27.05.2013 Views

Magnetoelectric Effects in Multiferroics - Lottermoser, Thomas

Magnetoelectric Effects in Multiferroics - Lottermoser, Thomas

Magnetoelectric Effects in Multiferroics - Lottermoser, Thomas

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong><br />

Th. <strong>Lottermoser</strong>, M. Fiebig, T. Arima, Y. Tokura<br />

PROMOX2, APRIL 2005<br />

ERATO-SSS


<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong><br />

Introduction: <strong>Magnetoelectric</strong> Effect & <strong>Multiferroics</strong><br />

Multiferroic Manganites with Perovskite Structure<br />

– Electric Polarization Control by Magnetic Field<br />

Multiferroic Manganites with Hexagonal Structure<br />

– Magnetization Control by Electric Field<br />

– <strong>Magnetoelectric</strong> Second Harmonic Generation (SHG)<br />

– Doma<strong>in</strong>s and Doma<strong>in</strong> Walls<br />

Superlattices as Artificial <strong>Multiferroics</strong><br />

<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong> -1- ERATO-SSS


L<strong>in</strong>ear <strong>Magnetoelectric</strong> Effect<br />

Polarization and magnetization of a medium:<br />

Covariant relativistic formulation:<br />

1960:<br />

Theoretically not well understood<br />

Small effect (10 -5 )<br />

Limited choice of compounds<br />

with:<br />

Relativistic equivalence of electric and<br />

magnetic fields requires "magneto-electric"<br />

cross-correlation (~ α) <strong>in</strong> matter:<br />

2000:<br />

20<br />

New theoretical concepts<br />

10<br />

0<br />

"Gigantic" effects: <strong>in</strong>duction of phase transitions<br />

Year<br />

New materials: multiferroics, composites, "magnetoelectricity on design"<br />

1985 1990 1995 2000 2005<br />

<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong> -2- ERATO-SSS<br />

Publications / year<br />

Publications on magnetoelectric<br />

100<br />

15<br />

90<br />

80 10<br />

70<br />

60<br />

50<br />

40<br />

30<br />

5<br />

0<br />

1960 1965 1970 1975


Multiferroic Compounds<br />

Compounds with simultaneous (anti-)ferromagnetic,<br />

ferroelectric, ferrotoroidic and/or ferroelastic order<strong>in</strong>g<br />

(Aizu 1969)<br />

<strong>Multiferroics</strong><br />

Compounds with only simultaneous magnetic and<br />

electric order<strong>in</strong>g<br />

Magnetic ferroelectrics or ferroelectromagnets<br />

Multiferroic hysteresis<br />

<strong>in</strong> Ni 3 B 7 O 13 I (Ascher et al. 1966)<br />

1958 Idea of new compounds with coexist<strong>in</strong>g magnetic and electric order<strong>in</strong>g<br />

by Smolenskii and Ioffe<br />

1966 First experimental proof of a “multiferroic effect“ by Ascher et al.<br />

1975 Suggestions for technical applications based on multicferroic properties<br />

by Wood and Aust<strong>in</strong><br />

...<br />

2000 “Why are there so few magnetic ferroelctrics?“ by Hill<br />

<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong> -3- ERATO-SSS


Why <strong>Multiferroics</strong>?<br />

The magnetoelectric coupl<strong>in</strong>g constant α ij is small (α ij 2 < χ e ii χ m jj )<br />

Apply<strong>in</strong>g external magnetic/electric fields lead only to small ME effects<br />

<strong>Multiferroics</strong> with magnetic and electric order<strong>in</strong>g exhibit strong <strong>in</strong>ternal<br />

electromagnetic fields!<br />

ME contribution to free energy: H ME = α DB with D = ε 0 (E+P), B = µ 0 (H+M)<br />

Observation of ‘giant‘ ME effects<br />

• Magnetic or electric phase transitions<br />

• Control of magnetization/polarization by electric/magnetic field<br />

Other effects based on the coexist<strong>in</strong>g orders <strong>in</strong> multiferroics:<br />

• Interaction of magnetic and electric doma<strong>in</strong>s and doma<strong>in</strong> walls<br />

• Appereance of ME contributions to nonl<strong>in</strong>ear optical signals<br />

<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong> -4- ERATO-SSS


<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong><br />

Introduction: <strong>Magnetoelectric</strong> Effect & <strong>Multiferroics</strong><br />

Multiferroic Manganites with Perovskite Structure<br />

– Electric Polarization Control by Magnetic Field<br />

Multiferroic Manganites with Hexagonal Structure<br />

– Magnetization Control by Electric Field<br />

– <strong>Magnetoelectric</strong> Second Harmonic Generation (SHG)<br />

– Doma<strong>in</strong>s and Doma<strong>in</strong> Walls<br />

Superlattices as Artificial <strong>Multiferroics</strong><br />

<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong> -5- ERATO-SSS


Electric Polarization Control by Magnetic Field<br />

Kimura et. al., Nature 426, 55 (2003)<br />

Magnetic control of ferroelectric<br />

polarization <strong>in</strong> TbMnO 3 :<br />

At 42 K <strong>in</strong>commensurate<br />

antiferromagnetic Mn 3+ order<strong>in</strong>g<br />

At 27 K <strong>in</strong>commensurate/commensurate<br />

‘lock-<strong>in</strong>‘ transition of Mn 3+ sp<strong>in</strong>s<br />

magnetoeleastic displacements of<br />

Mn 3+ ions<br />

spatial variation of electric<br />

dipolmoments<br />

ferroelectric ordered phase<br />

Apply<strong>in</strong>g of an external magnetic field<br />

leads to 90° rotation of polarization<br />

‘giant‘ ME effect!<br />

<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong> -6- ERATO-SSS


Electric Polarization Control by Magnetic Field<br />

Hur et. al., Nature 429, 392 (2004)<br />

Electric polarization reversal and memory <strong>in</strong><br />

<strong>in</strong> TbMn 2 O 5 <strong>in</strong>duced by magnetic fields:<br />

Exchange <strong>in</strong>teractions between Mn 3+ , Mn 4+ ,<br />

Tb 3+ sp<strong>in</strong>s and lattice polarization lead to<br />

several phase transitions.<br />

Below 10 K:<br />

Magnetic ordr<strong>in</strong>g of Mn 3+ /Mn 4+ and Tb 3+ sp<strong>in</strong>s<br />

Ferroelectric polarization P = P 1 + P 2 (H) with<br />

P 1 antiparallel P 2<br />

Modulation of P 2 (H) by external magnetic<br />

field leads to sign reversal of the overall<br />

polarization P<br />

<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong> -7- ERATO-SSS


<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong><br />

Introduction: <strong>Magnetoelectric</strong> Effect & <strong>Multiferroics</strong><br />

Multiferroic Manganites with Perovskite Structure<br />

– Electric Polarization Control by Magnetic Field<br />

Multiferroic Manganites with Hexagonal Structure<br />

– Magnetization Control by Electric Field<br />

– <strong>Magnetoelectric</strong> Second Harmonic Generation (SHG)<br />

– Doma<strong>in</strong>s and Doma<strong>in</strong> Walls<br />

Superlattices as Artificial <strong>Multiferroics</strong><br />

<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong> -8- ERATO-SSS


Incident<br />

laser beam<br />

Optical Second Harmonic Generation<br />

In general: Multipole expansion of source term S for SHG:<br />

Three nonl<strong>in</strong>ear contributions:<br />

Electric dipole (ED):<br />

Magnetic dipole (MD:<br />

Electric quadrupole (EQ):<br />

Nonl<strong>in</strong>ear signal:<br />

electric, magnetic,<br />

i-type ∝ χ(i) c-type ∝ χ(c)<br />

Interference !<br />

SH source term S i (2ω) ∝ χ ijk E j (ω)E k (ω)<br />

SH <strong>in</strong>tensity: I SH ∝ |S(c) + S(i)| 2<br />

∝ |χ(c) + A e iψ χ(i)| 2 I 2 (ω)<br />

= (χ 2 (c) + A 2 χ 2 (i) + 2A χ(c) χ(i) cos ψ) I 2 (ω)<br />

always > 0 <strong>in</strong>terference term<br />

Amplitude A and phase ψ can be<br />

controlled <strong>in</strong> the experiment.<br />

<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong> -9- ERATO-SSS


SHG <strong>in</strong> a Ferroelectromagnetic Multiferroic<br />

Two-dimensional expansion of the Second Harmonic (SH)<br />

susceptibility χ for electric ( ) and magnetic ( ) order parameters<br />

P NL<br />

[ χˆ<br />

( 0)<br />

+ χˆ<br />

( ℘)<br />

+ χˆ<br />

( ) + χˆ<br />

( ℘ ) + ... ] E(<br />

ω)<br />

( )<br />

( 2ω)<br />

= ε0<br />

E ω<br />

χ(0): Paraelectric paramagnetic contribution always allowed<br />

χ( ): (Anti)ferroelectric contribution allowed below<br />

χ( ): (Anti)ferromagnetic contribution the respective<br />

χ( ): Multiferroic contribution order<strong>in</strong>g temperature<br />

• SHG allows simultaneous <strong>in</strong>vestigation of magnetic and electric structures<br />

• Selective access to electric and magnetic sublattices<br />

• Multiferroic contribution reveals the magneto-electric <strong>in</strong>teraction between<br />

the sublattices<br />

<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong> -10- ERATO-SSS


PEL<br />

Crystallographic and Magnetic Structure of RMnO 3<br />

R 3+<br />

Mn 3+<br />

O 2-<br />

z<br />

FEL<br />

PM AFM<br />

Mn 3+<br />

(z = 0)<br />

Mn 3+<br />

(z=c/2)<br />

y<br />

x<br />

x<br />

RMnO3 (R = Sc, Y, In, Ho, Er,<br />

Tm, Yb, Lu) : A highly<br />

correlated and ordered system!<br />

Ferroelectric phase transition:<br />

T C = 570 - 990 K<br />

Break<strong>in</strong>g of <strong>in</strong>version symmetry I!<br />

Antiferromagnetic phase transition<br />

of the Mn 3+ sublattice:<br />

T N = 70 - 130 K<br />

Break<strong>in</strong>g of time-reversal<br />

symmetry T, but not of <strong>in</strong>version<br />

symmetry I!<br />

Additional rare-earth order:<br />

T C ≈ 5 K<br />

for Ho, Er, Tm, Yb<br />

<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong> -11- ERATO-SSS


Magnetic Structure and SHG Selection Rules<br />

y<br />

α structures x β structures<br />

At least 8 different triangular <strong>in</strong>plane<br />

sp<strong>in</strong> structures with different<br />

magnetic symmetries and different<br />

selection rules for SHG<br />

α structures: SHG for k||z allowed<br />

α x (ϕ = 0°): χ xxx = 0, χ yyy ≠ 0<br />

α y (ϕ = 90°): χ xxx ≠ 0, χ yyy = 0<br />

α ρ (ϕ = 0-90°): χ xxx ∝ s<strong>in</strong> ϕ, χ yyy ∝ cos ϕ<br />

β structures: SHG for k||z not allowed<br />

β x , β y , β ρ : χ xxx = 0, χ yyy = 0<br />

Determ<strong>in</strong>e β structure from α-β β β transition<br />

α x → β y : χ xxx = 0, χ yyy ∝ cos ϕ<br />

α y → β x : χ xxx ∝ s<strong>in</strong> ϕ, χ yyy = 0<br />

Contrary to diffraction techniques:<br />

α and β models clearly dist<strong>in</strong>guishable!<br />

<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong> -12- ERATO-SSS


SH <strong>in</strong>tensity<br />

0<br />

SH <strong>in</strong>tensity<br />

0<br />

YMnO 3<br />

ErMnO 3<br />

SH spectrum and Magnetic Symmetry<br />

6 K<br />

6 K<br />

2.0 2.2 2.4 2.6 2.8 3.0<br />

SH energy (eV)<br />

HoMnO 3<br />

2.0 2.2 2.4 2.6 2.8 3.0<br />

HoMnO 3<br />

2.0 2.2 2.4 2.6 2.8 3.0<br />

SH energy (eV)<br />

The magnetic symmetry, not the R ion, determ<strong>in</strong>es the SH spectrum of RMnO 3<br />

<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong> -13- ERATO-SSS<br />

6 K<br />

50 K<br />

|χ yyy | 2<br />

|χ xxx | 2


Temperature (K)<br />

Temperature (K)<br />

Temperature (K)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

HoMnO 3<br />

A 1<br />

B 2<br />

B1<br />

0<br />

0 1 2 3 4<br />

H/T Phase Diagram of Hexagonal RMnO 3<br />

RMnO 3<br />

(H = 0)<br />

Sc In Lu Yb Tm Er Ho Y<br />

B 2<br />

A 2<br />

TmMnO 3<br />

Magnetic field µ 0 H z (T)<br />

A 2<br />

Representation<br />

B<br />

(hyst.)<br />

A<br />

B 2<br />

B 2<br />

YbMnO 3<br />

Repres. <strong>in</strong>dex<br />

1<br />

(none)<br />

2<br />

A 2<br />

ErMnO 3<br />

A 2<br />

0 1 2 3 4<br />

Magnetic field µ 0 H z (T)<br />

J. Appl. Phys. 83, 8194 (2003)<br />

α structures x β structures<br />

<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong> -14- ERATO-SSS<br />

y


<strong>Magnetoelectric</strong> 3d - 4f Superexchange <strong>in</strong> RMnO 3<br />

Gigantic magnetoelectric effect which<br />

orig<strong>in</strong>ates <strong>in</strong> 3d-4f superexchange;<br />

triggers hidden phase transition!<br />

k: R sites with 3 and 3m symmetries<br />

i k : all R ions at k sites (4+2)<br />

j: 6 Mn ions neighbor<strong>in</strong>g an R ion<br />

A: Mn-R exchange matrix (4 types)<br />

S: sp<strong>in</strong>s of Mn and R ions<br />

α model:<br />

β model:<br />

no change!<br />

lowers ground-state energy:<br />

Ferroelectric distortion modifies the superexchange:<br />

Scales with order par.<br />

Substitution leads to:<br />

<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong> -15- ERATO-SSS<br />

,<br />

ME contribution


Magnetization Control by Electric Field<br />

Electric field suppresses magnetic SHG and leads to<br />

additional field depended contribution to Faraday rotation<br />

Induction of magnetic phase transition!<br />

<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong> -16- ERATO-SSS<br />

Nature 430, 541 (2004)<br />

ME contribution to free energy:<br />

H ∝ α zz P z S z Ho<br />

Ferroelectric pol<strong>in</strong>g and<br />

ferromagnetic order<strong>in</strong>g of Ho 3+ sp<strong>in</strong>s<br />

‘giant’ ME effect


SH <strong>in</strong>tensity<br />

<strong>Magnetoelectric</strong> Second Harmonic Generation<br />

χ yyy<br />

Source term<br />

Sublattice sym.<br />

SHG for k || z<br />

SHG for k || x<br />

0<br />

2.0 2.2 2.4 2.6 2.8<br />

χ zyy<br />

χ yyz<br />

χ zzz<br />

χ yyy<br />

k || z k || x<br />

S H energy (eV)<br />

S ED (0)<br />

P6 3 /mcm<br />

= 0<br />

= 0<br />

× 10<br />

× 2500<br />

S ED ( )<br />

P6 3 cm<br />

<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong> -17- ERATO-SSS<br />

× 10<br />

2.0 2.2 2.4 2.6 2.8<br />

SH energy (eV)<br />

= 0<br />

≠ 0<br />

× 1<br />

S MD,EQ ( )<br />

P6 3 /mcm<br />

≠ 0<br />

= 0<br />

S ED ( )<br />

P6 3 cm<br />

≠ 0<br />

Identical magnetic<br />

spectra for k||z and<br />

k||x <strong>in</strong>dicate bil<strong>in</strong>ear<br />

coupl<strong>in</strong>g to , .<br />

Unarbitrary evidence<br />

for the first observation<br />

of "magnetoelectric<br />

SHG" Nature 419, 818 (2002)


Observation of Multiferroic Doma<strong>in</strong>s<br />

(a) (b)<br />

0.5 mm<br />

(d)<br />

−+<br />

(c)<br />

+−<br />

− −<br />

+ +<br />

FEL<br />

FEL<br />

&<br />

AFM<br />

AFM<br />

Independent ferroelectric (∝ ) and<br />

ferroelectromagnetic (∝ ) doma<strong>in</strong><br />

structures; antiferromagnetic doma<strong>in</strong><br />

structure (∝ ) is not!<br />

„Multiferroic doma<strong>in</strong>s":<br />

= +1 for = ±1, = ±1<br />

= -1 for = ±1, = 1<br />

Any reversal of the FEL order<br />

parameter is clamped to a reversal of<br />

the AFM order parameter<br />

Orig<strong>in</strong>: Piezomagnetic <strong>in</strong>teraction<br />

between lattice distortions at the FEL<br />

doma<strong>in</strong> wall and magnetization<br />

<strong>in</strong>duced by the AFM doma<strong>in</strong> wall<br />

decreases the free energy<br />

Nature 419, 818 (2002)<br />

<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong> -18- ERATO-SSS


Interaction of electric and magnetic doma<strong>in</strong> walls<br />

M<br />

σ<br />

H pm<br />

AFM wall<br />

FEL wall<br />

piezomagnetic<br />

energy<br />

0 d 0 d<br />

s=0<br />

s=d 0<br />

Piezomagnetic contribution H pm = q ijk M i σ jk with<br />

σ ∝ P z → higher-order magnetoelectric effect<br />

s<br />

AFM wall carries an<br />

<strong>in</strong>tr<strong>in</strong>sic macroscopic<br />

mag-netization<br />

FEL wall <strong>in</strong>duces<br />

stra<strong>in</strong> due to switch<strong>in</strong>g<br />

of polarization<br />

Width of walls:<br />

• AFM - O[10 3 ] unit<br />

cells: small <strong>in</strong>-plane<br />

anisotropy<br />

iii • FEL – O[10 0 ] unit<br />

cells: large uniaxial<br />

anisotropy<br />

Generation of an antiferromagnetic wall clamped to a ferroelectric wall<br />

leads to reduction of free energy. Phys. Rev. Lett. 90, 177204 (2003)<br />

<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong> -19- ERATO-SSS<br />

s=d<br />

m<br />

p


Sp<strong>in</strong>-Rotation Doma<strong>in</strong>s <strong>in</strong> HoMnO 3<br />

Observation of drastically <strong>in</strong>creased dielectric<br />

constant dur<strong>in</strong>g magnetic sp<strong>in</strong>-reorientation phase<br />

transition by Lorenz et. al. (PRL 92, 87204 (2004))<br />

But: ME not allowed by symmetry considerations!<br />

Inside AFM doma<strong>in</strong> walls reduced local symmetry<br />

P2 due to uncompensated magnetic moment.<br />

P2 allows ME contribution P z ∝ α zx,y M x,y<br />

Local ME effect<br />

<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong> -20- ERATO-SSS


<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong><br />

Introduction: <strong>Magnetoelectric</strong> Effect & <strong>Multiferroics</strong><br />

Multiferroic Manganites with Perovskite Structure<br />

– Electric Polarization Control by Magnetic Field<br />

Multiferroic Manganites with Hexagonal Structure<br />

– Magnetization Control by Electric Field<br />

– <strong>Magnetoelectric</strong> Second Harmonic Generation (SHG)<br />

– Doma<strong>in</strong>s and Doma<strong>in</strong> Walls<br />

Superlattices as Artificial <strong>Multiferroics</strong><br />

<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong> -21- ERATO-SSS


epeated<br />

10 times<br />

Superlattices as Artificial <strong>Multiferroics</strong><br />

‘Tricolor’ superlattice<br />

LaAlO 3<br />

SrMnO 3<br />

LMnO 3<br />

substrate<br />

2 u.c.<br />

4 u.c.<br />

6 u.c.<br />

1. Asymmetric sequence of layers<br />

breaks <strong>in</strong>version symmetry<br />

2. Ferromagnetic order<strong>in</strong>g at<br />

SrMnO3/LaMn03 <strong>in</strong>terface<br />

Polar ferromagnet<br />

Nonl<strong>in</strong>ear magneto-optical Kerr rotation (NOMOKE)<br />

<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong> -22- ERATO-SSS<br />

Kerr rotation angle φ (°)<br />

Kerr rotation angle φ (°)<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

LSAT<br />

External field: 0.35 T<br />

STO<br />

External field: 0.35 T<br />

φ ≈<br />

Re<br />

P<br />

tan nm<br />

Kerr rotation<br />

Magnetization<br />

-1<br />

0 50 100 150 200 250 300<br />

Temperature (K)<br />

Kerr rotation<br />

Magnetization<br />

m<br />

P ( 2ω)<br />

( 2ω)<br />

s<strong>in</strong>θ<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

Magnetization (µ B /Mn)<br />

Magnetization (µ B /Mn)


Summary<br />

Coexistence of magnetic and electric order<strong>in</strong>g <strong>in</strong> multiferroics<br />

allow ‘giant‘ magnetoelectric effects:<br />

– Electric/magnetic phase transitions<br />

– Control of polarization/magnetization by external<br />

magnetic/electric fields<br />

New effects based on the specific nature of multiferroics:<br />

– Interaction of magnetic and electric doma<strong>in</strong>s and doma<strong>in</strong> walls<br />

– Magnetolectric second harmonic generation<br />

<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong> -23- ERATO-SSS


Germany:<br />

Acknowledgment<br />

Th. Lonkai, D. Fröhlich, St. Leute, C. Degenhardt, T. Satoh<br />

Russia:<br />

R.V. Pisarev, V.V. Pavlov, A.V. Goltsev<br />

Japan:<br />

K. Kohn, Y. Tanabe, E. Hanamura, H. Yamada<br />

<strong>Magnetoelectric</strong> <strong>Effects</strong> <strong>in</strong> <strong>Multiferroics</strong> -24- ERATO-SSS

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!