28.05.2013 Views

Information publication of Department of Orthopaedic Surgery ...

Information publication of Department of Orthopaedic Surgery ...

Information publication of Department of Orthopaedic Surgery ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Ortopinfo<br />

<strong>Information</strong> <strong>publication</strong> <strong>of</strong> <strong>Department</strong> <strong>of</strong> <strong>Orthopaedic</strong> <strong>Surgery</strong>, University <strong>of</strong> Debrecen


2<br />

Ortopinfo<br />

An electronic <strong>publication</strong> <strong>of</strong> <strong>Department</strong> <strong>of</strong> <strong>Orthopaedic</strong> <strong>Surgery</strong>, University <strong>of</strong><br />

Debrecen<br />

The web page <strong>of</strong> the <strong>publication</strong>: www.ortopedia.dote.hu/ortopinfo<br />

Made by SkylCom Kft.<br />

The realization <strong>of</strong> the project was supported by TÁMOP-4.2.3-08/1-2009-0006<br />

grant <strong>of</strong> University <strong>of</strong> Debrecen.<br />

Date <strong>of</strong> <strong>publication</strong>: 31. July, 2011


Contents<br />

Chapter one: <strong>Department</strong> <strong>of</strong> <strong>Orthopaedic</strong> <strong>Surgery</strong> ..............................................................4<br />

Patient Care ..................................................................................................................................5<br />

Staff .................................................................................................................................................9<br />

Research ........................................................................................................................................ 11<br />

Chapter two: The Laboratory <strong>of</strong> Biomechanics .................................................................... 14<br />

History ...........................................................................................................................................15<br />

Research ....................................................................................................................................... 19<br />

Device- and implant development ..................................................................................20<br />

Biomechanical material- and structure tests ............................................................... 22<br />

Application <strong>of</strong> 3D technologies ........................................................................................ 23<br />

Base research, development <strong>of</strong> surgical techniques ....................................................24<br />

Complex project .................................................................................................................. 25<br />

Biomechanical Material Testing Laboratory .......................................................................27<br />

Operation ....................................................................................................................................29<br />

Staff ........................................................................................................................................30<br />

Equipment ............................................................................................................................30<br />

Services ...................................................................................................................................31<br />

Contact .......................................................................................................................................... 33<br />

Ortopinfo<br />

3


4<br />

Chapter one<br />

Dep. <strong>of</strong> <strong>Orthopaedic</strong>s


Patient care<br />

Ortopinfo<br />

5


6<br />

<strong>Department</strong> <strong>of</strong> <strong>Orthopaedic</strong> <strong>Surgery</strong> manages the following activities:<br />

» Hospital services<br />

» Full locomotor surgery<br />

» Surgical treatment <strong>of</strong> rheumatic diseases<br />

» Surgical treatment <strong>of</strong> accident conditions<br />

» Total endoprotetics<br />

» Out-patient services<br />

Admission<br />

» General orthopaedic special consultation<br />

» Childhood screening tests<br />

» Supplying <strong>of</strong> therapeutical equipments<br />

To use the orthopaedic services you need a referral, except urgent cases. Referral can be obtained<br />

from the family doctor.<br />

Out-patient services<br />

General orthopaedic special consultation:<br />

Consultation hours: Monday, Wednesday, Thursday and Friday: 8:30-15:30<br />

Tuesday: 9:00-17:00.<br />

Registration needed.<br />

Referral needed.<br />

Child hip screening:<br />

Consultation hours: workdays 13:30-15:30<br />

Registration not needed.<br />

Referral needed.


Traumathology special consultation:<br />

Consultation hours: Tuesday: 8:00-9:00<br />

Registration needed.<br />

Referral needed.<br />

Thursday: 8:00-10:00<br />

The patients can register by phone: +36 52 255 912 or by e-mail: ortopinfo@dote.hu<br />

Patient care for fee<br />

Patients from abroad need to pay the following fees for our services.<br />

1. Out-patient services<br />

Treatment<br />

HUF<br />

Fee<br />

EUR* RON*<br />

First examination 12 000 45 194<br />

Control examination 8 000 30 129<br />

Consilium 12 000 45 194<br />

Hip ultrasound examination 12 000 45 194<br />

Bandaging 4 600 17 73<br />

Individual physical training 3 450 13 56<br />

Massage (30 minutes) 3 450 13 56<br />

Taking <strong>of</strong> blood 1 200 4,5 20<br />

Teaching <strong>of</strong> the use therapeutical equipments 3 450 13 56<br />

Relaxation infusion (daily) 7 000 26 112<br />

Intraarticularis injection 3 450 13 56<br />

Ultrasound therapy treatment 3 450 13 56<br />

* The actual fee is calculated based on the daily Forint/Euro/RON exchange rate<br />

Ortopinfo<br />

7


8<br />

2. Hospital serices<br />

The fees bellow are only for informing. The actual fee can be calculated only after orthopaedic<br />

and anesteologic examinations.<br />

Beavatkozás, kezelés megnevezése<br />

HUF<br />

Treatment<br />

EUR RON<br />

Implant (min.)<br />

HUF EUR RON<br />

Implantation <strong>of</strong> total endoprtosthesis<br />

805 000 2 900 12 600 430 000 1 560 6 800<br />

Implantation <strong>of</strong> revision total<br />

endoprtosthesis<br />

1 150 000 4 200 18 000 500 000 1 820 7 800<br />

Cemented total hip replacement 920 000 3 350 14 400 140 000 510 2 200<br />

Uncemented total hip replacement<br />

1 035 000 3 760 16 200 250 000 910 3 900<br />

Revision total hip replacement 1 265 000 4 600 19 770 430 000 1 560 6 800<br />

Lumbar spine operation 1 150 000 4 200 18 000 500 000 1 820 7 800<br />

Scoliosis operation 1 495 000 5 450 23 360 800 000 2 910 12 500<br />

<strong>Orthopaedic</strong> small operation 172 500 630 2 700<br />

<strong>Orthopaedic</strong> smaller medium operation<br />

287 500 1 050 4 500<br />

<strong>Orthopaedic</strong> bigger medium operation<br />

550 000 2 000 8 600<br />

<strong>Orthopaedic</strong> large operation 805 000 2 900 12 600<br />

Arthroscopy 172 500 630 2 700<br />

Conservative treatment <strong>of</strong> locomotor<br />

diseases (daily)<br />

7 500 30 120<br />

Other treatments Based on personal calculations


Staff<br />

Our <strong>Department</strong> has a 81-person staff including 21 doctors.<br />

Dr. Zoltán Csernátony<br />

head <strong>of</strong> department<br />

associate pr<strong>of</strong>essor<br />

Pr<strong>of</strong>. Dr. Kálmán Szepesi<br />

pr<strong>of</strong>essor emeritus<br />

Dr. Levente Gáspár<br />

associate pr<strong>of</strong>essor<br />

Dr. István Soltész<br />

specialist<br />

Dr. Gabriella Szücs<br />

adjunct pr<strong>of</strong>essor<br />

Pr<strong>of</strong>. Dr. János Rigó<br />

pr<strong>of</strong>essor emeritus<br />

Dr. Zoltán Jónás<br />

head surgeon<br />

Dr. János Szabó<br />

assistant lecturer<br />

Dr. Tünde Simon<br />

assistant lecturer<br />

Ortopinfo<br />

9


10<br />

Dr. Zoltán Karácsonyi<br />

assistant lecturer<br />

Dr. László Kiss<br />

assistant lecturer<br />

Dr. Henrik Rybaltovszki<br />

specialist<br />

Dr. Gyula Győrfi<br />

doctor<br />

Dr. Csenge Szeverényi<br />

assistant lecturer<br />

Dr. Tamás Bazsó<br />

assistant lecturer<br />

Dr. Zsolt Hunya<br />

specialist


Research<br />

Ortopinfo<br />

11


12<br />

The research activity <strong>of</strong> the <strong>Department</strong> is in the following areas:<br />

» Base research and development <strong>of</strong> surgical techniques<br />

» Implant- and medical equipment development<br />

The most important <strong>publication</strong>s <strong>of</strong> the <strong>Department</strong> are the followings:<br />

Csernátony Z, Gáspár L, Mórocz I. Térdízületi synovialis chondromatosis. Magyar Traumat<br />

Ortop 1991;34:53-6.<br />

Gáspár L, Farkas Cs, Csernátony Z. Menisectomia után kialakuló radiológiai elváltozások<br />

és ezek összefüggése a térdfunkció romlásával. Magyar Traumat Ortop 1999;42:5-12.<br />

Póti L, Csernátony Z, Soltész I, Kiss Á. A csípőízületre frontális síkban ható erők<br />

biomechanikai analízise avascularis necrosis esetén. Magyar Traumat Ortop 1999;42:34-41.<br />

Csernátony Z, Szepesi K, Gáspár L, Dezső Zs, Jónás Z. „The Rotational Preconstraint”.<br />

A kinetic model <strong>of</strong> a possible new mechanism in the ethiopathogenesis <strong>of</strong> scoliosis. Medical<br />

Csernátony Z, Szepesi K, Gáspár L, Kiss L. Contradictions <strong>of</strong> Derotation in Scoliosis <strong>Surgery</strong><br />

Using the CD Principle. Medical Hypotheses 2002;58(6):498-502.<br />

Csernátony Z, Gáspár L, Jónás Z, Szepesi K. Modified Unit Rod technique in Scoliosis<br />

<strong>Surgery</strong>. Acta Orthop Scand 2002 Aug; 73(4):481-2.<br />

Manó S, Novák L, Csernátony Z. A 3D nyomtatás technológiájának alkalmazása a<br />

cranioplasticában. Biomechanica Hungarica 2008 július; I.1:15-20.


Ortopinfo<br />

Molnár Sz, Manó S, Kiss L, Csernátony Z. Ex vivo and in vitro determination <strong>of</strong> the axial<br />

rotational axis <strong>of</strong> the human thoracic spine. Spine. 31(26):E984-E991, December 15, 2006.<br />

Molnár Sz, Manó S, Kiss L, Csernátony Z. Ex vivo and in vitro determination <strong>of</strong> the axial<br />

rotational axis <strong>of</strong> the human thoracic spine. Spine. 31(26):E984-E991, December 15, 2006.<br />

Csernátony Z, Dezső Zs, Gáspár L. Csípőprotézisek rotációs stabilitása a femur proximalis<br />

metaphysisében. Biomechanikai modellkísérlet. Magyar Traumat Ortop 2007;50.2:107-16.<br />

51. Csernátony Z, Kiss L, Manó S. A new technique <strong>of</strong> wedge osteotomy to diminish undesirable<br />

fractures. Eur J Orthop Surg Traumatol 2008; 18:485-488.<br />

Csernátony Z, Molnár S, Hunya Z, Manó S, Kiss L. Biomechanical examination <strong>of</strong> the thoracic<br />

spine-the axial rotation moment and vertical loading capacity <strong>of</strong> the transverse process. J Orthop Res.<br />

2011 Jun 6 (megjelenés alatt)<br />

Csernátony Z, Hunya Zs, Sikula J, Kollár J. A thoracalis gerinc processus transversusainak geomet-<br />

riai vizsgálata. Biomechanica Hungarica 2008 július; I.1:57-62.<br />

Csernátony Z, Manó S, Pálinkás J. CAB: Egy új típusú implantátum a háti gerincszakasz görbü-<br />

letének korrekciójára. First Hungarian Conference on Biomechanics. 2004. 77-84.<br />

Kiss L, Manó S, Molnár Sz, Csernátony Z. Sikertelen felső ugróízületi protézisműtét salvage tech-<br />

nikája: az Ankle Ball Spacer - biomechanikai előtanulmány.<br />

13


14<br />

Chapter two<br />

Biomechanics Lab


History<br />

Ortopinfo<br />

15


16<br />

The history <strong>of</strong> the Laboratory <strong>of</strong> Biomechanics started in 1993, when Zoltán Csernátony orthopaedic<br />

surgeon looked for research partners for finish his biomechanical experiments<br />

by some tests on human femurs. After visit more institutes the Miklós Ybl Technical College<br />

seemed to show some cooperation in the execution <strong>of</strong> the tests. The result <strong>of</strong> the successful<br />

cooperation was that to give an <strong>of</strong>ficial frame to similar further projects the <strong>Department</strong> <strong>of</strong><br />

<strong>Orthopaedic</strong> <strong>Surgery</strong>, University <strong>of</strong> Debrecen and the Miklós Ybl Technical College in 1993<br />

founded the Biomechanical Research Laboratory.<br />

Development phases <strong>of</strong> the CAB hook<br />

The new building <strong>of</strong> the Laboratory in 2000<br />

Initially a small 30 m² room was the home to the experiments.<br />

The College appointed Róbert Horváth<br />

(head <strong>of</strong> department) as the Deputy Head <strong>of</strong> the Laboratory.<br />

The most important result <strong>of</strong> the period till<br />

2000 was the development <strong>of</strong> a new principle based,<br />

patented spine implant system that was successfully<br />

applied in the <strong>Department</strong> <strong>of</strong> <strong>Orthopaedic</strong>s, more<br />

than 30 cases with an excellent result.<br />

In 2000, the Laboratory has a significant development,<br />

when moved to a new, its own, 100 m2 building,<br />

and the same year a mechanical engineer, Sándor<br />

Manó joined to the Laboratory as a permanent staff.<br />

The pr<strong>of</strong>essional development <strong>of</strong> the laboratory had<br />

a serious impulse due to these changes, which have<br />

significantly contributed by the successful grant projects.<br />

The maximum value <strong>of</strong> an approximately $ 350 000<br />

investment was an Instron 8874-type servohydraulic<br />

biaxial biomechanical material testing equipment. In<br />

Hungary this was the first time when a similar knowledge<br />

device was used. This machine has the opportunity<br />

to pull and push, as well as screwing for both<br />

static and dynamic tests.<br />

In 2005, thanks to a GVOP tender based on the services<br />

<strong>of</strong> the Instron 8874 machine, we founded a new<br />

unit named Biomechanical Material Testing Laboratory,<br />

whose standard measurement activities was ac-


credited by the National Accreditation Board in 2006. In the same year thanks to another<br />

tender, obtaining a ZPrint 310 3D printer, we adopted<br />

the application <strong>of</strong> Rapid Prototyping technology in<br />

the medicine in Hungary. We apply this method successfully<br />

for the production <strong>of</strong> custom implants (cranioplasty,<br />

plastic surgery), surgical planning (orthopaedic,<br />

neurosurgery), and during the development <strong>of</strong><br />

medical devices.<br />

Since 2000 the number <strong>of</strong> our device development projects<br />

has dynamically grown. As a participant <strong>of</strong> the major<br />

project University Knowledge Center we developed a<br />

special operating table for spinal surgery, a knee moving<br />

device, as well as a modular-based revision total hip<br />

prosthesis system.<br />

In the programme József Öveges from 2006, involving<br />

students we planned a so called heel vibration rehabilitation<br />

device and successfully realized a clinical trial<br />

using the prototype.<br />

Ortopinfo<br />

In the context <strong>of</strong> external pr<strong>of</strong>essional cooperation also<br />

The extended Lab in 2005<br />

there are several finished and running projects. One <strong>of</strong><br />

the most advanced <strong>of</strong> these is a patient and horse monitoring system connected to the hippotherapy.<br />

The Laboratory <strong>of</strong> Biomechanics in the case <strong>of</strong> enough capacity perform services as well, in<br />

particular in the field <strong>of</strong> material testing and 3D printing, and will be happy to accept external<br />

(research) partner’s willingness to cooperate.<br />

Last but not least in the laboratory, the scientific journal titled Biomechanica Hungarica was<br />

founded and is edited by the staff <strong>of</strong> the laboratory.<br />

The year 2011 brought an important change for the life <strong>of</strong> the laboratory, when we will move<br />

from the territory <strong>of</strong> the Faculty <strong>of</strong> Engineering to the area <strong>of</strong> the Medical Center. With this<br />

step the common operation with the Faculty <strong>of</strong> Engineering ends, at the same time, the dialy<br />

communication between the Laboratory and the <strong>Department</strong> <strong>of</strong> <strong>Orthopaedic</strong> <strong>Surgery</strong> will<br />

highly simplified, since the distance will dramatically decrease. Although the principle will<br />

continue to prevail, that the biomechanical – particularly the cadaver — research activity be<br />

17


18<br />

separated in space from the clinical healing activity.<br />

This year the Laboratory <strong>of</strong> Biomechanics <strong>of</strong> the <strong>Department</strong> <strong>of</strong> <strong>Orthopaedic</strong> <strong>Surgery</strong> is 18<br />

years old. With the moving to a new location,<br />

with its well-established pr<strong>of</strong>essional<br />

acknowledgement, and results we feel that<br />

it represents a strong pr<strong>of</strong>essional potential,<br />

and we hope it will continue to be a useful<br />

background unit <strong>of</strong> the more effective locomotor<br />

surgery.<br />

The building <strong>of</strong> the Laboratory at the Faculty <strong>of</strong> Engineering<br />

Manó S. A Debreceni Egyetem Biomechanikai Laboratóriuma. Biomechanica Hungarica 2011;IV(1):7-14.


Research<br />

Ortopinfo<br />

19


20<br />

The Sanat-R prosthesis<br />

As a part <strong>of</strong> the <strong>Department</strong> <strong>of</strong> <strong>Orthopaedic</strong> <strong>Surgery</strong>, the main activity <strong>of</strong> our Laboratory is<br />

the locomotor base- and applied research. Our diversified activities can be arranged into four<br />

main categories.<br />

1. orthopaedic and medical device- and implant development<br />

2. biomechanical and other material and structure testing<br />

3. application <strong>of</strong> medical 3D technologies<br />

4. biomechanical and locomotor surgery related base research and surgical technique<br />

development.<br />

In this section we present some example projects from the categories above.<br />

Device- and implant development<br />

Regional University Knowledge Center<br />

The Regional University Knowledge Center grant is a grand, complex project<br />

based on the scientific capacity <strong>of</strong> University <strong>of</strong> Debrecen. The <strong>Department</strong><br />

<strong>of</strong> <strong>Orthopaedic</strong> <strong>Surgery</strong> and our Laboratory worked on a sub-project<br />

within this main project.<br />

The most important goal <strong>of</strong> our sub-project was the development <strong>of</strong> a new<br />

biologically fixed total hip revision endoprosthesis system.<br />

Our further aims are to develop and construct a new moving device prototype<br />

that helps the rehabilitation <strong>of</strong> the patients after implanting a knee or<br />

a hip prosthesis, additionally the development <strong>of</strong> a special operating table<br />

for spine surgery based on a new concept.<br />

Development <strong>of</strong> a heel vibrating device<br />

During this project - involving 4 TDK student - we designed and built the prototype <strong>of</strong> a<br />

rehabilitation device that helps the rehabilitation and the work <strong>of</strong> the physiotherapist after<br />

certain (mainly total endoprtosthesis) knee operations<br />

The device executes individual programmed moving therapy controlled by a PDA.<br />

We performed the first clinical trials and the processing <strong>of</strong> the collected data is currently in<br />

progress.


Development <strong>of</strong> a self positioning operation lamp<br />

Ortopinfo<br />

During the project we developed an operating lamp based on an automatic wireless positioning<br />

system and built the first working prototype. During<br />

the application <strong>of</strong> the system the surgeon can adjust the<br />

perfect direction and the focus <strong>of</strong> the light using a special<br />

wireless pointing device by a single button-pushing.<br />

The sterilized pointing device is held by the surgeon and<br />

used to mark the focus point and the direction <strong>of</strong> the light.<br />

After pointing to the appropriate place the surgeon pushes<br />

a button and the positioning system automatically adjusts<br />

the light-source realizing the desired focus and direction.<br />

The advantages <strong>of</strong> this new system in contradiction to a<br />

conventional operation lamp are the followings:<br />

The prototype <strong>of</strong> the operating lamp<br />

» eliminate sterilization problems<br />

» the adjusting process is controlled directly by the surgeon<br />

» perfect focus and light direction can be adjusted for the operating surgeon<br />

» eliminate personal communication problems<br />

» easy handling<br />

» fast moving and switching between positions<br />

» built in camera<br />

Other implant- and device development projects<br />

» the CAB hook: spinal implant system<br />

» modular revision acetabular component<br />

» wheelchair with spine-extending function<br />

» special saw for bone surgery<br />

» spine self-exposer<br />

» surgical aiming device<br />

» spiral implant for femur head stabilization<br />

» reverse airbag for the protection <strong>of</strong> the hip in car<br />

seats<br />

Wheelchair with spine-extending function<br />

21


22<br />

Biomechanical material and structural tests<br />

Comparison <strong>of</strong> the stability <strong>of</strong> fixation techniques for pelvis ring injury<br />

The goal <strong>of</strong> this project was to compare the reached stability in the pelvis ring in the case <strong>of</strong><br />

Denis I and II fractures applying the following three techniques:<br />

» Direct plate fixation<br />

» Narrow and wide DC-plate fixation<br />

» KFI-H plate fixation<br />

The main direction <strong>of</strong> the method was to apply final element<br />

analysis, but there were several cadaver tests in our<br />

Laboratory as well.<br />

The main result <strong>of</strong> the project was that the difference in<br />

the stability <strong>of</strong> the techniques not as significant as the<br />

difference between the invasivity.<br />

Bodzay T, Asbóth L, Szita J, Váradi K. Medencegyűrű-sérülések műtéti rögzítésének végeselemes modellezé-<br />

se. Biomech Hung 2008;I(1):37-46.<br />

Compression test <strong>of</strong> a nanocomposite material<br />

New approach <strong>of</strong> nanocomposite based bone substitution<br />

In this OTKA project we would like to develop a new,<br />

nanocomposite based material for bone substitution.<br />

Cooperating with the <strong>Department</strong> <strong>of</strong> Inorganic and Analytical<br />

Chemistry, University <strong>of</strong> Debrecen, we produced<br />

several materials that were tested at the Laboratory <strong>of</strong><br />

Biomechanics.<br />

Currently we are starting the animal experiments.


Other biomechanical material/structure testing research projects<br />

» Biomechanical comparison <strong>of</strong> three cemented stem removal techniques in revision<br />

hip surgery<br />

» Examining the application <strong>of</strong> Reverse Kapandji operation in the treatment <strong>of</strong> proximal<br />

radioulnar synostosis<br />

» Comparison <strong>of</strong> the stability <strong>of</strong> different pelvis osteotomies<br />

Application <strong>of</strong> 3D technologies<br />

In our Laboratory there are three dimensional printer,<br />

scanner, furthermore mechanical and visual designing<br />

s<strong>of</strong>tware to solve certain medical- surgical tasks.<br />

Our Laboratory is the first place in Hungary, where the<br />

3D printing as a rapid prototyping technology is applied<br />

for surgical purposes. By this technology (even from CT<br />

scans) it is possible to produce real objects based on<br />

computer three dimensional models. The method can<br />

be successfully applied in a wide area <strong>of</strong> the medicine,<br />

particularly in the following specialities:<br />

» neurosurgery, cranioplasty<br />

» producing <strong>of</strong> individual implants, spacers (orthopaedics, plastic surgery)<br />

» operation planning<br />

» demonstration, education<br />

» designing <strong>of</strong> implants and medical devices<br />

Ortopinfo<br />

Tóth K, Sisák K, Wellinger K, Manó S, Horváth G, Szendroi M, Csernátony Z. Biomechanical<br />

comparison <strong>of</strong> three cemented stem removal techniques in revision hip surgery. Archives <strong>of</strong> <strong>Orthopaedic</strong><br />

and Trauma <strong>Surgery</strong> (közlésre elfogadva)<br />

Rybaltovszki H, Fekete K, Manó S. Is there any reality to the reverse Kapandji operation In the<br />

treatment <strong>of</strong> proximal radioulnar synostosis? Biomechanica Hungarica 2010 dec; III.2:43-51<br />

3D nyomtatóval készült modellek<br />

23


24<br />

The method make applying molding process possible as well. In the case <strong>of</strong> cranioplasty,<br />

or other bone substitution operation first we produce<br />

the positive mould with the 3D printer based<br />

on CT scans, then we mold it with silicone and get<br />

the negative mould, that forms the spacer or the<br />

substitution in the operating room. We successfully<br />

applied the method several times at the <strong>Department</strong><br />

<strong>of</strong> <strong>Orthopaedic</strong> <strong>Surgery</strong>, furthermore at the <strong>Department</strong><br />

<strong>of</strong> Neurosurgery in Debrecen and Szeged.<br />

Csernátony Z, Novák L, Bognár L, Ruszthi P, Manó S. Számítógépes tervezésű cranioplastica. Első hazai<br />

eredmények a térbeli nyomtatás orvosi alkalmazásával. Magyar Traumat Ortop 2007;50.3:238-43.<br />

Manó S, Novák L, Csernátony Z. A 3D nyomtatás technológiájának alkalmazása a cranioplasticában.<br />

Biomechanica Hungarica 2008 július; I.1:15-20.<br />

Base research and surgical techniques<br />

» Development <strong>of</strong> nanocomposite based material for bone substitution (see earlier)<br />

» Elaboration <strong>of</strong> the Spine Knows Better (SKB) correction technique<br />

» Ro<strong>of</strong> Step Cut technique: a new method for acetabular correction


Complex project: the influence <strong>of</strong> the lubrication properties <strong>of</strong> human materials for<br />

the stability <strong>of</strong> spinal implants<br />

n this complex project we examine the stability <strong>of</strong> the spinal implants related to the ambient<br />

material and the tightening torque <strong>of</strong> the fixing screws.<br />

As the first step we determined the relative lubricating<br />

properties <strong>of</strong> some human materials that are exist<br />

during a spinal operation. For the measurements<br />

a special machine was built to measure the relative<br />

lubricity. In this way we compared the lubricity <strong>of</strong><br />

the human materials like blood and fat to some wellknown<br />

lubricants.<br />

After constructing the device for the measurements we<br />

executed the comparative measurements with the following<br />

result.<br />

Based on these results we chosen the industry equivalent lubricant material for the spinal implant<br />

tests, so we used motor oil as this has the most similar lubricity to the human materials.<br />

Ortopinfo<br />

Tiba Zs, Husi G, Manó S, Kiss L, Jónás Z, et al. An easy to use device for lubricity examination. Biomechanica<br />

Hungarica 2009;II(2):27-30.<br />

25


26<br />

During the mechanical tests described in the standard ASTM F-1798 we compared the dry<br />

vs the lubricant based, furthermore the weakly vs the strongly tightened<br />

implants based on the force required to move the components<br />

relatively.<br />

The model for torque measurement<br />

The last sub-project is a measurement sequence where we ask spinal<br />

surgeons to tighten the screws <strong>of</strong> spinal implants using a plastic<br />

model. With this experiment we would like to see how much is the<br />

really applied torque to these implants and compare the manufacturer’s<br />

suggestions and the results <strong>of</strong> the previous sub-projects.


Meterial Testing Lab<br />

Ortopinfo<br />

27


28<br />

Laboratory <strong>of</strong> Biomechanics has participated in material testing from the first time, particularly<br />

in tests <strong>of</strong> human bones. The year 2003 brought a significant change, when we set an<br />

Instron 8874 type biomechanical material testing machine going. Using this machine we got<br />

the possibility for the introduction <strong>of</strong> standard material tests beside<br />

our biomechanical studies, which raised the possibility <strong>of</strong> accreditation<br />

by establishing the required quality management system.<br />

Thanks to a grant we started to realize the accreditation process <strong>of</strong><br />

the testing activity <strong>of</strong> the laboratory in 2005, so the Biomechanical<br />

Material Testing Laboratory was founded in the same year for the<br />

purpose to sharply separate the accredited material testing activity<br />

with its quality management system from any other activity <strong>of</strong> the<br />

laboratory.<br />

The main activity <strong>of</strong> the Material Testing Laboratory is the research:<br />

various biomechanical nature experiments, measurements and<br />

tests. In addition, in conjunction with the accredited activity we carry<br />

out external orders as well.<br />

The detailed list <strong>of</strong> our standard testing procedures:<br />

Material Test Standard<br />

Metals tensile test MSZ EN 10002-1:2001<br />

MSZ EN ISO 527-1:1999<br />

MSZ EN ISO 527-2:1993<br />

tensile test<br />

MSZ EN ISO 527-3:1996<br />

Plastics<br />

MSZ EN ISO 527-4:1999<br />

MSZ EN ISO 527-5:1999<br />

bending test MSZ EN ISO 178:2000<br />

compression test MSZ EN ISO 604:2003<br />

determination <strong>of</strong> density MSZ EN ISO 1183-1:2004<br />

tensile test MSZ EN 12814-2:2000<br />

Welded joints <strong>of</strong> plastics T-peel test MSZ EN 12814-4:2001<br />

tensile test MSZ EN 12814-7:2003<br />

Plastics and rubbers Shore hardness (A,D) MSZ ISO 868:1991<br />

External fixator static and cyclic tests ASTM F 1541 – 02<br />

Spine implant static and cyclic tests ASTM F 1798 - 97


Operation<br />

Ortopinfo<br />

29


30<br />

Staff<br />

The following persons form the staff <strong>of</strong> the Laboratory <strong>of</strong> Biomechanics and the Laboratory<br />

<strong>of</strong> the Biomechanical Material Testing Laboratory:<br />

Equipment<br />

Dr. Zoltán Csernátony<br />

head <strong>of</strong> laboratory<br />

Sándor Manó<br />

assistant research fellow<br />

quality manager<br />

Katalin Deutsch<br />

laboratory assistant<br />

Calibrated devices <strong>of</strong> the Material Testing Laboratory<br />

» Instron 8874 biomechanical material testing machine<br />

Capacity: 25 kN; 100 Nm<br />

Test types: static/cyclic; axial/torsion<br />

» Advanced Video Extensometer (connected to Insron 8874)<br />

FOV: 200 mm<br />

Accuracy: ±2.5 μm<br />

» Instron S1 Durometer<br />

With Shore A and D heads


» Mitutoyo measuring devices<br />

Mitutoyo 227-201 digital micrometer<br />

Mitutoyo 145-185 inner micrometer<br />

Mitutoyo 551-231-10 digital caliper<br />

» Torque meters<br />

Torqueleader Quickset<br />

WERA 7112B DS<br />

Workshop equipment<br />

» E2N turning machine<br />

» ZX45Z milling machnine<br />

» Metabo sawing machine<br />

» Circular saws<br />

» Tabletop drilling machine<br />

» Hand tools<br />

3D technologies<br />

» ZPrinter 310 3D printer<br />

» Cobra Fastscan 3D scanner<br />

» 3D sz<strong>of</strong>tware: 3DS Max 2012, Magics, Mimics, Catia V5<br />

Services<br />

We <strong>of</strong>fer several services for industrial or institutional partners in the following fields.<br />

Material and construction tests<br />

» Accredited tests based on standards in page 56.<br />

» Non-standardized biomechanical and other tests including cadaver experiments.<br />

3D printing<br />

» Geometry prototypes <strong>of</strong> any mechanical part or even implant: We can manufacture<br />

even the most complex 3d objects with maximum size <strong>of</strong> 200x200x250 mm by our<br />

Zprint 310 three dimensional printer.<br />

» Individual implants and spacers: We can produce silicon molding forms based on 3D<br />

Ortopinfo<br />

Instron 8874<br />

ZPrinter 310<br />

31


32<br />

objects printed by our 3d printer. This form can be used for making individual bone<br />

substitution implants/spacers for cranioplasty or different orthopaedic operations.<br />

» 3D models for surgical planning based on CT scans: The model <strong>of</strong> the bone holding in<br />

your hand <strong>of</strong>fers the best possibilities to plan a difficult operation. You can plan any<br />

movement and the whole process, what’s more the model can be formed, drilled as<br />

you would do it during the operation. We used this method several times in the case<br />

<strong>of</strong> hip, spine, ankle and foot problems.<br />

3D scanning, 3D reconstruction<br />

» We have a Cobra Fastscan handheld 3D laser scanner. Using this technology we can<br />

digitalize objects in a wide size range anywhere.<br />

» We undertake the reconstruction <strong>of</strong> bones and certain s<strong>of</strong>t tissues based on CT scans,<br />

that can be put at your disposal in any popular editable 3D file format.<br />

Cadaver experiments<br />

» We undertake the full arrangement <strong>of</strong> cadaver experiments executed in our Laboratory<br />

including the taking <strong>of</strong> the ethical approval.


Contact<br />

Ortopinfo<br />

33


34<br />

<strong>Department</strong> <strong>of</strong> <strong>Orthopaedic</strong> <strong>Surgery</strong><br />

Address: 4032 Debrecen, Nagyerdei krt. 98.<br />

Postal address: 4012 Debrecen, Pf. 16.<br />

E-mail addresses<br />

The building <strong>of</strong> the <strong>Department</strong> is the second one to the right approaching<br />

from the main entrance.<br />

Direct phone numbers Extension<br />

Secretariat: 06 52 255 815 55815<br />

Fax: 06 52 255 815<br />

Reception: 06 52 255 604 55626<br />

Patient registration: 06 52 255 912 56185<br />

Dr. Zoltán Csernátony head <strong>of</strong> department: csz@med.unideb.hu<br />

Judit Varga secretary: vargaj@med.unideb.hu<br />

General information, registration: ortopinfo@med.unideb.hu<br />

Laboratory <strong>of</strong> Biomechanics<br />

Address: 4032 Debrecen, Nagyerdei krt. 98.<br />

Postal address: 4032 Debrecen, Nagyerdei krt. 98.<br />

Location: Basement <strong>of</strong> the Theoretic Block beyond the restaurant.<br />

Phone numbers:<br />

Room <strong>of</strong> the Laboratory: 06 52 415 155/77707<br />

Head <strong>of</strong> laboratory: 06 52 255 815<br />

E-mail addresses<br />

Dr. Zoltán Csernátony head <strong>of</strong> laboratory: csz@med.unideb.hu<br />

Sándor Manó: manos@med.unideb.hu

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!