0 0.5 1 2 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

Figure 4-9d<br />

INFIL3.0 Modeled Average Annual<br />

Precipitation For 1958 Through 2007<br />

Period - Orange Blossom Wash<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig4-9d_CADIZ_TM_INFIL_Precip_V1_MR.mxd


3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

6 20000<br />

6 20000<br />

Legend<br />

Kelso<br />

6 30000<br />

6 30000<br />

Cima<br />

<strong>Cadiz</strong><br />

6 40000<br />

6 40000<br />

Cities/Communities<br />

INFIL<br />

Interstates<br />

Net Infiltration Annual Average (mm/yr)<br />

Rail Roads<br />

0.0 - 25.0<br />

Fenner Valley Model Boundary 25.1 - 50.0<br />

50.1 - 75.0<br />

75.1 - 100.0<br />

100.1 - 125.0<br />

125.1 - 150.0<br />

6 50000<br />

6 50000<br />

150.1 - 175.0<br />

175.1 - 200.0<br />

200.1 - 225.0<br />

225.1 - 250.0<br />

250.1 - 275.0<br />

275.1 - 300.0<br />

6 60000<br />

6 60000<br />

Essex<br />

6 70000<br />

FennerI40<br />

6 70000<br />

Goffs<br />

6 80000<br />

6 80000<br />

0 1 2 4 Miles<br />

0 1 2 4 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

300.1 - 325.0 Figure 4-10a<br />

INFIL3.0 Average Annual Infiltration<br />

For 1958-2007 - Fenner Watershed<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig4-10a_CADIZ_TM_INFIL_Infiltration_V1_MR.mxd<br />

3 900000<br />

3 890000<br />

3 880000<br />

3 870000<br />

3 860000<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000


3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000<br />

Legend<br />

6 10000<br />

6 10000<br />

I40<br />

Amboy<br />

6 20000<br />

6 20000<br />

Cities/Communities<br />

INFIL<br />

Interstates<br />

Net Infiltration Annual Average (mm/yr)<br />

Rail Roads<br />

0.0 - 25.0<br />

Orange Blossom Model Boundary 25.1 - 50.0<br />

50.1 - 75.0<br />

75.1 - 100.0<br />

6 30000<br />

6 30000<br />

<strong>Cadiz</strong><br />

6 40000<br />

6 40000<br />

0 0.5 1 2 Miles<br />

0 0.5 1 2 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

100.1 - 125.0 Figure 4-10b<br />

INFIL3.0 Average Annual Infiltration<br />

For 1958-2007 - Orange Blossom Wash<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig4-10b_CADIZ_TM_INFIL_Infiltration_V1_MR.mxd<br />

3 850000<br />

3 840000<br />

3 830000<br />

3 820000<br />

3 810000


Acre-Feet<br />

140,000<br />

120,000<br />

100,000<br />

80,000<br />

60,000<br />

40,000<br />

20,000<br />

-<br />

Figure 4-11.<br />

Fenner Watershed<br />

Recoverable Water<br />

INFIL3.0 Simulation Results<br />

Year


Acre-Feet<br />

12,000<br />

10,000<br />

8,000<br />

6,000<br />

4,000<br />

2,000<br />

-<br />

Figure 4-12.<br />

Orange Blossom Wash Area<br />

Recoverable Water<br />

INFIL3.0 Simulation Results<br />

Year


Infiltr ration (Acre-Feet)<br />

250,000<br />

200,000<br />

150,000<br />

100 100,000 000<br />

50,000<br />

-<br />

Figure 4-13.<br />

Fenner Watershed<br />

Recoverable Water<br />

INFIL3.0 versus GSSI High Estimate<br />

Year<br />

INFIL3<br />

GSS-High


Infiltr ration (Acre-Feet)<br />

250,000<br />

200,000<br />

150,000<br />

100 100,000 000<br />

50,000<br />

-<br />

Figure 4-14.<br />

Fenner Watershed<br />

Recoverable Water<br />

INFIL3.0 versus GSSI Low Estimate<br />

Year<br />

INFIL3<br />

GSS-Low


Infiltr ration (Acre-Feet)<br />

35,000<br />

30,000<br />

25,000<br />

20,000<br />

15,000<br />

10,000<br />

5,000<br />

-<br />

Figure 4-15.<br />

Orange Blossom Wash Area<br />

Recoverable Water<br />

INFIL3.0 versus GSSI High Estimate<br />

Year<br />

INFIL3<br />

GSS-High


Infiltr ration (Acre-Feet)<br />

15,000<br />

10,000<br />

5,000<br />

-<br />

Figure 4-16.<br />

Orange Blossom Wash Area<br />

Recoverable Water<br />

INFIL3.0 versue GSSI Low Estimate<br />

Year<br />

INFIL3<br />

GSS-Low


3760000 .0000003770000<br />

.0000003780000<br />

.0000003790000<br />

.0000003800000<br />

.0000003810000<br />

.0000003820000<br />

.0000003830000<br />

.0000003840000<br />

.0000003850000<br />

.0000003860000<br />

.0000003870000<br />

.0000003880000<br />

.0000003890000<br />

.0000003900000<br />

.0000003910000<br />

.000000<br />

600000 .000000 610000 .000000 620000 .000000 630000 .000000 640000 .000000 650000 .000000 660000 .000000 670000 .000000 680000 .000000<br />

Bagdad Lake (Dry)<br />

Bristol Lake (Dry)<br />

<strong>Cadiz</strong> Lake(Dry)<br />

I40<br />

Danby Lake(Dry)<br />

600000 .000000 610000 .000000 620000 .000000 630000 .000000 640000 .000000 650000 .000000 660000 .000000 670000 .000000 680000 .000000<br />

3760000 .0000003770000<br />

.0000003780000<br />

.0000003790000<br />

.0000003800000<br />

.0000003810000<br />

.0000003820000<br />

.0000003830000<br />

.0000003840000<br />

.0000003850000<br />

.0000003860000<br />

.0000003870000<br />

.0000003880000<br />

.0000003890000<br />

.0000003900000<br />

.0000003910000<br />

.000000<br />

3760000 .0000003770000<br />

.0000003780000<br />

.0000003790000<br />

.0000003800000<br />

.0000003810000<br />

.0000003820000<br />

.0000003830000<br />

.0000003840000<br />

.0000003850000<br />

.0000003860000<br />

.0000003870000<br />

.0000003880000<br />

.0000003890000<br />

.0000003900000<br />

.0000003910000<br />

.000000<br />

600000 .000000 610000 .000000 620000 .000000 630000 .000000 640000 .000000 650000 .000000 660000 .000000 670000 .000000 680000 .000000<br />

Bagdad Lake (Dry)<br />

Bristol Lake (Dry)<br />

<strong>Cadiz</strong> Lake(Dry)<br />

I40<br />

Danby Lake(Dry)<br />

Legend<br />

<strong>Cadiz</strong> Study Area<br />

Interstates<br />

Rail Roads<br />

0 5 10Miles<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

Figure 4-17<br />

NDVI for May 16, 1990<br />

600000 .000000 610000 .000000 620000 .000000 630000 .000000 640000 .000000 650000 .000000 660000 .000000 670000 .000000 680000 .000000<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig4-17_CADIZ_TM_NDVI_05-16-1990_V1.mxd<br />

3760000 .0000003770000<br />

.0000003780000<br />

.0000003790000<br />

.0000003800000<br />

.0000003810000<br />

.0000003820000<br />

.0000003830000<br />

.0000003840000<br />

.0000003850000<br />

.0000003860000<br />

.0000003870000<br />

.0000003880000<br />

.0000003890000<br />

.0000003900000<br />

.0000003910000<br />

.000000<br />

Nevada<br />

Utah<br />

California Arizona<br />

Project Location<br />

Water/Snow<br />

Moist Soils<br />

Bare Soils/Rocks<br />

Vegetation<br />

L<strong>and</strong>sat Images were obtained from:<br />

http://glovis.usgs.gov/


3760000 .0000003770000<br />

.0000003780000<br />

.0000003790000<br />

.0000003800000<br />

.0000003810000<br />

.0000003820000<br />

.0000003830000<br />

.0000003840000<br />

.0000003850000<br />

.0000003860000<br />

.0000003870000<br />

.0000003880000<br />

.0000003890000<br />

.0000003900000<br />

.0000003910000<br />

.000000<br />

600000 .000000 610000 .000000 620000 .000000 630000 .000000 640000 .000000 650000 .000000 660000 .000000 670000 .000000 680000 .000000<br />

Bagdad Lake (Dry)<br />

Bristol Lake (Dry)<br />

<strong>Cadiz</strong> Lake(Dry)<br />

I40<br />

Danby Lake(Dry)<br />

600000 .000000 610000 .000000 620000 .000000 630000 .000000 640000 .000000 650000 .000000 660000 .000000 670000 .000000 680000 .000000<br />

3760000 .0000003770000<br />

.0000003780000<br />

.0000003790000<br />

.0000003800000<br />

.0000003810000<br />

.0000003820000<br />

.0000003830000<br />

.0000003840000<br />

.0000003850000<br />

.0000003860000<br />

.0000003870000<br />

.0000003880000<br />

.0000003890000<br />

.0000003900000<br />

.0000003910000<br />

.000000<br />

3760000 .0000003770000<br />

.0000003780000<br />

.0000003790000<br />

.0000003800000<br />

.0000003810000<br />

.0000003820000<br />

.0000003830000<br />

.0000003840000<br />

.0000003850000<br />

.0000003860000<br />

.0000003870000<br />

.0000003880000<br />

.0000003890000<br />

.0000003900000<br />

.0000003910000<br />

.000000<br />

600000 .000000 610000 .000000 620000 .000000 630000 .000000 640000 .000000 650000 .000000 660000 .000000 670000 .000000 680000 .000000<br />

Bagdad Lake (Dry)<br />

Bristol Lake (Dry)<br />

<strong>Cadiz</strong> Lake(Dry)<br />

I40<br />

Danby Lake(Dry)<br />

Legend<br />

<strong>Cadiz</strong> Study Area<br />

Interstates<br />

Rail Roads<br />

0 5 10Miles<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

Figure 4-18<br />

NDVI for March 16, 1991<br />

600000 .000000 610000 .000000 620000 .000000 630000 .000000 640000 .000000 650000 .000000 660000 .000000 670000 .000000 680000 .000000<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig4-18_CADIZ_TM_NDVI_03-16-1991_V1.mxd<br />

3760000 .0000003770000<br />

.0000003780000<br />

.0000003790000<br />

.0000003800000<br />

.0000003810000<br />

.0000003820000<br />

.0000003830000<br />

.0000003840000<br />

.0000003850000<br />

.0000003860000<br />

.0000003870000<br />

.0000003880000<br />

.0000003890000<br />

.0000003900000<br />

.0000003910000<br />

.000000<br />

Nevada<br />

Utah<br />

California Arizona<br />

Project Location<br />

Water/Snow<br />

Moist Soils<br />

Bare Soils/Rocks<br />

Vegetation<br />

L<strong>and</strong>sat Images were obtained from:<br />

http://glovis.usgs.gov/


3760000 .0000003770000<br />

.0000003780000<br />

.0000003790000<br />

.0000003800000<br />

.0000003810000<br />

.0000003820000<br />

.0000003830000<br />

.0000003840000<br />

.0000003850000<br />

.0000003860000<br />

.0000003870000<br />

.0000003880000<br />

.0000003890000<br />

.0000003900000<br />

.0000003910000<br />

.000000<br />

600000 .000000 610000 .000000 620000 .000000 630000 .000000 640000 .000000 650000 .000000 660000 .000000 670000 .000000 680000 .000000<br />

Bagdad Lake (Dry)<br />

Bristol Lake (Dry)<br />

<strong>Cadiz</strong> Lake(Dry)<br />

I40<br />

Danby Lake(Dry)<br />

600000 .000000 610000 .000000 620000 .000000 630000 .000000 640000 .000000 650000 .000000 660000 .000000 670000 .000000 680000 .000000<br />

3760000 .0000003770000<br />

.0000003780000<br />

.0000003790000<br />

.0000003800000<br />

.0000003810000<br />

.0000003820000<br />

.0000003830000<br />

.0000003840000<br />

.0000003850000<br />

.0000003860000<br />

.0000003870000<br />

.0000003880000<br />

.0000003890000<br />

.0000003900000<br />

.0000003910000<br />

.000000<br />

3760000 .0000003770000<br />

.0000003780000<br />

.0000003790000<br />

.0000003800000<br />

.0000003810000<br />

.0000003820000<br />

.0000003830000<br />

.0000003840000<br />

.0000003850000<br />

.0000003860000<br />

.0000003870000<br />

.0000003880000<br />

.0000003890000<br />

.0000003900000<br />

.0000003910000<br />

.000000<br />

600000 .000000 610000 .000000 620000 .000000 630000 .000000 640000 .000000 650000 .000000 660000 .000000 670000 .000000 680000 .000000<br />

Bagdad Lake (Dry)<br />

Bristol Lake (Dry)<br />

<strong>Cadiz</strong> Lake(Dry)<br />

I40<br />

Danby Lake(Dry)<br />

Legend<br />

<strong>Cadiz</strong> Study Area<br />

Interstates<br />

Rail Roads<br />

0 5 10Miles<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

Figure 4-19<br />

NDVI for May 19, 1991<br />

600000 .000000 610000 .000000 620000 .000000 630000 .000000 640000 .000000 650000 .000000 660000 .000000 670000 .000000 680000 .000000<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig4-19_CADIZ_TM_NDVI_05-19-1991_V1.mxd<br />

3760000 .0000003770000<br />

.0000003780000<br />

.0000003790000<br />

.0000003800000<br />

.0000003810000<br />

.0000003820000<br />

.0000003830000<br />

.0000003840000<br />

.0000003850000<br />

.0000003860000<br />

.0000003870000<br />

.0000003880000<br />

.0000003890000<br />

.0000003900000<br />

.0000003910000<br />

.000000<br />

Nevada<br />

Utah<br />

California Arizona<br />

Project Location<br />

Water/Snow<br />

Moist Soils<br />

Bare Soils/Rocks<br />

Vegetation<br />

L<strong>and</strong>sat Images were obtained from:<br />

http://glovis.usgs.gov/


3760000 .0000003770000<br />

.0000003780000<br />

.0000003790000<br />

.0000003800000<br />

.0000003810000<br />

.0000003820000<br />

.0000003830000<br />

.0000003840000<br />

.0000003850000<br />

.0000003860000<br />

.0000003870000<br />

.0000003880000<br />

.0000003890000<br />

.0000003900000<br />

.0000003910000<br />

.000000<br />

600000 .000000 610000 .000000 620000 .000000 630000 .000000 640000 .000000 650000 .000000 660000 .000000 670000 .000000 680000 .000000<br />

Bagdad Lake (Dry)<br />

Bristol Lake (Dry)<br />

<strong>Cadiz</strong> Lake(Dry)<br />

I40<br />

Danby Lake(Dry)<br />

600000 .000000 610000 .000000 620000 .000000 630000 .000000 640000 .000000 650000 .000000 660000 .000000 670000 .000000 680000 .000000<br />

3760000 .0000003770000<br />

.0000003780000<br />

.0000003790000<br />

.0000003800000<br />

.0000003810000<br />

.0000003820000<br />

.0000003830000<br />

.0000003840000<br />

.0000003850000<br />

.0000003860000<br />

.0000003870000<br />

.0000003880000<br />

.0000003890000<br />

.0000003900000<br />

.0000003910000<br />

.000000<br />

3760000 .0000003770000<br />

.0000003780000<br />

.0000003790000<br />

.0000003800000<br />

.0000003810000<br />

.0000003820000<br />

.0000003830000<br />

.0000003840000<br />

.0000003850000<br />

.0000003860000<br />

.0000003870000<br />

.0000003880000<br />

.0000003890000<br />

.0000003900000<br />

.0000003910000<br />

.000000<br />

600000 .000000 610000 .000000 620000 .000000 630000 .000000 640000 .000000 650000 .000000 660000 .000000 670000 .000000 680000 .000000<br />

Bagdad Lake (Dry)<br />

Bristol Lake (Dry)<br />

<strong>Cadiz</strong> Lake(Dry)<br />

I40<br />

Danby Lake(Dry)<br />

Legend<br />

<strong>Cadiz</strong> Study Area<br />

Interstates<br />

Rail Roads<br />

0 5 10 Miles<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

Figure 4-20<br />

NDVI for March 10, 1992<br />

600000 .000000 610000 .000000 620000 .000000 630000 .000000 640000 .000000 650000 .000000 660000 .000000 670000 .000000 680000 .000000<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig4-20_CADIZ_TM_NDVI_03-10-1992_V1.mxd<br />

3760000 .0000003770000<br />

.0000003780000<br />

.0000003790000<br />

.0000003800000<br />

.0000003810000<br />

.0000003820000<br />

.0000003830000<br />

.0000003840000<br />

.0000003850000<br />

.0000003860000<br />

.0000003870000<br />

.0000003880000<br />

.0000003890000<br />

.0000003900000<br />

.0000003910000<br />

.000000<br />

Nevada<br />

Utah<br />

California Arizona<br />

Project Location<br />

Water/Snow<br />

Moist Soils<br />

Bare Soils/Rocks<br />

Vegetation<br />

L<strong>and</strong>sat Images were obtained from:<br />

http://glovis.usgs.gov/


3760000 .0000003770000<br />

.0000003780000<br />

.0000003790000<br />

.0000003800000<br />

.0000003810000<br />

.0000003820000<br />

.0000003830000<br />

.0000003840000<br />

.0000003850000<br />

.0000003860000<br />

.0000003870000<br />

.0000003880000<br />

.0000003890000<br />

.0000003900000<br />

.0000003910000<br />

.000000<br />

600000 .000000 610000 .000000 620000 .000000 630000 .000000 640000 .000000 650000 .000000 660000 .000000 670000 .000000 680000 .000000<br />

Bagdad Lake (Dry)<br />

Bristol Lake (Dry)<br />

<strong>Cadiz</strong> Lake(Dry)<br />

I40<br />

Danby Lake(Dry)<br />

600000 .000000 610000 .000000 620000 .000000 630000 .000000 640000 .000000 650000 .000000 660000 .000000 670000 .000000 680000 .000000<br />

3760000 .0000003770000<br />

.0000003780000<br />

.0000003790000<br />

.0000003800000<br />

.0000003810000<br />

.0000003820000<br />

.0000003830000<br />

.0000003840000<br />

.0000003850000<br />

.0000003860000<br />

.0000003870000<br />

.0000003880000<br />

.0000003890000<br />

.0000003900000<br />

.0000003910000<br />

.000000<br />

3760000 .0000003770000<br />

.0000003780000<br />

.0000003790000<br />

.0000003800000<br />

.0000003810000<br />

.0000003820000<br />

.0000003830000<br />

.0000003840000<br />

.0000003850000<br />

.0000003860000<br />

.0000003870000<br />

.0000003880000<br />

.0000003890000<br />

.0000003900000<br />

.0000003910000<br />

.000000<br />

600000 .000000 610000 .000000 620000 .000000 630000 .000000 640000 .000000 650000 .000000 660000 .000000 670000 .000000 680000 .000000<br />

Bagdad Lake (Dry)<br />

Bristol Lake (Dry)<br />

<strong>Cadiz</strong> Lake(Dry)<br />

I40<br />

Danby Lake(Dry)<br />

Legend<br />

<strong>Cadiz</strong> Study Area<br />

Interstates<br />

Rail Roads<br />

0 5 10Miles<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

Figure 4-21<br />

NDVI for May 14, 2005<br />

600000 .000000 610000 .000000 620000 .000000 630000 .000000 640000 .000000 650000 .000000 660000 .000000 670000 .000000 680000 .000000<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig4-21_CADIZ_TM_NDVI_05-14-2005_V1.mxd<br />

3760000 .0000003770000<br />

.0000003780000<br />

.0000003790000<br />

.0000003800000<br />

.0000003810000<br />

.0000003820000<br />

.0000003830000<br />

.0000003840000<br />

.0000003850000<br />

.0000003860000<br />

.0000003870000<br />

.0000003880000<br />

.0000003890000<br />

.0000003900000<br />

.0000003910000<br />

.000000<br />

Nevada<br />

Utah<br />

California Arizona<br />

Project Location<br />

Water/Snow<br />

Moist Soils<br />

Bare Soils/Rocks<br />

Vegetation<br />

L<strong>and</strong>sat Images were obtained from:<br />

http://glovis.usgs.gov/


3760000 .0000003770000<br />

.0000003780000<br />

.0000003790000<br />

.0000003800000<br />

.0000003810000<br />

.0000003820000<br />

.0000003830000<br />

.0000003840000<br />

.0000003850000<br />

.0000003860000<br />

.0000003870000<br />

.0000003880000<br />

.0000003890000<br />

.0000003900000<br />

.0000003910000<br />

.000000<br />

600000 .000000 610000 .000000 620000 .000000 630000 .000000 640000 .000000 650000 .000000 660000 .000000 670000 .000000 680000 .000000<br />

Bagdad Lake (Dry)<br />

Bristol Lake (Dry)<br />

<strong>Cadiz</strong> Lake(Dry)<br />

I40<br />

Danby Lake(Dry)<br />

600000 .000000 610000 .000000 620000 .000000 630000 .000000 640000 .000000 650000 .000000 660000 .000000 670000 .000000 680000 .000000<br />

3760000 .0000003770000<br />

.0000003780000<br />

.0000003790000<br />

.0000003800000<br />

.0000003810000<br />

.0000003820000<br />

.0000003830000<br />

.0000003840000<br />

.0000003850000<br />

.0000003860000<br />

.0000003870000<br />

.0000003880000<br />

.0000003890000<br />

.0000003900000<br />

.0000003910000<br />

.000000<br />

3760000 .0000003770000<br />

.0000003780000<br />

.0000003790000<br />

.0000003800000<br />

.0000003810000<br />

.0000003820000<br />

.0000003830000<br />

.0000003840000<br />

.0000003850000<br />

.0000003860000<br />

.0000003870000<br />

.0000003880000<br />

.0000003890000<br />

.0000003900000<br />

.0000003910000<br />

.000000<br />

600000 .000000 610000 .000000 620000 .000000 630000 .000000 640000 .000000 650000 .000000 660000 .000000 670000 .000000 680000 .000000<br />

Bagdad Lake (Dry)<br />

Bristol Lake (Dry)<br />

<strong>Cadiz</strong> Lake(Dry)<br />

I40<br />

Danby Lake(Dry)<br />

Legend<br />

<strong>Cadiz</strong> Study Area<br />

Interstates<br />

Rail Roads<br />

0 5 10Miles<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

Figure 4-22<br />

NDVI for August 13, 2005<br />

600000 .000000 610000 .000000 620000 .000000 630000 .000000 640000 .000000 650000 .000000 660000 .000000 670000 .000000 680000 .000000<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig4-22_CADIZ_TM_NDVI_08-13-2005_V1.mxd<br />

3760000 .0000003770000<br />

.0000003780000<br />

.0000003790000<br />

.0000003800000<br />

.0000003810000<br />

.0000003820000<br />

.0000003830000<br />

.0000003840000<br />

.0000003850000<br />

.0000003860000<br />

.0000003870000<br />

.0000003880000<br />

.0000003890000<br />

.0000003900000<br />

.0000003910000<br />

.000000<br />

Nevada<br />

Utah<br />

California Arizona<br />

Project Location<br />

Water/Snow<br />

Moist Soils<br />

Bare Soils/Rocks<br />

Vegetation<br />

L<strong>and</strong>sat Images were obtained from:<br />

http://glovis.usgs.gov/


\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig4-23_CADIZ_TM_GeologyofFennerGap_XSec_Wells_V2_MH_9.2.mxd<br />

Modified from Liggett (2010) <strong>and</strong> Bishop (1963)<br />

Figure 4-23<br />

Geology of Fenner Gap Area, Location of<br />

Cross Sections <strong>and</strong> Test Borings/Wells<br />

Existing Wells<br />

Test Wells<br />

Test Borings<br />

Cross Section<br />

Fault<br />

Interstates<br />

Roads<br />

Rail Roads<br />

Teritary Volcanics<br />

Mesozoic Granitic Rocks<br />

Permian/Pennsylvanian Carbonate Rock Units<br />

Cambrian Carbonate Rock Units<br />

Precambrian Granitic Rocks<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

Vertical Datum NAVD88<br />

0 0.5 1<br />

0.25 Kilometers<br />

0 0.5 1<br />

0.25 Miles<br />

Geology Units<br />

Alluvium<br />

Legend<br />

6 39000<br />

6 40000<br />

6 41000<br />

6 42000<br />

6 43000<br />

6 44000<br />

6 45000<br />

6 46000<br />

6 47000<br />

6 48000<br />

3 814000<br />

3 814000<br />

3 815000<br />

3 815000<br />

3 816000<br />

3 816000<br />

3 817000<br />

F'<br />

3 817000<br />

J'<br />

H'<br />

3 818000<br />

B'<br />

3 818000<br />

I'<br />

D'<br />

3 819000<br />

40<br />

BI'<br />

3 819000<br />

80<br />

3 820000<br />

MW-2<br />

E'<br />

CI-3<br />

PW-1<br />

45<br />

3 820000<br />

MW-3<br />

80<br />

MW-1<br />

CI-1<br />

60<br />

3 821000<br />

TW-2B<br />

005N014E13M001S<br />

MW-5<br />

CI-2<br />

TW-2<br />

TW-3<br />

3 821000<br />

MW-6<br />

45<br />

60<br />

F<br />

TW-1<br />

25<br />

30<br />

3 822000<br />

MW-7/7A<br />

35<br />

20<br />

G'<br />

H<br />

3 822000<br />

25<br />

55 35<br />

I<br />

3 823000<br />

J<br />

3 823000<br />

B<br />

45<br />

D<br />

25<br />

3 824000<br />

25<br />

45<br />

3 824000<br />

BI<br />

20<br />

3 825000<br />

25<br />

45<br />

3 825000<br />

G<br />

E<br />

25<br />

3 826000<br />

3 826000<br />

6 39000<br />

6 40000<br />

6 41000<br />

6 42000<br />

6 43000<br />

6 44000<br />

6 45000<br />

6 46000<br />

6 47000<br />

6 48000


Western Fenner Gap Area<br />

(Marble Mountains)<br />

Note: See Table 4-6 for description of geologic units.<br />

WB052009005SCO386303.AA.08 FennerGap.ppt 3/10<br />

Not to scale<br />

Eastern Fenner Gap Area<br />

(Ship Mountains)<br />

FIGURE 4-24<br />

Generalized Stratigraphic Column of Fenner Gap Area<br />

<strong>Cadiz</strong> <strong>Groundwater</strong> Plan


Elevation Above Mean Sea Level (feet)<br />

1000<br />

WB052009005SCO386303.AA.05 <strong>Cadiz</strong>_Cross_section_14_E.ai 3/10<br />

E E'<br />

0<br />

-1000<br />

-2000<br />

-3000<br />

?<br />

0 2,000<br />

4,000 6,000 8,000 10,000 12,000 14,000<br />

16,000 18,000 20,000 22,000 24,000<br />

Distance Along Cross-Section (feet)<br />

Legend:<br />

Alluvium (Cobbles, Gravel, S<strong>and</strong>, Silt, <strong>and</strong> Clay)<br />

Older Alluvium (Consolidated Cobbles, Gravel, S<strong>and</strong>, Silt, <strong>and</strong> Clay)<br />

?<br />

?<br />

?<br />

?<br />

?<br />

Carbonate Rocks (Dolomite, Shale, S<strong>and</strong>y Limestone, <strong>and</strong> Quartzite)<br />

Granitic <strong>and</strong> Metamorphic Rocks<br />

?<br />

?<br />

?<br />

Fault<br />

?<br />

?<br />

?<br />

?<br />

?<br />

?<br />

?<br />

TW-3<br />

F5 (South 850 ft) F4 F3<br />

?<br />

?<br />

?<br />

?<br />

?<br />

?<br />

?<br />

F2<br />

1000<br />

0<br />

-1000<br />

-2000<br />

-3000<br />

Elevation Above Mean Sea Level (feet)<br />

FIGURE 4-25<br />

Cross-Section E-E'<br />

<strong>Cadiz</strong> <strong>Groundwater</strong> Plan


Elevation Above Mean Sea Level (feet)<br />

2000<br />

1000<br />

WB052009005SCO386303.AA.05 <strong>Cadiz</strong>_Cross_section_15_B1.ai 3/10<br />

0<br />

-1000<br />

-2000<br />

-3000<br />

-4000<br />

B1 B1'<br />

? ?<br />

Legend:<br />

Alluvium (Cobbles, Gravel, S<strong>and</strong>, Silt, <strong>and</strong> Clay)<br />

Older Alluvium (Consolidated Cobbles, Gravel, S<strong>and</strong>, Silt, <strong>and</strong> Clay)<br />

?<br />

?<br />

2000 4000 6000<br />

8000 10,000 12,000 14,000<br />

16,000 18,000 20,000 22,000<br />

Carbonate Rocks (Dolomite, Shale, S<strong>and</strong>y Limestone, <strong>and</strong> Quartzite)<br />

Granitic <strong>and</strong> Metamorphic Rocks<br />

? ? ?<br />

Fault<br />

Distance Along Cross-Section (feet)<br />

?<br />

?<br />

?<br />

TW-3<br />

F5 (North 1,000 ft)<br />

F4 F3<br />

?<br />

?<br />

?<br />

?<br />

F2 F1<br />

?<br />

FIGURE 4-26<br />

Cross-Section B1-B1'<br />

<strong>Cadiz</strong> <strong>Groundwater</strong> Plan


Elevation Above Mean Sea Level (feet)<br />

1000<br />

D D'<br />

0<br />

-1000<br />

-2000<br />

-3000<br />

WB052009005SCO386303.AA.05 <strong>Cadiz</strong>_Cross_section_09_D.ai 3/10<br />

?<br />

F10 F9<br />

?<br />

0 2000<br />

4000 6000 8000 10,000<br />

Distance Along Cross-Section (feet)<br />

12,000 14,000<br />

16,000 18,000 20,000<br />

Legend:<br />

Alluvium (Cobbles, Gravel, S<strong>and</strong>, Silt, <strong>and</strong> Clay)<br />

Older Alluvium (Consolidated Cobbles, Gravel, S<strong>and</strong>, Silt, <strong>and</strong> Clay)<br />

?<br />

? ?<br />

TW-1<br />

F8 F6 F5 F4 F3<br />

(North 1,350 ft)<br />

? ? ? ?<br />

Carbonate Rocks (Dolomite, Shale, S<strong>and</strong>y Limestone, <strong>and</strong> Quartzite)<br />

Granitic <strong>and</strong> Metamorphic Rocks<br />

?<br />

TW-2B<br />

(North 400 ft)<br />

Fault<br />

TW-2<br />

(South 500 ft)<br />

? ?<br />

?<br />

?<br />

? ? ? ?<br />

?<br />

F2<br />

? ?<br />

F1<br />

1000<br />

0<br />

-1000<br />

-2000<br />

-3000<br />

Elevation Above Mean Sea Level (feet)<br />

FIGURE 4-27<br />

Cross-Section D-D'<br />

<strong>Cadiz</strong> <strong>Groundwater</strong> Plan


Elevation Above Mean Sea Level (feet)<br />

1000<br />

B B'<br />

0<br />

-1000<br />

-2000<br />

-3000<br />

0 2000<br />

4000 6000 8000 10,000 12,000<br />

Distance Along Cross-Section (feet)<br />

14,000<br />

16,000 18,000 20,000 22,000<br />

Legend:<br />

Alluvium (Cobbles, Gravel, S<strong>and</strong>, Silt, <strong>and</strong> Clay)<br />

Older Alluvium (Consolidated Cobbles, Gravel, S<strong>and</strong>, Silt, <strong>and</strong> Clay)<br />

WB052009005SCO386303.AA.05 <strong>Cadiz</strong>_Cross_section_12_B.ai 3/10<br />

?<br />

?<br />

F10<br />

?<br />

? ?<br />

C1-2<br />

5/14-13<br />

(South 150 ft) MW-5<br />

MW-3<br />

F9<br />

(Southeast 1,950 ft)<br />

F8 (North 550 ft) (South 950 ft)<br />

F6 F5<br />

? ? ? ? ?<br />

Carbonate Rocks (Dolomite, Shale, S<strong>and</strong>y Limestone, <strong>and</strong> Quartzite)<br />

Granitic <strong>and</strong> Metamorphic Rocks<br />

Fault<br />

? ? ?<br />

?<br />

F4<br />

F3<br />

(Bend In Section)<br />

? ? ? ?<br />

?<br />

F2<br />

?<br />

?<br />

F1<br />

1000<br />

0<br />

-1000<br />

-2000<br />

-3000<br />

Elevation Above Mean Sea Level (feet)<br />

FIGURE 4-28<br />

Cross-Section B-B'<br />

<strong>Cadiz</strong> <strong>Groundwater</strong> Plan


Elevation Above Mean Sea Level (feet)<br />

2000<br />

1000<br />

0<br />

-1000<br />

-2000<br />

-3000<br />

-4000<br />

WB052009005SCO386303.AA.05 <strong>Cadiz</strong>_Cross_section_10_F.ai 3/10<br />

F F'<br />

?<br />

Legend:<br />

Alluvium (Cobbles, Gravel, S<strong>and</strong>, Silt, <strong>and</strong> Clay)<br />

Older Alluvium (Consolidated Cobbles, Gravel, S<strong>and</strong>, Silt, <strong>and</strong> Clay)<br />

F10 F9<br />

?<br />

?<br />

PW-1<br />

(North 700 ft)<br />

2000 4000 6000<br />

8000 10,000 12,000<br />

Distance Along Cross-Section (feet)<br />

14.000<br />

16,000 18,000 20,000 22,000<br />

Carbonate Rocks (Dolomite, Shale, S<strong>and</strong>y Limestone, <strong>and</strong> Quartzite)<br />

Granitic <strong>and</strong> Metamorphic Rocks<br />

F8<br />

? ? ?<br />

MW-1<br />

(North 1,150 ft)<br />

?<br />

Fault<br />

?<br />

TH-2<br />

F6 F5 (South 700 ft) F4 F3 F2 F1<br />

?<br />

?<br />

? ? ?<br />

?<br />

?<br />

FIGURE 4-29<br />

Cross-Section F-F'<br />

<strong>Cadiz</strong> <strong>Groundwater</strong> Plan


Elevation Above Mean Sea Level (feet)<br />

1000<br />

WB052009005SCO386303.AA.05 <strong>Cadiz</strong>_Cross_section_16.ai 3/10<br />

0<br />

-1000<br />

-2000<br />

-3000<br />

-4000<br />

I I'<br />

E-E' B1-B1'<br />

Legend:<br />

Alluvium (Cobbles, Gravel, S<strong>and</strong>, Silt, <strong>and</strong> Clay)<br />

Carbonate Rocks (Dolomite, Shale, S<strong>and</strong>y Limestone, <strong>and</strong> Quartzite)<br />

Granitic <strong>and</strong> Metamorphic Rocks<br />

TW-1<br />

? ??? ? ? ?<br />

Terminal of<br />

Fault 6<br />

? ? ? ? ?<br />

MW-5<br />

CI-1<br />

MW-2<br />

D-D1' (East 400') B-B' (East 100')<br />

(East 250') F-F'<br />

?<br />

Approximate Trace Fault 6<br />

? ? ? ? ? ?<br />

2000 4000 6000<br />

8000 10,000 12,000 14,000<br />

16,000 18,000<br />

Distance Along Cross-Section (feet)<br />

?<br />

?<br />

?<br />

?<br />

?<br />

1000<br />

0<br />

-1000<br />

-2000<br />

-3000<br />

-4000<br />

Elevation Above Mean Sea Level (feet)<br />

FIGURE 4-30<br />

Cross-Section I-I'<br />

<strong>Cadiz</strong> <strong>Groundwater</strong> Plan


Elevation Above Mean Sea Level (feet)<br />

1000<br />

WB052009005SCO386303.AA.05 <strong>Cadiz</strong>_Cross_section_18.ai 3/10<br />

0<br />

-1000<br />

-2000<br />

-3000<br />

-4000<br />

-5000<br />

G<br />

Legend:<br />

Alluvium (Cobbles, Gravel, S<strong>and</strong>, Silt, <strong>and</strong> Clay)<br />

Older Alluvium (Consolidated Cobbles, Gravel, S<strong>and</strong>, Silt, <strong>and</strong> Clay)<br />

?<br />

?<br />

?<br />

?<br />

Bend in Section<br />

G'<br />

2000 4000 6000<br />

8000 10,000 12,000 14,000<br />

16,000 18,000 20,000 22,000 24,000 26,000 28,000<br />

Carbonate Rocks (Dolomite, Shale, S<strong>and</strong>y Limestone, <strong>and</strong> Quartzite)<br />

Granitic <strong>and</strong> Metamorphic Rocks<br />

?<br />

H<br />

E-E'<br />

?<br />

Approximate<br />

Fault Zone<br />

??<br />

?<br />

Distance Along Cross-Section (feet)<br />

?<br />

?<br />

TW-2<br />

(West 300')<br />

B1-B1' D-D' B-B'<br />

Approximate Trace Fault 5<br />

Approximate Trace Fault 4<br />

? ?<br />

?<br />

?<br />

MW-3<br />

(West 450')<br />

F-F'<br />

? ? ? ? ? ? ? ? ? ? ?<br />

H'<br />

1000<br />

0<br />

-1000<br />

-2000<br />

-3000<br />

-4000<br />

-5000<br />

Elevation Above Mean Sea Level (feet)<br />

FIGURE 4-31<br />

Cross-Section H-H'<br />

<strong>Cadiz</strong> <strong>Groundwater</strong> Plan


Elevation Above Mean Sea Level (feet)<br />

2000<br />

1000<br />

WB052009005SCO386303.AA.05 <strong>Cadiz</strong>_Cross_section_17.ai 3/10<br />

0<br />

-1000<br />

-2000<br />

-3000<br />

-4000<br />

J J'<br />

?<br />

? ? ? ?<br />

-4000<br />

2000 4000 6000<br />

8000 10,000 12,000 14,000<br />

16,000 18,000 20,000 22,000 24,000<br />

Legend:<br />

Alluvium (Cobbles, Gravel, S<strong>and</strong>, Silt, <strong>and</strong> Clay)<br />

Older Alluvium (Consolidated Cobbles, Gravel, S<strong>and</strong>, Silt, <strong>and</strong> Clay)<br />

?<br />

E-E'<br />

TW-3<br />

(East 500')<br />

Approximate<br />

Fault Zone<br />

? ? ? ? ? ?<br />

Carbonate Rocks (Dolomite, Shale, S<strong>and</strong>y Limestone, <strong>and</strong> Quartzite)<br />

Granitic <strong>and</strong> Metamorphic Rocks<br />

B1-B1'<br />

Distance Along Cross-Section (feet)<br />

D-D'<br />

Bend in Section<br />

Approximate Trace Fault 4<br />

?<br />

B-B'<br />

Approximate Trace Fault 3<br />

Approximate Trace Fault 2<br />

F-F'<br />

? ? ? ? ? ?<br />

TH-2<br />

(West 1100')<br />

?<br />

?<br />

?<br />

?<br />

2000<br />

1000<br />

0<br />

-1000<br />

-2000<br />

-3000<br />

Elevation Above Mean Sea Level (feet)<br />

FIGURE 4-32<br />

Cross-Section J-J'<br />

<strong>Cadiz</strong> <strong>Groundwater</strong> Plan


3 826000<br />

3 825000<br />

3 824000<br />

3 823000<br />

3 822000<br />

3 821000<br />

3 820000<br />

3 819000<br />

3 818000<br />

3 817000<br />

3 816000<br />

3 815000<br />

3 814000<br />

800<br />

Legend<br />

6 39000<br />

6 39000<br />

-1500<br />

300<br />

6 40000<br />

800<br />

6 40000<br />

400<br />

700<br />

900<br />

0<br />

-500<br />

800<br />

800<br />

-200<br />

-1000<br />

-200<br />

100<br />

-500<br />

200<br />

-100<br />

-750<br />

6 41000<br />

600<br />

700<br />

-400<br />

6 41000<br />

-1000<br />

600<br />

800<br />

500<br />

-300<br />

0<br />

600<br />

-2000<br />

700<br />

6 42000<br />

-2500<br />

500<br />

6 42000<br />

-300<br />

300<br />

-3000<br />

200 100<br />

Fenner_BND Geology Units<br />

<strong>Cadiz</strong> Study Area Alluvium<br />

Interstates<br />

Teritary Volcanics<br />

Rail Roads<br />

Mesozoic Granitic Rocks<br />

Base of Alluvium Permian/Pennsylvanian Carbonate Rock Units<br />

WaterBodies Cambrian Carbonate Rock Units<br />

Precambrian Granitic Rocks<br />

-400<br />

700<br />

6 43000<br />

6 43000<br />

500<br />

400<br />

6 44000<br />

600<br />

1000<br />

800<br />

1000<br />

6 44000<br />

900<br />

-100<br />

1000<br />

6 45000<br />

-1500<br />

1000<br />

6 45000<br />

1100<br />

1000<br />

6 46000<br />

1000<br />

6 46000<br />

1000<br />

6 47000<br />

6 47000<br />

6 48000<br />

6 48000<br />

¯<br />

3 826000<br />

3 825000<br />

3 824000<br />

3 823000<br />

3 822000<br />

3 821000<br />

3 820000<br />

3 819000<br />

3 818000<br />

3 817000<br />

3 816000<br />

3 815000<br />

3 814000<br />

0 0.2 0.4 0.8 Miles<br />

0 0.2 0.4 0.8 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters. Vertical Datum NAVD88<br />

Figure 4-33<br />

Structure Contour Map of Base of Alluvium<br />

in the Fenner Gap Area<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig4-33_CADIZ_TM_BaseAlluv_V1_MH.mxd


3 820000<br />

3 810000<br />

6 30000<br />

3000<br />

6 30000<br />

Legend<br />

3000<br />

3500<br />

3500<br />

2000<br />

2500<br />

Saturated Thickness (ft), Alluvium<br />

Rail Roads<br />

Model Domain<br />

1000<br />

1500<br />

500<br />

Boundary Conditions<br />

Constant Head Boundary<br />

No Flow Boundary<br />

A CADIZ Wells<br />

2000<br />

6 40000<br />

6 40000<br />

1000<br />

A AAA<br />

A<br />

A<br />

A<br />

A<br />

1500<br />

3000<br />

3500<br />

A<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig_4-34_CADIZ_TM_SatThick_Alluvium_FG033.mxd<br />

2500<br />

2000<br />

1500<br />

500<br />

0 0.5 1 2 Miles<br />

0 0.5 1 2 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters. Vertical Datum NAVD88<br />

Figure 4-34<br />

Isopach Map<br />

Saturated Alluvium<br />

3 820000<br />

3 810000


3 826000<br />

3 825000<br />

3 824000<br />

3 823000<br />

3 822000<br />

3 821000<br />

3 820000<br />

3 819000<br />

3 818000<br />

3 817000<br />

3 816000<br />

3 815000<br />

3 814000<br />

Legend<br />

6 39000<br />

6 39000<br />

6 40000<br />

6 40000<br />

6 41000<br />

6 41000<br />

6 42000<br />

6 42000<br />

Fenner_BND Geology Units<br />

<strong>Cadiz</strong> Study Area Alluvium<br />

Interstates<br />

Teritary Volcanics<br />

Rail Roads<br />

Mesozoic Granitic Rocks<br />

Base of Old Alluvium Permian/Pennsylvanian Carbonate Rock Units<br />

WaterBodies<br />

-100<br />

6 43000<br />

100<br />

6 43000<br />

Cambrian Carbonate Rock Units<br />

Precambrian Granitic Rocks<br />

Approximate Extent of Consolidated Fanglomerates<br />

6 44000<br />

-200<br />

400<br />

800<br />

6 44000<br />

-2000<br />

-1500<br />

600<br />

300<br />

-1650<br />

0<br />

500<br />

6 45000<br />

200<br />

700<br />

6 45000<br />

-1000<br />

-600<br />

1100<br />

1000<br />

6 46000<br />

6 46000<br />

6 47000<br />

-500<br />

6 47000<br />

6 48000<br />

6 48000<br />

¯<br />

3 826000<br />

3 825000<br />

3 824000<br />

3 823000<br />

3 822000<br />

3 821000<br />

3 820000<br />

3 819000<br />

3 818000<br />

3 817000<br />

3 816000<br />

3 815000<br />

3 814000<br />

0 0.2 0.4 0.8 Miles<br />

0 0.2 0.4 0.8 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters. Vertical Datum NAVD88<br />

Figure 4-35<br />

Estimated Extent of Consolidated<br />

Fanglomerates in the Fenner Gap Area<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig4-35_CADIZ_TM_BaseOldAlluv_V1_MR.mxd


3 826000<br />

3 825000<br />

3 824000<br />

3 823000<br />

3 822000<br />

3 821000<br />

3 820000<br />

3 819000<br />

3 818000<br />

3 817000<br />

3 816000<br />

3 815000<br />

3 814000<br />

Legend<br />

6 39000<br />

6 39000<br />

Fenner_BND<br />

<strong>Cadiz</strong> Study Area<br />

6 40000<br />

1100<br />

3000<br />

6 40000<br />

Interstates<br />

Rail Roads<br />

Carbonate Thickness (ft)<br />

Fault<br />

WaterBodies<br />

1200<br />

1400<br />

2000<br />

1300<br />

Geology Units<br />

Alluvium<br />

6 41000<br />

6 41000<br />

750<br />

1500<br />

6 42000<br />

6 42000<br />

500<br />

1400<br />

600<br />

900<br />

200<br />

6 43000<br />

750<br />

800<br />

400<br />

300<br />

700<br />

6 43000<br />

Teritary Volcanics<br />

Mesozoic Granitic Rocks<br />

Permian/Pennsylvanian Carbonate Rock Units<br />

Cambrian Carbonate Rock Units<br />

Precambrian Granitic Rocks<br />

800<br />

1300<br />

700<br />

6 44000<br />

400<br />

1200<br />

1100<br />

0<br />

700<br />

500<br />

6 44000<br />

1000<br />

800<br />

900<br />

500<br />

300<br />

6 45000<br />

1500<br />

1000<br />

6 45000<br />

2000<br />

1500<br />

2300<br />

1000<br />

200<br />

1500<br />

1000<br />

1500<br />

1000<br />

6 46000<br />

500<br />

0<br />

6 46000<br />

0<br />

6 47000<br />

6 47000<br />

6 48000<br />

6 48000<br />

¯<br />

3 826000<br />

3 825000<br />

3 824000<br />

3 823000<br />

3 822000<br />

3 821000<br />

3 820000<br />

3 819000<br />

3 818000<br />

3 817000<br />

3 816000<br />

3 815000<br />

3 814000<br />

0 0.2 0.4 0.8 Miles<br />

0 0.2 0.4 0.8 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters. Vertical Datum NAVD88<br />

Figure 4-36<br />

Isopach Map of Carbonate Rock Unit<br />

in the Fenner Gap Area<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig4-36_CADIZ_TM_CarbThick_V1_MR.mxd


3 826000<br />

3 825000<br />

3 824000<br />

3 823000<br />

3 822000<br />

3 821000<br />

3 820000<br />

3 819000<br />

3 818000<br />

3 817000<br />

3 816000<br />

3 815000<br />

3 814000<br />

Legend<br />

6 39000<br />

6 39000<br />

0<br />

500<br />

6 40000<br />

-2000<br />

1000<br />

6 40000<br />

-1000<br />

-500<br />

-1000<br />

-1500 -1000<br />

6 41000<br />

-2000<br />

500<br />

-500<br />

6 41000<br />

6 42000<br />

6 42000<br />

Base of Carbonates Geology Units<br />

Fault<br />

Alluvium<br />

Fenner_BND<br />

Teritary Volcanics<br />

<strong>Cadiz</strong> Study Area Mesozoic Granitic Rocks<br />

Interstates<br />

Permian/Pennsylvanian Carbonate Rock Units<br />

Rail Roads<br />

Cambrian Carbonate Rock Units<br />

Precambrian Granitic Rocks<br />

0<br />

6 43000<br />

-500<br />

-500<br />

6 43000<br />

-4500<br />

6 44000<br />

-3000<br />

-1000<br />

500<br />

6 44000<br />

-3500<br />

-4000<br />

-2500<br />

-500<br />

0<br />

0<br />

-1000<br />

6 45000<br />

-1500<br />

6 45000<br />

-1500<br />

500<br />

-1000<br />

-500<br />

0<br />

0<br />

6 46000<br />

1000<br />

6 46000<br />

6 47000<br />

6 47000<br />

6 48000<br />

6 48000<br />

3 826000<br />

3 825000<br />

3 824000<br />

3 823000<br />

3 822000<br />

3 821000<br />

3 820000<br />

3 819000<br />

3 818000<br />

3 817000<br />

3 816000<br />

3 815000<br />

3 814000<br />

0 0.2 0.4 0.8 Miles<br />

0 0.2 0.4 0.8 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters. Vertical Datum NAVD88<br />

Figure 4-37<br />

Structure Contour Map on Base of<br />

Carbonate Rock Unit in the Fenner Gap<br />

Area<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig4-37_CADIZ_TM_BaseOfCarb_V3_MR.mxd


3 826000<br />

3 825000<br />

3 824000<br />

3 823000<br />

3 822000<br />

3 821000<br />

3 820000<br />

3 819000<br />

3 818000<br />

3 817000<br />

3 816000<br />

3 815000<br />

3 814000<br />

620<br />

580<br />

610<br />

6<br />

!(<br />

39000<br />

006N014E35B001S<br />

6 39000<br />

6 40000<br />

6 40000<br />

#*<br />

!(<br />

A<br />

005N014E13M001S<br />

PW-1CI-3<br />

A<br />

6 41000<br />

A<br />

A<br />

MW-2<br />

6 41000<br />

CI-2<br />

A<br />

A<br />

MW-1<br />

CI-1<br />

6 42000<br />

A#*<br />

MW-6<br />

TW-2B A MW-5<br />

MW-3<br />

6 42000<br />

660<br />

6 43000<br />

630<br />

MW-7/7A<br />

TW-1<br />

610<br />

650<br />

640<br />

#* TW-2<br />

#* #*<br />

Legend<br />

A Existing <strong>Cadiz</strong> Wells<br />

GW Elevation contour (ft msl)*<br />

#* Exploratory Drilling/Test Well Location<br />

#* CADIZ AG Wells<br />

!( Springs<br />

!( Wells<br />

Geology Units<br />

Interstates<br />

Alluvium<br />

Alluvium-Bedrock Contact Teritary Volcanics<br />

Mesozoic Granitic Rocks<br />

Permian/Pennsylvanian Carbonate Rock Units<br />

Cambrian Carbonate Rock Units<br />

Precambrian Granitic Rocks<br />

* Refer to Table 4 for summary of groundwater elevation measurements<br />

6 43000<br />

600<br />

6 44000<br />

6 44000<br />

620<br />

TW-3<br />

6 45000<br />

6 45000<br />

005N015E04G001S<br />

005N015E04F001S<br />

!(<br />

!(<br />

6 46000<br />

6 46000<br />

6 47000<br />

690<br />

6 47000<br />

670<br />

¯<br />

6 48000<br />

6 48000<br />

680<br />

700<br />

0 0.25 0.5 1 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters<br />

3 826000<br />

3 825000<br />

3 824000<br />

3 823000<br />

3 822000<br />

3 821000<br />

3 820000<br />

3 819000<br />

3 818000<br />

3 817000<br />

3 816000<br />

3 815000<br />

3 814000<br />

0 0.25 0.5 1 Miles<br />

Figure 4-38<br />

<strong>Groundwater</strong> Elevation Contour Map<br />

in the Fenner Gap Area<br />

\\cheron\Proj\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig4-38_CADIZ_TM_GW_ElevationContourMap_V1_MH.mxd


3 820000<br />

3 810000<br />

6 30000<br />

6 30000<br />

Legend<br />

A CADIZ Wells<br />

Rail Roads<br />

Model Domain<br />

Boundary Conditions<br />

Constant Head Boundary<br />

No Flow Boundary<br />

Active Grid<br />

6 40000<br />

A AAA<br />

A<br />

A<br />

A<br />

A<br />

CI-2<br />

MW-5<br />

MW-1<br />

CI-1<br />

MW-3<br />

MW-2<br />

PW-1 CI-3<br />

6 40000<br />

MW-7/7A<br />

MW-6<br />

A<br />

6/15-29<br />

0 0.35 0.7 1.4 Miles<br />

00.350.7 1.4 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters. Vertical Datum NAVD88<br />

Figure 4-39<br />

<strong>Groundwater</strong> Flow Model Extents,<br />

Grid <strong>and</strong> Boundary Conditions<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig_4-39_CADIZ_TM_<strong>Groundwater</strong>ModelFlowExtents.mxd<br />

3 820000<br />

3 810000


3 820000<br />

3 810000<br />

6 30000<br />

E E E E E E E<br />

E E E E E E E E E E E E E<br />

E E E E E E E E E<br />

E E E E E<br />

E E E E E E E E E<br />

E E E E E<br />

6 30000<br />

Legend<br />

A CADIZ Wells<br />

Rail Roads<br />

Model Domain<br />

A AAA<br />

A<br />

A<br />

A<br />

A<br />

E<br />

EE<br />

EE E<br />

EE E EE<br />

E<br />

E E E<br />

E<br />

E<br />

E E E E E E<br />

E E<br />

E<br />

E E<br />

E<br />

E<br />

E E<br />

E E<br />

E E<br />

E<br />

E<br />

E<br />

E E E E<br />

EEE E<br />

E<br />

E E<br />

E<br />

E E E<br />

EE E<br />

E<br />

EE<br />

MW-6<br />

5N\14E-13<br />

MW-1<br />

CI-3<br />

MW-5<br />

MW-3<br />

MW-2 CI-1<br />

Boundary Conditions<br />

Constant Head Boundary<br />

No Flow Boundary<br />

6 40000<br />

E E E<br />

E E E<br />

E E E E<br />

E E E E<br />

E E E E<br />

E E E E<br />

6 40000<br />

E <strong>Groundwater</strong> Elevation Targets<br />

E PEST Pilot Points<br />

MW-7<br />

A<br />

E TW-3<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig_4-40_CADIZ_TM_PESTPilotPts<strong>and</strong>TargetsL1_V1_SS.mxd<br />

E<br />

0 0.5 1 2 Miles<br />

0 0.5 1 2 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters. Vertical Datum NAVD88<br />

Figure 4-40<br />

PEST Pilot Points <strong>and</strong><br />

Targets in Layer 1<br />

3 820000<br />

3 810000


3 820000<br />

3 810000<br />

6 30000<br />

6 30000<br />

Legend<br />

A CADIZ Wells<br />

Rail Roads<br />

Model Domain<br />

Boundary Conditions<br />

Constant Head Boundary<br />

No Flow Boundary<br />

6 40000<br />

A AAA<br />

A<br />

A<br />

A<br />

A<br />

E<br />

EE E EEE E<br />

EE<br />

E<br />

E E E E<br />

E E E<br />

E E<br />

E CI-2 E<br />

E E<br />

E<br />

E E<br />

A<br />

E E E E E E<br />

6 40000<br />

E <strong>Groundwater</strong> Elevation Targets<br />

E PEST Pilot Points<br />

E E E E E E<br />

E E E E E<br />

E<br />

E E<br />

MW-7A<br />

E<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig_4-41_CADIZ_TM_PESTPilotPts<strong>and</strong>TargetsL3_V1_SS.mxd<br />

E<br />

E<br />

E<br />

E<br />

E<br />

E<br />

E<br />

E<br />

E<br />

E<br />

E<br />

0 0.5 1 2 Miles<br />

0 0.5 1 2 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters. Vertical Datum NAVD88<br />

Figure 4-41<br />

PEST Pilot Points <strong>and</strong><br />

Targets in Layer 3<br />

3 820000<br />

3 810000


3 820000<br />

3 810000<br />

6 30000<br />

Legend<br />

6 30000<br />

A CADIZ Wells<br />

Rail Roads<br />

Model Domain<br />

Boundary Conditions<br />

Constant Head Boundary<br />

No Flow Boundary<br />

5N\14E-13<br />

-0.04<br />

MW-1<br />

0.06<br />

CI-3<br />

0.03<br />

6 40000<br />

CI-2<br />

-0.27<br />

6 40000<br />

A AAA<br />

A<br />

A<br />

A<br />

A<br />

MW-2<br />

0<br />

Residual (Obs - Sim)<br />

< -1<br />

-1 - -0.1<br />

-0.1 - 0.1<br />

0.1 - 1<br />

> 1<br />

<strong>Groundwater</strong> Contours (ft)<br />

595<br />

650<br />

CI-1<br />

0.19<br />

MW-7<br />

-0.01<br />

600<br />

655<br />

MW-7A<br />

0<br />

MW-6<br />

0.01<br />

MW-5<br />

0.04<br />

MW-3<br />

-0.03<br />

645<br />

A<br />

635 630<br />

625<br />

615<br />

640<br />

TW-3<br />

-0.01<br />

0 0.5 1 2 Miles<br />

0 0.5 1 2 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters. Vertical Datum NAVD88<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig_4-42_CADIZ_TM_GWContours_TargetResiduals_FG033.mxd<br />

3 820000<br />

3 810000<br />

Figure 4-42<br />

PEST Simulated <strong>Groundwater</strong> Contours <strong>and</strong><br />

Target Residuals - K Upper Limit = 600 ft/d


3 820000<br />

3 810000<br />

6 30000<br />

E E E E E E E<br />

E E E E E E E E E E E E E<br />

E E E E E E E E E<br />

E E E E E<br />

E E E E E E E E E<br />

E E E E E<br />

6 30000<br />

E<br />

EE<br />

EE E<br />

EE E EE<br />

E<br />

E E E<br />

E<br />

E<br />

E E E E E E<br />

E E<br />

E<br />

E E<br />

E<br />

E<br />

E E<br />

E E<br />

E E<br />

E<br />

E<br />

E<br />

E E E E E<br />

EEE E<br />

E<br />

E E<br />

E<br />

E E E<br />

EE E<br />

E<br />

E<br />

EE<br />

E<br />

E<br />

A AAA<br />

A<br />

A<br />

A<br />

A<br />

MW-7/7A<br />

MW-6<br />

CI-2<br />

MW-5<br />

MW-1<br />

CI-1<br />

MW-3<br />

PW-1 CI-3<br />

MW-2<br />

Legend<br />

A CADIZ Wells<br />

Hydraulic Conductivity Layer 1<br />

Rail Roads<br />

Kh (ft/day)<br />

Model Domain<br />

1 - 50<br />

Boundary Conditions<br />

51 - 100<br />

Constant Head Boundary 101 - 150<br />

No Flow Boundary<br />

E <strong>Groundwater</strong> Elevation Targets<br />

E PEST Pilot Points<br />

151 - 200<br />

201 - 250<br />

251 - 300<br />

301 - 350<br />

6 40000<br />

E E E<br />

E E E<br />

E E E E<br />

E E E E<br />

E E E E<br />

E E E E<br />

6 40000<br />

351 - 400<br />

401 - 450<br />

451 - 500<br />

501 - 550<br />

551 - 600<br />

601 - 650<br />

651 - 700<br />

701 - 750<br />

751 - 800<br />

A<br />

6/15-29<br />

E<br />

E<br />

0 0.5 1 2 Miles<br />

0 0.5 1 2 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters. Vertical Datum NAVD88<br />

Figure 4-43<br />

PEST Computed Hydraulic Conductivity<br />

Distribution in Layer 1<br />

with K Upper Limit = 600 ft/d<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig_4-43_CADIZ_TM_K_L1_FG033.mxd<br />

3 820000<br />

3 810000


3 820000<br />

3 810000<br />

6 30000<br />

6 30000<br />

E<br />

Legend<br />

A CADIZ Wells<br />

Hydraulic Conductivity Layer 3<br />

Rail Roads<br />

Kh (ft/day)<br />

Model Domain<br />

0 - 50<br />

Boundary Conditions<br />

51 - 100<br />

Constant Head Boundary 101 - 150<br />

No Flow Boundary<br />

E <strong>Groundwater</strong> Elevation Targets<br />

E PEST Pilot Points<br />

151 - 200<br />

201 - 250<br />

251 - 300<br />

301 - 350<br />

6 40000<br />

E E E E E E<br />

E<br />

E E E E E E<br />

E E E E E<br />

E<br />

EE E EEE E<br />

EE<br />

E<br />

E E E E<br />

E E E<br />

E E<br />

E<br />

E E<br />

E<br />

E E E<br />

EE E<br />

E<br />

EE<br />

E<br />

A AAA<br />

A<br />

A<br />

A<br />

A<br />

MW-7/7A<br />

MW-6<br />

CI-2<br />

MW-5<br />

MW-1<br />

CI-1<br />

MW-3<br />

CI-3<br />

MW-2<br />

PW-1<br />

6 40000<br />

351 - 400<br />

401 - 450<br />

451 - 500<br />

501 - 550<br />

551 - 600<br />

601 - 650<br />

651 - 700<br />

701 - 750<br />

751 - 800<br />

E<br />

E<br />

E E<br />

A<br />

E<br />

6/15-29<br />

E<br />

E<br />

E<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig_4-44_CADIZ_TM_K_L3_FG033.mxd<br />

E<br />

E<br />

E<br />

E<br />

E<br />

E<br />

E<br />

E<br />

0 0.5 1 2 Miles<br />

0 0.5 1 2 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters. Vertical Datum NAVD88<br />

Figure 4-44<br />

PEST Computed Hydraulic Conductivity<br />

Distribution in Layer 3<br />

with K Upper Limit = 600 ft/d<br />

3 820000<br />

3 810000


3 820000<br />

3 810000<br />

6 30000<br />

Legend<br />

6 30000<br />

A CADIZ Wells<br />

Rail Roads<br />

Model Domain<br />

Boundary Conditions<br />

Constant Head Boundary<br />

No Flow Boundary<br />

5N\14E-13<br />

-0.14<br />

MW-1<br />

0.08<br />

CI-3<br />

0.05<br />

6 40000<br />

6 40000<br />

CI-2<br />

-0.41<br />

Residual (Obs - Sim)<br />

< -1<br />

-1 - -0.1<br />

-0.1 - 0.1<br />

0.1 - 1<br />

> 1<br />

<strong>Groundwater</strong> Contours (ft)<br />

600<br />

MW-7<br />

-0.5<br />

A AAA<br />

A<br />

A<br />

A<br />

A<br />

MW-2<br />

0.02<br />

595<br />

655<br />

635<br />

CI-1<br />

0.33<br />

600<br />

MW-6<br />

0.1<br />

MW-5<br />

0.62<br />

MW-3<br />

0.08<br />

MW-7A<br />

-0.52<br />

A<br />

630<br />

640<br />

615<br />

650<br />

625<br />

645<br />

TW-3<br />

-0.18<br />

0 0.5 1 2 Miles<br />

0 0.5 1 2 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters. Vertical Datum NAVD88<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig_4-45_CADIZ_TM_GWContours_TargetResiduals_FG032c.mxd<br />

3 820000<br />

3 810000<br />

Figure 4-45<br />

PEST Simulated <strong>Groundwater</strong> Contours <strong>and</strong><br />

Target Residuals - K Upper Limit = 400 ft/d


3 820000<br />

3 810000<br />

6 30000<br />

E E E E E E E<br />

E E E E E E E E E E E E E<br />

E E E E E E E E E<br />

E E E E E<br />

E E E E E E E E E<br />

E E E E E<br />

6 30000<br />

E<br />

EE<br />

EE E<br />

EE E EE<br />

E<br />

E E E<br />

E<br />

E<br />

E E E E E E<br />

E E<br />

E<br />

E E<br />

E<br />

E<br />

E E<br />

E E<br />

E E<br />

E<br />

E<br />

E<br />

E E E E E<br />

EEE E<br />

E<br />

E E<br />

E<br />

E E E<br />

EE E<br />

E<br />

E<br />

EE<br />

E<br />

E<br />

A AAA<br />

A<br />

A<br />

A<br />

A<br />

MW-7/7A<br />

MW-6<br />

CI-2<br />

MW-5<br />

MW-1<br />

CI-1<br />

MW-3<br />

PW-1 CI-3<br />

MW-2<br />

Legend<br />

A CADIZ Wells<br />

Hydraulic Conductivity Layer 1<br />

Rail Roads<br />

Kh (ft/day)<br />

Model Domain<br />

1 - 50<br />

Boundary Conditions<br />

51 - 100<br />

Constant Head Boundary 101 - 150<br />

No Flow Boundary<br />

E <strong>Groundwater</strong> Elevation Targets<br />

E PEST Pilot Points<br />

151 - 200<br />

201 - 250<br />

251 - 300<br />

301 - 350<br />

6 40000<br />

E E E<br />

E E E<br />

E E E E<br />

E E E E<br />

E E E E<br />

E E E E<br />

6 40000<br />

351 - 400<br />

401 - 450<br />

451 - 500<br />

501 - 550<br />

551 - 600<br />

601 - 650<br />

651 - 700<br />

701 - 750<br />

751 - 800<br />

A<br />

6/15-29<br />

E<br />

E<br />

0 0.5 1 2 Miles<br />

0 0.5 1 2 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters. Vertical Datum NAVD88<br />

Figure 4-46<br />

PEST Computed Hydraulic Conductivity<br />

Distribution in Layer 1<br />

with K Upper Limit = 400 ft/d<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig_4-46_CADIZ_TM_K_L1_FG032c.mxd<br />

3 820000<br />

3 810000


3 820000<br />

3 810000<br />

6 30000<br />

6 30000<br />

E<br />

Legend<br />

A CADIZ Wells<br />

Hydraulic Conductivity Layer 3<br />

Rail Roads<br />

Kh (ft/day)<br />

Model Domain<br />

0 - 50<br />

Boundary Conditions<br />

51 - 100<br />

Constant Head Boundary 101 - 150<br />

No Flow Boundary<br />

E <strong>Groundwater</strong> Elevation Targets<br />

E PEST Pilot Points<br />

151 - 200<br />

201 - 250<br />

251 - 300<br />

301 - 350<br />

6 40000<br />

E E E E E E<br />

E<br />

E E E E E E<br />

E E E E E<br />

E<br />

EE E EEE E<br />

EE<br />

E<br />

E E E E<br />

E E E<br />

E E<br />

E<br />

E E<br />

E<br />

E E E<br />

EE E<br />

E<br />

EE<br />

E<br />

A AAA<br />

A<br />

A<br />

A<br />

A<br />

MW-7/7A<br />

MW-6<br />

CI-2<br />

MW-5<br />

MW-1<br />

CI-1<br />

MW-3<br />

CI-3<br />

MW-2<br />

PW-1<br />

6 40000<br />

351 - 400<br />

401 - 450<br />

451 - 500<br />

501 - 550<br />

551 - 600<br />

601 - 650<br />

651 - 700<br />

701 - 750<br />

751 - 800<br />

E<br />

E<br />

E E<br />

A<br />

E<br />

6/15-29<br />

E<br />

E<br />

E<br />

\\cheron\Projects\BrownsteinHyattFarbe\386303<strong>Cadiz</strong>\GIS\ArcMap\TMFigures\Fig_4-47_CADIZ_TM_K_L3_FG032c.mxd<br />

E<br />

E<br />

E<br />

E<br />

E<br />

E<br />

E<br />

E<br />

0 0.5 1 2 Miles<br />

0 0.5 1 2 Kilometers<br />

Projected Coordinate System:<br />

NAD 1983 UTM Zone 11N meters. Vertical Datum NAVD88<br />

Figure 4-47<br />

PEST Computed Hydraulic Conductivity<br />

Distribution in Layer 3<br />

with K Upper Limit = 400 ft/d<br />

3 820000<br />

3 810000


Simulated Head (ft)<br />

615<br />

610<br />

605<br />

600<br />

595<br />

K Upper Limit = 600 ft/d<br />

K Upper Limit = 400 ft/d<br />

Observed = Simulated<br />

590<br />

590 595 600 605 610 615<br />

Observed Head (ft)<br />

Figure 4-48<br />

Scatter Plot Showing Observed Versus Simulated<br />

<strong>Groundwater</strong> Levels from PEST Simulations


Simulated Head (ft)<br />

615<br />

610<br />

605<br />

600<br />

595<br />

K Upper Limit = 600 ft/d<br />

K Upper Limit = 400 ft/d<br />

Observed = Simulated<br />

590<br />

590 595 600 605 610 615<br />

Observed Head (ft)<br />

Figure 4-48<br />

Scatter Plot Showing Observed Versus Simulated<br />

<strong>Groundwater</strong> Levels from PEST Simulations


Simulated Head (ft)<br />

615<br />

610<br />

605<br />

600<br />

595<br />

K Upper Limit = 600 ft/d<br />

K Upper Limit = 400 ft/d<br />

Observed = Simulated<br />

590<br />

590 595 600 605 610 615<br />

Observed Head (ft)<br />

Figure 4-48<br />

Scatter Plot Showing Observed Versus Simulated<br />

<strong>Groundwater</strong> Levels from PEST Simulations


5.0 References Cited<br />

Bassett, A.M. <strong>and</strong> D.H. Kupfer. 1964. A Geologic Reconnaissance in the Southeastern Mojave<br />

Desert, California. California Division of Mines <strong>and</strong> Geology Special Report 83.<br />

Bassett, A.M., D.H. Kupfer, <strong>and</strong> F.C. Barstow. 1959. Core Logs from Bristol, <strong>Cadiz</strong> <strong>and</strong> Danby<br />

Dry Lakes, San Bernardino County, California. US Geological Survey Bulletin 1045-D.<br />

pp. 97-138.<br />

Bedford, D.R., Miller, D.M., Phelps, G.A. 2006. Preliminary Surficial Geologic Map Database of<br />

the Amboy 30x60 Minute Quadrangle, California. U.S. Geological Survey Open-File Report<br />

2006-1165.<br />

Bedinger, M.S., Langer, W.H., <strong>and</strong> Reed, J.E. 1989. Ground-water Hydrology, in Bedinger, M.S.,<br />

Sargent, K.A., <strong>and</strong> Langer, W.H., eds. Studies of geology <strong>and</strong> hydrology in the Basin <strong>and</strong> Range<br />

Province, southwestern United States, for isolation of high-level nuclear waste – Characterization of<br />

the Death Valley region, Nevada <strong>and</strong> California. U.S. Geological Survey, Professional Paper<br />

1370-F. p 49.<br />

Bedinger, M.S., Sargent, K.A., <strong>and</strong> Langer, W.H., eds. Studies of Geology <strong>and</strong> Hydrology in the<br />

Basin <strong>and</strong> Range Province, Southwestern United States, for Isolation of High-Level Nuclear Waste –<br />

Characterization of the Death Valley Region, Nevada <strong>and</strong> California. U.S. Geological Survey.<br />

Professional Paper 1370-F. p 49.<br />

Belcher, W.R., Sweetkind, D.S., <strong>and</strong> Elliott, P.E. 2002. Probability Distributions of Hydraulic<br />

Conductivity for the Hydrogeologic Units of the Death Valley Regional Ground-Water Flow System,<br />

Nevada <strong>and</strong> California. U.S. Geological Survey Water-Resources Investigation Report 02-4212.<br />

p 18.<br />

Bishop, C.C. 1963. Needles Sheet, Geologic Map of California. California Division of Mines<br />

<strong>and</strong> Geology. Scale 1:250,000.<br />

Burchfiel, B.C. <strong>and</strong> Davis, G.A. (Davis).1980. “Mojave Desert <strong>and</strong> Surrounding Environs”.<br />

The Geotectonic Development of California. Ernst, W.G. ed. Prentice-Hall, Englewood CLIFFS.<br />

NJ.<br />

California Department of Water Resources (CDWR). 2010. California’s <strong>Groundwater</strong>.<br />

Bulletin 118 on the world wide web:<br />

http://www.water.ca.gov/groundwater/bulletin118/update2003.cfm.<br />

Campbell, G.S. 1985. Soil Physics with BASIC: Transport models for soil plant systems.<br />

Amsterdam, The Netherl<strong>and</strong>s. Elsevier, Developments in Soil Science, No. 14. p 150.<br />

Czarnecki, J.B. 1997. Geohydrology <strong>and</strong> Evapotranspiration at Franklin Lake Playa, Inyo County,<br />

California, with a section on Estimating Evapotranspiration Using the Energy-Budget Eddy-<br />

Correlation Technique. U.S. Geological Survey Water-Supply Paper 2377. 1997.<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 5-1


5.0 6BREFERENCES CITED<br />

Davisson, M.L. <strong>and</strong> Rose, T.P. 2000a. Maxey-Eakin Methods for Estimating <strong>Groundwater</strong><br />

Recharge in the Fenner Watershed, Southeastern, California. Lawrence Livermore National<br />

Laboratory. UCRL-ID139027. p 15.<br />

Dibblee, T.W., Jr. 1980a. Pre-Cenozoic Rock Units of the Mojave Desert. D.L. Fife <strong>and</strong><br />

A.R. Brown, eds. Geology <strong>and</strong> Mineral Wealth of the California Desert. South Coast<br />

Geological Society. Santa Ana, CA.<br />

Dibblee, T.W. 1980b. Cenozoic Rock Units of the Mojave Desert. D.L. Fife <strong>and</strong> A.R. Brown, eds.<br />

Geology <strong>and</strong> Mineral Wealth of the California Desert. South Coast Geological Society,<br />

Santa Ana, CA.<br />

Doherty, J. 2004. PEST Model-Independent Parameter Estimation User Manual. 5 th Edition.<br />

Watermark Numerical Computing. p 336.<br />

Dokka, R.K. <strong>and</strong> Travis, C.J. (Dokka). 1990. Late Cenozoic Strike Slip Faulting in the Mojave<br />

Desert, California. Tectonics, v. 9. No. 2. pp 311-340.<br />

Flint, A. 2009. Personal communications. April 2009.<br />

Freiwald, D.A. 1984. Ground-Water Resources of Lanfair <strong>and</strong> Fenner Valleys <strong>and</strong> Vicinity,<br />

San Bernardino County, California. US Geological Survey Water Resources Investigation<br />

Report 83-4082.<br />

Gale, H.S. 1951. Geology of the Saline Deposits, Bristol Dry Lake, San Bernardino County,<br />

California. California Division of Mines <strong>and</strong> Geology Special Report 13.<br />

GAP. 2009. http://www.biogeog.ucsb.edu/projects/gap/data/meta/l<strong>and</strong>covdd.html.<br />

Date Accessed<br />

GEOSCIENCE Support Services, Inc. (GSSI). 1995. Interim Report, Evaluation of Water<br />

Resources in Bristol, <strong>Cadiz</strong> <strong>and</strong> Fenner Basins. Prepared for <strong>Cadiz</strong> L<strong>and</strong> Company, Inc.<br />

(<strong>Cadiz</strong> Inc.) <strong>and</strong> Mojave Water District. September 6.<br />

GEOSCIENCE Support Services, Inc. (GSSI). 1999. <strong>Cadiz</strong> <strong>Groundwater</strong> Storage <strong>and</strong> Dry-Year<br />

Supply Program, Environmental Planning Technical Report, <strong>Groundwater</strong> Resources, Volumes I<br />

<strong>and</strong> II. Prepared for the Metropolitan Water District of Southern California. November 1999.<br />

GEOSCIENCE Support Services, Inc. (GSSI). 2000. <strong>Cadiz</strong> <strong>Groundwater</strong> Storage <strong>and</strong> Dry-Year<br />

Supply Program – Dry Lake Evapotranspiration Estimates. Letter from Dennis Williams to<br />

Tom Freeman, URS Greiner Woodward-Clyde. March 9, 2000.<br />

Hall, Jr., C.R. 2007. Introduction to the Geology of Southern California <strong>and</strong> Its Native Plants.<br />

University of California Press. p 493.<br />

H<strong>and</strong>ford, C.R. 1982. Sedimentology <strong>and</strong> Evaporite Genesis in a Holocene Continental Sabkha<br />

Playa Basin - Bristol Dry Lake, California. Sedimentology, Volume 29.<br />

Harbaugh, A.W., Banta, E.R., Hill, M.C. 2000. MODFLOW-2000, the U.S. Geological Survey<br />

Modular Ground-Water Model – User Guide to Modularization Concepts <strong>and</strong> the Ground-Water<br />

Flow Process. U.S. Geological Survey Open-File Report 00-92. p 121.<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 5-2


5.0 6BREFERENCES CITED<br />

Hazlett, R.W. 1992. “Some Thoughts on the Development of Amboy Crater.” Old Routes to<br />

the Colorado. San Bernardino County Museum Association Special Publication 92-2.<br />

Hazzard, J.C. 1933. Notes on the Cambrian Rocks or the Eastern Mojave Desert, California.<br />

California University Department of Geology Sciences Bulletin, v. 23, No. 2 Map 1,<br />

scale 1:187,500.<br />

Hevesi, J.A., Flint, A.L., <strong>and</strong> Flint, L.E. 2002. Preliminary Estimates of Spatially Distributed Net<br />

Infiltration <strong>and</strong> Recharge for the Death Valley Region, Nevada-California. U.S. Geological Survey<br />

Water Resources Investigations Report 02-4010.<br />

Hevesi, J.A., Flint, A.L., <strong>and</strong> Flint, L.E. 2003. Simulation of net infiltration <strong>and</strong> potential recharge<br />

using the distributed-parameter watershed model, INFILv3, of the Death Valley Region, Nevada <strong>and</strong><br />

California. U.S. Geological Survey Water-Resources Investigations Report 03-4090. p 161.<br />

Hevesi, J.A. 2009. Personal communications. April/May 2009<br />

Howard, K. A. 2002. Geologic Map of the Sheep Hole Mountains 30’x60’ Quadrangle,<br />

San Bernardino <strong>and</strong> Riverside, Counties, California. U.S. Geological Survey Miscellaneous Field<br />

Studies Map MF2344.<br />

Howard, K.A., E.D. Horringa, D.M. Miller <strong>and</strong> P. Stone. 1989. Geologic Map of the Eastern<br />

Parts of the <strong>Cadiz</strong> Lake <strong>and</strong> <strong>Cadiz</strong> Valley 15-Minute Quadrangles, San Bernardino <strong>and</strong> Riverside<br />

Counties, California. US Geological Survey Map MF-2086.<br />

Howard, K.A. <strong>and</strong> D.M. Miller. 1992. “Late Cenozoic Faulting at the Boundary between the<br />

Mojave <strong>and</strong> Sonoran Blocks: Bristol Lake Area, California.” S.M. Richard, ed. Deformation<br />

Associated with the Neogene Eastern California Shear Zone, Southwestern Arizona <strong>and</strong><br />

Southeastern California: Redl<strong>and</strong>s, California. San Bernardino County Museums Special<br />

Publication 92-1. pp. 37-47.<br />

Hunt, G.S. 1966. Ground Water Geology of the Bristol <strong>and</strong> <strong>Cadiz</strong> Valleys, San Bernardino County,<br />

California. M.S. Dissertation, University of Southern California<br />

Jachens, R.C., <strong>and</strong> Howard, K.A. 1992. “Bristol Lake Basin – A Deep Sedimentary Basin<br />

Along the Bristol-Danby Trough, Mojave Desert.” Old Routes to the Colorado. San Bernardino<br />

County Museums Special Publication 92-2. Redl<strong>and</strong>s, CA. pp 57·59.<br />

Karlstrom. K.E., Miller, C.F., Kingsbury, J.A., <strong>and</strong> Wooden, J.L. 1993. Pluton Emplacement<br />

Along an Active Ductile Thrust Zone. Piute Mountains. Southeastern California. Interaction<br />

Between Deformation <strong>and</strong> Solidification Processes. Geological Society of America Bulletin. Vol.<br />

105. p 213-230.<br />

Koehler, J.H. 1983. <strong>Groundwater</strong> in the Northeast Part of Twentynine Palms Marine Corps Base<br />

Baghdag Area. USGS Water Resources Investigations Report 83·4053. California.<br />

Kupfer, D.H. <strong>and</strong> A.M. Bassett. 1962. Geologic Reconnaissance Map of the Southeastern Mojave<br />

Desert, California. US Geological Survey, Field Investigations Map MF-205, Scale 1:125,000.<br />

Laczniak, R.J., J.L. Smith, P. E. Elliot, G.A. DeMeo, <strong>and</strong> M.A. Chatigny. 2001. Ground-Water<br />

Discharge Determined from Estimates of Evapotranspiration, Death Valley Regional Flow System,<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 5-3


5.0 6BREFERENCES CITED<br />

Nevada <strong>and</strong> California. US Geological Survey, Water-Resources Investigations Report 01-<br />

4195.<br />

Liggett, M.A., 2009a. Personal communication, Powerpoint Presentation containing photos<br />

of st<strong>and</strong>ing water on Bristol Dry Lake.<br />

Liggett, M.A., 2010. Generalized Geologic Map of Fenner Gap. January 3, 2010.<br />

Lindgren, R.J., Dutton, A.R., Hovorka, S.D., Worthington, S.R.H, <strong>and</strong> Painter, Scott. 2004.<br />

Conceptualization <strong>and</strong> Simulation of the Edwards Aquifer, San Antonio Region, Texas:<br />

U.S. Geological Survey Scientific Investigations Report 2004-5277. p 143.<br />

Maas, J. 1994. Depth to Basement Calculated from Gravity Data. Proprietary report to <strong>Cadiz</strong><br />

L<strong>and</strong> Company, Inc. (<strong>Cadiz</strong> Inc.)<br />

Maidment, D.R.. 1993. H<strong>and</strong>book of Hydrology. McGraw-Hill, Inc. p 889.<br />

Mendenhall, W.C. 1909. Some Desert Water Places in Southern California <strong>and</strong> Southwestern<br />

Nevada. US Geological Survey, Water-Supply Paper 224.<br />

Metropolitan Water District of Southern California. 1999. <strong>Cadiz</strong> <strong>Groundwater</strong> Storage <strong>and</strong><br />

Dry-Year Supply Program: Draft Environmental <strong>Impact</strong> Report/Draft Environmental <strong>Impact</strong><br />

Statement. SCH No. 99021039, Report No. 1157.<br />

Metropolitan Water District of Southern California. 2000. <strong>Cadiz</strong> <strong>Groundwater</strong> Storage <strong>and</strong><br />

Dry-Year Supply Program: Supplement to the Draft Environmental <strong>Impact</strong> Report/Draft<br />

Environmental <strong>Impact</strong> Statement. SCH No. 99021039, Report No. 1169.<br />

Metropolitan Water District of Southern California. 2001. <strong>Cadiz</strong> <strong>Groundwater</strong> Storage <strong>and</strong><br />

Dry-Year Supply Program: Final Environmental <strong>Impact</strong> Report / Final Environmental <strong>Impact</strong><br />

Statement. SCH No. 99021039, Report No. 1174 (in 4 volumes).<br />

Miller, D.A. <strong>and</strong> R.A. White. 1998: A Conterminous United States Multi-Layer Soil<br />

Characteristics Data Set for Regional Climate <strong>and</strong> Hydrology <strong>Modeling</strong>. Earth Interactions, 2.<br />

[Available on-line at http://EarthInteractions.org]<br />

Miller, D.M., Howard, K.A., <strong>and</strong> John, B.E. 1982. “Preliminary Geology of the Bristol Lake<br />

Region, Mojave Desert, California.” Cooper, J.D., compiler, Geologic Excursions in the Mojave<br />

Desert, Volume <strong>and</strong> Guidebook. Geological Society of America, Cordilleran Section 78th<br />

Annual Meeting, Fullerton, California, California State University. pp. 91-100.<br />

Miller, D.M., Miller, R.J., Nielson, J.E., Wilshire, H.G., Howard, K.A. <strong>and</strong> Stone, P. 1991.<br />

Preliminary Geologic Map of the East Mojave National Scenic Area, California. U.S. Geological<br />

Survey Open-File Report 91-435.<br />

Moyle, W.R. 1967. Water Wells <strong>and</strong> Springs in Bristol, Broadwell, <strong>Cadiz</strong>, Danby <strong>and</strong> Lavic Valleys<br />

<strong>and</strong> Vicinity, San Bernardino <strong>and</strong> Riverside Counties, California. California Department of<br />

Water Resources Bulletin 91-14.<br />

Moyle, W.R., Langer, W.H., Woolfenden, L.R., <strong>and</strong> Mulvihill, D.A. 1984. Maps Showing<br />

Ground-Water Levels, Springs, <strong>and</strong> Depth to Ground-Water, Basin <strong>and</strong> Range Province, Southern<br />

California. U.S. Geological Survey Water Resources Investigation Report 83-4116-B.<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 5-4


5.0 6BREFERENCES CITED<br />

Murbach, D., <strong>and</strong> Baldwin, J., eds. 1994. Mojave Desert. South Coast Geological Society.<br />

Santa Ana California, Martin Stout Volume. Fieldtrip Guidebook 22. p 669.<br />

National Oceanic Atmospheric Administration (NOAA). 2009. CPC US Unified Precipitation<br />

data provided by the NOAA/OAR/ESRL PSD. Climate Data Center, CPC. Boulder, Colorado,<br />

USA, from their Web site at http://www.esrl.noaa.gov/psd/.<br />

Nishikawa, T., Izbicki, J.A., Hevesi, J.A., Stamos, C.L., <strong>and</strong> Martin, P. 2004. Evaluation of<br />

Geohydrologic Framework, Recharge Estimates, <strong>and</strong> Ground-Water Flow of the Joshua Tree Area,<br />

San Bernardino County, California. U.S. Geological Survey Scientific Investigations Report<br />

2004-5267. p 115.<br />

NORCAL Geophysical Consultants, Inc. (NORCAL). 1997. Seismic Reflection Survey <strong>Cadiz</strong><br />

Valley, <strong>Cadiz</strong>, California. Proprietary report to <strong>Cadiz</strong>, Inc.<br />

Natural Resources Conservation Service (NRCS). 2009a.<br />

http://www.ncgc.nrcs.usda.gov/products/datasets/watershed/history.html.<br />

Natural Resources Conservation Service, United States Department of Agriculture (NRCS).<br />

2009b. STATSGO2. U.S. General Soil Map (STATSGO2) for California. Available online at<br />

http://soildatamart.nrcs.usda.gov<br />

Painter, S.L., Woodbury, A.D., Jiang, Y. 2007. Transmissivity Estimation for Highly<br />

Heterogeneous Aquifers: Comparison of Three Methods Applied to the Edwards Aquifer, Texas,<br />

USA. Hydrogeology Journal, No. 15. pp. 315-331.<br />

Parker, R.B. 1963. Recent Volcanism at Amboy Crater San Bernardino County. California<br />

Division of Mines <strong>and</strong> Geology Special Report 76. p 22.<br />

Rewis, D.L., Christensen, A.H., Matti, J.C., Hevesi, J.A., Nishikawa, Tracy, <strong>and</strong> Martin, Peter.<br />

2006. Geology, Ground-Water Hydrology, Geochemistry, <strong>and</strong> Ground-Water Simulation of the<br />

Beaumont <strong>and</strong> Banning Storage Units, San Gorgonio Pass Area, Riverside County, California.<br />

U.S. Geological Survey Scientific Investigations Report 2006-5026. p 173.<br />

Rosen, M.R. 1989. Sedimentologic, Geochemical <strong>and</strong> Hydrologic Evolution of an Intracontinental,<br />

Closed-Basin Playa (Bristol Dry Lake, CA): A Model for Playa Development <strong>and</strong> Its Implications for<br />

Paleoclimate. Ph.D. Dissertation, University of Texas, Austin, Texas. pp 266.<br />

Rosen, M.R. 1992. “The Depositional Environment <strong>and</strong> Evolution of Bristol Lake Basin,<br />

Eastern Mojave Desert, California.” Old Routes to the Colorado. Special Publication,<br />

San Bernardino County Museum Association.<br />

Simpson, R.W., R.C. Bracken, <strong>and</strong> D.J. Stierman. 1984. Aeromagnetic, Bouguer Gravity, <strong>and</strong><br />

Interpretation Maps, Sheep Hole-<strong>Cadiz</strong> Wildness Study Area, California. U.S. Geological Survey<br />

MF 1615-B, 4 sheets, scale 1:62,500.<br />

Thompson, D.G. 1929. The Mohave Desert Region, California, A geographic, geologic, <strong>and</strong><br />

hydrologic reconnaissance. U.S. Geological Survey Water Supply Paper, 578. pp 795.<br />

U.S. Geological Survey (USGS). 2000. Review of the <strong>Cadiz</strong> <strong>Groundwater</strong> Storage <strong>and</strong> Dry-Year<br />

Supply Program Draft Environmental Planning Technical Report, <strong>Groundwater</strong> Resources,<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 5-5


5.0 6BREFERENCES CITED<br />

Volumes I <strong>and</strong> II. Memor<strong>and</strong>um from James F. Devine to Molly S. Brady, Field Manager,<br />

Bureau of L<strong>and</strong> Management, Needles, California. February 23, 2000.<br />

U.S. Geological Survey (USGS). 2006a. National Elevation Dataset. http://ned.usgs.gov/<br />

U.S. Geological Survey (USGS). 2006b. Geology <strong>and</strong> Mineral Resources of the East Mojave<br />

National Scenic Area, San Bernardino County, California. U.S. Geological Survey Bulletin 2160.<br />

U.S. Geological Survey (USGS). 2007. Geology <strong>and</strong> Mineral Resources of the East Mojave<br />

National Scenic Area, San Bernardino County, California. U.S. Geological Survey Bulletin 2160.<br />

U.S. Geological Survey (USGS). 2008. Documentation of Computer Program INFIL3.0 – A<br />

Distributed-Parameter Watershed Model to Estimate Net Infiltration Below the Root Zone.<br />

U.S. Geological Survey Scientific Investigations Report 2008-5006. p 98. Online only.<br />

U.S. Geological Survey (USGS). 2009. Online Well Database.<br />

http://waterdata.usgs.gov/ca/nwis/inventory <strong>and</strong><br />

http://waterdata.usgs.gov/nwis/gwconstruction.<br />

WBG040910053237SCO/CADIZ_DRD3019_R1.DOC/101030015 5-6


@@<br />

@<br />

@@@@<br />

@@<br />

@@<br />

@<br />

@<br />

@@<br />

@<br />

@<br />

@@<br />

@<br />

@<br />

@@<br />

@<br />

@<br />

@<br />

@<br />

@@<br />

Qya<br />

Qya/Qia<br />

Qya<br />

Qya<br />

Qya<br />

Qyp<br />

Qyag<br />

Qyaf<br />

Qya<br />

Qyag<br />

Qha/fp<br />

Qha/mr<br />

Qha/fpg<br />

Qya<br />

Qya<br />

Qyag<br />

Qyag<br />

Qya<br />

Qya<br />

Qha/fv<br />

Qha/fp<br />

Qyes<br />

Qyw<br />

Qya+Qia<br />

Qia<br />

Qyv<br />

Qha/fpg<br />

Qya<br />

Qyae+Qya<br />

Qyay<br />

Qyay<br />

Qya/Qia<br />

Qha/pc<br />

Qya/Qia<br />

Qha/mp<br />

Qyv<br />

Qia+Qya<br />

Qya<br />

Qha/mr<br />

Qha/mv<br />

Qha/fp<br />

Qya<br />

Qye/Qmv<br />

Qyp<br />

Qyes<br />

Qya<br />

Qia<br />

Qpv-fpg<br />

Qyed+Qaed<br />

Qya<br />

Qya/Qia<br />

Qaed+Qyed<br />

Qha/fp<br />

Qha/mr<br />

Qyay+Qyao<br />

Qia<br />

Qyag<br />

Qia<br />

Qya<br />

Qpv-fpg<br />

Qiag<br />

Qya<br />

Qyw<br />

Qyv<br />

Qha/fv<br />

Qyay+Qaa<br />

Qyag<br />

Qia<br />

Qya+Qye<br />

Qiad<br />

Qha/mr<br />

Qya/Qia<br />

Qya<br />

Qyea+Qae<br />

Qha/ca<br />

Qya<br />

Qha/ca<br />

Qha/fv+mv<br />

Qha/fpg<br />

Qyae<br />

Qyag/Qiag<br />

Qyag/Qia<br />

Qyay+Qyao<br />

Qha/fpg<br />

Qia+Qya<br />

Qia<br />

Qyag+Qia<br />

Qya+Qia<br />

Qyv+Qav<br />

Qyw<br />

Qha/fv<br />

Qya+Qia<br />

Qia<br />

Qypf<br />

Qha/fpg<br />

Qya+Qia<br />

Qyag/Qia<br />

Qypf<br />

Qya/Qia<br />

Qia<br />

Qia<br />

Qya/Qia+Qia<br />

Qia<br />

Qha/pc<br />

Qha/fp<br />

QToa<br />

Qya+Qia<br />

Qyag<br />

QToa<br />

Qha/fp<br />

Qya/Qia+Qia<br />

Qha/fp<br />

Qha/pc<br />

Qha/fv<br />

Qyag<br />

Qya<br />

Qya+Qaa<br />

Qha/pc<br />

Qyag<br />

Qia<br />

Qyea/Qia<br />

Qia<br />

Qyag<br />

Qia<br />

Qha/mr+fp<br />

Qye+Qha/Qmv<br />

Qia<br />

Qyag<br />

Qha/fv<br />

Qia<br />

Qia<br />

Qha/mr<br />

Qya<br />

Qia<br />

Qyea+Qae<br />

Qha/mr<br />

Qha/mr<br />

Qyag<br />

Qyv<br />

Qyed+Qaed<br />

Qha/fpg<br />

Qha/mr+fp<br />

Qyag+Qiag<br />

Qha/mp<br />

Qia<br />

Qya+Qia<br />

Qia<br />

Qha/fp<br />

Qiag/fpg<br />

Qha/fv<br />

Qyes/Qiea<br />

Qyag/Qiag<br />

Qia<br />

Qya+Qia<br />

Qha/fv<br />

Qoa<br />

Qiag<br />

Qhs/ca<br />

Qyag+Qiag<br />

Qha/fp<br />

Qya<br />

Qya/Qia<br />

Qia<br />

Qia<br />

Qia<br />

Qha/mr<br />

Qya+Qia<br />

Qiao<br />

Qia<br />

Qya/Qia<br />

QToa<br />

Qia<br />

Qia+Qya<br />

Qhs/fpg<br />

Qyae<br />

Qha/mp<br />

Qyag<br />

Qia<br />

Qyed<br />

Qia<br />

Qia<br />

Qha/fp<br />

Qha/fv<br />

Qya+Qaa<br />

Qia<br />

Qia<br />

Qya/Qia<br />

Qpi-fpg<br />

Qyag<br />

Qha/pc<br />

Qia<br />

Qha/mr<br />

Qya<br />

Qoa<br />

Qpi-fpg<br />

Qha/mp<br />

Qia<br />

Qyv+Qav<br />

Qya<br />

Qia<br />

Qhs/fp<br />

Qia<br />

Qiao+Qoa<br />

Qha/fv<br />

Qiag<br />

Qyea<br />

Qya+Qia<br />

Qyag<br />

Qpd-fpg<br />

Qha/fp<br />

Qia<br />

Qya<br />

Qya+Qia<br />

Qia<br />

Qha/fv<br />

Qoa<br />

Qia+Qya<br />

Qmc<br />

Qia<br />

Qha/fv<br />

Qya/Qia<br />

Qha/fpg<br />

Qyag<br />

Qyag<br />

Qha/mr<br />

Qya<br />

Qha/mv<br />

Qha/mv<br />

Qyw+Qye<br />

Qha/pc<br />

Qya<br />

Qiag<br />

Qia+Qoa<br />

Qyag<br />

Qya+Qia<br />

Qyag/Qia<br />

Qia<br />

Qha/fp<br />

Qiag<br />

Qpv-fpg<br />

Qya<br />

Qia<br />

Qya<br />

Qia+Qya<br />

Qia<br />

Qia<br />

Qoa<br />

Qyay<br />

Qyae<br />

Qpv-fp<br />

Qia+Qya<br />

Qha/fpg<br />

Qha/fp?<br />

Qyag<br />

Qya<br />

Qha/pc<br />

Qia<br />

Qpd-fp<br />

Qoa<br />

Qha/fp<br />

Qyag<br />

Qyag<br />

Qha/pc<br />

Qia<br />

Qia<br />

Qyw+Qaw<br />

Qha/ca+sl<br />

Qia<br />

Qiao<br />

Qha/fp<br />

Qia<br />

Qha/ca<br />

Qia<br />

Qiag<br />

Qha/Qmv<br />

Qia<br />

Qiag<br />

Qya<br />

Qyea<br />

Qia<br />

Qha/fp<br />

Qya<br />

Qya<br />

QToa<br />

Qha/mr<br />

Qya<br />

Qia+Qya<br />

Qha/mp<br />

Qoa<br />

Qha/pc<br />

Qya<br />

Qia?<br />

Qha/fp<br />

Qpi-fpg<br />

Qyag<br />

Qoa<br />

Qha/pc<br />

Qya+Qaa<br />

Qya+Qia<br />

Qoa<br />

Qyae<br />

Qoa<br />

Qha/mr<br />

Qia<br />

Qia+Qya<br />

Qia+Qya<br />

Qyag/Qia<br />

Qiag<br />

Qya<br />

Qia<br />

Qya+Qaa<br />

Qoa<br />

QToa<br />

Qya<br />

Qia+Qya<br />

Qoad<br />

Qiao<br />

Qya+Qia<br />

Qyay+Qyao<br />

Qha/fv<br />

Qha/fp<br />

Qya+Qia<br />

Qia<br />

Qia<br />

Qha/mp<br />

Qha/fv<br />

Qia<br />

Qha/mv<br />

Qha/ca<br />

Qyw+Qaw<br />

Qia<br />

Qya+Qia<br />

Qiag/fpg<br />

Qha/fpg<br />

Qha/mr<br />

Qia<br />

Qha/fv<br />

Qia<br />

Qya+Qia<br />

Qha/mp<br />

Qia<br />

Qya<br />

Qha/mv<br />

Qya<br />

Qia+Qya<br />

Qha/fp<br />

Qia<br />

Qiag<br />

Qia<br />

Qha/fv<br />

Qmc<br />

Qia<br />

Qya+Qia<br />

Qha/fp<br />

Qiao+Qia<br />

Qiag<br />

Qia<br />

Qye+Qae<br />

Qpv-fpg<br />

Qia+Qoa<br />

Qya+Qia<br />

Qia<br />

Qha/fv<br />

Qpv-fpg<br />

Qya<br />

Qha/pc<br />

Qia<br />

Qha/fp<br />

Qha/fpg<br />

Qha/fv<br />

Qha/fpg<br />

Qyag/Qiag<br />

Qyw<br />

Qoa<br />

Qyag<br />

Qya<br />

Qia<br />

Qha/fv<br />

Qia+Qya<br />

Qha/fp<br />

Qia<br />

Qia<br />

Qha/pc<br />

Qyea<br />

Qia<br />

Qha/fpg<br />

Qha/fp<br />

Qia<br />

Qia<br />

Qiag<br />

Qye/Qyvo<br />

Qya+Qaa<br />

Qia+Qya<br />

Qha/fp<br />

Qha/fp?<br />

Qyag<br />

Qaw+Qyw<br />

Qoa?<br />

Qya+Qaa<br />

Qyea<br />

Qyay<br />

Qya+Qia<br />

Qaed+Qyed<br />

Qha/mp?<br />

Qha/mv<br />

QToa<br />

Qiag<br />

Qia<br />

Qia+Qya<br />

Qia<br />

Qha/fp<br />

Qha/mp<br />

Qia<br />

Qya<br />

Qha/mv<br />

Qha/fv<br />

Qyag+Qiag<br />

Qya+Qia<br />

Qoa<br />

Qya+Qye<br />

Qia<br />

Qiao<br />

Qia+Qya<br />

Qha/fp<br />

Qpi-fpg<br />

Qha/mv<br />

Qha/fp<br />

Qoa<br />

Qha/fv<br />

Qpv-fpg<br />

Qia<br />

Qya+Qia<br />

Qyea/Qia?<br />

Qya<br />

Qha/pc<br />

Qya<br />

Qoa<br />

Qywg+Qawg<br />

Qha/pc<br />

Qha/fp<br />

QToa<br />

Qha/mv<br />

Qia<br />

Qye/Qyvo<br />

Qia<br />

Qia<br />

Qhs/fpg<br />

Qoad<br />

Qia+Qya<br />

QToa<br />

Qyag<br />

Qha/fv<br />

Qha/ca<br />

Qha/mp<br />

Qia<br />

Qya/Qia<br />

Qya<br />

Qia+Qya<br />

Qia<br />

Qoa<br />

Qia?<br />

Qya/Qia<br />

Qia+Qya<br />

Qia<br />

Qha/fpg<br />

Qia?<br />

Qoa<br />

Qya+Qyg<br />

Qya/Qia<br />

Qha/fv<br />

Qya<br />

Qyag/Qoa<br />

Qha/mr<br />

Qia/pc<br />

Qia?<br />

Qoag/fv<br />

Qya<br />

Qyag+Qiag<br />

Qia<br />

Qya<br />

Qya<br />

Qha/pc<br />

Qia<br />

Qmc<br />

Qoa<br />

Qye/Qmv<br />

QToa<br />

Qia?<br />

Qha/mr<br />

Qyw+Qye<br />

Qiag<br />

Qha/fv?<br />

Qha/fv<br />

Qoad<br />

Qya<br />

Qiao<br />

Qpd-fpg<br />

Qyag+Qiag<br />

Qya+Qia<br />

Qha/mr<br />

Qya+Qye<br />

Qha/fpg<br />

Qha/ca+sl<br />

Qha/pc<br />

Qia<br />

QToa<br />

Qia+Qya<br />

Qya/Qia<br />

Qha/mp<br />

Qia+Qya<br />

Qia+Qya<br />

Qaa+Qya<br />

Qia+Qya<br />

Qha/mv<br />

Qya<br />

Qya<br />

Qha/fp<br />

Qha/pc<br />

Qha/mv<br />

Qha/fp<br />

Qha/mr?<br />

Qya<br />

Qia+Qya<br />

Qha/mv<br />

Qaw+Qyw<br />

Qyv<br />

Qha/mv<br />

Qha/fp<br />

Qya+Qia<br />

Qha/fpg<br />

Qha/fv<br />

Qya<br />

Qyv+Qia<br />

Qoa<br />

Qia<br />

Qya+Qaa<br />

Qia<br />

Qiag+Qyag<br />

Qia<br />

Qia<br />

Qha/fv<br />

Qpi-fpg<br />

Qia+Qya<br />

Qha/pc<br />

Qya<br />

Qia+Qya<br />

Qia+Qya<br />

Qiag<br />

Qyay<br />

Qya<br />

Qia Qia<br />

Qia<br />

Qia<br />

Qpv-fpg<br />

Qia<br />

Qia<br />

Qia+Qya<br />

Qia<br />

Qoag<br />

Qoa<br />

Qia?<br />

Qya<br />

Qpi-fp<br />

Qia<br />

Qiao<br />

Qyag<br />

QToa<br />

Qya+Qia<br />

Qha/fv<br />

Qha/fv<br />

Qia?<br />

Qoa<br />

Qoa<br />

Qia<br />

Qya+Qaa<br />

Qia?<br />

Qoa<br />

Qha/mr<br />

Qpv-mr<br />

Qoa?<br />

Qha/mp<br />

Qha/mp<br />

Qya+Qaa<br />

QToa<br />

Qia<br />

Qiag<br />

Qya<br />

Qya+Qia<br />

Qpi-fpg<br />

Qha/fpg<br />

Qoa<br />

Qha/mp<br />

Qia?<br />

Qia<br />

Qyag/Qiag<br />

Qpi-fp<br />

Qoa<br />

Qyao<br />

Qaw+Qyw<br />

Qia+Qya<br />

Qia+Qya<br />

Qia+Qya<br />

Qoa<br />

Qia<br />

QToa<br />

Qia<br />

Qia<br />

Qia<br />

Qyg<br />

Qya<br />

Qya+Qia<br />

Qia+Qya<br />

QToa?<br />

Qmc/mv<br />

Qaed+Qyed<br />

Qha/mp<br />

Qia<br />

Qya+Qia<br />

Qha/fv<br />

Qha/mp<br />

Qia<br />

Qia<br />

Qia+Qya<br />

Qya<br />

Qpi-fp?<br />

Qyag<br />

Qha/mp<br />

Qya<br />

Qyw<br />

Qya/Qia<br />

Qha/ca<br />

Qya<br />

Qpd-fpg<br />

Qia/pc<br />

Qia<br />

Qoa<br />

Qia<br />

Qyw<br />

Qha/fv<br />

Qia?<br />

Qya<br />

Qia?<br />

Qia+Qya<br />

Qoad<br />

Qha/fv<br />

Qha/fpg<br />

Qya+Qia<br />

Qya<br />

Qoa<br />

Qha/fp<br />

Qha/mp<br />

Qya/Qoa?<br />

Qia+Qya<br />

Qha/fpg<br />

Qpi-fp<br />

Qoa<br />

QToa<br />

Qha/fp<br />

Qyw<br />

Qha/pc<br />

Qpv-fpg<br />

Qia<br />

Qpv-fpg<br />

Qia<br />

Qiao<br />

Qya<br />

Qha/pc<br />

Qia<br />

Qoa<br />

Qia<br />

Qha/fp<br />

ml<br />

Qya<br />

Qia<br />

Qha/fp<br />

Qoa<br />

Qha/pc<br />

Qya+Qia<br />

Qha/fv<br />

Qae/Qyea<br />

Qyag<br />

Qyag<br />

Qya+Qia<br />

Qiag<br />

Qha/fp<br />

Qha/fv<br />

Qia<br />

Qia<br />

Qya<br />

Qaa+Qya<br />

Qhs/fpg<br />

Qha/mr<br />

Qya+Qia<br />

Qya<br />

Qimc+Qymc<br />

Qia<br />

Qia<br />

Qya+Qia<br />

ml<br />

Qia<br />

Qia<br />

Qia<br />

Qia?<br />

Qya+Qia<br />

Qpi-pc<br />

Qia<br />

Qha/mr<br />

Qia<br />

Qyw<br />

Qia<br />

Qha/fv<br />

Qia<br />

Qaw+Qyw+Qye<br />

Qoa<br />

Qha/mv<br />

Qia<br />

Qia<br />

Qha/mv<br />

Qia<br />

Qoa?<br />

Qoa<br />

Qyay+Qyao<br />

Qya<br />

Qha/fv<br />

Qiag<br />

Qia+Qya<br />

Qia+Qya<br />

Qia+Qya<br />

Qiag<br />

Qya<br />

Qpv-fp<br />

Qya<br />

Qiao<br />

Qyag<br />

Qia?<br />

Qia+Qya<br />

Qha/fp<br />

Qha/pc<br />

Qha/fp?<br />

Qia<br />

Qoa<br />

Qha/fpg<br />

Qia<br />

Qpd-fpg<br />

Qha/pc<br />

Qia+Qya<br />

Qaa+Qya<br />

Qia?<br />

Qia<br />

Qoa<br />

Qha/fv<br />

Qya+Qaa<br />

Qia<br />

Qia?<br />

Qye<br />

Qyag/Qia<br />

Qha/pc<br />

Qya/Qia<br />

Qyw+Qaw<br />

Qya<br />

Qia<br />

Qia<br />

Qha/fv<br />

Qya<br />

Qoa?<br />

Qya<br />

Qia<br />

Qpv-fpg<br />

Qya+Qia<br />

Qha/pc<br />

Qia<br />

Qha/fv<br />

Qiag<br />

Qha/ca<br />

Qya<br />

Qha/mr<br />

Qyao<br />

Qyae<br />

Qia<br />

Qia<br />

Qpi-mr<br />

Qia<br />

Qiag<br />

Qia?<br />

Qia+Qya<br />

Qoa?<br />

Qia<br />

Qia<br />

Qha/fp<br />

Qya+Qia<br />

Qya/Qia<br />

Qia+Qya<br />

Qyw+Qaw<br />

Qiaog<br />

Qha/fp<br />

Qya<br />

Qya<br />

Qyw<br />

Qoa?<br />

Qoa<br />

Qaw+Qyw<br />

Qia<br />

Qpv-fpg<br />

Qya<br />

Qha/pc<br />

Qha/fv<br />

Qoa<br />

Qoa<br />

Qia<br />

Qyag<br />

Qia+Qya<br />

Qia<br />

Qha/fp<br />

Qyw+Qaw<br />

Qia+Qya<br />

Qha/fv<br />

Qia<br />

Qiag<br />

Qia<br />

Qia<br />

Qha/fp<br />

Qia<br />

Qia+Qya<br />

Qyea<br />

Qya+Qia<br />

Qia<br />

Qye/Qyvo<br />

Qiag<br />

Qia+Qya<br />

Qha/fv<br />

Qyw+Qaw<br />

Qya/Qia<br />

Qha/mr?<br />

Qya<br />

Qya/Qia<br />

QToa<br />

Qya/Qia<br />

Qya<br />

Qha/mv<br />

Qha/fp<br />

Qiag<br />

Qya+Qia<br />

Qyw+Qaw<br />

Qha/mr<br />

Qya/Qia<br />

Qia<br />

QToa?<br />

Qha/fv<br />

Qia?<br />

Qia<br />

Qia<br />

Qha/pc<br />

Qpd-fpg<br />

Qia<br />

Qya<br />

Qha/pc<br />

Qyag<br />

Qha/pc<br />

Qyao<br />

Qia+Qya<br />

Qyed<br />

Qha/fv<br />

Qiag<br />

Qia+Qya<br />

Qyag<br />

Qia+Qya<br />

Qhs/fp<br />

Qia<br />

Qya<br />

Qha/ca<br />

Qpi-mr<br />

Qiag<br />

Qpv-fpg<br />

Qia<br />

Qha/mv<br />

Qya+Qia<br />

Qha/fp<br />

Qoa<br />

Qiag<br />

Qha/mp<br />

Qia<br />

Qha/mv<br />

QToa<br />

Qyag<br />

Qha/Qmv<br />

Qyw+Qiw<br />

Qya<br />

Qiag<br />

Qha/pc<br />

Qia<br />

Qha/fp<br />

Qha/fpg<br />

Qpv-fp<br />

Qha/fp?<br />

Qyea<br />

Qha/fp?<br />

Qpv-fpg<br />

Qha/fp<br />

Qyag+Qiag<br />

Qye/fp<br />

Qia<br />

Qya+Qaa<br />

Qya/Qia<br />

Qia<br />

Qya Qia+Qya<br />

Qawg+Qywg<br />

Qha/mp?<br />

Qha/mp<br />

Qia<br />

Qaa+Qya<br />

Qyw+Qaw<br />

Qaag+Qyag<br />

Qoa<br />

Qyw+Qye<br />

Qia<br />

Qya/Qia<br />

QToa<br />

Qia+Qya<br />

Qya<br />

Qya/Qia<br />

Qoa<br />

Qya<br />

Qha/fv<br />

Qha/mr<br />

Qiao<br />

Qia<br />

Qiag+Qyag<br />

QToa<br />

Qia+Qya<br />

Qha/fv<br />

Qya+Qaa<br />

Qpd-mr<br />

Qyao<br />

Qha/fpg<br />

Qya+Qaa<br />

Qha/fv<br />

Qia?<br />

Qha/pc<br />

Qia?<br />

Qha/mv<br />

Qia<br />

Qia<br />

Qha/pc<br />

Qia<br />

Qya/Qia<br />

Qha/fpg<br />

Qpi-fp?<br />

Qpv-fpg<br />

Qya+Qia<br />

Qya<br />

Qya+Qia<br />

Qia+Qya<br />

Qha/mr<br />

Qoa<br />

Qya<br />

Qia<br />

Qia+Qya<br />

Qia?<br />

Qia?<br />

Qyw+Qaw<br />

Qyag<br />

Qia<br />

Qya<br />

Qiad<br />

Qia<br />

Qyad<br />

Qya/Qia<br />

Qhs/fpg<br />

Qha/fp<br />

Qpi-fpg<br />

Qia<br />

Qha/fv<br />

Qha/Qmv<br />

Qya/Qia<br />

Qyw+Qaw<br />

Qya<br />

Qiag<br />

Qya<br />

Qia<br />

Qha/fv<br />

Qia<br />

Qia<br />

Qya<br />

Qoa<br />

Qha/fv<br />

Qha/mv<br />

Qyw<br />

Qia<br />

Qia<br />

Qia<br />

Qya+Qaa<br />

Qia<br />

Qha/mv<br />

Qha/fp<br />

Qia<br />

Qya/Qia<br />

Qia+Qya<br />

Qoa+Qya<br />

Qya+Qia<br />

Qha/pc<br />

Qye<br />

Qha/fp<br />

Qpi-fpg+Qyag<br />

Qia<br />

Qye+Qia<br />

Qya<br />

Qia<br />

Qia<br />

Qya+Qia<br />

Qiag<br />

Qaw+Qyw<br />

Qha/pc<br />

Qiag<br />

Qyao<br />

Qmc<br />

Qia/pc<br />

Qpd-fpg<br />

Qhs/mr+fp<br />

Qha/fv<br />

Qoa<br />

Qiao<br />

Qyay<br />

Qya/Qia<br />

Qia?<br />

Qyao/Qia<br />

Qha/mp<br />

Qoa<br />

Qya<br />

Qia<br />

Qia<br />

Qiag<br />

Qya<br />

Qia<br />

Qyag+Qiag<br />

Qyw<br />

Qiag<br />

Qoa<br />

Qia+Qya<br />

Qha/pc<br />

Qha/fp<br />

Qya<br />

Qia+Qya<br />

Qhs/fpg<br />

Qia+Qya<br />

Qya<br />

Qha/fp<br />

Qia<br />

Qyao<br />

Qha/mp<br />

Qia+Qya<br />

Qya<br />

Qiag<br />

Qha/fv<br />

Qha/fp<br />

Qha/mr<br />

Qha/fp<br />

Qyag/Qiag<br />

Qyao<br />

Qha/mp<br />

QToa<br />

Qoa?<br />

Qia<br />

Qya<br />

Qye/Qyvo<br />

Qia<br />

Qia<br />

Qya+Qaa<br />

Qyae/Qia<br />

Qha/mp<br />

Qha/fp<br />

Qia<br />

Qyag<br />

Qyag/Qiag<br />

Qha/mr<br />

Qya<br />

Qoa<br />

Qha/fp<br />

Qiag?<br />

Qha/pc<br />

Qia+Qya<br />

Qia<br />

Qoa<br />

Qya<br />

Qaw+Qyw<br />

Qmc<br />

Qia<br />

Qia<br />

Qya+Qia<br />

Qia<br />

Qha/fp<br />

Qpd-fpg<br />

Qya<br />

QToa<br />

Qya<br />

Qaa+Qya<br />

Qiag<br />

Qpv-fpg+Qiag<br />

Qha/fv<br />

Qoa<br />

Qoa/mr<br />

Qyea<br />

Qia<br />

Qia<br />

Qia<br />

Qmc<br />

Qyag+Qiag<br />

Qia<br />

Qaw+Qyw<br />

Qiag<br />

Qyae+Qiae<br />

Qia<br />

Qia?<br />

Qmc<br />

Qiao<br />

Qyag+Qye<br />

Qia<br />

Qpv-fpg<br />

QToa?<br />

Qha/fp<br />

Qia<br />

Qha/pc<br />

Qia<br />

Qya<br />

Qyao<br />

Qyag+Qaag<br />

Qia<br />

Qyag<br />

Qia<br />

Qyw<br />

Qoa<br />

Qyao<br />

Qha/mr<br />

Qmc<br />

Qoa?+Qya<br />

Qha/fv<br />

Qyag+Qia<br />

Qya+Qaa<br />

Qoa<br />

Qmc<br />

Qya<br />

Qoa<br />

Qyag<br />

Qia<br />

Qoa<br />

Qia<br />

Qia<br />

Qyag<br />

Qia<br />

Qya<br />

Qia+Qya<br />

Qia+Qya<br />

Qia+Qya<br />

Qoa<br />

Qya+Qaa<br />

Qia<br />

Qya+Qia<br />

Qha/fp<br />

Qha/mp<br />

Qha/mv<br />

Qia<br />

Qya/Qia<br />

Qiag<br />

Qha/mr<br />

Qia+Qya<br />

Qha/pc<br />

Qia<br />

Qha/pc<br />

Qha/mr<br />

Qha/mp<br />

Qyag<br />

Qia<br />

ml<br />

Qha/fv<br />

Qhs/fpg<br />

Qya/Qia<br />

Qha/fv<br />

Qoa/pc<br />

Qha/fp<br />

Qia+Qya<br />

Qya<br />

Qha/fp<br />

Qya+Qia<br />

Qha/fv<br />

Qia<br />

Qya<br />

Qiag<br />

Qia<br />

Qha/mv<br />

Qpv-fpg<br />

Qia<br />

Qoa<br />

Qia<br />

Qha/fp<br />

Qia<br />

Qia<br />

QToa<br />

Qye<br />

Qha/fp<br />

Qia<br />

Qia<br />

Qyw+Qaw<br />

Qha/mr<br />

Qya<br />

Qyw+Qaw<br />

Qha/fv<br />

Qya+Qaa<br />

Qia<br />

Qia<br />

Qpi-fp?<br />

Qia<br />

Qyw+Qaw<br />

Qyag<br />

Qha/fp<br />

Qia+Qya<br />

Qha/mr<br />

Qha/mr<br />

Qyay<br />

Qia<br />

Qia<br />

Qyw<br />

Qia+Qya<br />

Qia<br />

Qye/QToa<br />

Qia<br />

Qia<br />

ml<br />

Qya+Qia<br />

Qie<br />

Qya/Qoa<br />

Qha/mp?<br />

Qia<br />

Qoa<br />

Qya<br />

Qyag<br />

Qiag<br />

Qia<br />

Qha/fv<br />

Qha/fp<br />

Qia?<br />

Qha/fp<br />

Qia<br />

Qia<br />

Qia?<br />

Qia<br />

Qia+Qya<br />

Qha/fp<br />

Qia<br />

Qha/fp<br />

Qia<br />

QToa<br />

Qha/mp<br />

Qia?<br />

Qoa<br />

QToa<br />

Qha/mv<br />

Qiag<br />

Qaag+Qyag<br />

Qia+Qya<br />

Qha/pc<br />

Qha/pc<br />

Qya/Qia<br />

Qaw+Qyw<br />

Qia<br />

Qia<br />

Qha/ca<br />

Qia<br />

Qyag/Qoag<br />

Qia<br />

Qia<br />

Qaa<br />

Qiag<br />

Qiag+Qyag<br />

Qia<br />

Qia<br />

Qya+Qaa<br />

ml<br />

Qiao<br />

Qia/pc<br />

Qia<br />

Qyag+Qiag<br />

Qha/mp<br />

Qyae/Qia<br />

Qia+Qya<br />

Qia?<br />

Qiao<br />

Qya+Qaa<br />

Qya+Qia<br />

ml<br />

Qia/fp<br />

Qia<br />

Qia<br />

Qia<br />

Qha/fp<br />

Qha/ca<br />

Qoa<br />

Qoa?<br />

Qya<br />

Qoa<br />

Qoa<br />

Qhs/fpg<br />

Qia<br />

Qha/pc<br />

Qya/Qia<br />

Qyw<br />

Qia+Qya<br />

Qie+Qya<br />

Qha/mr<br />

Qpi-fpg<br />

Qia+Qya<br />

Qia+Qya<br />

Qya<br />

Qia<br />

Qia<br />

Qia?<br />

Qya+Qia<br />

Qha/pc<br />

Qyao<br />

QToa<br />

Qia<br />

Qha/mp<br />

Qia<br />

Qyw+Qaw<br />

Qya+Qia<br />

Qya/Qia<br />

Qya/Qia<br />

Qiag<br />

QToa<br />

Qia<br />

Qia<br />

Qia<br />

Qia<br />

Qia<br />

Qyag<br />

Qia<br />

Qia+Qya<br />

Qmc<br />

Qia?<br />

Qha/mr<br />

Qha/fp<br />

Qha/mr<br />

QToa<br />

Qyag+Qaag<br />

Qia+Qya<br />

Qha/mv<br />

Qya<br />

Qha/mv<br />

Qha/pc<br />

Qyw+Qaw<br />

Qha/mv<br />

Qha/fv<br />

Qia<br />

Qha/mr<br />

QToa<br />

Qha/mr<br />

Qoa<br />

Qoa<br />

Qya/Qia<br />

Qpi-fpg<br />

ml<br />

Qhs/fv<br />

Qha/mp<br />

Qia<br />

Qha/mp<br />

Qhs/fp?<br />

Qha/fpg<br />

Qya<br />

Qya<br />

Qha/mr?<br />

Qia<br />

Qyao<br />

Qia<br />

Qiao<br />

Qia<br />

Qya<br />

Qhs/fp<br />

Qoa<br />

Qyag+Qaag<br />

Qya+Qaa<br />

ml<br />

Qia<br />

Qya/Qoa<br />

Qha/fp<br />

Qya+Qia<br />

Qyao<br />

Qyag<br />

Qia<br />

Qia<br />

Qia?<br />

Qoa?<br />

Qha/fp<br />

Qoa<br />

Qia<br />

Qia+Qya<br />

Qia<br />

Qia<br />

Qha/pc<br />

Qiag<br />

Qha/mp<br />

QToa<br />

Qia<br />

Qiao<br />

Qia+Qya<br />

Qyw<br />

Qia<br />

Qha/mv<br />

Qyag+Qaag<br />

Qia+Qya<br />

Qyao+Qya<br />

Qoa<br />

Qya+Qia<br />

QToa<br />

Qia/pc<br />

Qya<br />

Qia<br />

Qha/mp<br />

Qia<br />

Qya<br />

Qia?<br />

Qia<br />

Qha/fp<br />

Qia<br />

Qpi-fpg<br />

Qia/pc<br />

Qia<br />

QToa<br />

Qia<br />

Qya<br />

Qyw<br />

Qiao<br />

Qya+Qaa<br />

Qya<br />

Qia?<br />

Qia<br />

Qia<br />

Qia?<br />

Qha/mv<br />

Qha/fv<br />

Qya<br />

QToa<br />

Qya<br />

Qhs/fpg<br />

Qia+Qya<br />

Qia<br />

Qpi-fpg<br />

QToa<br />

Qha/fp<br />

Qia<br />

Qia<br />

Qha/pc<br />

Qha/pc<br />

Qpi-fpg<br />

Qha/fv<br />

Qye/fp<br />

Qia<br />

Qya<br />

Qia<br />

Qoa<br />

Qha/ca<br />

Qia?<br />

Qia<br />

Qyag/Qiag<br />

Qha/fp<br />

Qha/fp<br />

Qia<br />

Qyay+Qaa<br />

Qhs/fpg<br />

Qya<br />

Qya+Qia<br />

Qha/fp?<br />

Qha/mp<br />

Qha/fv<br />

Qha/fv<br />

Qha/fv<br />

Qia<br />

Qiag<br />

QToa<br />

QToa<br />

Qha/mv<br />

Qia?<br />

Qya<br />

Qya+Qye<br />

Qiag<br />

Qha/mp<br />

Qpi-mr<br />

Qya<br />

Qha/mv<br />

Qiag<br />

Qia<br />

Qha/fv<br />

Qha/fp<br />

Qya+Qia<br />

Qmc<br />

Qia<br />

Qia+Qya<br />

Qha/mr<br />

Qha/mp<br />

Qha/mv<br />

Qiag/fpg<br />

Qha/fp<br />

Qiao<br />

Qha/mp<br />

Qyao<br />

QToa<br />

Qha/pc<br />

QToa?<br />

Qha/fp?<br />

Qha/pc<br />

Qaa<br />

Qia<br />

Qia<br />

Qya+Qaa<br />

Qia<br />

Qia<br />

Qyv<br />

Qpv-fp<br />

Qya<br />

Qiag<br />

Qia<br />

Qiag<br />

Qya+Qaa<br />

Qha/fv<br />

Qia<br />

Qmc<br />

Qyag+Qaag<br />

Qoa<br />

Qya/Qia<br />

Qiag<br />

Qia+Qya<br />

QToa<br />

Qiao<br />

Qya<br />

Qyag<br />

Qha/mv<br />

Qia<br />

Qia<br />

Qia<br />

Qiag<br />

Qha/pc<br />

Qye<br />

Qiag/fpg<br />

Qha/mv<br />

Qyao<br />

Qia<br />

Qoa+Qia<br />

Qha/mr<br />

Qyao<br />

Qia<br />

Qya+Qia<br />

Qha/fp?<br />

Qia<br />

Qia<br />

Qmc<br />

Qha/fp<br />

Qia<br />

Qha/pc<br />

Qhs/ca<br />

Qpi-fpg<br />

Qia<br />

Qya<br />

Qia<br />

Qha/fv<br />

Qiag+Qyag<br />

Qia+Qya<br />

Qia<br />

Qha/fpg<br />

Qya<br />

Qiag<br />

Qia<br />

Qpd-fpg<br />

Qye/QToa<br />

Qha/mv<br />

Qya+Qaa<br />

Qha/mp<br />

Qia<br />

Qia<br />

Qye<br />

Qmc<br />

Qia<br />

Qoa<br />

Qha/sl/fp<br />

QToa<br />

Qiao<br />

Qha/fv<br />

Qyag+Qiag<br />

Qia<br />

Qia<br />

Qyao<br />

Qpv-fpg<br />

Qyag<br />

Qia<br />

Qyao+Qia<br />

Qia<br />

Qoa?<br />

Qha/mr?<br />

Qha/mr<br />

Qiag/fpg<br />

Qha/fp<br />

Qha/pc<br />

Qya/Qia<br />

QToa<br />

Qiag<br />

Qia<br />

Qia<br />

Qyao/Qia<br />

Qia<br />

Qha/mp<br />

Qya/Qia<br />

Qia<br />

Qya<br />

Qya+Qaa<br />

Qia<br />

Qhs/fpg<br />

Qia<br />

Qia<br />

Qha/pc?<br />

Qya/Qia<br />

Qoa<br />

Qia<br />

Qia<br />

Qia<br />

Qha/mv<br />

Qye/mp<br />

Qya+Qia<br />

Qia<br />

Qaa<br />

Qiag<br />

Qia<br />

Qia+Qya<br />

Qha/mp<br />

Qoa<br />

Qia+Qya<br />

Qya<br />

Qha/mv<br />

Qiag+Qyag<br />

Qyag<br />

Qia<br />

Qia<br />

Qia<br />

Qha/fv<br />

Qia<br />

Qyao<br />

Qha/mp<br />

QToa<br />

Qia<br />

Qiao<br />

Qha/fp<br />

Qha/fv<br />

QToa<br />

Qha/fv<br />

Qiao<br />

Qye<br />

Qia<br />

Qya<br />

Qhs/fpg<br />

Qha/mp?<br />

Qya<br />

Qya<br />

Qha/pc<br />

Qha/mv<br />

Qha/fv<br />

Qia<br />

Qia<br />

Qia<br />

Qha/pc<br />

Qia<br />

Qoa<br />

Qia<br />

QToa<br />

Qyag/Qiag<br />

Qia<br />

Qha/fpg<br />

Qawg+Qywg<br />

Qia?<br />

Qha/mp<br />

Qha/pc<br />

Qha/mp<br />

Qpi-fpg<br />

Qpv-fpg<br />

Qia<br />

Qyw<br />

Qia+Qya<br />

Qia<br />

Qiag<br />

QToa<br />

Qia<br />

Qia+Qya<br />

Qya+Qia<br />

Qyao/Qia<br />

Qia<br />

Qia+Qya<br />

Qpv-fpg<br />

Qpv-fpg<br />

Qha/fv<br />

QToa<br />

Qia<br />

Qpi-fpg+Qyag<br />

Qia<br />

Qha/pc<br />

Qyag<br />

Qyag<br />

Qaa<br />

Qimc<br />

Qia<br />

Qha/fp<br />

Qya+Qia<br />

Qia+Qya<br />

Qiag<br />

Qia<br />

Qyae+Qaa<br />

Qia+Qya<br />

Qha/fpg<br />

Qyao<br />

Qya+Qia<br />

Qyad<br />

Qpi-fpg<br />

Qia<br />

Qiag<br />

Qia<br />

Qia<br />

Qia<br />

Qia/Qoa<br />

Qia<br />

Qia<br />

Qpv-fpg<br />

Qia<br />

Qia<br />

Qha/mv<br />

Qya+Qia<br />

Qya<br />

Qia?<br />

Qia<br />

Qha/fp<br />

Qia<br />

Qha/mr<br />

Qyag+Qaag<br />

Qya<br />

Qya+Qaa<br />

Qyao<br />

Qia<br />

Qyao<br />

Qha/fv<br />

Qia<br />

Qha/ca<br />

Qpi-fpg<br />

Qya<br />

Qia<br />

Qha/fp<br />

Qia<br />

Qia<br />

Qia<br />

Qha/pc<br />

Qyag/Qiag<br />

Qya/Qia<br />

Qia<br />

Qoa<br />

Qpi-fpg<br />

Qiag+Qyae<br />

QToa<br />

Qia<br />

Qya+Qaa<br />

Qya<br />

Qia<br />

Qya Qha/mv Qyw+Qaw<br />

Qha/mr<br />

Qha/fv<br />

Qya<br />

Qpi-fpg<br />

Qha/fpg<br />

Qie<br />

Qyag<br />

Qia?<br />

Qyag+Qaag<br />

Qia+Qya<br />

Qia+Qya<br />

Qha/mr<br />

Qia<br />

QToa<br />

Qia<br />

Qha/fv<br />

Qha/sl<br />

Qia<br />

Qha/fv<br />

Qha/mr<br />

Qia<br />

QToa<br />

Qye+Qia<br />

Qia<br />

Qya+Qaa<br />

Qiao<br />

Qha/fv<br />

Qmc<br />

Qha/mp?<br />

Qha/mr<br />

Qha/fv<br />

Qya/Qia<br />

Qia+Qya<br />

Qia<br />

Qha/fp<br />

Qya/Qia<br />

Qpv-mr<br />

Qya<br />

Qia?<br />

Qha/pc<br />

Qia<br />

Qia<br />

Qia<br />

Qimc<br />

Qia+Qya<br />

Qya<br />

Qoa/fv<br />

Qaa+Qya<br />

Qha/mv<br />

Qia<br />

Qyag<br />

Qya+Qaa<br />

Qyw<br />

Qya<br />

Qha/mr?<br />

Qia<br />

Qyag<br />

Qia<br />

Qya+Qia<br />

Qha/fv<br />

Qaag+Qyag<br />

Qoa<br />

Qya+Qaa<br />

Qia<br />

Qia<br />

Qye/Qmv<br />

Qmc<br />

Qha/pc<br />

Qyag<br />

Qha/pc<br />

Qyao<br />

Qya/Qia<br />

Qia<br />

Qha/fpg<br />

Qha/mr<br />

Qiao<br />

Qya+Qaa<br />

Qia<br />

Qiag<br />

Qha/pc<br />

Qoa<br />

Qha/mr<br />

Qoa<br />

Qyao<br />

Qia<br />

Qha/fpg<br />

Qha/fp<br />

Qha/pc<br />

Qia<br />

Qia<br />

Qia+Qaa<br />

Qya+Qia<br />

Qia<br />

Qha/sl?<br />

Qha/fv<br />

Qia<br />

Qya<br />

Qiao<br />

Qya<br />

Qha/fv<br />

Qya+Qia<br />

Qya/Qia<br />

Qoa/fv<br />

Qha/pc<br />

Qha/fv<br />

Qia<br />

Qya+Qia<br />

Qia<br />

Qmc<br />

Qha/fpg<br />

Qha/fv<br />

Qia<br />

Qha/ca+sl<br />

Qha/mp?<br />

Qia<br />

Qia<br />

Qya<br />

Qha/pc<br />

Qia<br />

Qaw+Qyw<br />

Qha/mv<br />

Qpv-fpg<br />

Qya/Qia<br />

Qha/fp<br />

Qyag+Qiag<br />

Qyao<br />

Qyao<br />

Qia<br />

Qia?<br />

QToa?<br />

Qya<br />

Qia?<br />

Qia<br />

Qia?<br />

Qie+Qya<br />

Qia<br />

Qia<br />

Qia+Qya<br />

Qia+Qya<br />

Qha/fv<br />

Qoa<br />

Qia+Qya<br />

Qia<br />

Qia<br />

Qyae+Qia<br />

Qya/Qia<br />

Qia?<br />

Qya<br />

Qia<br />

Qia Qpv-fpg<br />

Qya+Qia<br />

Qia<br />

Qae/Qmv<br />

Qia<br />

Qyer/fp<br />

Qia<br />

Qia<br />

Qia?<br />

Qyag+Qaag<br />

Qyg<br />

Qiao<br />

Qia<br />

Qoa<br />

Qya+Qyao<br />

Qha/ca<br />

Qia?<br />

Qyea<br />

Qia<br />

Qmc<br />

Qha/fv<br />

Qha/fp<br />

Qyao<br />

Qyag<br />

Qiag<br />

Qya<br />

Qha/mp<br />

Qha/fv<br />

Qoa<br />

Qpd-fpg<br />

Qoa<br />

Qoag<br />

Qha/fv<br />

Qiao<br />

Qyea<br />

Qia<br />

Qia+Qya<br />

Qha/mv<br />

Qoa<br />

Qya<br />

Qya+Qia<br />

Qyao<br />

Qoa<br />

Qia<br />

Qia<br />

Qha/mr<br />

Qha/fv<br />

Qha/fp<br />

Qia<br />

QToa?<br />

Qaag<br />

Qyw<br />

Qha/pc<br />

Qha/fp<br />

Qia<br />

Qia+Qya<br />

Qia<br />

Qha/mp<br />

Qha/mr<br />

Qye/Qiag+Qyag<br />

Qoa<br />

Qyao<br />

Qye/mp<br />

Qia+Qya<br />

Qha/fpg<br />

Qia<br />

Qha/fv<br />

Qia+Qya<br />

Qiag<br />

Qia<br />

Qha/pc<br />

Qia<br />

Qyao<br />

Qia<br />

Qya+Qaa<br />

Qia<br />

Qha/mv<br />

Qha/fpg<br />

Qha/mp<br />

Qia?<br />

Qia+Qya<br />

Qia<br />

Qia?<br />

Qia<br />

Qoa<br />

Qiag<br />

Qiag+Qyag<br />

Qia<br />

Qya+Qoa<br />

Qia<br />

Qia<br />

Qha/mr<br />

Qia<br />

Qia+Qya<br />

Qyao<br />

Qha/fp<br />

Qia<br />

Qia<br />

Qia+Qaa<br />

Qia+Qya<br />

Qia<br />

Qyao<br />

Qya/Qoa<br />

Qya<br />

Qia Qia+Qya<br />

Qoa<br />

Qpv-fp<br />

Qia?<br />

Qia+Qya<br />

Qya<br />

Qyao<br />

Qha/mv<br />

Qia<br />

Qia<br />

Qha/fp<br />

Qyag<br />

Qia<br />

Qyag<br />

Qha/mv<br />

Qia<br />

Qya<br />

Qha/fv<br />

QToa<br />

Qpv-fpg<br />

Qia+Qya<br />

Qiag<br />

Qha/mr<br />

Qia<br />

Qiag<br />

Qya+Qia<br />

QToa<br />

Qha/pc<br />

Qha/mv<br />

Qia<br />

Qyao<br />

QToa<br />

Qia<br />

Qoa<br />

Qha/fp<br />

Qha/pc?<br />

Qha/fpg<br />

Qia<br />

Qia?<br />

Qoa<br />

Qya<br />

Qha/fv<br />

Qya<br />

Qha/ca<br />

Qia<br />

QToa<br />

Qya/Qia<br />

Qha/fpg<br />

Qae/Qmv<br />

Qia<br />

Qoa<br />

Qha/fp<br />

Qia<br />

Qha/fv<br />

Qyao<br />

Qyao<br />

Qha/fv<br />

Qia<br />

Qye/fp<br />

Qha/fpg<br />

Qia<br />

Qya+Qia<br />

Qia<br />

Qia+Qya<br />

Qia?<br />

Qiag<br />

Qpd-fpg<br />

Qia+Qya<br />

Qia<br />

Qyag/Qiag<br />

Qpi-fpg<br />

Qia+Qya<br />

Qia<br />

Qia<br />

Qoa<br />

Qia<br />

Qiag<br />

Qya<br />

Qaw+Qyw<br />

Qya/Qia<br />

Qyao<br />

Qha/ca<br />

Qha/fp<br />

Qyag+Qiag<br />

Qia<br />

Qia<br />

Qia<br />

Qiag/fpg<br />

Qpv-fpg<br />

Qha/pc<br />

Qye+Qia<br />

Qyag/Qia<br />

Qiag<br />

Qye/mv<br />

Qpi-fpg<br />

Qyw<br />

Qia?<br />

Qha/mp<br />

Qia+Qya<br />

Qyag<br />

Qya<br />

QToa<br />

Qia<br />

Qha/fv<br />

Qia<br />

Qya+Qaa<br />

Qya/Qia<br />

Qoa<br />

Qyv<br />

Qha/fp<br />

Qya<br />

Qha/pc<br />

Qia<br />

Qya<br />

Qya/Qia<br />

Qia?<br />

Qya+Qia<br />

Qyao<br />

Qia<br />

Qya<br />

Qya+Qia<br />

Qha/fpg<br />

Qia+Qya<br />

QToa<br />

Qha/pc<br />

Qha/fp<br />

Qha/fpg<br />

Qiag<br />

Qia<br />

Qia<br />

Qiag<br />

Qia<br />

Qha/pc<br />

Qha/fp<br />

QToa<br />

Qye/Qyao<br />

Qyag+Qaag<br />

Qha/mr<br />

Qia<br />

Qha/mv<br />

Qia?<br />

Qha/mr<br />

Qya<br />

Qya+Qia<br />

Qha/mp<br />

Qyao<br />

Qoa<br />

Qyw/Qiw<br />

Qia<br />

Qia<br />

Qya+Qia<br />

Qoag<br />

Qya+Qaa<br />

Qha/pc<br />

QToa<br />

Qia<br />

Qia<br />

Qha/mr<br />

Qya<br />

Qia+Qya<br />

Qya<br />

Qpi-fpg<br />

Qyao<br />

Qia<br />

Qmc<br />

Qia<br />

Qya<br />

Qia<br />

Qya/Qia<br />

Qhs/fv<br />

Qye/QToa<br />

Qha/ca<br />

Qha/mv<br />

Qia<br />

Qha/fpg<br />

Qya<br />

Qyao<br />

Qia<br />

Qia<br />

Qia<br />

Qia<br />

Qya<br />

Qha/mp<br />

Qha/fv<br />

Qia<br />

Qia<br />

Qia+Qya<br />

Qia<br />

Qha/pc<br />

Qya<br />

Qoa<br />

Qia<br />

Qia<br />

Qya<br />

Qha/fv<br />

Qoa<br />

Qya+Qia<br />

Qiag<br />

Qia?<br />

Qaag+Qyag<br />

Qha/pc<br />

Qha/pc<br />

Qyao<br />

Qha/fv<br />

Qya<br />

Qha/fp<br />

Qhs/fp<br />

Qiag<br />

Qia<br />

Qha/fv<br />

Qia<br />

Qha/pc<br />

Qye<br />

Qia<br />

Qia?<br />

Qyag+Qiag<br />

Qha/mv<br />

Qia<br />

Qia<br />

Qia<br />

Qha/fv<br />

Qia<br />

Qia<br />

Qia<br />

Qya+Qaa<br />

Qia<br />

Qya+Qaa<br />

Qyao<br />

Qiag<br />

QToa<br />

Qha/fv<br />

Qha/fv<br />

Qya+Qaa<br />

Qya+Qia<br />

Qya<br />

Qia<br />

Qye+Qyao<br />

Qia+Qya<br />

Qoa<br />

Qhs/fv<br />

Qya<br />

Qia<br />

Qia+Qya<br />

Qya/Qia<br />

Qya+Qia<br />

Qha/mv<br />

Qoa?<br />

Qia<br />

Qha/mr<br />

Qye/Qyao<br />

Qha/ca<br />

Qya+Qaa<br />

Qia<br />

Qia<br />

Qpi-mp?<br />

Qia<br />

Qha/fp<br />

Qya<br />

Qyer/fp<br />

Qia<br />

Qaa<br />

Qia<br />

Qoa/fp<br />

Qia<br />

Qha/sl<br />

Qia+Qya<br />

Qya+Qaa<br />

Qha/pc<br />

Qha/pc<br />

Qha/fp<br />

Qyag<br />

Qha/mv<br />

Qia<br />

Qya<br />

Qia<br />

Qpv-fp<br />

Qha/fp<br />

Qha/pc<br />

Qya+Qia<br />

Qiag<br />

Qia<br />

Qyag+Qye<br />

Qha/fp<br />

Qpi-fpg<br />

Qha/fp<br />

Qia<br />

Qya+Qaa<br />

Qia/fp<br />

Qha/mp<br />

Qha/fv<br />

Qpi-fpg<br />

Qia<br />

Qha/fp<br />

Qya+Qia<br />

Qia<br />

Qiag<br />

Qya<br />

Qia<br />

Qia<br />

Qha/ca<br />

Qya+Qaa<br />

Qya<br />

Qiag<br />

Qia?<br />

Qia<br />

Qiag<br />

Qia<br />

Qye/Qiag<br />

Qha/ca<br />

Qmc<br />

Qyag<br />

Qia<br />

Qha/fp<br />

Qiao+Qoa<br />

Qiao<br />

Qia?<br />

Qha/mp?<br />

Qia<br />

Qha/mr<br />

Qpv-fpg<br />

Qia<br />

Qia<br />

Qya/Qia<br />

Qyag/Qiag<br />

Qoa<br />

Qyag+Qiag<br />

Qha/mr<br />

Qya<br />

Qyao<br />

Qya<br />

Qia<br />

Qia?<br />

Qia+Qya<br />

Qya/Qoa<br />

Qoa<br />

Qia<br />

Qia<br />

Qia<br />

Qha/Qmv<br />

Qia<br />

Qha/mv<br />

Qye/mp<br />

Qya+Qaa<br />

Qya/Qia<br />

Qya+Qaa<br />

Qha/pc<br />

Qoa<br />

Qia<br />

Qiag?<br />

Qia<br />

Qha/fv<br />

Qia<br />

Qia?<br />

Qha/fv<br />

Qha/fp<br />

Qya<br />

Qia<br />

Qha/mr<br />

Qha/ca<br />

Qha/fv<br />

Qha/ca<br />

Qya+Qia<br />

Qyao<br />

QToa<br />

Qyao<br />

Qmc<br />

QToa<br />

Qya<br />

Qyao<br />

Qia<br />

Qha/mv<br />

Qha/fp<br />

Qia<br />

Qha/fv<br />

Qia<br />

Qia<br />

Qpi-fpg<br />

Qha/mv<br />

Qyao/Qia<br />

Qha/fp<br />

QToa<br />

Qia<br />

Qia+Qya<br />

Qiao<br />

Qha/mr<br />

Qiag<br />

Qye/QToa<br />

Qha/fp<br />

Qia<br />

Qha/pc<br />

Qya<br />

Qiag<br />

Qia<br />

Qia<br />

Qiag<br />

Qia?<br />

Qha/mv<br />

Qia?<br />

Qia+Qya<br />

Qia?<br />

Qiag<br />

Qia+Qya<br />

Qya+Qaa<br />

Qia?<br />

Qyw/Qiw<br />

Qiag<br />

Qmc<br />

Qha/fv<br />

Qia<br />

Qia/fp<br />

Qia<br />

Qha/fv<br />

Qha/fp<br />

Qia<br />

Qya/Qia<br />

Qha/mr<br />

Qyao<br />

Qha/fv<br />

Qia<br />

Qia<br />

Qia<br />

Qoa<br />

Qia<br />

Qha/mp?<br />

Qia<br />

Qha/fv<br />

Qha/fv<br />

Qia<br />

Qya+Qia<br />

Qha/pc<br />

Qae/Qmv<br />

Qha/mr<br />

Qia<br />

Qia<br />

QToa<br />

Qia<br />

Qia<br />

Qya<br />

Qia<br />

Qya<br />

Qyw/Qiw<br />

Qya<br />

Qia<br />

Qha/fv<br />

Qia<br />

Qyao<br />

Qoa/fp<br />

Qiao<br />

Qye/fp<br />

Qiao<br />

Qha/fp<br />

Qia<br />

Qiag<br />

Qyag<br />

Qia?<br />

Qia+Qya<br />

Qha/mr<br />

Qya+Qyao<br />

Qia<br />

Qia<br />

Qha/mv<br />

Qia<br />

Qha/mp<br />

Qha/fpg<br />

Qia/pc<br />

Qia<br />

Qia/fp<br />

Qoa<br />

Qya+Qia<br />

Qya<br />

Qya/Qia<br />

Qha/mv<br />

QToa<br />

Qha/mr<br />

Qya<br />

Qyag/Qiag<br />

Qia/pc<br />

Qoa/fv<br />

Qoa<br />

Qia<br />

Qia<br />

Qya<br />

Qia+Qya<br />

Qya<br />

Qiag<br />

Qha/mr<br />

Qha/fv<br />

Qha/fpg<br />

Qhs/fpg<br />

Qha/mv<br />

Qoa<br />

Qya<br />

Qia<br />

Qha/mr<br />

Qia<br />

Qha/pc<br />

Qha/mr<br />

Qya<br />

Qia<br />

Qha/fv<br />

Qha/fp<br />

Qia<br />

Qya+Qaa<br />

Qawg+Qywg<br />

Qha/fp<br />

Qha/mr<br />

Qoa<br />

Qmc<br />

Qia<br />

Qia<br />

Qya+Qaa<br />

Qia+Qyao<br />

Qpv-fpg<br />

Qha/fv<br />

Qha/mr<br />

QToa<br />

Qiao<br />

Qyw/Qiw<br />

Qia<br />

Qya+Qia<br />

Qha/fv<br />

Qya/Qia<br />

Qia<br />

Qyao<br />

Qye<br />

Qha/fv<br />

Qha/fv<br />

Qya/Qia<br />

Qia<br />

Qha/pc<br />

Qha/mv<br />

Qyao<br />

QToa<br />

Qya<br />

QToa?<br />

Qoa<br />

Qha/pc?<br />

Qha/mv<br />

Qia<br />

Qha/sl<br />

Qha/ca<br />

Qia<br />

Qia<br />

Qia<br />

Qye<br />

Qha/mv<br />

Qha/fv<br />

Qoa<br />

Qha/pc<br />

Qia<br />

Qia?<br />

Qye<br />

Qia<br />

Qha/pc<br />

Qia/Qoa<br />

Qyag<br />

Qha/mv<br />

Qyw<br />

Qyag<br />

Qha/fv<br />

Qha/ca<br />

Qha/pc<br />

Qia<br />

Qya<br />

Qya/Qia<br />

Qia<br />

Qya+Qia<br />

Qoa<br />

Qia<br />

Qia<br />

Qha/mr<br />

Qoa<br />

Qia<br />

Qoa<br />

Qha/mr<br />

Qha/mp<br />

Qia<br />

Qha/fv<br />

Qoa<br />

Qyao<br />

Qhs/fpg<br />

Qha/mv<br />

Qiag<br />

Qha/mp<br />

Qha/fv<br />

Qhs/fv<br />

Qha/mp<br />

Qya<br />

Qia+Qya<br />

Qha/ca+sl<br />

Qya<br />

Qya<br />

Qya/Qia<br />

Qpv-fpg<br />

QToa<br />

Qya<br />

Qia<br />

Qha/fpg<br />

Qye<br />

Qaa<br />

Qyes/Qyvo<br />

Qya<br />

Qha/fp<br />

Qha/ca<br />

Qia<br />

Qia<br />

Qia<br />

Qha/fp<br />

Qya+Qaa<br />

Qpi-fpg<br />

Qia<br />

Qia<br />

Qha/fp<br />

Qaa+Qya<br />

Qha/mv<br />

Qya/Qia<br />

Qae/Qmv<br />

Qiag<br />

Qoa<br />

Qha/pc<br />

Qia<br />

Qia<br />

Qya/Qia<br />

Qia<br />

QToa<br />

Qia?<br />

Qia<br />

Qha/fpg<br />

Qyag<br />

Qmc<br />

Qha/fp?<br />

Qha/pc<br />

Qha/mv<br />

Qha/mv<br />

Qia/fv<br />

Qia<br />

Qia?<br />

Qha/pc<br />

Qia<br />

Qha/pc<br />

Qia<br />

Qiag+Qyag<br />

Qia<br />

Qyag+Qaag<br />

Qya<br />

Qha/mv<br />

Qha/fv<br />

Qya<br />

Qha/mp<br />

Qiag<br />

Qia<br />

Qha/mr<br />

Qaa+Qya<br />

Qyae<br />

Qha/mv<br />

Qya<br />

Qia+Qya<br />

Qha/pc<br />

Qha/mr<br />

Qia<br />

Qia?<br />

Qya<br />

Qia/Qoa<br />

Qha/ca<br />

Qyae<br />

Qia<br />

Qia<br />

Qyw<br />

Qha/fpg<br />

Qiag<br />

Qyag<br />

Qia<br />

Qiag<br />

Qya<br />

Qia<br />

Qia<br />

Qha/mv<br />

Qia<br />

Qia<br />

Qya+Qia<br />

Qye+Qia<br />

Qha/fv<br />

Qya+Qia<br />

Qia+Qya<br />

Qoa/fp<br />

Qia<br />

Qha/fv<br />

Qya+Qia<br />

Qha/fpg<br />

Qya+Qia<br />

Qia<br />

Qia<br />

Qia<br />

Qya+Qia<br />

Qha/pc<br />

Qha/fp<br />

QToa?<br />

Qha/mv<br />

Qyw+Qye<br />

Qie<br />

Qya<br />

Qya+Qia<br />

Qiag<br />

Qia<br />

Qya<br />

Qia+Qya<br />

Qia<br />

Qpi-fpg<br />

Qya<br />

Qia/fp<br />

Qia<br />

Qia<br />

Qha/mp<br />

Qia+Qya<br />

Qia+Qya<br />

Qia<br />

QToa<br />

Qia<br />

Qia<br />

Qia<br />

Qya/Qia<br />

Qya+Qia<br />

Qha/pc<br />

Qia<br />

Qiag<br />

Qyag<br />

Qha/fpg<br />

Qyag<br />

Qha/mr<br />

Qha/mv<br />

Qya/Qia<br />

Qha/fpg<br />

Qia+Qya<br />

Qiao<br />

Qia<br />

Qiag+Qyag<br />

Qia?<br />

Qia<br />

Qia<br />

Qha/pc<br />

Qha/mp<br />

Qyw<br />

Qha/fp<br />

Qya<br />

Qya+Qia<br />

Qia<br />

Qya+Qaa<br />

Qha/mv<br />

Qia<br />

Qha/mv<br />

Qha/fp<br />

Qpi-fpg<br />

Qha/fp<br />

Qia?<br />

Qia<br />

Qia/Qoa<br />

Qpi-fpg<br />

Qha/fv<br />

Qya<br />

Qye/mp<br />

Qyag+Qiag<br />

Qyer/mv<br />

Qia<br />

Qiag<br />

Qia<br />

Qha/fv<br />

Qia<br />

Qya/Qia<br />

Qia<br />

Qye/Qyag<br />

Qha/mv<br />

Qha/mr<br />

Qia<br />

Qyea<br />

Qia?<br />

Qia<br />

Qpi-fpg+Qyag<br />

Qha/fpg<br />

Qia<br />

Qia<br />

Qha/mr<br />

Qya<br />

Qaag<br />

Qia<br />

Qha/pc<br />

Qha/fv<br />

Qyao<br />

Qoa/fv<br />

Qia<br />

Qha/fv<br />

Qia<br />

Qha/fv<br />

Qia<br />

Qia<br />

Qiag+Qyag<br />

Qya<br />

Qpv-fpg<br />

Qha/fp<br />

Qha/pc<br />

Qyw/Qiw<br />

Qha/fp<br />

Qia<br />

Qya/Qoa<br />

Qia<br />

Qha/fv<br />

Qyw+Qaw<br />

Qia?<br />

Qia<br />

Qia<br />

Qia<br />

Qia<br />

Qya<br />

Qha/pc<br />

Qiag<br />

Qyw<br />

Qmc<br />

Qya<br />

Qia<br />

Qyao<br />

Qha/fp<br />

Qha/fpg<br />

Qia<br />

Qya<br />

Qimc+Qymc<br />

Qyag+Qaag<br />

Qya<br />

Qha/pc<br />

Qiag<br />

Qia<br />

Qha/fv<br />

Qha/fv<br />

Qaa+Qya<br />

Qyag<br />

Qiw<br />

Qha/pc<br />

Qia<br />

Qia<br />

Qiag<br />

Qyag+Qaag<br />

Qha/fv<br />

Qiw<br />

Qya<br />

Qha/Qmv<br />

Qha/fv<br />

Qyae<br />

Qyag<br />

Qha/mp<br />

Qyad<br />

Qyg<br />

Qha/fp<br />

Qha/fv<br />

Qha/fp<br />

Qha/ca<br />

Qha/fv<br />

Qya/Qia<br />

QToa<br />

Qya<br />

Qia<br />

Qha/fp<br />

Qia<br />

Qye/mp<br />

Qya/Qia<br />

Qia<br />

Qha/pc<br />

Qia<br />

Qia?<br />

Qha/mv<br />

Qha/pc<br />

Qia<br />

Qoa<br />

QToa/fpg<br />

Qha/mv<br />

Qha/pc<br />

Qia<br />

Qia<br />

Qiao<br />

Qyao<br />

Qha/fv<br />

Qha/mp<br />

Qiag<br />

Qha/fv<br />

Qia<br />

Qya+Qaa<br />

Qha/mr<br />

Qiw<br />

Qiag<br />

Qha/fv<br />

Qya/Qia<br />

Qia<br />

Qha/pc<br />

Qha/mv?<br />

Qha/mv<br />

Qia<br />

Qia<br />

Qia<br />

Qya+Qia<br />

Qia<br />

Qia<br />

Qyag<br />

Qha/ca<br />

Qyao<br />

Qha/pc<br />

Qha/fv<br />

Qha/fv<br />

Qyao<br />

Qia<br />

Qha/mv<br />

Qha/mp<br />

Qya+Qaa<br />

Qya<br />

Qha/mv<br />

Qoa<br />

Qhs/mp<br />

Qya<br />

Qya+Qia<br />

Qha/pc<br />

Qia<br />

Qha/mv<br />

Qia<br />

Qha/mr<br />

Qia<br />

Qiag<br />

Qia<br />

Qia?<br />

Qha/fpg<br />

Qha/fp<br />

Qia?<br />

Qyw<br />

Qia<br />

Qya<br />

Qia<br />

Qia<br />

Qha/mv<br />

Qha/fp?<br />

Qha/mv<br />

Qoa<br />

Qia<br />

Qha/ca<br />

Qya+Qia<br />

Qoa<br />

Qha/mp<br />

Qha/mr<br />

Qha/mr<br />

Qye/mp<br />

Qiao<br />

Qyag<br />

Qia<br />

Qya<br />

Qia<br />

Qya<br />

Qia<br />

Qha/fv<br />

Qha/mp<br />

Qia<br />

Qha/fp<br />

Qha/pc<br />

Qya+Qaa<br />

Qia+Qya<br />

Qha/mv<br />

Qha/fv<br />

Qha/pc<br />

Qia?<br />

Qya<br />

Qha/fv<br />

Qia Qha/mr<br />

Qia<br />

Qha/fpg<br />

Qha/mp<br />

Qha/mr<br />

Qmc<br />

Qia<br />

Qya+Qia<br />

Qyao<br />

Qye+Qia<br />

Qpd-fpg<br />

Qha/fp<br />

Qpi-fpg<br />

Qha/ca<br />

Qyao<br />

Qya+Qia<br />

Qha/mr<br />

Qya+Qaa<br />

Qyao<br />

Qaag<br />

Qha/sl<br />

Qha/fp<br />

Qmc<br />

Qha/fv<br />

Qmc<br />

Qya<br />

Qyag/Qiag<br />

Qye/mp<br />

Qha/ca<br />

Qya/Qia<br />

Qha/mr<br />

Qha/fp<br />

Qia<br />

Qya<br />

Qiag+Qyag<br />

Qha/mv<br />

Qia<br />

Qia<br />

Qya<br />

Qia+Qya<br />

Qha/pc<br />

Qia<br />

Qia/fv<br />

Qia<br />

Qia<br />

Qha/fv<br />

Qha/pc<br />

Qpd-fpg<br />

Qia<br />

Qiao<br />

Qia<br />

Qha/mv<br />

Qha/fp<br />

Qya+Qia<br />

Qha/mr<br />

Qia<br />

Qya<br />

Qya<br />

Qya<br />

Qha/ca<br />

Qya/Qia<br />

Qha/mv<br />

Qia+Qya<br />

Qia+Qya<br />

Qya/Qia<br />

Qha/fpg<br />

Qyao/Qia<br />

Qha/mr<br />

Qha/fp<br />

Qia<br />

Qya<br />

Qya+Qia<br />

Qha/fp<br />

Qha/fv<br />

Qha/mp<br />

Qyw<br />

Qia<br />

Qha/fpg<br />

Qye/mp<br />

Qmc<br />

Qha/fpg<br />

Qia<br />

Qha/mr<br />

Qia<br />

Qiag<br />

Qha/mr<br />

Qye/fp<br />

Qiag<br />

Qha/fv<br />

Qha/fv<br />

Qia<br />

Qha/mv?<br />

Qia<br />

Qha/fv<br />

Qya+Qia<br />

Qia<br />

Qha/fv<br />

Qha/fp<br />

Qia<br />

Qie<br />

Qia<br />

Qha/pc<br />

Qia<br />

Qha/mp<br />

Qha/fp<br />

Qha/fv<br />

Qya<br />

Qoa<br />

Qha/pc<br />

Qia<br />

Qia<br />

Qya/Qia<br />

Qhs/fv<br />

Qha/mv<br />

Qya/Qia<br />

Qya<br />

Qyag+Qyaog<br />

Qyag<br />

Qya+Qaa<br />

Qha/fp?<br />

Qha/fv<br />

Qha/pc<br />

Qhs/fpg<br />

Qaa+Qya<br />

Qha/fp<br />

Qye/fv<br />

Qha/fp<br />

Qha/mv?<br />

Qha/fv<br />

Qha/ca<br />

Qia<br />

Qha/mr<br />

Qyag+Qiag<br />

Qha/fv<br />

Qia+Qya<br />

Qae/Qmv<br />

Qha/fp<br />

Qha/mv<br />

Qha/pc<br />

Qya<br />

Qia?<br />

Qha/mr<br />

Qya/Qia<br />

Qia<br />

Qha/fv<br />

Qha/mp<br />

Qia<br />

Qia<br />

Qia<br />

Qia<br />

Qiao<br />

Qia<br />

Qha/fp<br />

Qha/mp?<br />

Qha/mp?<br />

Qha/mp<br />

Qha/fp<br />

Qaw<br />

Qia<br />

Qia<br />

Qya+Qia<br />

Qha/mv<br />

Qya+Qia<br />

Qya+Qia<br />

Qha/mp<br />

Qia<br />

Qia<br />

Qha/fpg<br />

Qyao<br />

Qha/fpg<br />

Qha/mp<br />

Qha/mp<br />

Qha/mr<br />

Qia+Qya<br />

Qha/fv<br />

Qha/fv<br />

Qha/mr<br />

Qha/fpg<br />

Qha/mp?<br />

Qye/mp<br />

Qha/fv<br />

Qia<br />

Qha/mr<br />

Qia<br />

Qoa<br />

Qha/fv<br />

Qia<br />

Qha/ca<br />

Qha/fv<br />

Qya+Qia<br />

Qha/fpg<br />

Qya+Qaa<br />

Qha/mr<br />

QToa<br />

Qha/fv<br />

Qiag<br />

Qye/fp<br />

Qaa+Qya<br />

Qha/QTmv<br />

Qha/mv<br />

Qia<br />

Qha/mp<br />

Qha/sl<br />

Qyea<br />

Qia<br />

Qaw<br />

Qia<br />

Qya+Qia<br />

Qha/fp<br />

Qha/fv<br />

Qha/mr<br />

Qia+Qya<br />

Qha/fpg<br />

Qia<br />

Qia<br />

Qia<br />

Qhs/mp<br />

Qpd-fpg<br />

Qye/mp<br />

Qha/fpg<br />

Qia<br />

Qiae<br />

Qyao<br />

Qha/fp<br />

Qaa+Qya<br />

Qha/fp<br />

Qha/fv<br />

Qye/mp<br />

Qya/Qia<br />

Qya/Qia<br />

Qha/Qmv<br />

Qia<br />

Qha/pc<br />

Qha/Qmv<br />

Qha/mr<br />

Qha/fv<br />

Qha/fp<br />

Qha/fv<br />

Qha/mv<br />

Qha/fpg<br />

Qiao<br />

Qha/fpg<br />

Qha/fpg<br />

Qha/fp<br />

Qha/pc<br />

Qha/mr<br />

Qyae<br />

Qha/mp<br />

Qia<br />

Qia?<br />

Qha/mp<br />

Qha/fpg<br />

Qha/fp<br />

Qha/fpg<br />

Qha/mr<br />

Qya<br />

Qha/fpg<br />

Qha/fpg<br />

Qha/fp<br />

Qia<br />

Qha/fp<br />

Qoa?<br />

Qha/fv<br />

Qha/mr<br />

Qha/pc<br />

Qha/mr<br />

Qya+Qia<br />

Qha/fv<br />

Qya/Qia<br />

Qia+Qya<br />

Qha/fv<br />

Qia<br />

Qha/QTmv<br />

Qha/fv<br />

Qye/fp<br />

Qha/QTmv<br />

Qia<br />

Qha/mr<br />

Qha/fp<br />

Qha/ca+sl<br />

Qia+Qya<br />

Qye/mp<br />

Qia<br />

Qye/mp<br />

Qya/Qia<br />

Qha/fp<br />

Qha/mv<br />

Qha/fpg<br />

Qha/fp<br />

Qha/fpg<br />

Qae/Qmv<br />

Qha/fpg<br />

Qha/mv<br />

Qya/Qia<br />

Qpd-fpg<br />

Qha/fp<br />

Qha/Qmv<br />

Qha/fv<br />

Qha/QTmv<br />

Qha/mp<br />

QToa<br />

Qha/fpg<br />

Qha/mv<br />

Qha/fv<br />

Qha/fv<br />

Qha/mp<br />

Qha/Qmv<br />

Qya<br />

Qha/fpg<br />

Qha/mr<br />

Qha/fpg<br />

Qpv-fpg<br />

Qye/mp<br />

Qha/mv<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Modified base from U. S. Geological Survey, 1985<br />

Projection, zone 11 Universal Transverse Mercator<br />

1927 North American Datum<br />

Contours <strong>and</strong> elevations in meters<br />

34°30'<br />

35°00'<br />

116°00'<br />

116°00'<br />

115°00'<br />

35°00'<br />

34°30'<br />

115°00'<br />

34°45'<br />

34°45'<br />

<br />

I<br />

III<br />

I<br />

II<br />

I, II<br />

IV, I,II,III<br />

I, II, III<br />

Index to Mapping<br />

I. D.R. Bedford 2001-2005<br />

II. D.M. Miller 2001-2005<br />

III. G.A Phelps 2001-2004<br />

IV. McDonald 1994<br />

@<br />

Contact – Dashed where location uncertain<br />

Gradational Contact – Dotted where gradational with eolian contribution over large distances<br />

Fault – Dashed where location uncertain, dotted where covered; queried where existence uncertain<br />

Description of Map Units<br />

Introduction<br />

Surficial geologic map units are presented as a composite of depositional process (e.g. alluvial, eolian, mass wasting) <strong>and</strong> relative age<br />

(e.g. old, intermediate, young, active). Numeric age ranges or dates are provided where known. The first two characters typically represent the<br />

age. For example unit Qya, the characters ‘Qy’ represent the age – Quaternary young. The third, <strong>and</strong> occasionally fourth, character denotes the<br />

depositional process. For example unit Qya, the character ‘a’ represents an alluvial depositional environment. Modifiers are commonly placed at<br />

the end of the unit label to denote mixed processes, age subsets, or compositional characteristics. The order of preference for placing these<br />

modifiers in the map unit label is process, age, followed by composition modifier. These modifiers for mixed depositional processes are<br />

typically used in mixed eolian <strong>and</strong> alluvial environments, <strong>and</strong> are ordered to place the character of the dominant process first. For example, unit<br />

Qyae would denote Quaternary young deposits of mixed alluvial <strong>and</strong> eolian processes with alluvial processes dominant. The age modifier<br />

(character ‘o’) is reserved for deposits that are recognized locally to be an older subset of a mapped unit, commonly unit Qya. Therefore, unit<br />

Qyao would represent an older subset of unit Qya <strong>and</strong> its younger subsets. Similarly the age modifier ‘y’ denotes deposits that only consist of<br />

the younger deposits in a map unit, <strong>and</strong> thus are known to not contain deposits of map unit with an ‘o’ identifier. Often times these units are<br />

inconsistently mapped or are not present in a proportion that allows them to be mapped separately from the main unit. The compositional<br />

modifier is presently used for deposits that are derived from grus weathering source material. These deposits have different soil development<br />

characteristics, but similar depositional processes <strong>and</strong> inferred ages as their companion units. Because of the disparity in soil development<br />

characteristics, they are mapped separately. For example, unit Qyag represents a Quaternary young alluvial deposit of grussy material.<br />

Soil A v <strong>and</strong> B horizon descriptions after Birkel<strong>and</strong> <strong>and</strong> others (1991). Carbonate stage morphology from Gile <strong>and</strong> others (1966),<br />

modified by Machette (1985).<br />

Surficial Deposits<br />

Anthropogenic Deposits<br />

Made l<strong>and</strong>— Material moved for construction purposes <strong>and</strong> agricultural disturbance sufficiently extensive to make l<strong>and</strong>forms <strong>and</strong> deposits<br />

difficult to identify<br />

Alluvial Deposits<br />

Active alluvial fan deposit (Holocene)— Alluvial fan deposits characterized by surfaces <strong>and</strong> channels that actively receive or have received<br />

sediments within the last few years or decades. Composed of unconsolidated poorly sorted gravel <strong>and</strong> s<strong>and</strong> in channels, fine s<strong>and</strong>s <strong>and</strong><br />

silts in overbank deposits. Deposit consists of active channel <strong>and</strong> young terrace or bar deposits. The annually active channel surfaces are<br />

a small part of the unit, <strong>and</strong> form discrete channels that are commonly smooth. Terrace deposits expressed with rough microtopography;<br />

strongly developed bar <strong>and</strong> swale throughout much of the extent of fan; less pronounced in distal fan. No soil development in active<br />

channels, <strong>and</strong> little or no soil development, which may be expressed as accumulations of silt in the upper horizon, in terrace deposits.<br />

Surfaces active on a decadal scale form terraces 10 to 60 cm above active channels. Deposits inset into most of older alluvial deposits.<br />

Surfaces commonly lack annual <strong>and</strong> perennial vegetation on surfaces active on annual to decadal scale, <strong>and</strong> moderately to heavily<br />

inhabited with annual <strong>and</strong> perennial vegetation on surfaces or channels active on decadal to centennial scale. Perennial vegetation<br />

commonly consists of creosotebush (Larrea tridentata) <strong>and</strong> white bursage (Ambrosia dumosa). Surfaces are prone to flooding <strong>and</strong> sheet<br />

flow during intense or long-lasting precipitation events. Active channels inferred to be less than 10 to 20 years or less based on flooding<br />

frequency, terrace <strong>and</strong> bar deposits range from 20 to 100 years based on flooding frequency from air photography at different times, <strong>and</strong><br />

burial of 19th <strong>and</strong> 20th century tracks <strong>and</strong> trails by these deposits. Qaag, alluvial fan composed predominately of clasts from granitic<br />

source that weathers to grus. Surface undulating with smoother microtopography than unit Qaa; depths of channel incision is smaller;<br />

typically 10-40 cm separating active surfaces from centennial active surfaces<br />

Young alluvial fan deposit (Holocene <strong>and</strong> latest Pleistocene)— Alluvial fan deposits characterized by surfaces that are ab<strong>and</strong>oned or receive<br />

flood materials on a centennial to millennial basis. Moderately- to poorly-sorted, loose to slightly compact, s<strong>and</strong> <strong>and</strong> s<strong>and</strong>y gravel.<br />

Coarser-grained especially near non-granitic mountain fronts where boulders <strong>and</strong> cobbles are common. No or very weak desert pavement.<br />

Incipient to weak varnish on clasts. Soil development consists of 1 to 3 cm thick incipient to weak fine s<strong>and</strong> <strong>and</strong> silt A v , <strong>and</strong> occasional<br />

reddening of subsurface (cambic B) horizons, stage I calcic development. Microtopography ranges from 20 to 60 cm in much of fan, <strong>and</strong><br />

consists of moderate to faint remnants of bar <strong>and</strong> swale topography. Moderately to sparsely inhabited with creosotebush <strong>and</strong> smaller<br />

shrubs, typically white bursage. Can contain abundant patches of cryptobiotic soil crusts. Surfaces typically 0.3 to 1.5 m above active<br />

channels. This unit can contain any of the following: Qaa, Qyay, Qyao, Qyad. Qyad, young alluvial deposits dominated by debris flows<br />

of bouldery, matrix-supported material. Bar <strong>and</strong> swale microtopography is well pronounced on the order of 0.5 to 1 m high. Mapped<br />

only where determined from field study; deposits are much more widespread than shown. Common along west side of Providence<br />

Mountains. Qyaf, alluvial deposits dominated by fine-grained sediments in the extreme distal portions of fans or where wash deposits<br />

build fans onto playas such as the terminus of Fenner Wash. Commonly very subdued microtopography, very sparsely or unvegetated<br />

<strong>and</strong> mixed with eolian deposits. Qyay, younger alluvial deposits, mapped as areas that lack deposits of unit Qyao. Qyao, older young<br />

alluvial deposits, characterized by 1 to 5 m2 patches of weakly to moderately developed pavements with weak varnish on clasts that<br />

develop varnish. Soil development consists of 1 to 4 cm thick A v horizon, weak cambic to B tw horizon, stage I to II calcic horizon.<br />

Deposits inset into older (e.g. Qia) deposits <strong>and</strong> typically are incised by younger deposits (younger Qya <strong>and</strong> Qaa). Dated at about 10 ka<br />

by OSL in Fenner Wash near the town of Fenner (Shannon Mahan, written comm. 2003; see text), <strong>and</strong> lie on groundwater discharge<br />

deposits dated at 13 ka by luminescence methods (Shannon Mahan, written comm. 2000; see text) in lower Kelso Wash just north of the<br />

map area. Mapped only where determined from field study; deposits are much more widespread than shown. Qyag, alluvial fan deposits<br />

made up of clasts from granitic source that weathers to grus. Surface undulating <strong>and</strong> smooth with smaller magnitudes of channel<br />

dissection. Soil development is weak with s<strong>and</strong>y incipient to weak s<strong>and</strong> <strong>and</strong> silt A v , poorly developed cambic horizons, stage I to I+<br />

calcic horizons. Surfaces typically 20 to 50 cm above active channels. Very common downslope of Cretaceous granite outcrops.<br />

Qyaog, older young alluvial deposits made up of clasts from granitic source that weathers to grus, characterized by weakly developed<br />

pavements that generally lack varnish. Soil development is weaker than Qyao, particularly as weak s<strong>and</strong>y A v horizons. Mapped only<br />

where determined from field study (mostly in the northwestern Granite Mountains); deposits are much more widespread than shown<br />

Intermediate alluvial fan deposit (late to middle Pleistocene)— Poorly sorted, s<strong>and</strong>y gravel alluvial fan deposits characterized by surfaces<br />

ab<strong>and</strong>oned for tens of thous<strong>and</strong>s of years. Compact. Characterized by moderately- to well-developed desert pavement with moderate to<br />

strong varnish on clasts, <strong>and</strong> flat smooth surface that is partly incised by narrow channels. Well-developed platy 4- 10 cm thick A v<br />

horizon composed of silt, very fine s<strong>and</strong>, <strong>and</strong> clay. Moderate to strongly developed B t horizon <strong>and</strong> Stage I+ to III+ calcic horizon.<br />

Pavement, varnish, <strong>and</strong> A v horizon subdued to absent at high altitudes (above approximately 1100 m); B t horizon typically thicker at<br />

high altitude, calcic horizon thin. Very sparsely vegetated on flat surfaces with creosotebush, white bursage, <strong>and</strong> Mojave yucca (Yucca<br />

schidigera), more densely vegetated along rounded transitions to incised areas. Moderately vegetated at high altitude with Mojave yucca,<br />

blackbrush (Coleogyne ramosissima), <strong>and</strong> Joshua tree (Yucca brevifolia). Qiag, alluvial fan made up of clasts from granitic source that<br />

weathers to grus; surface commonly is poorly developed with weak to no pavement <strong>and</strong> A v horizon; B t horizon well developed, calcic<br />

horizon ranges from stage II to III+ <strong>and</strong> may be 2-3 m below the surface. Qiao, older intermediate alluvial deposits; surface expression of<br />

2 main types: degraded pavement including exposure of the A v below disaggregated pavement clasts, or in the presence of a moderately-<br />

developed intact pavement, B tk horizons are thinner than for younger Qia deposits, to nearly absent. Both types with extreme rounding of<br />

incised edges. Stage II+ to IV- calcic horizon. Moderately vegetated with similar assemblages as unit Qia, but may be more dense.<br />

Mapped only where determined from field study; deposits are more widespread than shown. Qiaog, older intermediate deposits made up<br />

of clasts from granitic sources that weather to grus; degraded weak pavements with moderate- to well-developed A v horizon, well-<br />

developed B t horizon with stage III calcic development. Mapped only where determined from field study<br />

Old alluvial fan deposit (middle to early Pleistocene)— Alluvial fan deposits characterized by degraded remnants of ab<strong>and</strong>oned surfaces<br />

forming bouldery ridges, or ballenas, after Peterson (1981). Poorly sorted s<strong>and</strong> <strong>and</strong> gravel, compact to well cemented. Commonly forms<br />

pale-colored ballenas above active washes in upper parts of alluvial fans near mountain fronts or rounded, deeply-dissected terrane with<br />

little or no remnant depositional geomorphology; a few meters to tens of meters higher than surrounding surfaces. Most upper soil<br />

horizons stripped off by erosion but commonly has superimposed weak soils developed directly petrocalcic horizon. In places may have<br />

remnant varnished pavement clasts at the surface, including disaggregated pieces of calcic horizon, with a very thin or absent B t horizon<br />

suggesting the surface once had pavement characteristics that have since degraded. Stage IV <strong>and</strong> greater calcic horizons 2 to 6 m thick.<br />

Moderately vegetated. The 0.74 Ma Bishop Tuff is deposited in lower part of the unit in the western Providence Mountains (McDonald<br />

<strong>and</strong> others, 1995), <strong>and</strong> is the only age control in the map area. Qoad, old alluvial deposits dominated by debris flows of bouldery,<br />

matrix-supported material. Mapped only where determined from field study; deposits are much more widespread than shown. Qoag, old<br />

alluvial fan made up of clasts from granitic source that weathers to grus; surface commonly modified by overl<strong>and</strong> flow <strong>and</strong> lacks A v<br />

horizon; B t horizon rarely remains, pronounced stage III+-IV+ calcic horizon. Typically deeply incised <strong>and</strong> rounded with moderate<br />

vegetation<br />

Extremely old alluvial fan deposit (early Pleistocene to Pliocene)— Alluvial fan deposits characterized by complete lack of original l<strong>and</strong>form<br />

<strong>and</strong> general lack of soil horizons at the surface. Poorly sorted compact bouldery gravel <strong>and</strong> s<strong>and</strong>. Forms deeply dissected terrane with<br />

little or no remnant depositional geomorphology; deposits generally did not form in present topography, as indicated by source<br />

directions or clast composition. Younger, superimposed, soil horizons locally developed, <strong>and</strong> may have several sets of paleosols exposed<br />

in wash-cut profiles. Moderately to well vegetated. Between Lava Hills <strong>and</strong> Bristol Mountains, commonly contains thick calcic horizons<br />

<strong>and</strong> is distinguished from unit Qoa by generally deeper dissection <strong>and</strong> presence of abundant exotic rhyolite clasts<br />

Wash Deposits<br />

Active wash deposit (Holocene)— Alluvial wash deposits characterized by surfaces <strong>and</strong> channels actively receiving sediments within the last<br />

few decades. Similar in character to unit Qaa, but generally better sorted <strong>and</strong> bedded, deposited in larger, more frequently flowing,<br />

integrated drainages. Composed of loose moderately- to poorly-sorted s<strong>and</strong> <strong>and</strong> gravel, moderately- to poorly-bedded. No soil<br />

development in active channels, <strong>and</strong> little or no soil development, which may be expressed as accumulations of silt in the upper horizon,<br />

in terrace deposits. Commonly lacks vegetation on active channel surfaces <strong>and</strong> moderately vegetated on decadal to centennial scale<br />

surfaces with creosotebush, commonly cheesebush (Hymenoclea salsola), <strong>and</strong> smoke tree (Psorothamnus spinosus) at low altitudes.<br />

Surfaces are prone to flooding <strong>and</strong> sheet flow during intense or long-lasting precipitation events. Mapped mainly where ephemeral<br />

stream flow is channelized; distributed stream flow generally mapped as active alluvial fan deposit (Qaa) or valley-axis deposits (Qav).<br />

Major washes include Fenner Valley, Kelso Valley <strong>and</strong> Orange Blossom Wash. Qawg, wash deposits made up of clasts from granitic<br />

source materials that weather to grus. Typically moderately to well-sorted s<strong>and</strong> <strong>and</strong> gravel with decreased magnitude of inset<br />

relationships<br />

Young wash deposit (Holocene <strong>and</strong> latest Pleistocene)— Largely inactive alluvial wash deposits in terraces above active wash surfaces.<br />

Composed of loose, moderately- to poorly-sorted, s<strong>and</strong>, gravel, cobbles <strong>and</strong> boulders common in close proximity to bedrock outcrops.<br />

Poorly- to moderately-bedded with common alternating beds of coarse-grained wash <strong>and</strong> fine-grained overbank sediments. Soil<br />

development typically consists of 1 to 3 cm thick incipient to weak fine s<strong>and</strong> <strong>and</strong> silt A v , weak to moderate B w to weak B t horizons, stage<br />

I calcic development. Microtopography ranges from 10 to 50 cm. Moderately vegetated, commonly with cheesebush <strong>and</strong> smoke tree at<br />

low elevations, creosotebush <strong>and</strong> white bursage at higher elevations. Generally forms terraces flanking active washes, approximately 50<br />

to 100 cm above active wash. Smaller alluvial wash tracts of similar age <strong>and</strong> characteristics generally mapped as alluvial fan deposit<br />

(Qya), particularly where distributed across alluvial fans rather than in confined axial channel, but designation somewhat arbitrary.<br />

Qywg, wash deposits made up of clasts from granitic source that weathers to grus. Soils more immature, pavements <strong>and</strong> moderately<br />

developed A v horizon rare. Surface undulating <strong>and</strong> smooth; with decreased magnitude of channel dissection compared to unit Qyw<br />

Intermediate wash deposit (late to middle Pleistocene)— Inactive remnant alluvial wash sediments generally forming high terraces along<br />

edges of major washes. Moderate to well sorted, well bedded s<strong>and</strong> <strong>and</strong> gravel, soil development similar to that for unit Qia. Sparsely<br />

vegetated. Smaller alluvial wash tracts generally designated alluvial fan deposit (Qia)<br />

Eolian Deposits<br />

Active eolian s<strong>and</strong> deposit (Holocene)— Eolian s<strong>and</strong> deposits that are active <strong>and</strong> subject to migration. Composed of loose, moderately to<br />

well-sorted s<strong>and</strong>. Generally lack vegetation, but may be inhabited by grasses such as galleta (Hilaria rigida) or ricegrass (Oryzopsis<br />

hymenoides). Most active eolian s<strong>and</strong> deposits lie within Devils Playground, from south of Soda Lake to Kelso dunes, where they are<br />

derived from Mojave River flood materials. Deposits also lie on lee side of large wash systems such as Fenner Wash where fine-grained<br />

wash materials are mobilized. Qaed, dune deposits<br />

Young eolian s<strong>and</strong> deposit (Holocene <strong>and</strong> latest Pleistocene)— Eolian s<strong>and</strong> deposits that are generally inactive. Loose, well to moderately<br />

well sorted, moderately to weakly bedded fine to medium grained s<strong>and</strong>. Sparsely vegetated, typically with perennial or annual grasses,<br />

<strong>and</strong> less commonly with shrubs. Little or no soil development. Dated in Kelso Dunes area as general pulses of eolian s<strong>and</strong> deposition<br />

from 8 to 10, 3.5 to 3.7, <strong>and</strong> 0.5 to 1.5 ka (Clarke, 1994; Lancaster, 1995). Qyed, dune deposits. Commonly steep, well bedded, <strong>and</strong><br />

with corresponding steep slip faces; Qyer, ramp deposits generally on inclined surface over bedrock. Weak to moderately-bedded, may<br />

be well- to poorly-sorted based on mixing with colluvial materials from upper slopes; Qyes, well- to moderately- sorted s<strong>and</strong> sheet<br />

deposits generally forming sub-horizontal surface over unconsolidated deposits<br />

Intermediate eolian s<strong>and</strong> deposit (late to middle Pleistocene)— Eolian s<strong>and</strong> sediments that are generally inactive, characterized by one or<br />

more B t horizons <strong>and</strong> calcic horizons. Surface very flat <strong>and</strong> moderately compact. Sparsely vegetated<br />

Mixed Eolian <strong>and</strong> Alluvial Deposits<br />

Young mixed eolian s<strong>and</strong> <strong>and</strong> alluvial deposit (Holocene <strong>and</strong> late Pleistocene)— Eolian <strong>and</strong> alluvial sediments that are thoroughly mixed,<br />

with eolian processes dominant. Deposit predominately loose mixed s<strong>and</strong> with sparse gravel in interfingering, layered, or thoroughly<br />

mixed beds. Little or no soil development. Forms broad, flat surfaces with alluvial channels muted or invisible. Sparsely vegetated,<br />

generally with grasses dominant <strong>and</strong> commonly no creosotebush<br />

Young mixed alluvial <strong>and</strong> eolian s<strong>and</strong> deposit (Holocene <strong>and</strong> late Pleistocene)— Alluvial <strong>and</strong> eolian sediments that are thoroughly mixed,<br />

with alluvial processes dominant. Loose, gravelly s<strong>and</strong> with vague to well-defined thin bedding. Little or no soil development. Forms<br />

flatter surfaces than alluvial systems lacking significant eolian s<strong>and</strong> because eolian s<strong>and</strong> additions mute topography. Sparsely vegetated<br />

with grasses <strong>and</strong> shrubs, generally supporting creosotebush communities. Contacts with units Qyea <strong>and</strong> Qya gradational<br />

Intermediate mixed eolian <strong>and</strong> alluvial s<strong>and</strong> deposit (late to middle Pleistocene)— Eolian s<strong>and</strong> <strong>and</strong> alluvial deposits that are thoroughly<br />

mixed, with eolian processes dominant. Exhibits inconsistently developed surface pavement <strong>and</strong> B t <strong>and</strong> calcic horizons. Forms<br />

moderately compact, very flat surfaces with sparse vegetation. Contacts with units Qia <strong>and</strong> Qiae or Qiea gradational over tens to<br />

hundreds of meters<br />

Intermediate mixed alluvial <strong>and</strong> eolian s<strong>and</strong> deposit (late to middle Pleistocene)— Alluvial <strong>and</strong> eolian s<strong>and</strong> sediments that are thoroughly<br />

mixed, with alluvial processes dominant. Gravelly s<strong>and</strong> with vague to well-defined thin bedding. Exhibits inconsistently developed<br />

surface pavement <strong>and</strong> B t <strong>and</strong> calcic horizons. Forms moderately compact, flat surfaces with sparse vegetation. Contacts with units Qia<br />

<strong>and</strong> Qiae or Qiea gradational over tens to hundreds of meters<br />

<strong>Groundwater</strong> Discharge Deposits<br />

Young groundwater discharge deposit (Holocene <strong>and</strong> late Pleistocene)— Silt <strong>and</strong> fine s<strong>and</strong> in zones of former groundwater discharge.<br />

Commonly forms light-colored, flat areas or dissected badl<strong>and</strong>s. Loose to compact silt, fine s<strong>and</strong> <strong>and</strong> calcium carbonate materials.<br />

Commonly exhibits capping massive to punky ‘popcorn-like’ calcium carbonate in upper exposures above fine s<strong>and</strong> <strong>and</strong> silt with diffuse<br />

calcium carbonate. Soil development similar to unit Qya, but horizons may be shallower in places due to effects of calcium carbonate<br />

<strong>and</strong> fine-grained materials. Soil development commonly more pronounced than unit Qya in finer-grained deposits, <strong>and</strong> less developed in<br />

more massive carbonate exposures. Amount of vegetation depends on extent of calcium carbonate, but is generally sparse. Dated at 9.5<br />

to 10 ka near the town of Chambless (Shannon Mahan, written comm. 2003; see text), wetl<strong>and</strong> deposits in lower Kelso Wash dated at 13<br />

to 14 ka by IRSL (Shannon Mahan, written comm., 2000)<br />

Playa Deposits<br />

Young playa deposit (Holocene <strong>and</strong> late Pleistocene)— Playa deposits that are rarely flooded. Composed of moderately- to well-sorted silt,<br />

clay, commonly compact. Generally flat, to very gently undulating <strong>and</strong> lacks vegetation. In Bristol Lake, age determinations are<br />

difficult due to disturbance <strong>and</strong> diversion of flow from mineral mining operations; much may be active. Qypf, playa fringe deposits of<br />

complexly mixed eolian, lacustrine, playa, alluvial, groundwater discharge origins. Forms low gradient surface that is moderately well<br />

vegetated by grasses with sparse creosotebush<br />

Axial Valley Deposits<br />

Active valley-axis deposit (Holocene)— Fine-grained deposits in valley axes characterized by anastomosing washes, diffuse interfluves, <strong>and</strong><br />

complexly interfingering wash <strong>and</strong> eolian sediments. Composed of loose moderately- to poorly-sorted fine gravel, s<strong>and</strong>, silt, <strong>and</strong> clay.<br />

Active channels typically lack vegetation, older terraces commonly inhabited by moderately dense vegetation such as creosotebush,<br />

white bursage, cheesebush, smoke tree, <strong>and</strong> annual grasses. Areas with increased eolian activity may be inhabited by perennial plants<br />

such as desert trumpet (Eriogonum inflatum) <strong>and</strong> grasses such as galleta, <strong>and</strong> annuals such as skeleton weed (Eriogonum deflexum).<br />

Contacts with active wash <strong>and</strong> fan deposits commonly gradational <strong>and</strong> somewhat arbitrary. Surfaces are prone to flooding <strong>and</strong> sheet<br />

flow during intense or long-lasting precipitation events<br />

Young valley-axis deposit (Holocene <strong>and</strong> late Pleistocene)— Fine-grained deposits in largely inactive valley axis locations characterized by<br />

anastomosing washes, gentle interfluves, <strong>and</strong> complexly interfingering eolian sediments. Composed of loose moderately- to poorly-<br />

sorted s<strong>and</strong>, silt <strong>and</strong> clay. Soil development similar to unit Qya. Moderately vegetated with creosotebush communities, <strong>and</strong> eolian-<br />

related grasses such as galleta <strong>and</strong> desert trumpet in eolian-rich environments. Qyvo, older valley-axis deposits characterized by<br />

moderately developed B t <strong>and</strong> A v horizons. Deposits located locally under parts of Kelso Dunes, as observed by the authors of this report<br />

<strong>and</strong> Yeend <strong>and</strong> others (1984)<br />

Erosional Surfaces <strong>and</strong> Related Hillslope Deposits<br />

Hillslope environment— characterized by patchy distribution of bare rock, thin deposits weathered from rock, <strong>and</strong> materials transported short<br />

distances by gravity <strong>and</strong> carried by water. Identified with appended substrate rock type (following hyphen in unit symbol). Divided<br />

into:<br />

Hillslope Deposits<br />

Abundant hillslope deposits (Holocene <strong>and</strong> Pleistocene)— Hillslope materials such as colluvium, talus, weathering products, <strong>and</strong> l<strong>and</strong>slide<br />

deposits; disaggregated cover greater than rock exposure. Generally less than 2 m thick or patchy distribution with small fraction of area<br />

covered by deposits thicker than 2 m. Example color given for substrate type “fp”, see Correlation of Map Units for all unit colors<br />

Sparse hillslope deposits (Holocene <strong>and</strong> Pleistocene)— Hillslope materials such as colluvium, talus, weathering products, <strong>and</strong> l<strong>and</strong>slide<br />

deposits; disaggregated cover less than rock exposure. Generally less than 2 m thick <strong>and</strong> patchy distribution. Example color given for<br />

substrate type “fp”, see Correlation of Map Units for all unit colors<br />

Mass Wasting Colluvial Deposits<br />

Mass-movement colluvial deposits, undivided (Holocene <strong>and</strong> Pleistocene)— Colluvial materials thicker than 2 m covering a wide area; age<br />

undetermined. Rocky <strong>and</strong> poorly sorted. Soil development ranges from weak to strongly developed B t <strong>and</strong> calcic horizons<br />

Young mass-movement colluvial deposits (Holocene)— Colluvial materials thicker than 2 m <strong>and</strong> covering a wide area. Rocky <strong>and</strong> poorly<br />

sorted. Little pedogenic soil development<br />

Intermediate mass-movement colluvial deposits (Pleistocene)— Colluvial materials thicker than 2 m <strong>and</strong> covering a wide area. Rocky <strong>and</strong><br />

poorly sorted; strongly developed B t horizon, generally strongly varnished. Local development of Stage II to III pedogenic calcic<br />

horizon<br />

Pediment Surfaces<br />

Gently sloping erosional surfaces in various stages of erosion <strong>and</strong> burial. Generally forms in grussy granite (fpg) <strong>and</strong> partly consolidated (pc)<br />

materials. Divided into three general classes by surface characteristics <strong>and</strong> appended by a dash <strong>and</strong> the underlying substrate type (e.g.<br />

Qpv-fpg for a veneered pediment on grus-weathering felsic plutonic rocks:<br />

Veneered pediment— Fairly smooth veneer of sediment commonly alluvial in nature, generally less than 2 m thick on the pediment surface;<br />

soil development variable depending on the age of sediment. Mapped where bedrock is exposed in small knolls, roadcuts or wash<br />

exposures. Thicker deposits on pediments south of Granite Mountains consist of Qiag deposits, which is mapped as Qiag+Qpv-fpg, with<br />

Qiag deposited on the pediment surface<br />

Incised pediment— Incised pediment with most of the surface expressed as flat surfaces of bare rock with patchy cover of veneer <strong>and</strong> 1 to<br />

several meters deep channels cut into rock that transport eroded sediment through the pediment<br />

Deeply dissected pediment— Deeply dissected pediment identifiable by similar heights of isolated parts expressed in bedrock pinnacles <strong>and</strong><br />

tors 3 to tens of meters high, may be up to 1km2 in areal extent in the southern Granite Mtns. Area between pinnacles may be covered<br />

with sediment or nearly bare rock<br />

Volcanic rocks<br />

Volcanic flows, cinder cones, <strong>and</strong> other deposits emplaced during the Quaternary are distinguished because they interfinger with surficial<br />

sediments <strong>and</strong> affect surface processes<br />

Mafic volcanic rocks (Quaternary)— Ejecta <strong>and</strong> lava flows of volcanic rocks of mafic composition; chiefly basaltic rocks at Amboy Crater.<br />

Consists mainly of cinder cones with subordinate lava flows (Parker, 1963). Dated at 79 ka at Amboy Crater (Phillips, 2003)<br />

Mafic volcanic rocks (Quaternary to Tertiary)— Ejecta <strong>and</strong> lava flows of volcanic rocks of mafic composition. Age unknown<br />

Substrate materials<br />

Substrate materials (pre-Quaternary)— Shallowly buried rock <strong>and</strong> partly consolidated materials that lie under surficial deposits, <strong>and</strong> under<br />

pediment <strong>and</strong> hillslope veneers. Ages range from Pliocene to early Proterozoic. Units mapped with overlying hillslope deposit type (e.g.<br />

Qha-mv) <strong>and</strong> colored accordingly. Subdivided into categories based on weathering <strong>and</strong> erosional products:<br />

Partly consolidated— Moderately to weakly consolidated sedimentary deposits; locally includes volcanic rocks or highly altered rocks. May<br />

form badl<strong>and</strong> topography. Weathered materials include common silt <strong>and</strong> clay. Typically Tertiary in age. North of the town of contains<br />

the 4.83 Ma Lawlor Tuff (A. M. Sarna-Wojcicki, written commun. 2003) interbedded with lacustrine sediments <strong>and</strong> alluvial fan gravels.<br />

General unit may be mapped as QToa by some authors in parts of the map<br />

Mafic volcanic rocks— Volcanic rocks less than about 68 percent SiO2, such as dacite, <strong>and</strong>esite, <strong>and</strong> basalt. Includes flows <strong>and</strong> ejecta.<br />

Weathered materials include common clay; alluvial fans with mafic volcanic source commonly very bouldery<br />

Felsic volcanic rocks— Volcanic rocks greater than about 68 percent SiO2, such as rhyolite, rhyodacite, <strong>and</strong> felsite. Includes flows <strong>and</strong> ejecta.<br />

Weathered materials include quartz, feldspar, <strong>and</strong> clay<br />

Mafic plutonic rocks— Plutonic rocks less than about 68 percent SiO2, such as gabbro, diorite, monzodiorite, syenite, <strong>and</strong> alkalic rocks.<br />

Weathered materials chiefly feldspar, amphiboles, <strong>and</strong> micas<br />

Felsic plutonic rocks— Plutonic rocks greater than about 68 percent SiO2, such as granite <strong>and</strong> granodiorite. fpg, felsic plutonic rocks that<br />

weather to produce grus, mostly Cretaceous in age. Weathered materials chiefly quartz, feldspar, <strong>and</strong> micas<br />

Siliciclastic rocks— Silicic sedimentary <strong>and</strong> metamorphic rocks, such as s<strong>and</strong>stone <strong>and</strong> quartzite, shale, <strong>and</strong> siltstone. Weathered materials<br />

commonly quartz, silt, <strong>and</strong> clay<br />

Metamorphic rocks— Metamorphic rocks of complexly mixed lithology, such as gneiss, migmatite, <strong>and</strong> structurally mixed rocks. Weathered<br />

materials variable<br />

Carbonate rocks— Carbonate-mineral rocks such as marble, dolomite, <strong>and</strong> limestone. Weathered materials include common silt<br />

Explanatory notes<br />

Mapping methods<br />

This map represents primarily new mapping at the sale of 1:100,000 by st<strong>and</strong>ard field methods <strong>and</strong> interpretation of remote sensing<br />

images including aerial photography <strong>and</strong> L<strong>and</strong>sat 7 imagery. Field methods included examining the geomorphology, l<strong>and</strong>scape position,<br />

surface features, <strong>and</strong> soil development. Locations of field observations were typically recorded with GPS with an accuracy of ± 5-10 meters.<br />

Composite symbols<br />

Surficial geologic units commonly exist as thin (


Bishop<br />

168<br />

Pacific Ocean<br />

U.S. Department of the Interior<br />

U.S. Geological Survey<br />

395<br />

Lone Pine<br />

Owens<br />

Lake<br />

NEVADA<br />

CALIFORNIA<br />

INYO<br />

190<br />

Las Vegas<br />

CALIFORNIA DESERT<br />

15<br />

Ridgecrest<br />

127<br />

KERN SAN Baker<br />

Mojave 58<br />

EMNSA<br />

Barstow 15<br />

95<br />

395<br />

14<br />

15<br />

40<br />

Needles<br />

Victorville<br />

LOS<br />

BERNARDINO<br />

ANGELES<br />

San Bernardino<br />

10<br />

62<br />

Los Angeles<br />

177<br />

RIVERSIDE<br />

Santa Palm Springs<br />

Ana<br />

10<br />

Salton<br />

ORANGE<br />

Sea<br />

15<br />

85<br />

78<br />

5<br />

IMPERIAL<br />

SAN DIEGO Brawley<br />

San Diego<br />

El Centro<br />

5<br />

Base from U.S. Geological Survey, 1:100,000,<br />

Davis Dam, 1982; Amboy, Ivanpah, Mesquite<br />

Lake, Needles, 1985; Soda Mountains, 1993<br />

Universal Transverse Mercator projection<br />

CALIFORNIA<br />

MEXICO<br />

INDEX MAP SHOWING LOCATION OF EAST MOJAVE<br />

NATIONAL SCENIC AREA (EMNSA)<br />

DISTRICT<br />

EXPLANATION<br />

Unit labels—Indicate composition of detritus comprising the alluvial deposits<br />

(labels shown in red represent the dominant lithologic component);<br />

unit labels refer to units described on Plate 1<br />

Approximate boundaries between areas having crudely homogeneous composition of surface detritus<br />

Topographic range front (as interpreted from aerial photography)<br />

Alluvial deposits exceed 300 m in thickness on hachured side of boundary<br />

Drainage divide<br />

Distribution of mapped geologic units generalized from Plate 1:<br />

Quaternary <strong>and</strong> Tertiary sedimentary rocks <strong>and</strong> surficial deposits<br />

Quaternary <strong>and</strong> Tertiary volcanic rocks<br />

Mesozoic plutonic rocks<br />

Mesozoic to Late Proterozoic sedimentary <strong>and</strong> volcanic rocks<br />

Proterozoic plutonic <strong>and</strong> metamorphic rocks<br />

Approximate boundary of East Mojave National Scenic Area (EMNSA, this report)<br />

Approximate boundary of Mojave National Preserve (current as of March 2007)<br />

CALIF.<br />

ARIZONA<br />

12<br />

MAGNETIC NORTH<br />

APPROXIMATE MEAN<br />

DECLINATION, 2007<br />

Estimated Extent of Pediments <strong>and</strong> Adjacent Areas of Thin Alluvial Cover, Including Generalized Lithologic Content<br />

of Piedmont Deposits <strong>and</strong> Inferred Thickness of Cenozoic Cover in the East Mojave National Scenic Area, California<br />

By<br />

John C. Dohrenwend <strong>and</strong> Mary A. McKittrick<br />

2007<br />

Geology generalized from Plate 1 of this report<br />

Interpretation of aerial photographs by John<br />

Dohrenwend <strong>and</strong> Mary McKittrick, 1989, from<br />

photography acquired 1970, 1980<br />

Digital database by R.J. Miller<br />

Edited by T.A. Lindquist <strong>and</strong> J.L. Zigler<br />

Digital cartography by R.D. Koch<br />

Manuscript approved for publication September 11, 1996<br />

MAP LOCATION<br />

Bulletin 2160<br />

Plate 3 of 6<br />

Sheet 3 of 6 for MF-2414<br />

Theodore, T.G., ed., 2007, Geology <strong>and</strong> mineral resources of the East Mojave National<br />

Scenic Area, San Bernardino County, California: U.S. Geological Survey Bulletin 2160<br />

Paper plots of plates for sale as MF-2414 from U.S. Geological Survey, Information<br />

Services, Box 25286, Federal Center, Denver, CO 80225, or call 1-888-ASK-USGS<br />

Any use of trade, firm, or product names in this publication is for descriptive purposes<br />

only <strong>and</strong> does not imply endorsement by the U.S. Government


GEOSCIENCE GEOSCIENCE Support Services, Inc.,<br />

Ground Water Resources Development<br />

P.O. Box 220, Claremont, CA 91711<br />

www.gssiwater.com<br />

P: 909.451.6650 | F: 909.451.6638

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!