01.06.2013 Views

Corrosion of Lead-Acid Battery Electrodes in Sulphuric Acid

Corrosion of Lead-Acid Battery Electrodes in Sulphuric Acid

Corrosion of Lead-Acid Battery Electrodes in Sulphuric Acid

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ِ◌ ِ◌University<br />

<strong>of</strong> Baghdad<br />

College <strong>of</strong> Science<br />

Chemistry Department<br />

<strong>Corrosion</strong> <strong>of</strong> <strong>Lead</strong>-<strong>Acid</strong><br />

<strong>Battery</strong> <strong>Electrodes</strong><br />

<strong>in</strong><br />

<strong>Sulphuric</strong> <strong>Acid</strong><br />

A thesis<br />

Submitted to the College <strong>of</strong> Science <strong>of</strong> Baghdad<br />

University as a partial fulfillment <strong>of</strong> the requirements<br />

for the degree <strong>of</strong> Master <strong>of</strong> Science <strong>in</strong> Chemistry<br />

By<br />

Bakhtiar Kakil Hamad<br />

(B.Sc.)<br />

2000<br />

October 2004


Supervisors Certificate<br />

I certify that this thesis was prepared under my supervision<br />

at the College <strong>of</strong> Science, University <strong>of</strong> Baghdad <strong>in</strong> partial<br />

fulfillment <strong>of</strong> the requirements for the degree <strong>of</strong> Master <strong>of</strong><br />

Science <strong>in</strong> Chemistry.<br />

Signature<br />

Pr<strong>of</strong>. Dr. Jalal Mohammed Saleh<br />

Date: / /2004<br />

In view <strong>of</strong> the above recommendation, I forward this thesis<br />

for debate by Exam<strong>in</strong><strong>in</strong>g Committee.<br />

Signature:<br />

Name :<br />

Address :<br />

Date : / /2004


Committee Certificate<br />

We certify that we have read this thesis and as exam<strong>in</strong><strong>in</strong>g<br />

committee exam<strong>in</strong>ed the student (Bakhtiar Kakil Hamad) <strong>in</strong> its<br />

content and that <strong>in</strong> our op<strong>in</strong>ion it meets the standard <strong>of</strong> a thesis<br />

for the degree <strong>of</strong> Master <strong>of</strong> Science <strong>in</strong> Chemistry.<br />

Chairman Member<br />

Signature: Signature:<br />

Name: Name:<br />

Date: Date:<br />

Member Member( Supervisor)<br />

Signature: Signature:<br />

Name: Name:<br />

Date: Date:<br />

In view <strong>of</strong> the above recommendation, I forward this thesis<br />

for debate by Exam<strong>in</strong><strong>in</strong>g Committee.<br />

Signature:<br />

Name:<br />

Address:<br />

Date:


Acknowledgements<br />

I would like to express my s<strong>in</strong>cere thanks and gratitude to my<br />

supervisor pr<strong>of</strong>. Dr. Jalal Mhammed Saleh, Ph.D., C. Chem. D. Sc.,<br />

FRSC. For his close supervision, encouragement and <strong>in</strong>variable<br />

guidance throughout this research.<br />

I wish to give my special thanks and appreciation to pr<strong>of</strong>. Naema<br />

Ahmed Hikmat, for her encouragement and care.<br />

Special thanks are due to the staff <strong>of</strong> the State Company <strong>of</strong><br />

<strong>Battery</strong> Manufactur<strong>in</strong>g for supply<strong>in</strong>g the start<strong>in</strong>g materials.<br />

F<strong>in</strong>ally, my s<strong>in</strong>cere thanks are due to my family for their patience<br />

and support dur<strong>in</strong>g the duration <strong>of</strong> my studies. Above all my great<br />

thanks to God for his mercy and blesses.<br />

Bakhtiar


Summary<br />

The present work <strong>in</strong>volved the <strong>in</strong>vestigation <strong>of</strong> the polarization<br />

behaviours <strong>of</strong> the follow<strong>in</strong>g materials which consisted the electrodes and<br />

components <strong>of</strong> the lead acid battery which were:<br />

1, lead alloy work<strong>in</strong>g electrode,<br />

2, Grid lead electrode,<br />

3, Pure lead electrode,<br />

4, uncured positive electrode,<br />

5, cured positive electrode,<br />

6, uncured negative electrode, and,<br />

7, cured negative electrode.<br />

In 0.1, 0.25 and 0.56 M sulphuric acid solution <strong>in</strong> the temperature<br />

range (298-318)K <strong>in</strong> four different corrosion media which were:<br />

1, un-stirred oxygenated sulphuric acid,<br />

2, stirred oxygenated acid solution,<br />

3, un-stirred deaerated acid solution, and,<br />

4, stirred deaerated acid solution.<br />

The major aspects <strong>of</strong> the work and the ma<strong>in</strong> results obta<strong>in</strong>ed may be<br />

presented as follows:<br />

1- The polarization behaviour studies were performed on the different<br />

lead electrodes <strong>in</strong> the different media has been exam<strong>in</strong>ed us<strong>in</strong>g a<br />

potentiostat and a scan rate <strong>of</strong> (30)mm per m<strong>in</strong>ute. The potentioscan<br />

covered a range from –2.0 to +2.0 Volt. The ma<strong>in</strong> results obta<strong>in</strong>ed<br />

were expressed <strong>in</strong> terms <strong>of</strong> the corrosion potentials (Ec) which became<br />

more negative <strong>in</strong> the un-stirred deaerated acid solution as compared<br />

with the oxygenated acid solution, and also <strong>in</strong> terms <strong>of</strong> corrosion current<br />

densities (ic) which became higher <strong>in</strong> the stirred oxygenated acid


solution. Thus, corrosion was more <strong>in</strong>tense <strong>in</strong> the oxygenated acid<br />

solution as compared with the deaerated acid solution.<br />

2- The corrosion potentials and the corrosion current densities changed<br />

considerably <strong>in</strong> the presence <strong>of</strong> the additives which <strong>in</strong>volved :-<br />

1, H3PO4 ( 11g dm -3 ),<br />

2, A mixture <strong>of</strong> ( H3PO4(11g dm -3 )+ FeSO4(0.2 g dm -3 )),<br />

3, NaCl (4 g dm -3 ) and ,<br />

4, FeSO4 (0.2 g dm -3 ).<br />

In the stirred and the un-stirred oxygenated 0.56M sulphuric acid solution<br />

<strong>in</strong> the temperature range (298-318)K us<strong>in</strong>g the follow<strong>in</strong>g work<strong>in</strong>g<br />

electrodes:<br />

1, lead alloy electrode,<br />

2, grid lead electrode,<br />

3, cured positive electrode, and ,<br />

4, cured negative electrode.<br />

Values <strong>of</strong> the corrosion potential (Ec) became more negative <strong>in</strong> the<br />

presence <strong>of</strong> H3PO4 and less negative with NaCl additives, the values <strong>of</strong> the<br />

corrosion current densities for all the electrodes were higher with NaCl<br />

and lower with H3PO4 <strong>in</strong> the both media.<br />

3- The protection efficiency (p%) was <strong>in</strong>vestigated for the additives <strong>in</strong><br />

the stirred and the un-stirred oxygenated 0.56M sulphuric acid<br />

solution. Maximum values <strong>of</strong> p% were atta<strong>in</strong>ed with H3PO4 and the<br />

m<strong>in</strong>imum with NaCl.<br />

4- Values <strong>of</strong> the thermodynamic quantities (DG, DW and DH) were<br />

estimated for the corrosion <strong>of</strong> the electrodes. DG values were more<br />

negative <strong>in</strong> the deaerated acid solution <strong>in</strong> the absence <strong>of</strong> additives. In the<br />

presence <strong>of</strong> the H3PO4, DG values were more negative while <strong>in</strong> the<br />

presence <strong>of</strong> NaCl the values were less negative <strong>in</strong>dicat<strong>in</strong>g a greater<br />

corrosion feasibility <strong>in</strong> the former and smaller <strong>in</strong> the latter cases. DW


values extended over a wider range. Such variation <strong>of</strong> DW values<br />

generally depended on the type and extent <strong>of</strong> the variation <strong>of</strong> DG vales<br />

with temperature. As a result <strong>of</strong> such variations, values <strong>of</strong> DH were also<br />

found to a quire appreciably negative values.<br />

5- The k<strong>in</strong>etics <strong>of</strong> the corrosion followed Arrhenius type rate equation.<br />

A l<strong>in</strong>ear relationship existed between the values <strong>of</strong> the activation energy<br />

(Ea) and logarithm <strong>of</strong> the pre-exponential factor (log A) <strong>in</strong> the four<br />

different media suggest<strong>in</strong>g the operation <strong>of</strong> a compensation effect <strong>in</strong> the<br />

k<strong>in</strong>etics <strong>of</strong> corrosion. This suggests that, the corrosion reaction proceed<br />

on surface sites, which were associated with different energies <strong>of</strong><br />

activation (Ea). The corrosion reaction is assumed to start on sites with<br />

lower Ea and log A values first, spread<strong>in</strong>g thereafter to these sites on<br />

which Ea and log A were higher.


CONTENTS<br />

Subject<br />

CHAPTER ONE: INTRODUCTION<br />

a<br />

Page<br />

No.<br />

1.1- <strong>Lead</strong>-<strong>Acid</strong> Storage <strong>Battery</strong> 1<br />

1.1.1- The <strong>in</strong>dustrial production <strong>of</strong> <strong>Lead</strong>y oxide 2<br />

1.1.1.1- Barton-pot process<br />

1.1.1.2- Ball-Mill Process<br />

3<br />

1.1.2- Industrial preparation <strong>of</strong> the <strong>Electrodes</strong> 4<br />

1.1.3- Structure <strong>of</strong> the Electrode Materials 6<br />

1.1.3.1- PAM Structure<br />

1.1.3.2- NAM Structure 9<br />

1.1.4-The Electrolyte 12<br />

1.1.5- The cell structure and Reactions 13<br />

1.1.6- The Positive Electrode 14<br />

1.1.7- The Negative Electrode 15<br />

1.1.8- Cur<strong>in</strong>g <strong>of</strong> the <strong>Battery</strong> <strong>Electrodes</strong> 16<br />

1.1.9- Charg<strong>in</strong>g and Discharg<strong>in</strong>g Processes 17<br />

1.2- <strong>Corrosion</strong> <strong>of</strong> <strong>Battery</strong> <strong>Electrodes</strong> 20<br />

1.3- <strong>Corrosion</strong> <strong>of</strong> <strong>Lead</strong> and <strong>Lead</strong> Alloys 21<br />

1.4- The Literature Survey 22<br />

1.5- The Object and Scope <strong>of</strong> the Present Research 25<br />

CHAPTER TWO: EXPERIMENTAL<br />

2.1- The Experimental Set-Up 28<br />

2.2- The Work<strong>in</strong>g Electrode 29<br />

2.3- The Auxiliary Electrode 30<br />

2.4- The Reference Electrode 31<br />

2.5- The <strong>Corrosion</strong> Cell 32<br />

2<br />

6


Subject<br />

b<br />

Page<br />

No.<br />

2.6- Potentiostatic Measurement 34<br />

2.7- The Experimental Techniques and Procedure 36<br />

2.8- The Chemicals 38<br />

CHAPTER THREE: RESULT AND DISCUSSION<br />

POLARIZATION IN SULPHURIC ACID IN THE<br />

ABSENCE OF ADDITIVES<br />

3.1-The Polarization Curves. 39<br />

3.2- Results <strong>of</strong> the Polarization Curves. 45<br />

3.2.1- <strong>Corrosion</strong> Potentials (Ec). 61<br />

3.2.2- <strong>Corrosion</strong> Current Densities (ic). 69<br />

3.2.3- Passive Potentials (Ep). 76<br />

3.2.4- Passive Current Densities (ip). 77<br />

3.3- Tafel slopes and Transfer Coefficients. 78<br />

3.4- Polarization Resistance. 80<br />

3.5-Thermodynamics <strong>of</strong> <strong>Corrosion</strong>. 82<br />

3.6- K<strong>in</strong>etics <strong>of</strong> <strong>Corrosion</strong>. 88<br />

CHAPTER FOUR: RESULT AND DISCUSSION<br />

POLARIZATION IN SULPHURIC ACID IN THE<br />

PRESENCE OF ADDITIVES<br />

4.1- Results <strong>of</strong> the Polarization Curves. 96<br />

4.1.1- <strong>Corrosion</strong> Potentials (Ec). 101<br />

4.1.2- <strong>Corrosion</strong> Current Densities (ic). 107<br />

4.1.3- Passive Potentials (Ep).<br />

4.1.4- Passive Current Densities (ip).<br />

112<br />

114<br />

4.2- Tafel slopes and Transfer Coefficients. 116<br />

4.3- Polarization Resistance. 118


Subject<br />

c<br />

Page<br />

No.<br />

4.4- Effect <strong>of</strong> Additives. 120<br />

4.4.1- Phosphoric <strong>Acid</strong> 120<br />

4.4.2- Mixture <strong>of</strong> H3PO4 and FeSO4 121<br />

4.4.3- Ferrous Sulphate (FeSO4) 122<br />

4.4.4- Sodium Chloride 122<br />

4.5- Protection Efficiency 123<br />

4.6- Thermodynamics <strong>of</strong> <strong>Corrosion</strong>. 134<br />

4.7- K<strong>in</strong>etics <strong>of</strong> <strong>Corrosion</strong>. 149<br />

CHAPTER FIVE: CONCLUSIONS AND<br />

SUGGESTIONS FOR FUTURE RESEARCH<br />

5.1- Conclusions 166<br />

5.2- Suggestions for future research 167<br />

REFERENCES 168


Symbols and Abbreviations<br />

Symbol Def<strong>in</strong>ition Units<br />

A Pre-exponential factor Molecules. Cm -2 .s -1<br />

ba Anodic Tafel slope V decade –1<br />

bc Cathodic Tafel slope V decade –1<br />

C Molar concentration Mole. dm -3<br />

Ea Activation energy k J mol -1<br />

Ec <strong>Corrosion</strong> potential V (S.C.E)<br />

Ecr Critical potential V (S.C.E)<br />

Ep Passive potential V (S.C.E)<br />

F Faraday constant C mol -1<br />

DG Gibbs free energy change k J mol -1<br />

DH Enthalpy change k J mol -1<br />

i Current density A cm -2<br />

ic <strong>Corrosion</strong> current density A cm -2<br />

icr Critical current density A cm -2<br />

ip Passive current A cm -2<br />

n Number <strong>of</strong> electrons<br />

NAM Negative active mass<br />

P Protection efficiency<br />

PAM Positive active mass<br />

R Gas constant J. mol -1 .K -1<br />

SCE Saturated calomel electrode V<br />

DS Entropy change J. mol -1 .K -1<br />

DS „ Entropy <strong>of</strong> activation J. mol -1 .K -1<br />

T The temperature <strong>in</strong> Kelv<strong>in</strong> K<br />

a Transfer Coefficient<br />

aa Anodic Transfer Coefficient<br />

ac Cathodic Transfer Coefficient


1.1-<strong>Lead</strong> –<strong>Acid</strong> Storage <strong>Battery</strong><br />

The lead acid battery was the first, commercially successful,<br />

rechargeable battery. It was <strong>in</strong>vented <strong>in</strong> 1859 by G. Plante and has<br />

undergone steady improvement ever s<strong>in</strong>ce (1) .<br />

A typical (12)V lead-acid car battery has six cells connected <strong>in</strong> series,<br />

each <strong>of</strong> which delivers about 2V. Each cell conta<strong>in</strong>s two lead grids packed<br />

with the electrode materials. The anode is spongy Pb, and the cathode is<br />

powdered PbO2. The grids are immersed <strong>in</strong> an electrolyte solution <strong>of</strong> ~ 4.5<br />

M H2SO4 fiberglass sheets between the grids prevent short<strong>in</strong>g by accidental<br />

physical contact. When the cell discharges, it generates electrical energy as<br />

a voltaic cell with reactions:<br />

Anode (oxidation):<br />

Cathode(reduction):<br />

Pb(s) + SO4 2- (aq) fi PbSO4(s) + 2e - (1-1)<br />

PbO2(s) + 4H + (aq) + SO4 2- (aq)+ 2e fi PbSO4(s) + 2H2O(l) (1-2)<br />

Note that both half-reactions produce Pb 2+ ions, one through oxidation<br />

<strong>of</strong> Pb, the other through reduction <strong>of</strong> PbO2. At both electrodes , the Pb 2+<br />

ions react with SO4 2- to form <strong>in</strong>soluble PbSO4(s) (2) .<br />

The overall electrochemical process can be represented by the<br />

equation (3) :<br />

discharge<br />

Pb(s) + PbO2(s) + 2H2SO4(aq) 2PbSO4(s)+ 2H2O(l) (1-3)<br />

charge<br />

The grids make an important part <strong>of</strong> the storage cell which act as<br />

supports for the active materials <strong>of</strong> plates and conduct the electric current<br />

developed. It also plays an important role <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g uniform current<br />

distribution throughout the mass <strong>of</strong> the active material. Grids for both<br />

(1)


positive and negative plates are frequently <strong>of</strong> the same design, composition,<br />

and weight.<br />

The lead storage battery is the most widely applied storage battery <strong>in</strong><br />

the world today (4) .<br />

1.1.1-The <strong>in</strong>dustrial production <strong>of</strong> <strong>Lead</strong>y oxide<br />

The basic start<strong>in</strong>g material for lead –acid battery plates is generally<br />

referred to as “leady” or “ grey” oxide. This material is prepared by<br />

react<strong>in</strong>g a lead feedstock with oxygen <strong>in</strong> either a Barton pot or a Ball Mill,<br />

and usually comprises about one-part unreacted f<strong>in</strong>e lead particles<br />

(so-called ‘free lead’) and three parts lead monoxide (a-PbO and b-PbO).<br />

A small amount <strong>of</strong> red lead (Pb3O4) can also be produced, but battery<br />

manufactures generally prefer to add this oxide from a separate source. The<br />

blend<strong>in</strong>g (or <strong>in</strong>deed complete substitution) <strong>of</strong> leady oxide with red lead is<br />

particularly popular <strong>in</strong> the preparation <strong>of</strong> tubular positive plates (5) . The<br />

Barton-pot and Ball-Mill processes rema<strong>in</strong>ed the pr<strong>in</strong>ciple methods for<br />

produc<strong>in</strong>g leady oxide for lead–acid battery paste.<br />

1.1.1.1-Barton-pot Process<br />

In the Barton-pot approach to mak<strong>in</strong>g battery oxide, lead is melted,<br />

forced <strong>in</strong>to a spray <strong>of</strong> droplets, and then oxidized by air at a regulated<br />

temperature. Any accumulated bulk molten lead is broken up aga<strong>in</strong> <strong>in</strong>to<br />

droplets by a revolv<strong>in</strong>g paddle that directs the lead aga<strong>in</strong>st a fixed baffle<br />

arrangement <strong>in</strong>side the pot. By careful control <strong>of</strong> the :<br />

¤ pot temperature,<br />

¤ paddle rotation speed and,<br />

¤ rate <strong>of</strong> air flow.<br />

(2)


<strong>Battery</strong> oxide <strong>of</strong> the desired chemical composition and particle – size<br />

distribution can be obta<strong>in</strong>ed (5) . The oxide so produced is a mixture <strong>of</strong><br />

tetragonal ( a-PbO) and orthorhombic (b-Pbo) lead monoxide together with<br />

some unreacted lead. The oxide usually consists <strong>of</strong> (65-80 w%) PbO (6,7) .<br />

The problem with the Borton-pot system is that <strong>of</strong> controll<strong>in</strong>g the pot<br />

temperature. If the temperature is excessive above 488 o C a large amount <strong>of</strong><br />

b-PbO can be formed; which is considered undesirable <strong>in</strong> the f<strong>in</strong>al product<br />

because <strong>of</strong> its effects on performance and life <strong>of</strong> the f<strong>in</strong>ished plate if the<br />

amount <strong>of</strong> b-PbO exceeds 15% (8,9) .<br />

1.1.1.2-Ball-Mill Process<br />

The alternative means for prepar<strong>in</strong>g battery oxide the Ball–Mill<br />

process- <strong>in</strong>volves tumbl<strong>in</strong>g lead balls, cyl<strong>in</strong>ders, billets or entire <strong>in</strong>gots <strong>in</strong> a<br />

rotat<strong>in</strong>g steel drum through which a stream <strong>of</strong> air is passed. The heat<br />

generated by friction between the lead pieces is sufficient to start oxide<br />

formation. The reaction generates more heat and thus allows the lead<br />

particles that are rubbed <strong>of</strong>f by the abrasion to be converted to leady oxide<br />

<strong>of</strong> the required composition.<br />

The relative amounts <strong>of</strong> the oxide constituents can be controlled by<br />

manipulation <strong>of</strong> the operational parameters govern<strong>in</strong>g the oxide-mak<strong>in</strong>g<br />

process, namely (5) :<br />

¤ mill temperature,<br />

¤ mill speed,<br />

¤ flow rate and temperature <strong>of</strong> the air steam, and ,<br />

¤ amount <strong>of</strong> mill charge.<br />

The oxide usually consists <strong>of</strong> (60-65wt %) <strong>of</strong> a-PbO, with rema<strong>in</strong>der be<strong>in</strong>g<br />

free lead (8) .<br />

(3)


1.1.2-Industrial preparation <strong>of</strong> the <strong>Electrodes</strong><br />

The pastes now commonly used <strong>in</strong> mak<strong>in</strong>g the familiar pasted –plate<br />

batteries are prepared by mix<strong>in</strong>g some particular lead oxide or blend <strong>of</strong><br />

oxides with aqueous sulphuric acid (sp. gr. 1.4) and water. Free lead and<br />

different basic lead sulphates have been found <strong>in</strong> the paste as the<br />

monobasic lead sulphate, the dibasic lead sulphate, the tribasic lead<br />

sulphate, and f<strong>in</strong>ally tetrabasic lead sulphate. In first, normal lead sulphate<br />

is produced accord<strong>in</strong>g to the follow<strong>in</strong>g equation: (10)<br />

PbO + H2SO4 fi PbSO4 + H2O (1-4)<br />

and then the normal lead sulphate produced reacts with additional lead<br />

oxide to form basic compounds. Both water and sulphuric acid serve<br />

necessary functions <strong>in</strong> the past<strong>in</strong>g <strong>of</strong> battery oxide mixes.The water acts as<br />

lubricant produc<strong>in</strong>g a lighter paste. As the plate dries the evaporation <strong>of</strong><br />

this water gives a desirable porosity. The sulphuric acid forms lead<br />

sulphate which, <strong>in</strong> addition to expand<strong>in</strong>g the paste and giv<strong>in</strong>g it great<br />

porosity, supplies a necessary b<strong>in</strong>d<strong>in</strong>g cement so that the dry plate can be<br />

handled without loss <strong>of</strong> material.<br />

The prepared paste is applied to the grid by mach<strong>in</strong>e past<strong>in</strong>g<br />

equipment. Freshly pasted plates are passed through a dry<strong>in</strong>g oven to<br />

harden their surface somewhat. They are left <strong>in</strong> the oven for 72hr to enable<br />

the so-called cur<strong>in</strong>g process to take place. Dur<strong>in</strong>g the cur<strong>in</strong>g operation the<br />

relative humidity <strong>in</strong> the cur<strong>in</strong>g ovens must be 100%, such humidity takes<br />

part <strong>in</strong> oxidation reaction. The temperature is responsible for the<br />

composition <strong>of</strong> cured plates, such plates cured at high temperature (more<br />

than 70 o C) result<strong>in</strong>g <strong>in</strong> ma<strong>in</strong>ly tetrabasic lead sulphate 4PbO. PbSO4 (4BS)<br />

behave markedly different to those cured at low temperature hav<strong>in</strong>g only<br />

tribasic lead sulphate 3PbO. PbSO4. H2O (3BS) (11,12) . The surfaces are <strong>of</strong><br />

active material and depend on cur<strong>in</strong>g temperature, as the suitable<br />

temperature <strong>in</strong> cur<strong>in</strong>g process is around (56-65 o C) (13) .<br />

(4)


The f<strong>in</strong>al process for preparation <strong>of</strong> lead–acid battery plates is the<br />

formation. Formation <strong>of</strong> the plates is necessary to convert the <strong>in</strong>active lead<br />

oxide-sulphate paste <strong>in</strong>to the active electrode materials <strong>of</strong> the f<strong>in</strong>ished cell<br />

Essentially it is an oxidation reduction reaction where<strong>in</strong> the positive plates<br />

are oxidized from lead oxide to lead dioxide, and the negative plates are<br />

reduced from lead oxide to sponge lead.<br />

The negative plates are similarly made except that so-called<br />

“expanders” are added. Expanders are necessary <strong>in</strong> negative plates to<br />

activate the plates at low temperatures and high rates <strong>of</strong> discharge.<br />

Three materials constitute what are commonly called negative expanders.<br />

They are carbon black, barium sulphate, and organic materials such as<br />

lign<strong>in</strong> (14,15) . The presence <strong>of</strong> the lign<strong>in</strong>, however, renders the lead sulphate<br />

film porous (16) .<br />

A number <strong>of</strong> theories have been proposed to account for the reaction<br />

tak<strong>in</strong>g place <strong>in</strong> the lead-acid battery. The double- sulphate theory is now<br />

generally accepted. Gladstone and Tribe first proposed this theory <strong>in</strong><br />

1882 (17) . The double–sulphate theory is most conveniently stated by the<br />

equation(1-3) (18) ,which <strong>in</strong>dicate that the overal reaction leads to the<br />

formation <strong>of</strong> the lead sulphate on the lead acid battery electrodes that is,<br />

both positive and negative plates will be converted to the lead sulphate at<br />

the end.<br />

(5)


1.1.3-Structure <strong>of</strong> the Electrode Materials<br />

1.1.3.1-PAM Structure<br />

The structure <strong>of</strong> PAM (positive active mass) obta<strong>in</strong>ed dur<strong>in</strong>g<br />

formation <strong>of</strong> the plates consists <strong>of</strong> two structural levels and is presented as<br />

<strong>in</strong> Fig.(1-1) and described <strong>in</strong> the follow<strong>in</strong>g sections:<br />

Fig.(1-1)<br />

a- Microstructural. The smallest build<strong>in</strong>g element <strong>of</strong> PAM structure is the<br />

PbO2 particle. A certa<strong>in</strong> number <strong>of</strong> PbO2 particles <strong>in</strong>terconnect <strong>in</strong>to<br />

agglomerates. At this microstructural level the electrochemical reaction<br />

<strong>of</strong> discharge proceeds. This level determ<strong>in</strong>es the active surface area <strong>of</strong><br />

PAM.<br />

b- Macrostructural level. A huge number <strong>of</strong> agglomerates, and <strong>in</strong> some<br />

cases <strong>in</strong>dividual particles, <strong>in</strong>terconnect to form aggregates (branches) or<br />

porous mass. Micropores are formed between the agglomerates build<strong>in</strong>g<br />

up the aggregates. Aggregates <strong>in</strong>terconnect to form (i) Skeleton, which<br />

is connected to the grid through an <strong>in</strong>terface or (ii) porous mass.<br />

Macropores are formed between the aggregates along which H2SO4 and<br />

H2O flows move between the plate <strong>in</strong>terior and the bulk <strong>of</strong> the<br />

electrolyte (19,20) .<br />

(a) (b)<br />

(6)


Fig.(1-2) presents structure <strong>of</strong> the three types <strong>of</strong> PbO2 particles:<br />

spherical or egg-shaped, PbO2 crystal particles and needle-like particles.<br />

Fig.(1-2)<br />

A heterogenous mass distribution is observed <strong>in</strong> the bulk <strong>of</strong> PbO2 Particles<br />

Fig.(1-3).<br />

Fig.(1-3).<br />

Dark zones have crystal structure (a or b PbO2) and sizes 20 to 40 nm.<br />

More electron transparent zone are hydrated (gel zones). Hence PbO2<br />

particles have crystal/gel structure. About 31-34% <strong>of</strong> PAM is<br />

hydrated (21,22) .<br />

(7)


The mechanism <strong>of</strong> the formation <strong>of</strong> PbO2 particles <strong>in</strong>volves<br />

Pb 4+ + 4H2O fi Pb(OH)4 + 4H + (1-5)<br />

Pb(OH)4 dehydrates partially as a result gel particles to form:<br />

nPb(OH)4fi [ PbO(OH)2]n + n H2O (1-6)<br />

[PbO(OH)2]n stands for a gel particle. Further dehydration takes place and<br />

PbO2 crystal zones are formed.<br />

[PbO(OH)2]n‹fi [kPbO2+(n-k)PbO(OH)2]n + k H2O (1-7)<br />

Crystalzone gel zone<br />

Hydrated zones exchange ions with the solution (PbO2 particle is an<br />

open system). The ratio between crystal and gel zones <strong>in</strong>fluences the<br />

capacity <strong>of</strong> the plate.<br />

(8)


1.1.3.2-NAM STRUCTURE<br />

NAM (negative active mass) structure consists <strong>of</strong> lead crystals<br />

<strong>in</strong>terl<strong>in</strong>ked <strong>in</strong> a skeleton network Fig.(1-4) and secondary structure <strong>of</strong><br />

separated lead crystals which are precipitated on the lead skeleton surface<br />

Fig.(1-5) (23,24) .<br />

Fig.(1-4) Fig.(1-5)<br />

The skeleton structure is formed dur<strong>in</strong>g the first stage <strong>of</strong> formation<br />

when PbO and basic lead sulphates partially reduced to lead and partially<br />

react with H2SO4 to give PbSO4.<br />

These processes proceed at a neutral pH solution <strong>in</strong> the pores <strong>of</strong> cured<br />

plates. The secondary structure is formed dur<strong>in</strong>g the second stage <strong>of</strong> the<br />

formation when PbSO4 crystals are reduced to lead crystals under acidic<br />

conditions. Upon discharge, current is generated ma<strong>in</strong>ly at expense <strong>of</strong> the<br />

oxidation <strong>of</strong> the secondary lead structure (energetic structure). The primary<br />

(skeleton) structure serves both as a current collector and a mechanical<br />

support <strong>of</strong> the energetic structure. The energetic structure participates<br />

ma<strong>in</strong>ly <strong>in</strong> the charge discharge processes <strong>of</strong> the negative plates (25,26) .<br />

Pb 2+ ions are formed at the lead/ anodic layer <strong>in</strong>terface. Under the<br />

action <strong>of</strong> the electric field they reach the second <strong>in</strong>terface and return to the<br />

solution. S<strong>in</strong>ce the solution is saturated with respect to PbSO4 the Pb 2+ ions<br />

(9)


diffuse to the growth front <strong>of</strong> some <strong>of</strong> the lead sulphate crystals and are<br />

<strong>in</strong>corporated <strong>in</strong> it. Ow<strong>in</strong>g to these processes <strong>of</strong> transport <strong>of</strong> Pb 2+ through the<br />

anodic layer, microvoids are formed between the lead sulphate crystals and<br />

the lead surface, Fig.(1-6) (27) .<br />

(10)


Potential vs Hg/Hg2SO4<br />

Microns<br />

Fig.(1-6)<br />

Representation <strong>of</strong> the multi-phase corrosion layer by Ruetschi<br />

(11)<br />

Microns


1.1.4-The Electrolyte<br />

<strong>Sulphuric</strong> acid <strong>of</strong> battery is a heavy transparent oily liquid hav<strong>in</strong>g no<br />

odour and easily soluble <strong>in</strong> water. When the acid is dissolved <strong>in</strong> water it<br />

heats the solution very highly. This acid attacks leather, paper, cloth. It is<br />

used for mak<strong>in</strong>g the electrolyte for <strong>Lead</strong>-<strong>Acid</strong> batteries (28) . The specific<br />

gravity <strong>of</strong> sulphuric acid depends on the temperature and decreases with<br />

<strong>in</strong>creas<strong>in</strong>g temperature.<br />

Dur<strong>in</strong>g formation, the acid used to make the paste is released and<br />

some water is lost due to gas evolution so that the concentration at the end<br />

will be higher than at the beg<strong>in</strong>n<strong>in</strong>g.<br />

After charg<strong>in</strong>g, the batteries require level<strong>in</strong>g <strong>of</strong> the electrolyte. This is<br />

primarily due to the fact that the batteries are normally not filled to the<br />

correct level <strong>in</strong> the first time to allow for gass<strong>in</strong>g and secondly to make up<br />

for the water losses dur<strong>in</strong>g charg<strong>in</strong>g. The level<strong>in</strong>g should be possible with<br />

standard operation acid, i.e. specific gravity 1.28 g/ml. As shown <strong>in</strong> table<br />

(1-1) (29) .<br />

Table(1-1): Specific gravity <strong>of</strong> sulphuric acid and charge conditions <strong>in</strong><br />

lead-acid storage battery.<br />

Electrolyte specific gravity The charge energy<br />

1.28-1.25 Full charge<br />

1.25-1.20 Suitable<br />

1.20-1.16 Vacancy<br />

1.16-1.08 Full vacancy<br />

Less than 1.08 Un- rechargable<br />

(12)


1.1.5- The cell structure and Reactions<br />

The Pb-H2SO4 cell system for the fully–charged cell can be<br />

represented it as <strong>in</strong> the follow<strong>in</strong>g: (A) (7) :<br />

Pb H2SO4 PbO2<br />

Anode(-) solution Cathod(+)<br />

When the cell is connected to the external circuit (the process called cell<br />

discharg<strong>in</strong>g )the left electrode (Anode) oxidized as :<br />

L: Pb = Pb 2+ + 2e (1-8)<br />

Two electrons are generated and transferred with<strong>in</strong> the external circuit<br />

to the right electrode (cathode) and the reduction occur as:<br />

R: PbO2 + 4H3O + + 2e = Pb 2+ + 6H2O (1-9)<br />

The collection <strong>of</strong> (1-8) with (1-9) reactions may be made as:<br />

Pb + PbO2 + 4H3O + = 2Pb 2+ + 6H2O (1-10)<br />

add<strong>in</strong>g (2SO4 2- ) to the reaction (1-10) we obta<strong>in</strong>s:<br />

Pb + PbO2 + 2H2SO4 = 2PbSO4(s)+ 2H2O (1-11)<br />

The symbol (s) for PbSO4(s) means an <strong>in</strong>soluble salt <strong>in</strong> electrolyte solution<br />

which covers the plates surfaces. The reaction (1-11) is a discharge process<br />

and converts the electrodes to lead sulphate. The measur<strong>in</strong>g <strong>of</strong> the specific<br />

gravity <strong>of</strong> the acid electrolyte solution dur<strong>in</strong>g discharg<strong>in</strong>g process helps to<br />

estimate the rema<strong>in</strong><strong>in</strong>g life <strong>of</strong> the battery.<br />

The chemical structure <strong>of</strong> the fully – discharged cell may be represented as<br />

<strong>in</strong> B:<br />

B<br />

PbSO4(s) H2O PbSO4<br />

Anode(-) Cathode(+)<br />

(13)


Consider<strong>in</strong>g the rema<strong>in</strong><strong>in</strong>g (un-reacted) lead and lead dioxide <strong>of</strong> the<br />

electrodes are can re-write the cell (B) as cell(C):<br />

C<br />

Pb,PbSO4(s) ‰ H2O ‰PbSO4(s), PbO2<br />

The left electrode is therefore made <strong>of</strong> lead and lead sulphate and the<br />

right electrode is compared <strong>of</strong> lead dioxide and lead sulphate.<br />

When the discharged cell is exposed to a charg<strong>in</strong>g process the<br />

reactions which occur at the electrodes are:<br />

L: PbSO4(s) + 2e = Pb + SO4 2-<br />

(14)<br />

(1-12)<br />

This is reduction process and the oxidation occurs at the right<br />

electrode as:<br />

R: PbSO4(s) +2H2O= PbO2+ SO4 2- + 4H + + 2e (1-13)<br />

The overall reaction may be represented as summation <strong>of</strong> (1-12) and<br />

(1-13) reactions as:<br />

2PbSO4(s) +2H2O= Pb + PbO2+ SO4 2- + 4H + ….. (1-14)<br />

Or:<br />

2PbSO4(s) +2H2O= Pb + PbO2+ 2H2SO4 2- …. (1-15)<br />

This expla<strong>in</strong> that the battery charg<strong>in</strong>g by an external current converts<br />

the left electrode to lead and the right to lead dioxide and the water is<br />

converted to sulphuric acid. Thus, the battery restores its orig<strong>in</strong>al state by<br />

such operation (30) .<br />

1.1.6- The Positive Electrode<br />

The electrochemical reactions at the positive electrode are usually<br />

expressed as:<br />

PbO2(s) +4H + (aq)+SO4(aq) 2- discharge<br />

+2e… PbSO4(s) + 2 H2O(l) (1-16)<br />

charge<br />

An important feature <strong>of</strong> the positive electrode discharge concerns the<br />

nature <strong>of</strong> the PbSO4 deposit s<strong>in</strong>ce the formation <strong>of</strong> dense, coherent layers


can lead to rapid electrode passivation. <strong>Lead</strong> dioxide exists <strong>in</strong> two<br />

crystall<strong>in</strong>e forms, rhombic (a-) and tetragonal (b-), both <strong>of</strong> which are<br />

present <strong>in</strong> freshly formed electrode structures.<br />

Positive electrodes are manufactured <strong>in</strong> three forms, as plante plates,<br />

pasted plates and tubular plates. In plante plates, the positive active<br />

material is formed by electrochemical oxidation <strong>of</strong> the surface <strong>of</strong> a cast<br />

sheet <strong>of</strong> pure lead to form a th<strong>in</strong> Layer <strong>of</strong> PbO2. The plate generally has a<br />

grooved structure to <strong>in</strong>crease its surface. Such plates have a very long life.<br />

S<strong>in</strong>ce they have a large excess <strong>of</strong> lead which can subsequently be oxidized<br />

to PbO2 (31) . Tubular plates consist <strong>of</strong> a row <strong>of</strong> tubes conta<strong>in</strong><strong>in</strong>g axial lead<br />

rods surrounded by active material. The tubes are formed <strong>of</strong> fabrics such<br />

as terylene or glass fibre or <strong>of</strong> perforated synthetic <strong>in</strong>sulators which are<br />

permeable to the electrolyte. <strong>Lead</strong> dioxide electrode system (Pb/ PbO2/<br />

PbSO4) formed at potentials above +0.950 V (32,33) .<br />

1.1.7- The Negative Electrode:<br />

The reactions <strong>of</strong> the negative electrode are generally given as:<br />

PbO(s) +SO 2- discharge<br />

4(aq) PbSO4(s) + 2e (1-17)<br />

charge<br />

Negative electrodes are almost exclusively formed <strong>of</strong> pasted plates , us<strong>in</strong>g<br />

either f<strong>in</strong>e mesh grids or coarse grids covered with perforated lead foil (box<br />

plates) and the same paste used <strong>in</strong> positive plate manufacture. When the<br />

paste is reduced under carefully controlled condition, highly porous sponge<br />

lead is formed consist<strong>in</strong>g <strong>of</strong> a mass <strong>of</strong> a cicular (needle-like) crystals which<br />

give a high electrode area and good electrolyte circulation (31) . Additives<br />

such as very f<strong>in</strong>e BaSO4, which is isomorphic with PbSO4, encourages the<br />

formation <strong>of</strong> a porous non-passivat<strong>in</strong>g layer <strong>of</strong> lead sulphate. The precise<br />

mechanism <strong>of</strong> the additive effects is complex and not completely<br />

(15)


understood. It is known that BaSO4 and the organic additives <strong>in</strong>teract, s<strong>in</strong>ce<br />

together they are much more effective than the sum <strong>of</strong> their <strong>in</strong>dividual<br />

contributions.<br />

<strong>Lead</strong>/<strong>Lead</strong> sulphate electrode system (Pb/PbSO4) is formed with<strong>in</strong> the<br />

potential region from –0.950 to –0.400 V vs. a calomel reference<br />

electrode (34) .<br />

1.1.8-Cur<strong>in</strong>g <strong>of</strong> the <strong>Battery</strong> <strong>Electrodes</strong><br />

The cur<strong>in</strong>g process consists <strong>of</strong> the conversion <strong>of</strong> wet pasted plates to<br />

a dry, crack free, unformed plate <strong>of</strong> sufficient strength and adhesion to the<br />

grid. Dur<strong>in</strong>g this process two steps proceed simultaneously and <strong>in</strong><br />

sequence:-<br />

1. water loss by shr<strong>in</strong>kage.<br />

2. Void formation.<br />

Cur<strong>in</strong>g is an important part <strong>of</strong> manufactur<strong>in</strong>g, for if it is not properly<br />

carried out capacity and especially life expectancy are adversely<br />

<strong>in</strong>fluenced. The cur<strong>in</strong>g can be done <strong>in</strong> different ways.<br />

1. The plates are suspended <strong>in</strong>dividually on racks with small separation<br />

accord<strong>in</strong>g to a pre-established program, the plates are subjected to a<br />

flow <strong>of</strong> damp or dry air and f<strong>in</strong>ally heated. The cur<strong>in</strong>g and dry<strong>in</strong>g lasts<br />

about 16 to 24 hours.<br />

2. The plates are hang on cha<strong>in</strong>s and moved through a tunnel kiln <strong>in</strong><br />

which temperature is <strong>in</strong>creased and humidity is decreased. The kiln is<br />

usually heated with CO2-conta<strong>in</strong><strong>in</strong>g combustion gas which passes<br />

through the kiln.<br />

3. The plates are flash-dried by gas heat<strong>in</strong>g or <strong>in</strong>frared heat<strong>in</strong>g so that they<br />

may be packed densely 20 to 30 cm high without stick<strong>in</strong>g. They are<br />

covered to prevent the process from proceed<strong>in</strong>g too rapidly, otherwise<br />

(16)


small cracks will appear. For oxidation and dry<strong>in</strong>g <strong>in</strong> stacks 4 to 6 days<br />

are required.<br />

4. The plates are dipped <strong>in</strong> sulphuric acid or sprayed with sulphuric acid<br />

to form a dense lead sulphate film on the surface, a process frequently<br />

used for tubular plates but less <strong>of</strong>ten for grid plates.<br />

After cur<strong>in</strong>g the paste <strong>in</strong> the plates must have sufficient dry strength<br />

and adequate adhesion to the grid so that it does not detach dur<strong>in</strong>g sub<br />

sequent manufactur<strong>in</strong>g steps and reta<strong>in</strong>s electrical contact with the grid<br />

dur<strong>in</strong>g formation.<br />

Cur<strong>in</strong>g <strong>of</strong> positive plates take place when Pb oxidation <strong>of</strong> the<br />

paste/grid contact and dry<strong>in</strong>g <strong>of</strong> the paste.<br />

For operation duration <strong>of</strong> cur<strong>in</strong>g <strong>of</strong> negative plates has to be less than<br />

8 hours too. Additive to the negative plate <strong>in</strong>creases the rate <strong>of</strong> cur<strong>in</strong>g<br />

process at 60C o and reduces the cur<strong>in</strong>g process to 8 hours. The expander<br />

destroys at temperature higher than 65C o(35,3) .<br />

1.1.9- Charg<strong>in</strong>g and Discharg<strong>in</strong>g Processes<br />

Formation <strong>of</strong> positive plates. It was found that formation <strong>of</strong> positive<br />

active mass (PAM) takes place <strong>in</strong> two stages (36) .<br />

a. Dur<strong>in</strong>g the first stage, H2SO4 and H2O penetrate from the bulk <strong>of</strong><br />

the solution <strong>in</strong>to the plate, As a result <strong>of</strong> chemical and<br />

electrochemical reactions PbO and basic sulphates are converted to<br />

a-PbO and b-PbO.<br />

b. Dur<strong>in</strong>g the second period <strong>of</strong> formation PbSO4 is oxidized to b-<br />

PbO2. H2SO4 orig<strong>in</strong>ates and diffuses <strong>in</strong>to the volume <strong>of</strong> electrolyte.<br />

Tak<strong>in</strong>g <strong>in</strong>to account specific conditions <strong>of</strong> chemical and<br />

electrochemical reactions <strong>in</strong> porous electrodes a mechanism is suggested<br />

for formation processes <strong>of</strong> the PAM (37,38) .<br />

(17)


Formation <strong>of</strong> the negative active mass: It was established that it takes<br />

place also <strong>in</strong> two stages:<br />

a. Dur<strong>in</strong>g the first stage electrochemical reduction <strong>of</strong> PbO and basic lead<br />

sulphates occur and lead skeleton is formed. Beside, <strong>in</strong> these processes<br />

chemical reactions <strong>of</strong> PbSO4 formation also proceed. PbSO4 crystal<br />

rema<strong>in</strong> <strong>in</strong>cluded <strong>in</strong> lead skeleton. The (PbSO4 + Pb) zones are formed <strong>in</strong><br />

the both surfaces <strong>of</strong> the paste and advance <strong>in</strong>to the <strong>in</strong>terior <strong>of</strong> the plate.<br />

b. Dur<strong>in</strong>g the second stage, reduction <strong>of</strong> PbSO4 to Pb occurs and the<br />

obta<strong>in</strong>ed lead crystals are deposited on the lead skeleton surface <strong>in</strong><br />

strongly acidic solution. The mechanism <strong>of</strong> the elementary chemical and<br />

electrochemical reactions as well as their mutual relationships are<br />

determ<strong>in</strong>ed. Dur<strong>in</strong>g formation, both the pore radii and the porosity <strong>of</strong><br />

the active mass <strong>in</strong>crease (39,40) . Fig.(1-7) Shows the Discharge and change<br />

processes <strong>of</strong> the lead acid battery.<br />

(18)


Fig.(1-7): Discharge and charge processes <strong>of</strong> the battery<br />

(19)


1.2- <strong>Corrosion</strong> <strong>of</strong> <strong>Battery</strong> <strong>Electrodes</strong><br />

The grids <strong>of</strong> the electrodes which serve as carriers for the active<br />

masses conductors for the electric current are manufactured from lead and<br />

alloys by cast<strong>in</strong>g. Other methods such as punch<strong>in</strong>g or stretch<strong>in</strong>g are<br />

common. The process <strong>of</strong> dis<strong>in</strong>tegration <strong>of</strong> a metal grid structure start<strong>in</strong>g the<br />

surface is called corrosion.<br />

Each nonnoble metal suffers corrosion <strong>in</strong> aqueous solution <strong>in</strong> which<br />

metal is dissolved anodically under hydrogen evolution or precipitated an<br />

<strong>in</strong>soluble compound, depend<strong>in</strong>g on the constituents <strong>of</strong> the solution. This<br />

reaction is small because <strong>of</strong> the high overvoltage <strong>of</strong> the hydrogen on lead<br />

with negative electrodes the portion <strong>of</strong> the surface <strong>of</strong> the grid compared<br />

with the total <strong>in</strong>ner surface <strong>of</strong> the mass is small. Therefore a corrosion <strong>of</strong><br />

the grid is not noticeable. The lead sulphate forms a dense cover layer to<br />

protect the grid. Failure <strong>of</strong> batteries due to corrosion <strong>of</strong> the negative grids is<br />

rarely observed. The hydrogen corrosion occurs <strong>of</strong>ten <strong>in</strong> cavities <strong>in</strong> the<br />

presence <strong>of</strong> organic substances and at higher operat<strong>in</strong>g temperatures.<br />

On positive grids corrosion leads to solid oxidation products, to<br />

reduction <strong>of</strong> the cross section <strong>of</strong> the grid rods, and thereby to a loss <strong>of</strong><br />

conductivity and grid breakage. Often a deformation or <strong>in</strong>creased growth <strong>of</strong><br />

the grids is a related condition.<br />

The local cell corrosion on positive plates plays a only m<strong>in</strong>or role. The<br />

corrosion under current, the anodic corrosion, however, is highly important.<br />

With current flow the process becomes dependent on potential. A<br />

schematic representation <strong>of</strong> the reaction products as a function <strong>of</strong> potential<br />

is shown <strong>in</strong> Fig.( ). Included here is the dependence on the hydrogen and<br />

sulphate ion concentration.<br />

(20)


A sign <strong>of</strong> grid corrosion is a reduced number <strong>of</strong> ampere hours<br />

obta<strong>in</strong>ed from the battery on discharge at the 10 hour rate. The positive<br />

electrode always limits the capacity.<br />

Cells conta<strong>in</strong><strong>in</strong>g plates destroyed by corrosion are no longer fit for<br />

service. Usually, corrosion <strong>of</strong> the grids is a sign <strong>of</strong> long service <strong>of</strong> the given<br />

cells.<br />

1.3- <strong>Corrosion</strong> <strong>of</strong> <strong>Lead</strong> and <strong>Lead</strong> Alloys<br />

<strong>Lead</strong> is used extensively <strong>in</strong> sulphuric acid <strong>in</strong> the lower concentration<br />

ranges. <strong>Corrosion</strong> is practically nil <strong>in</strong> the lower concentrations but <strong>in</strong>creases<br />

as temperature and concentration <strong>in</strong>crease. Rapid attack occurs <strong>in</strong><br />

concentrated acid because the lead sulphate surface film is soluble (46,47) .<br />

This is the lead used for corrosion applications. High purity lead is less<br />

resistant particularly <strong>in</strong> the stronger and hotter acids and also exhibits<br />

poorer mechanical properties.<br />

<strong>Lead</strong> depends on the formation <strong>of</strong> a lead sulphate-lead protective<br />

surface long life <strong>in</strong> sulphuric acid environments, and <strong>in</strong> many cases more<br />

than 20 years service is obta<strong>in</strong>ed. <strong>Lead</strong> ga<strong>in</strong>s weight when exposed to<br />

sulphuric acid because <strong>of</strong> the surface coat<strong>in</strong>g or corrosion product formed<br />

except <strong>in</strong> strong acid where<strong>in</strong> the lead sulphate is soluble and not<br />

protective.<br />

<strong>Lead</strong> forms protective films consist<strong>in</strong>g <strong>of</strong> corrosion products such as<br />

sulphates, oxides, and phosphates.<br />

A more realistic model <strong>of</strong> the corrosion product layer formed on lead<br />

has been proposed by Ruestchi as shown <strong>in</strong> Fig. (1-8) (48,49) .<br />

When corrosion resistance is required for process equipment,<br />

chemical lead conta<strong>in</strong><strong>in</strong>g about 0.06% copper is specified, particularly for<br />

sulphuric acid. This lead is resistant to sulphuric, chromic, hydr<strong>of</strong>luoric,<br />

(21)


and phosphoric acid. It is rapidly attacked by acetic acid and generally not<br />

used <strong>in</strong> nitric, hydrochloric, and organic acids (46) .<br />

1.4- The Literature Survey<br />

Fig. (1-8)<br />

Model <strong>of</strong> anodic layer<br />

(a) In the lead sulphate reagion.<br />

(b) In the lead monoxide region<br />

(c) In the lead dioxide region<br />

A study <strong>of</strong> the effect <strong>of</strong> corrosion <strong>of</strong> lead and lead alloys on the<br />

performance <strong>of</strong> the batteries due to sulphuric acid concentration, is <strong>of</strong><br />

fundamental importance for <strong>in</strong>creas<strong>in</strong>g the useful life <strong>of</strong> these batteries (50) .<br />

Tedeschi (51) found that the rate <strong>of</strong> dissolution <strong>of</strong> lead prepared either<br />

by the reduction <strong>of</strong> PbO2 or PbO <strong>in</strong>creases with the concentration <strong>of</strong><br />

sulphuric acid solution.<br />

(22)


Pourbaix (52) expected on the basis <strong>of</strong> potential –PH diagrams, that <strong>in</strong><br />

storage batteries <strong>of</strong> more than 6N. H2SO4 the solubility <strong>of</strong> the positive<br />

electrode is greater than the negative electrode ow<strong>in</strong>g to the formation <strong>of</strong><br />

Pb 4+ ions.<br />

Lander (53) subjected lead to anodic corrosion at potentials near the<br />

reversible PbO2/PbSO4. Results <strong>in</strong>dicate that the first step <strong>in</strong> the corrosion<br />

process was reaction <strong>of</strong> lead with water to form lead dioxide. Its potentials<br />

just below the reversible PbO2/PbSO4 potential, the corrosion <strong>of</strong> lead<br />

dioxide film to lead sulphate takes place.<br />

Casey (54) described three modes <strong>of</strong> reaction <strong>of</strong> lead <strong>in</strong> sulphuric acid<br />

depend<strong>in</strong>g on the acid strength, temperature, and the composition <strong>of</strong> the<br />

lead. Firstly a slight attack with vigorous evolution <strong>of</strong> hydrogen and f<strong>in</strong>ally<br />

complete decomposition with the evolution <strong>of</strong> sulphur dioxide.<br />

<strong>Corrosion</strong> rate <strong>of</strong> ref<strong>in</strong>ed lead <strong>in</strong> 50 to 80% sulphuric acid was<br />

reported by Hohlste<strong>in</strong> and Pelzell who established the conditions <strong>of</strong><br />

passivation (55) .<br />

Local action <strong>in</strong>creases rapidly when the concentration <strong>of</strong> the acid is<br />

<strong>in</strong>creased particularly for the negative plate. The temperatures to which the<br />

battery is subjected <strong>in</strong> service have an important bear<strong>in</strong>g on the specific<br />

gravity <strong>of</strong> sulphuric acid. <strong>Battery</strong> exposed to low temperatures, such as<br />

automobile batteries <strong>in</strong> cold climates, require a high density <strong>of</strong> acid to<br />

permit their capacity to be utilized without deplet<strong>in</strong>g their electrolyte to so<br />

low specific gravity that freez<strong>in</strong>g occurs. On the other hand, batteries for<br />

use <strong>in</strong> hot climates require a lower specific gravity because <strong>of</strong> the <strong>in</strong>creased<br />

chemical activity at the higher temperature (56) .<br />

Abdul Azim (57) <strong>in</strong> the course <strong>of</strong> study<strong>in</strong>g the behaviour <strong>of</strong> Pb-Ca<br />

alloys reported that the passive current for pure concentration <strong>in</strong>crease as<br />

<strong>in</strong> sulphuric acid concentration <strong>in</strong>creases from 0.1 to 10 N.<br />

(23)


<strong>Lead</strong> resists dilute sulphuric acid, even <strong>in</strong> presence <strong>of</strong> oxygen, ow<strong>in</strong>g<br />

to the low solubility <strong>of</strong> lead sulphate (58) .<br />

Many materials, which exhibit passively effects, are only negligibly<br />

affected by wide change <strong>in</strong> corrosive concentration. Other materials show<br />

similar behaviour expect at very high corrosive concentration when<br />

corrosion rate <strong>in</strong>creases rapidly, lead shows this effect due to the fact that<br />

lead sulphate, which forms a protection <strong>in</strong> low concentration <strong>of</strong> sulphuric<br />

acid, is soluble <strong>in</strong> concentrated sulphuric acid (46) .<br />

Boctor (50) found that <strong>in</strong>creas<strong>in</strong>g temperature or sulphuric acid<br />

concentration <strong>in</strong>creases the rate <strong>of</strong> self-discharge.<br />

Self discharge <strong>of</strong> positive plates is due to reaction between PbO2 <strong>in</strong><br />

the active material and Pb <strong>in</strong> the grid (59) .<br />

Self discharge <strong>of</strong> negative plates is due to the reaction between<br />

sulphuric acid and the spong-lead, produc<strong>in</strong>g hydrogen gas and PbSO4 (50) .<br />

Antimony was <strong>in</strong>troduced <strong>in</strong>to the electrode system either by alloy<strong>in</strong>g<br />

it with the metal or by add<strong>in</strong>g it to the H2SO4 solution. It was established<br />

that Sb lowers the oxygen over voltage and <strong>in</strong>creases the rate <strong>of</strong> anodic<br />

corrosion <strong>of</strong> lead irrespective <strong>of</strong> the way <strong>in</strong> which it was <strong>in</strong>troduced <strong>in</strong>to the<br />

system (60) .<br />

Study <strong>of</strong> electrodes <strong>of</strong> different active mass layer thickness shows that<br />

with <strong>in</strong>crease <strong>in</strong> thickness the corrosion rate decreases the corrosion rate<br />

decreases (61) .<br />

Chloride <strong>in</strong> the electrolyte <strong>of</strong> lead-acid batteries has long been thought<br />

to cause early failure due to accelerated corrosion <strong>of</strong> the positive-plate<br />

group. This study <strong>in</strong>vestigates the effect <strong>of</strong> chloride species, added as either<br />

hydrochloric acid or sodium chloride (62) .<br />

In the presence <strong>of</strong> H3PO4, the formation <strong>of</strong> soluble phosphate species<br />

causes the decrease <strong>of</strong> corrosion layer thickness. Higher than 0.9%<br />

concentration <strong>of</strong> H3PO4 negatively affect the behaviour <strong>of</strong> the electrodes,<br />

(24)


higher potentials be<strong>in</strong>g required for the oxidation <strong>of</strong> PbSO4 to PbO2, when<br />

the rate <strong>of</strong> oxygen evolution is also higher. Addition <strong>of</strong> FeSO4 with H3PO4<br />

to the electrolyte as a Fe 2+ ions prevents formation <strong>of</strong> Pb(IV) soluble ion<br />

which is undesirable (63,64) .<br />

Takao (65) exam<strong>in</strong>ed the effects <strong>of</strong> temperature, the concentration <strong>of</strong><br />

sulphuric acid, and the configuration <strong>of</strong> test specimens on negative<br />

electrode corrosion. The reason for this corrosion seems corroded areas are<br />

covered with electrolyte film that has a high resistance, so, they cannot be<br />

polarized to the full cathodic protection potential.<br />

Boctor (66) used an electrometric method for evaluation <strong>of</strong> the<br />

corrosion <strong>of</strong> lead alloys, the lead electrode is subjected to electrolyte and<br />

temperature condition , as well as to various states <strong>of</strong> polarization that<br />

simulate the service <strong>of</strong> lead-acid batteries. The result<strong>in</strong>g corrosion layer is<br />

first reduced to lead sulphate, then to sponge lead. A l<strong>in</strong>ear relation is<br />

observed between the weight <strong>of</strong> the corroded lead and the surface area <strong>of</strong><br />

the sponge lead after cathodic reduction <strong>of</strong> the corrosion layer.<br />

Dragan (67) studied the effect <strong>of</strong> Sn and Ca dop<strong>in</strong>g on the corrosion <strong>of</strong><br />

Pb anodes <strong>in</strong> lead-acid batteries and show that a small amount <strong>of</strong> Sn and Ca<br />

which was deposited on Pb by electrodeposition m<strong>in</strong>imizes the weight <strong>of</strong><br />

the anode corrosion.<br />

1.5-The Object and Scope <strong>of</strong> the Present Research<br />

The subject <strong>of</strong> this research <strong>in</strong>cluded a number <strong>of</strong> important aspects<br />

which may be summarized as:<br />

1. Potentiostatic <strong>in</strong>vestigation <strong>of</strong> the corrosion behaviour <strong>of</strong> seven types<br />

<strong>of</strong> specimens <strong>of</strong> lead-acid battery plates at three concentrations (0.1,<br />

0.25 and 0.56 mol.dm -3 ) <strong>of</strong> stirred and un-stirred oxygenated sulphuric<br />

acid solution, and also with stirred and un-stirred deaerated sulphuric<br />

acid solution, at three temperatures 298, 308 and 318 K.<br />

(25)


2. The additive effect <strong>of</strong> phosphoric acid(11g), mixture <strong>of</strong> (Phosphoric<br />

acid(11g) + Ferrous Sulphate(0.2g)), Ferrous Sulphate (0.2g) and<br />

sodium chloride(4g) <strong>in</strong> 1 litre <strong>of</strong> sulhuric acid has been tested for the<br />

corrosion <strong>of</strong> four type <strong>of</strong> the follow<strong>in</strong>g specimens.<br />

1. <strong>Lead</strong> alloy electrode.<br />

2. A cured positive plate <strong>of</strong> the battery.<br />

3. Grid lead electrode.<br />

4. A cured negative plate <strong>of</strong> the battery.<br />

In stirred and un-stirred oxygenated sulphuric acid(0.56M) at 298K.<br />

3. Investigation <strong>of</strong> the effect <strong>of</strong> oxygen and different media on the<br />

corrosion and passivity <strong>of</strong> the battery plates.<br />

4. Study <strong>of</strong> the thermodynamic quantities (DG, DH and DS) for the<br />

corrosion <strong>of</strong> four type <strong>of</strong> the battery plates.<br />

5. The k<strong>in</strong>etic study aspects <strong>of</strong> the corrosion <strong>of</strong> the four type <strong>of</strong> battery<br />

plates have been <strong>in</strong>vestigated and the activation energies and pre-<br />

exponential factors for the corrosion process have been determ<strong>in</strong>ed.<br />

(26)


2.1-The Experimental Set-Up<br />

This <strong>in</strong>strument consists <strong>of</strong> a source <strong>of</strong> potential (an electronic<br />

voltmeter) and a current source (68) . The potentiostat measures the potential<br />

V <strong>of</strong> the test electrode under study and compares this with the preselected<br />

value V* from the potential source.<br />

If there is a difference dV= V*- V between the measured and the<br />

chosen potentials, potentiastate tells its current source to send a current i<br />

between the auxiliary and the test electrode. The direction and magnitude<br />

<strong>of</strong> this current is electronically chosen to keep the potential <strong>of</strong> test electrode<br />

at the desired value, i.e, to make<br />

dV= V*-V= 0 (69) .<br />

The experiments on the electrodes <strong>in</strong> H2SO4 solution were performed<br />

us<strong>in</strong>g a potentiostat <strong>of</strong> the type PRI 10-0.5L, which was obta<strong>in</strong>ed from sole<br />

Tacussel (France) which had an output voltage <strong>of</strong> – 10V and output<br />

current <strong>of</strong> – 500 mA and a response time <strong>of</strong> (2-3) ms.<br />

The potentiostat was connected to a potentiostatic recorder, type EPL-<br />

2B with an <strong>in</strong>terchangeable plug- <strong>in</strong> pre-amplifier, type EPRL2, which<br />

enabled the work<strong>in</strong>g electrode current to be recorded <strong>in</strong> either l<strong>in</strong>ear or<br />

logarithmic coord<strong>in</strong>ates. The potentiostat, which was termed commercially<br />

as “ corroscript” conta<strong>in</strong>ed a digital electronic millivoltmeter, type<br />

MVN79. This <strong>in</strong>strument is <strong>in</strong>tended for highly accurate potential<br />

measurements from a few millivolts to some tens <strong>of</strong> volts, across sources <strong>of</strong><br />

very high resistance, all organized <strong>in</strong> a particularly way (70) .<br />

A simple electronic lay-out <strong>of</strong> the potentiostat is shown<br />

diagrammatically <strong>in</strong> Fig. (2-1). The potential <strong>of</strong> the work<strong>in</strong>g electrode , Et,<br />

is measured aga<strong>in</strong>st another electrode Er, called reference electrode . A<br />

third electrode, Ea, called the auxiliary electrode allows the electrical<br />

(27)


current necessary to produce the desired potential difference to flow<br />

through the circuit (71) .<br />

Fig. (2-1): The modern electronic <strong>in</strong>struments <strong>of</strong> potentiostate.<br />

Where :<br />

Ea = Auxiliary electrode,<br />

Er = Reference electrode,<br />

Et = Work<strong>in</strong>g electrode.<br />

The work<strong>in</strong>g and the auxiliary electrodes are connected to the output<br />

term<strong>in</strong>als <strong>of</strong> the potentiostat current through the circuit is automatically<br />

controlled so that the potential difference between the work<strong>in</strong>g electrode<br />

and the reference electrodes takes the desired value.<br />

This process is carried out by means <strong>of</strong> a differential amplifier Ad,<br />

one output <strong>of</strong> which e1, is connected to the reference electrode and the other<br />

output, e2, to voltage source called pilot voltage (or control voltage). The<br />

amplifier derives power, Ap, which controls the output current <strong>of</strong> the<br />

potentiostat <strong>in</strong> such a manner that the potential difference between the<br />

work<strong>in</strong>g electrode and the reference electrode rema<strong>in</strong>s equal to the applied<br />

voltage, Ec. (72) .<br />

(28)


2.2- The work<strong>in</strong>g Electrode<br />

Seven types <strong>of</strong> specimens <strong>of</strong> different work<strong>in</strong>g electrodes have been<br />

exam<strong>in</strong>ed and these <strong>in</strong>volved:<br />

1. A spectroscopically standardized lead specimen which was obta<strong>in</strong>ed<br />

from Johnson Matthery Co. Ltd (U.K).<br />

2. A lead–antimony alloy, conta<strong>in</strong><strong>in</strong>g 2.7 wt % antimony. Such alloy is<br />

used <strong>in</strong> Bable factories for <strong>in</strong>dustrial synthesis <strong>of</strong> lead oxide by Barton-<br />

pot and Ball-Mill methods.<br />

3. A lead-antimony alloy, conta<strong>in</strong><strong>in</strong>g more than 6% antimony. Such alloy<br />

is used <strong>in</strong> Bable factories for <strong>in</strong>dustrial preparation <strong>of</strong> the grids <strong>of</strong> the<br />

lead-acid battery plates.<br />

4. Un-cured negative plate <strong>of</strong> the battery. This represented a grid, which<br />

was coated with the paste <strong>of</strong> the negative plate prior to cur<strong>in</strong>g.<br />

5. Un-cured positive plate <strong>of</strong> the battery. This represented a grid which<br />

was coated with the paste <strong>of</strong> the positive plate and prior to cur<strong>in</strong>g stage.<br />

6. A cured negative plate <strong>of</strong> step (4).<br />

7. A cured positive plate <strong>of</strong> step (5).<br />

Specimens <strong>of</strong> the steps (2-7) have been obta<strong>in</strong>ed directly from Bable<br />

factory for manufactur<strong>in</strong>g lead acid storage batteries <strong>in</strong> Baghdad.<br />

The work<strong>in</strong>g electrode <strong>of</strong> the corrosion cell was made <strong>of</strong> plate<br />

material <strong>of</strong> the battery (steps 1 to 7). The exposed surface area <strong>of</strong> the<br />

material was circular with an apparent area <strong>of</strong> 1cm 2 . The work<strong>in</strong>g electrode<br />

specimen <strong>of</strong> plate material was mounted <strong>in</strong> an appropriate plastic holder so<br />

that a surface area <strong>of</strong> 1cm 2 <strong>of</strong> the plate material rema<strong>in</strong>ed exposed to the<br />

test solution (H2SO4) when the Specimen was immersed <strong>in</strong> such<br />

solution (70) .<br />

(29)


2.3- The Auxiliary Electrode<br />

The auxiliary electrode was prepared from a high purity plat<strong>in</strong>um rod<br />

stock with an exposed surface area <strong>of</strong> 1.8cm 2 (73) .<br />

Plat<strong>in</strong>ized auxiliary electrode was used <strong>in</strong> the experiments due to its<br />

large surface area and high catalytic activity. Plat<strong>in</strong>ization <strong>of</strong> the electrode<br />

was made after clean<strong>in</strong>g the surface <strong>of</strong> the plat<strong>in</strong>um electrode <strong>in</strong> hot aqua<br />

regia (3 parts concentrated HCl and 1 part concentrated HNO3), wash<strong>in</strong>g,<br />

and then dry<strong>in</strong>g. The electrode was then plat<strong>in</strong>ized by immersion <strong>in</strong><br />

solution consist<strong>in</strong>g 3 percent chloroplat<strong>in</strong>ic acid and 0.02 percent lead<br />

acetate and electrolyz<strong>in</strong>g at a current density <strong>of</strong> 40 mA/cm 2 for 5 m<strong>in</strong> (74,75) .<br />

The polarity was reversed every m<strong>in</strong>ute. Occluded chloride was<br />

removed by electrolyz<strong>in</strong>g <strong>in</strong> a dilute (10 percent) sulphuric acid solution for<br />

5 m<strong>in</strong>, with a reversal <strong>in</strong> polarity every m<strong>in</strong>ute. The electrode was<br />

thereafter r<strong>in</strong>sed thoroughly and stored <strong>in</strong> distilled water. The electrode<br />

which was obta<strong>in</strong>ed by this procedure had a longer life and was less<br />

susceptible to poison<strong>in</strong>g due to the presence <strong>of</strong> lead acetate <strong>in</strong> its surface<br />

coat<strong>in</strong>g (72) .<br />

(30)


2.4- The Reference Electrode<br />

A saturated calomel reference electrode (SCE) was used throughout<br />

the whole work. The calomel electrode consisted <strong>of</strong> mercury, mercurous<br />

chloride and chloride ion.<br />

Pt, Hg(l), Hg2Cl2(s) / Cl - -----(2-1)<br />

The reduction reaction which occurs <strong>in</strong> the calomel electrode, may be<br />

represented as<br />

(31)<br />

Hg2Cl2(s) + 2e 2Hg(l) + 2 Cl -<br />

(aq)<br />

-----(2-2)<br />

The electrode is usually brought <strong>in</strong> contact with the electrolyte<br />

through a glass tub<strong>in</strong>g as “Lugg<strong>in</strong> Cappillary” which is filled by the test<br />

solution. The tip <strong>of</strong> the lugg<strong>in</strong> capillary is placed <strong>in</strong> the electrochemical cell<br />

very close to the work<strong>in</strong>g electrode through a Lugg<strong>in</strong> Capillary bridge<br />

which was filled with test solution (72) .<br />

The Calomel electrode could be prepared by gr<strong>in</strong>d<strong>in</strong>g calomel<br />

(Hg2Cl2), mercury and a small quantity saturated KCl solution together and<br />

plac<strong>in</strong>g the resultant slurry <strong>in</strong> a layer about 1cm thick on the surface <strong>of</strong><br />

mercury conta<strong>in</strong>ed <strong>in</strong> a clean test tube. External contact to the mercury was<br />

usually made by a plat<strong>in</strong>um wire which was sealed to glass (73) .


2.5-The <strong>Corrosion</strong> Cell<br />

The cell was made <strong>of</strong> Pyrex glass <strong>of</strong> 1 liter capacity with appropriate<br />

necks to fit the electrodes (Fig.2-2 ) and to permit the <strong>in</strong>troduction <strong>of</strong> gas<br />

<strong>in</strong>let and outlet tubes. A 750 ml <strong>of</strong> the test solution (H2SO4) was transferred<br />

<strong>in</strong>to the corrosion cell which was immersed <strong>in</strong> a thermostat at 25 o C<br />

(–0.01).<br />

The Lugg<strong>in</strong> Capillary was filled with the test solution. The tip <strong>of</strong> the<br />

Lugg<strong>in</strong> capillary was placed as close as possible to the surface <strong>of</strong> the<br />

work<strong>in</strong>g electrode (70) . About 1 mm apart to m<strong>in</strong>imize the IR drop effect.<br />

The electrode assembly <strong>of</strong> the cell was completed and placed <strong>in</strong> the<br />

appropriate position. The test solution was purged for 30-60 m<strong>in</strong> with<br />

oxygen free nitrogen gas (purity 99.9%) at a rate <strong>of</strong> 150 cm 3 /m<strong>in</strong> to remove<br />

oxygen from the solution (73) .<br />

(32)


Gas Inlet<br />

Gas Outlet<br />

Work<strong>in</strong>g<br />

Electrode<br />

(33)<br />

Auxiliary<br />

Electrode<br />

Fig. ( 2-2):- A schematic diagram <strong>of</strong> the polarization cell.<br />

Reference<br />

Electrode


2.6- Potentiostatic Measurement<br />

The potentiostatic scan started about 1 hour after the electrodes<br />

immersion <strong>in</strong> the test solution, beg<strong>in</strong>n<strong>in</strong>g at about –2.0V and proceeded<br />

through to +2.0V versus the saturated calomel electrode.<br />

The potential scan was fixed at a rate <strong>of</strong> 0.3 mV m<strong>in</strong> -1 . The potential<br />

variation was monitered aga<strong>in</strong>st log(current density) on an x-y recorder.<br />

The recorder was <strong>of</strong> EPL series potentiostatic recorder with<br />

<strong>in</strong>terchangeable plug-<strong>in</strong> pre-amplifier, type EPL2, which enabled the<br />

work<strong>in</strong>g electrode current density to be recorded <strong>in</strong> either l<strong>in</strong>ear or<br />

logarithmic coord<strong>in</strong>ates.<br />

Both the cathodic and anodic curves were obta<strong>in</strong>ed with decreas<strong>in</strong>g<br />

and <strong>in</strong>creas<strong>in</strong>g polarization, and this was repeated several times. The<br />

polarization curve obta<strong>in</strong>ed <strong>in</strong>volved several regions cover<strong>in</strong>g the cathodic,<br />

anodic, passive and transpassive regions. Extensive data could be derived<br />

from the detailed analysis <strong>of</strong> each polarization region. Tangents to the<br />

anodic and cathodic Tafel regions were extrapolated to the po<strong>in</strong>t <strong>of</strong><br />

<strong>in</strong>tersection (Fig.2-3) from which both the corrosion current density (ic)and<br />

corrosion potential (Ec) were determ<strong>in</strong>ed us<strong>in</strong>g the four-po<strong>in</strong>t method. (76)<br />

Cathodic (bc) anodic (bn) Tafel slopes, transfer coefficients (a), polarization<br />

resistances (Rp) together with other data could be derived from the<br />

polarization curves.<br />

The thermodynamic feasibility <strong>of</strong> the corrosion has been judged from<br />

the values <strong>of</strong> the corrosion potentials and <strong>of</strong> their dependencies on<br />

temperature. The k<strong>in</strong>etic parameters were obta<strong>in</strong>ed from the corrosion<br />

current densities and <strong>of</strong> their dependencies on temperature.<br />

Data have also been obta<strong>in</strong>ed regard<strong>in</strong>g the potentials and current<br />

densities correspond<strong>in</strong>g to the passive and transpassive regions (73) .<br />

(34)


Applied Potential, E<br />

NOBEL<br />

Et<br />

EAP<br />

EPP<br />

EC<br />

E<br />

C<br />

G<br />

Transpassive<br />

ACTIVE ip ic icr<br />

B<br />

Fig.(2-3): A typical polarization curve show<strong>in</strong>g T<strong>of</strong>el, active-passive<br />

transition, passive and transpassive regions and their<br />

correspond<strong>in</strong>g potentials and current densities.<br />

(35)<br />

passive<br />

A<br />

Log Current Density<br />

D<br />

Active-Passive<br />

Transition<br />

Active<br />

Cathodic


2.7- The Experimental Techniques and Procedure<br />

The <strong>in</strong>vestigation was carried out us<strong>in</strong>g the standard CORROSCRIPT<br />

potentiostat (TACUSSEL, France).<br />

It consisted <strong>of</strong> the follow<strong>in</strong>g parts:<br />

a) A transistorized potentiostat, type PRT. 10.0.5L.<br />

b) A digital electronic millivoltmeter, type MVN79.<br />

c) A potentiometer recorder, type EPL-2B.<br />

The recorder was fitted with a plug-<strong>in</strong> amplifier, type TILOG101,<br />

enabl<strong>in</strong>g currents to be plotted on either l<strong>in</strong>ear or logarithmic<br />

coord<strong>in</strong>ates (68) .<br />

A pilot unit, type SYNCHOSCRIPT, was fitted on the right hand side<br />

panel <strong>of</strong> the recorder. This unit was basically a 10-turn potentiometer,<br />

coupled via an electromagnetic clutch to the chart drive shaft. It was used<br />

to sweep the control potential supplied to the potentiostat, the sweep was<br />

tied to chart speed with a maximum sensitivity <strong>of</strong> 100 mv/ cm. By the use<br />

<strong>of</strong> an optional driver unit, type DIDT, the sensitivity could be set at 25, 50<br />

or 100 mv/ cm.<br />

The experimental procedure which was based on the standard<br />

reference method for mak<strong>in</strong>g potentiostatic polarization measurement,<br />

which was under the jurisdiction <strong>of</strong> ASTM committee G-1 on corrosion <strong>of</strong><br />

Metals (77) , and <strong>in</strong>volved the follow<strong>in</strong>g steps:<br />

1- The specimen was mounted on the electrode holder and was further<br />

cleaned just, prior to immersion, by degreas<strong>in</strong>g for 5 m<strong>in</strong> <strong>in</strong> hot<br />

benzene, followed by acetone.<br />

2- One liter <strong>of</strong> the sulphuric acid solution at a given concentration was<br />

prepared from Bable <strong>Battery</strong> Manufactur<strong>in</strong>g Company and distilled<br />

(36)


water. A 750 ml <strong>of</strong> the desired solution was transferred to the clean test<br />

cell.<br />

3- The temperature <strong>of</strong> the solution was brought to the desired value by<br />

immers<strong>in</strong>g the test cell <strong>in</strong> a controlled temperature water both with a<br />

precision <strong>of</strong> – 0.1 o C, a temperature regulator called Temp-unit, type<br />

HAAKE-KT-33, was used.<br />

4- The plat<strong>in</strong>zed auxiliary electrodes, the Lugg<strong>in</strong> bridge and other<br />

components were placed <strong>in</strong> the test cell by the usual procedures (78) the<br />

tip <strong>of</strong> the lugg<strong>in</strong> capillary was placed as close as physically possible to<br />

the surface <strong>of</strong> the work<strong>in</strong>g electrode <strong>in</strong> the corrosion cell. The Lugg<strong>in</strong><br />

bridge was filled with the test solution and temporarily close the center<br />

open<strong>in</strong>g with a glass stopper.<br />

5- The solution, prior to immersion <strong>of</strong> the test specimen, was purged for<br />

a m<strong>in</strong>imum <strong>of</strong> 1h with oxygen –free nitrogen gas (purity, 99.9%) at a<br />

rate <strong>of</strong> 150 cm 3 /m<strong>in</strong> to remove oxygen from the solution. In some<br />

experiments, the solution prior to immersion <strong>of</strong> the test specimen, was<br />

purged for a m<strong>in</strong>imum <strong>of</strong> 1h with pure oxygen gas (purity, 99.9%) at a<br />

rate <strong>of</strong> 150 cm 3 m<strong>in</strong>.<br />

In a series <strong>of</strong> experiments the solution was stirred at a constant rate<br />

<strong>in</strong> the range from 200 to 800 rpm.<br />

6- The potential scan started 1h after the specimen immersion <strong>in</strong> the acid<br />

solution, beg<strong>in</strong>n<strong>in</strong>g at about –2.0 V and proceeded through to + 2.0V<br />

versus the saturated calomel electrode (SCE). A potential aga<strong>in</strong>st log<br />

(current density) was recorded by x-y recorder at a potential scan rate<br />

<strong>of</strong> 0.3V m<strong>in</strong> -1 .<br />

Selected specimens at the end <strong>of</strong> the test were taken from the<br />

corrosion cell, r<strong>in</strong>sed carefully with distilled water and left to dry <strong>in</strong> a<br />

desicator for a bout 6 hour.<br />

2.8 -The Chemicals<br />

(37)


Sodium chloride was purum grade, obta<strong>in</strong>ed from Fluka, with a<br />

purity 99.5%.<br />

Analar grade ferrous sulphate has been obta<strong>in</strong>ed from BDH, with<br />

purity exceed<strong>in</strong>g 99%.<br />

Fluka.<br />

Ortho phosphoric acid 90% <strong>of</strong> 1.84 gm/ml density produced from<br />

<strong>Sulphuric</strong> acid solution with specific gravity <strong>of</strong> 1.4,which was<br />

obta<strong>in</strong>ed from Bable <strong>Battery</strong> Manufactur<strong>in</strong>g Company .<br />

(38)


3.1- The Polarization Curves<br />

Figs. (3.1) to (3.7) show typical polarization curves for the corrosion<br />

<strong>of</strong> seven types <strong>of</strong> lead specimens <strong>in</strong> 0.56M sulphuric acid at 298K.<br />

In describ<strong>in</strong>g the various parts and regions <strong>of</strong> the polarization curves,<br />

the follow<strong>in</strong>g symbols have been adopted.<br />

c, for the cathodic Tafel region,<br />

a, for the anodic Tafel region,<br />

p, for the passive region, and <strong>in</strong> cases where two passive regions were<br />

present symbols p1 and p2 were used,<br />

b, for the onset <strong>of</strong> the break<strong>in</strong>g <strong>of</strong> the passive layer.<br />

It is also worthwhile to refer briefly to the processes, which take place<br />

at various regions as follows:<br />

c, also for the cathodic Tafel region <strong>in</strong> which reduction <strong>of</strong> hydrogen ions<br />

occurs with subsequent evolution <strong>of</strong> hydrogen gas on the electrode surface.<br />

a, also for the anodic Tafel region <strong>in</strong> which metal dissolution takes place.<br />

Oxidation <strong>of</strong> OH - ions may also take place result<strong>in</strong>g <strong>in</strong> the evolution <strong>of</strong><br />

oxygen gas. Such a gas may be captured by the surface metal atoms<br />

result<strong>in</strong>g <strong>in</strong> metal oxidation on passivation.<br />

p, also for the passive region which <strong>in</strong>volves the formation <strong>of</strong> an oxide<br />

layer on the metal or the substrate surface. The passive layer may undergo<br />

a chemical change giv<strong>in</strong>g rise to more than one passivity region (p1, p2,…).<br />

b, also for break<strong>in</strong>g <strong>of</strong> the passivity correspond<strong>in</strong>g to the onset <strong>of</strong> the<br />

repture <strong>of</strong> the passive layer result<strong>in</strong>g <strong>in</strong> the liberation <strong>of</strong> the metal and<br />

oxygen gas. The process is usually accompanied with the evolution <strong>of</strong><br />

oxygen gas.<br />

Tables (3.1) to (3.14) present values <strong>of</strong> the corrosion current densities,<br />

ic(A cm -2 ), corrosion potentials, Ec (volt), passivity current densities,<br />

ip(A cm -2 ), passivity potentials, Ep (volt), cathodic, bc, and anodic, ba, Tafel<br />

(39)


slopes (volt decade -1 ), cathodic, αc, and anodic, αa,transfer coefficients and<br />

polarization resistances, Rp (W cm -2 ) for the polarization <strong>of</strong> the work<strong>in</strong>g<br />

electrodes <strong>in</strong> different media <strong>in</strong> sulphuric acid solution at different<br />

concentrations, c(mol dm -3 ) <strong>in</strong> the absence <strong>of</strong> additive at three temperatures<br />

<strong>in</strong> the rang 298-318 K.<br />

(40)


(41)


(42)


(43)


(44)


3.2- Results <strong>of</strong> the Polarization Curves<br />

The corrosion potential (Ec) <strong>of</strong> a material <strong>in</strong> a certa<strong>in</strong> medium at a<br />

constant temperature is a thermodynamic parameter which is a criterion for<br />

the extent <strong>of</strong> the corrosion feasibility under the equilibrium potential<br />

(<strong>in</strong> opposite sign) <strong>of</strong> the cell consist<strong>in</strong>g <strong>of</strong> the work<strong>in</strong>g electrode and the<br />

auxiliary electrode when the rate <strong>of</strong> anodic dissolution <strong>of</strong> the work<strong>in</strong>g<br />

electrode material becomes equal to the rate <strong>of</strong> the cathodic process that<br />

takes place on the same electrode surface.<br />

When Ec becomes more negative, the potential <strong>of</strong> the Galvanic cell<br />

becomes more positive and hence the Gibbs free energy change (DG) for<br />

the corrosion process becomes more negative. The corrosion reaction is<br />

then expected to be more spontaneous on pure thermodynamic ground.<br />

When the measured value <strong>of</strong> Ec becomes less negative, the potential <strong>of</strong> the<br />

correspond<strong>in</strong>g Galvanic cell becomes less positive, hence the (ΔG) value<br />

for the corrosion process becomes less negative, and the process is thus less<br />

spontaneous.<br />

It is thus shown that Ec value is a measure for the extent <strong>of</strong> the<br />

feasibility <strong>of</strong> the corrosion reaction on purely thermodynamic basis. Values<br />

<strong>of</strong> Ec for the different electrode materials <strong>in</strong> four different media are<br />

presented <strong>in</strong> tables (3.1–3.14) and are also plotted as <strong>in</strong> Figs.(3.8–3.18).<br />

The corrosion current density (ic) on the other hand is a k<strong>in</strong>etic<br />

parameter and represents the rate <strong>of</strong> corrosion under specified equilibrium<br />

condition. Any factor that enhances the value <strong>of</strong> ic results <strong>in</strong> an enhanced<br />

value <strong>of</strong> the corrosion rate (ic) on pure k<strong>in</strong>etic ground. Tables (3.1 – 3.14)<br />

and Figs. (3.19- 3.29) give values <strong>of</strong> ic which have been derived from the<br />

data <strong>of</strong> the polarization curves <strong>of</strong> the different work<strong>in</strong>g electrodes <strong>in</strong> the<br />

four different corrosion media at different temperatures.<br />

(45)


Other data have been obta<strong>in</strong>ed from the polarization curves which are<br />

presented <strong>in</strong> the tables (3.1 – 3.14). These <strong>in</strong>volved the cathodic (bc) and<br />

anodic (ba) Tafel slopes and the correspond<strong>in</strong>g cathodic (αc) and anodic (αa)<br />

transfer coefficients. If the polarization curve <strong>in</strong>volves a passivity region,<br />

then values <strong>of</strong> the passive potential (Ep) and passive current density (ip)<br />

may be obta<strong>in</strong>ed from the appropriate po<strong>in</strong>t <strong>in</strong> the passivity regions. Values<br />

<strong>of</strong> Ep and ip have also been <strong>in</strong>serted <strong>in</strong> the data <strong>of</strong> tables (3.1– 3.14).<br />

The results <strong>of</strong> Ec, ic, bc, ba, αc, αa, Ep, and ip which have been derived<br />

from the polarization curves which have been given <strong>in</strong> tables (3.1 – 3.14)<br />

will be further treated and discussed <strong>in</strong> the subsequent topics.<br />

(46)


Table(3-1):Values <strong>of</strong> corrosion current densities, ic(A cm -2 ), corrosion<br />

potentials, Ec (volt), Passivity current density, ip(A cm -2 ), passivity<br />

potentials, Ep(volt), cathodic, bc, and anodic, ba, tafel slopes(volt decade -1 )<br />

,cathodic, αc, and anodic, αa, transfer coefficients and polarization<br />

resistance, Rp(W cm -2 ) for polarization <strong>of</strong> lead alloy work<strong>in</strong>g electrode <strong>in</strong><br />

oxygenated sulphuric acid solution at different concentrations,<br />

c(mol dm -3 ) <strong>in</strong> the absence <strong>of</strong> additive .<br />

C T/K medium ic/10 -4<br />

0.56M<br />

0.25M<br />

0.1M<br />

0.56M<br />

0.25M<br />

0.1M<br />

298<br />

-Ec<br />

ip/10 -5<br />

(47)<br />

Ep ba aa -bc ac Rp<br />

2.75 0.513 7.20 0.820 0.04 1.38 0.16 0.37 53.46<br />

308 stirred 2.90 0.510 8.20 0.800 0.05 1.16 0.19 0.32 61.98<br />

318 4.00 0.500 12.00 0.790 0.06 1.04 0.24 0.26 52.71<br />

298<br />

2.75 0.520 7.40 0.810 0.04 1.41 0.45 0.13 60.33<br />

308 stirred 2.80 0.517 7.70 0.800 0.04 1.48 0.48 0.13 59.05<br />

318 4.00 0.500 9.00 0.770 0.05 1.27 0.54 0.12 49.52<br />

298<br />

2.60 0.530 7.00 0.770 0.05 1.16 0.16 0.37 64.52<br />

308 stirred 2.70 0.510 7.20 0.740 0.06 0.98 0.17 0.36 73.37<br />

318 3.20 0.500 9.40 0.730 0.06 1.12 0.19 0.34 58.59<br />

298<br />

0.65 0.516 7.30 0.610 0.03 1.76 0.43 0.14 207.49<br />

un-<br />

308 1.40 0.513 7.80 0.580 0.05 1.23 0.55 0.11 141.75<br />

stirred<br />

318 1.70 0.510 8.60 0.560 0.05 1.37 0.84 0.08 111.23<br />

298<br />

0.55 0.520 12.00 0.560 0.05 1.09 0.38 0.16 374.74<br />

un-<br />

308 1.30 0.510 9.20 0.580 0.05 1.15 0.56 0.11 162.30<br />

stirred<br />

318 1.65 0.500 9.40 0.620 0.05 1.18 0.66 0.10 129.94<br />

298<br />

0.50 0.510 11.00 0.620 0.05 1.28 0.45 0.13 362.50<br />

un-<br />

308 1.20 0.500 11.50 0.600 0.10 0.61 0.59 0.10 308.23<br />

stirred<br />

318 1.60 0.480 12.50 0.580 0.11 0.57 0.62 0.10 256.71


Table(3-2):Values <strong>of</strong> corrosion current densities,ic(A cm -2 ), corrosion<br />

potentials, Ec (volt),Passivity current density, ip(A cm -2 ),passivity<br />

potentials, Ep(volt), cathodic, bc, and anodic, ba, tafel slopes (volt<br />

decade -1 ), cathodic,αc,and anodic, αa,transfer coefficients and polarization<br />

resistance,Rp(W cm -2 ) for polarization <strong>of</strong> lead alloy work<strong>in</strong>g electrode <strong>in</strong><br />

deaerated sulphuric acid solution at different concentrations,<br />

c(mol dm -3 )<strong>in</strong> the absence <strong>of</strong> additive .<br />

C T/K medium ic/10 -5<br />

0.56M<br />

0.25M<br />

0.1M<br />

0.56M<br />

0.25M<br />

0.1M<br />

298<br />

-Ec<br />

ip/10 -5<br />

(48)<br />

Ep ba αa -bc αc Rp<br />

7.5 0.518 6.80 1.010 0.07 0.84 0.16 0.36 284.50<br />

308 stirred 8.1 0.514 7.80 0.910 0.08 0.76 0.16 0.37 289.55<br />

318 9.5 0.510 8.50 0.750 0.08 0.82 0.20 0.31 254.69<br />

298<br />

7.2 0.510 6.20 0.670 0.05 1.29 0.18 0.33 220.76<br />

308 stirred 8.2 0.506 6.90 0.640 0.07 0.92 0.21 0.30 264.71<br />

318 9.6 0.500 7.00 0.610 0.12 0.54 0.23 0.27 350.29<br />

298<br />

7 0.500 6.00 0.630 0.07 0.79 0.24 0.25 353.36<br />

308 stirred 7.9 0.490 7.90 0.620 0.12 0.51 0.26 0.23 452.11<br />

318 8.3 0.480 8.50 0.610 0.15 0.43 0.31 0.20 518.03<br />

298<br />

5 0.519 5.70 0.980 0.04 1.47 0.44 0.13 320.66<br />

un-<br />

308 6 0.510 9.00 0.930 0.05 1.30 0.22 0.28 279.89<br />

stirred<br />

318 10 0.500 9.60 0.900 0.05 1.21 0.45 0.14 202.00<br />

298<br />

2.55 0.520 6.00 1.000 0.04 1.34 0.21 0.29 617.43<br />

un-<br />

308 4.8 0.510 6.90 0.960 0.06 0.95 0.23 0.26 455.70<br />

stirred<br />

318 6 0.500 7.50 0.880 0.07 0.93 0.40 0.16 418.86<br />

298<br />

1.65 0.518 6.20 0.780 0.09 0.69 0.47 0.13 1898.48<br />

un-<br />

308 4.8 0.510 6.60 0.770 0.09 0.69 0.48 0.13 679.50<br />

stirred<br />

318 5.2 0.500 8.00 0.760 0.10 0.63 0.49 0.13 690.42


Table(3-3):Values <strong>of</strong> corrosion current densities,ic(A cm -2 ), corrosion<br />

potentials, Ec (volt),Passivity current density, ip(A cm -2 ),passivity<br />

potentials, Ep(volt), cathodic, bc, and anodic,ba, tafel slopes (volt<br />

decade -1 ), cathodic, αc, and anodic, αa, transfer coefficients and<br />

polarization resistance, Rp(W cm -2 ) for polarization <strong>of</strong> pure lead work<strong>in</strong>g<br />

electrode <strong>in</strong> oxygenated sulphuric acid solution at different<br />

concentrations, c(mol dm -3 ) <strong>in</strong> the absence <strong>of</strong> additive .<br />

C T/K medium ic/10 -4<br />

0.56M<br />

0.25M<br />

0.1M<br />

0.56M<br />

0.25M<br />

0.1M<br />

298<br />

-Ec<br />

ip/10 -5<br />

(49)<br />

Ep ba αa -bc αc Rp<br />

1.85 0.530 12.00 0.860 0.04 1.34 0.22 0.27 85.92<br />

308 stirred 3 0.519 12.50 0.840 0.04 1.42 0.32 0.19 54.69<br />

318 3.5 0.513 15.00 0.820 0.06 1.06 0.38 0.17 63.62<br />

298<br />

1.65 0.520 4.50 0.790 0.07 0.85 0.21 0.29 136.88<br />

308 stirred 2.6 0.510 5.00 0.780 0.07 0.90 0.29 0.21 92.21<br />

318 3.2 0.500 8.70 0.770 0.07 0.86 0.42 0.15 84.88<br />

298<br />

1.35 0.500 4.20 0.800 0.05 1.09 0.66 0.09 160.95<br />

308 stirred 2.4 0.490 4.20 0.760 0.05 1.19 0.84 0.07 87.64<br />

318 3.2 0.490 5.40 0.750 0.05 1.30 0.69 0.09 61.38<br />

298<br />

0.57 0.532 1.60 0.790 0.06 1.06 0.40 0.15 371.88<br />

un-<br />

308 1.1 0.526 7.00 0.750 0.06 1.11 0.48 0.13 195.35<br />

stirred<br />

318 1.65 0.521 11.00 0.540 0.06 1.13 0.69 0.09 136.11<br />

298<br />

0.5 0.510 6.80 0.620 0.06 0.94 0.49 0.12 483.56<br />

un-<br />

308 1 0.500 6.90 0.600 0.06 0.97 0.33 0.18 229.62<br />

stirred<br />

318 1.4 0.500 7.00 0.590 0.07 0.85 0.25 0.25 177.79<br />

298<br />

0.4 0.510 1.20 0.740 0.05 1.10 0.38 0.16 508.97<br />

un-<br />

308 1 0.500 8.50 0.680 0.05 1.12 0.39 0.16 207.74<br />

stirred<br />

318 1.35 0.500 8.80 0.600 0.05 1.27 0.43 0.15 143.45


Table(3-4):Values <strong>of</strong> corrosion current densities,ic(A cm -2 ), corrosion<br />

potentials, Ec (volt), Passivity current density, ip(A cm -2 ), passivity<br />

potentials, Ep(volt), cathodic, bc, and anodic, ba, tafel slopes (volt<br />

decade -1 ), cathodic, αc, and anodic, αa, transfer coefficients and<br />

polarization resistance, Rp(W cm -2 ) for polarization <strong>of</strong> pure lead work<strong>in</strong>g<br />

electrode <strong>in</strong> deaerated sulphuric acid solution at different concentrations,<br />

c(mol dm -3 ) <strong>in</strong> the absence <strong>of</strong> additive .<br />

C T/K medium ic/10 -5<br />

0.56M<br />

0.25M<br />

0.1M<br />

0.56M<br />

0.25M<br />

0.1M<br />

298<br />

-Ec<br />

ip/10 -5<br />

(50)<br />

Ep ba αa -bc αc Rp<br />

5.8 0.533 4.7 1.010 0.04 1.38 0.16 0.37 252.55<br />

308 stirred 7.5 0.530 5.7 0.940 0.04 1.53 0.27 0.22 201.38<br />

318 20 0.526 7 0.925 0.04 1.51 0.28 0.23 78.98<br />

298<br />

4.8 0.520 6.5 0.650 0.07 0.84 0.11 0.52 388.00<br />

308 stirred 5 0.510 7 0.630 0.10 0.61 0.13 0.48 486.87<br />

318 7.5 0.500 8 0.610 0.41 0.15 0.15 0.42 632.38<br />

298<br />

3.3 0.520 5.5 0.630 0.09 0.69 0.72 0.08 1011.65<br />

308 stirred 3.5 0.510 6 0.610 0.09 0.66 0.89 0.07 1033.29<br />

318 7.2 0.500 6.4 0.610 0.21 0.30 0.95 0.07 1035.46<br />

298<br />

3.3 0.536 5 1.000 0.11 0.55 0.21 0.29 922.61<br />

un-<br />

308 5.6 0.517 6 0.950 0.11 0.54 0.43 0.14 696.82<br />

stirred<br />

318 16.5 0.510 6.5 0.810 0.12 0.53 0.45 0.14 247.67<br />

298<br />

5 0.510 4.5 0.950 0.05 1.21 0.38 0.16 375.49<br />

un-<br />

308 5.4 0.500 4.8 0.870 0.04 1.53 0.44 0.14 293.74<br />

stirred<br />

318 8.5 0.510 6 0.920 0.03 1.90 0.66 0.10 161.51<br />

298<br />

1.3 0.530 5.1 0.870 0.03 1.71 0.35 0.17 1050.71<br />

un-<br />

308 3.8 0.510 6 0.790 0.04 1.65 0.53 0.12 395.89<br />

stirred<br />

318 7.4 0.500 6.7 0.710 0.07 0.88 0.54 0.12 370.03


Table(3-5):Values <strong>of</strong> corrosion current densities,ic(A cm -2 ), corrosion<br />

potentials, Ec (volt), Passivity current density, ip(A cm -2 ), passivity<br />

potentials, Ep(volt), cathodic, bc, and anodic, ba, tafel slopes (volt<br />

decade -1 ), cathodic, αc, and anodic, αa, transfer coefficients and<br />

polarization resistance, Rp(W cm -2 ) for polarization <strong>of</strong> grid lead work<strong>in</strong>g<br />

electrode <strong>in</strong> deaerated sulphuric acid solution at different concentrations,<br />

c(mol dm -3 ) <strong>in</strong> the absence <strong>of</strong> additive .<br />

C T/K medium ic/10 -4<br />

0.56M<br />

0.25M<br />

0.1M<br />

0.56M<br />

0.25M<br />

0.1M<br />

298<br />

-Ec<br />

ip/10 -5<br />

(51)<br />

Ep ba αa -bc αc Rp<br />

10 0.527 6.8 1.080 0.08 0.78 0.21 0.28 241.56<br />

308 stirred 11 0.521 7.2 0.950 0.09 0.72 0.23 0.26 246.28<br />

318 14 0.520 7.6 0.920 0.09 0.68 0.24 0.26 207.02<br />

298<br />

4.5 0.510 8 0.710 0.07 0.85 0.13 0.47 430.43<br />

308 stirred 6.5 0.500 9 0.680 0.09 0.66 0.16 0.39 387.60<br />

318 8 0.500 1 0.640 0.10 0.63 0.16 0.39 334.68<br />

298<br />

5.1 0.500 7.5 0.970 0.06 0.91 0.62 0.10 499.76<br />

308 stirred 6 0.490 7.8 0.840 0.07 0.92 0.75 0.08 441.65<br />

318 7 0.490 10 0.840 0.10 0.61 0.95 0.07 576.14<br />

298<br />

3.7 0.528 7.5 1.070 0.03 1.97 0.15 0.41 291.92<br />

un-<br />

308 6 0.515 7.8 0.930 0.03 1.76 0.15 0.39 204.76<br />

stirred<br />

318 15 0.500 9 0.900 0.04 1.50 0.15 0.42 94.76<br />

298<br />

2.5 0.520 7.3 1.050 0.04 1.33 0.22 0.26 554.15<br />

un-<br />

308 7 0.510 8 0.910 0.04 1.58 0.27 0.22 209.73<br />

stirred<br />

318 14 0.500 9.2 0.900 0.04 1.47 0.31 0.20 116.91<br />

298<br />

2.1 0.510 1.15 1.010 0.06 1.05 0.10 0.61 737.49<br />

un-<br />

308 4.5 0.500 8 0.840 0.10 0.59 0.16 0.39 600.80<br />

stirred<br />

318 8 0.500 8.5 0.830 0.10 0.65 0.17 0.37 335.67


Table(3-6):Values <strong>of</strong> corrosion current densities,ic(A cm -2 ), corrosion<br />

potentials, Ec (volt),Passivity current density, ip(A cm -2 ), passivity<br />

potentials, Ep(volt), cathodic, bc, and anodic, ba, tafel slopes (volt<br />

decade -1 ), cathodic, αc, and anodic, αa, transfer coefficients and<br />

polarization resistance, Rp(W cm -2 ) for polarization <strong>of</strong> grid lead work<strong>in</strong>g<br />

electrode <strong>in</strong> oxygenated sulphuric acid solution at different<br />

concentrations, c(mol dm -3 ) <strong>in</strong> the absence <strong>of</strong> additive .<br />

C T/K medium ic/10 -4<br />

0.56M<br />

0.25M<br />

0.1M<br />

0.56M<br />

0.25M<br />

0.1M<br />

298<br />

-Ec<br />

ip/10 -5<br />

(52)<br />

Ep ba αa -bc αc Rp<br />

2.6 0.521 75 0.920 0.06 0.95 0.30 0.19 86.32<br />

308 stirred 3.5 0.510 91 0.890 0.04 1.42 0.59 0.10 49.62<br />

318 5 0.500 96 0.850 0.06 1.07 0.67 0.09 46.86<br />

298<br />

2.4 0.500 5.7 0.950 0.07 0.91 0.17 0.35 85.32<br />

308 stirred 3.3 0.490 6 0.810 0.05 1.29 0.25 0.24 52.58<br />

318 4.2 0.500 6.5 0.780 0.11 0.58 0.54 0.12 93.50<br />

298<br />

2.2 0.500 5.8 0.890 0.07 0.90 0.21 0.29 98.35<br />

308 stirred 3 0.500 6.5 0.820 0.08 0.81 0.36 0.17 90.04<br />

318 3.5 0.500 7 0.800 0.09 0.73 0.62 0.10 94.13<br />

298<br />

0.63 0.523 7.5 0.970 0.05 1.15 0.50 0.12 321.49<br />

un-<br />

308 0.95 0.510 8 0.890 0.05 1.30 0.54 0.11 198.05<br />

stirred<br />

318 1.3 0.510 8 0.850 0.05 1.33 0.59 0.11 146.67<br />

298<br />

5 0.520 9.5 0.860 0.05 1.19 0.30 0.20 371.15<br />

un-<br />

308 9 0.500 10 0.790 0.19 0.33 0.49 0.12 651.78<br />

stirred<br />

318 15 0.500 11 0.600 0.29 0.22 0.75 0.08 618.31<br />

298<br />

7.5 0.500 6.3 0.910 0.06 0.92 0.27 0.22 301.45<br />

un-<br />

308 8.8 0.490 7.5 0.790 0.06 1.04 0.33 0.18 247.20<br />

stirred<br />

318 15 0.480 11.5 0.780 0.06 1.14 0.38 0.17 139.76


Table(3-7):Values <strong>of</strong> corrosion current densities,ic(A cm -2 ), corrosion<br />

potentials, Ec (volt), Passivity current density, ip(A cm -2 ), passivity<br />

potentials, Ep(volt), cathodic, bc, and anodic, ba, tafel slopes (volt<br />

decade -1 ), cathodic, αc, and anodic, αa, transfer coefficients and<br />

polarization resistance, Rp(W cm -2 ) for polarization <strong>of</strong> cured negative<br />

work<strong>in</strong>g electrode <strong>in</strong> deaerated sulphuric acid solution at different<br />

concentrations, c(mol dm -3 ) <strong>in</strong> the absence <strong>of</strong> additive .<br />

C T/K medium ic/10 -2<br />

0.56M<br />

0.25M<br />

0.1M<br />

0.56M<br />

0.25M<br />

0.1M<br />

298<br />

-Ec<br />

ip/10 -3<br />

(53)<br />

Ep ba αa -bc αc Rp<br />

1.2 0.474 5 0.810 0.05 1.31 0.34 0.18 1.65<br />

308 stirred 1.1 0.470 5.2 0.800 0.05 1.35 0.34 0.18 1.58<br />

318 1.35 0.480 5.5 0.770 0.05 1.33 0.38 0.17 1.35<br />

298<br />

1.05 0.510 2.2 0.760 0.08 0.72 0.15 0.40 2.18<br />

308 stirred 1 0.500 3.2 0.740 0.09 0.69 0.24 0.25 2.81<br />

318 1.1 0.500 3.25 0.740 0.09 0.68 0.29 0.22 2.76<br />

298<br />

0.375 0.520 2.75 0.770 0.05 1.22 0.17 0.34 4.38<br />

308 stirred 0.42 0.510 2.8 0.750 0.07 0.91 0.31 0.20 5.70<br />

318 0.525 0.510 3 0.730 0.07 0.96 0.38 0.17 4.64<br />

298<br />

1.1 0.478 4.8 0.780 0.05 1.25 0.17 0.35 1.61<br />

un-<br />

308 1.55 0.470 5 0.760 0.08 0.73 0.20 0.31 1.66<br />

stirred<br />

318 1.6 0.470 5.6 0.740 0.08 0.80 0.21 0.31 1.54<br />

298<br />

1 0.520 2.75 0.770 0.07 0.83 0.22 0.27 2.35<br />

un-<br />

308 1.4 0.520 3 0.740 0.08 0.80 0.31 0.20 1.90<br />

stirred<br />

318 1.5 0.510 3.5 0.720 0.09 0.72 0.43 0.15 2.10<br />

298<br />

0.45 0.500 2.9 0.770 0.05 1.09 0.27 0.22 4.38<br />

un-<br />

308 0.5 0.500 3.2 0.780 0.05 1.13 0.27 0.22 3.93<br />

stirred<br />

318 0.61 0.500 3.5 0.750 0.09 0.74 0.30 0.21 4.71


Table(3-8):Values <strong>of</strong> corrosion current densities,ic(A cm -2 ), corrosion<br />

potentials, Ec (volt), Passivity current density, ip(A cm -2 ), passivity<br />

potentials, Ep(volt), cathodic, bc, and anodic, ba, tafel slopes (volt<br />

decade -1 ), cathodic, αc, and anodic, αa, transfer coefficients and<br />

polarization resistance, Rp(W cm -2 ) for polarization <strong>of</strong> cured negative<br />

work<strong>in</strong>g electrode <strong>in</strong> oxygenated sulphuric acid solution at different<br />

concentrations, c(mol dm -3 ) <strong>in</strong> the absence <strong>of</strong> additive .<br />

C T/K medium ic/10 -2<br />

0.56M<br />

0.25M<br />

0.1M<br />

0.56M<br />

0.25M<br />

0.1M<br />

298<br />

-Ec<br />

ip/10 -3<br />

(54)<br />

Ep ba αa -bc αc Rp<br />

3 0.471 7.2 0.760 0.08 0.70 0.17 0.35 0.82<br />

308 stirred 3.3 0.470 8.5 0.800 0.08 0.81 0.20 0.31 0.72<br />

318 3.5 0.470 9.8 0.790 0.08 0.77 0.24 0.26 0.76<br />

298<br />

1.3 0.520 3 0.760 0.10 0.59 0.14 0.44 1.92<br />

308 stirred 1.4 0.520 2.5 0.750 0.10 0.61 0.20 0.30 2.06<br />

318 1.5 0.510 2.8 0.740 0.11 0.57 0.21 0.31 2.07<br />

298<br />

1.1 0.500 2.9 0.730 0.14 0.42 0.24 0.25 3.52<br />

308 stirred 1 0.500 3 0.730 0.14 0.45 0.25 0.24 3.82<br />

318 1.5 0.500 3.4 0.690 0.14 0.45 0.26 0.24 2.65<br />

298<br />

1.65 0.473 6.2 0.800 0.09 0.64 0.08 0.72 1.14<br />

un-<br />

308 3 0.470 6.5 0.760 0.09 0.66 0.11 0.57 0.72<br />

stirred<br />

318 3.2 0.470 9 0.740 0.10 0.63 0.11 0.58 0.70<br />

298<br />

1.1 0.500 1.2 0.780 0.07 0.84 0.10 0.59 1.63<br />

un-<br />

308 1.15 0.500 1.5 0.750 0.07 0.92 0.11 0.56 1.56<br />

stirred<br />

318 2.1 0.500 2.7 0.730 0.07 0.95 0.10 0.61 0.83<br />

298<br />

0.8 0.510 3.5 0.790 0.10 0.57 0.05 1.27 1.74<br />

un-<br />

308 0.85 0.510 4.25 0.810 0.10 0.64 0.11 0.54 2.65<br />

stirred<br />

318 9 0.500 6.5 0.770 0.10 0.63 0.31 0.20 3.64


Table(3-9):Values <strong>of</strong> corrosion current densities,ic(A cm -2 ), corrosion<br />

potentials, Ec (volt),Passivity current density, ip(A cm -2 ), passivity<br />

potentials, Ep(volt),cathodic, bc, and anodic, ba, tafel slopes (volt<br />

decade -1 ), cathodic, αc, and anodic, αa, transfer coefficients and<br />

polarization resistance, Rp(W cm -2 ) for polarization <strong>of</strong> cured positive<br />

work<strong>in</strong>g electrode <strong>in</strong> deaerated sulphuric acid solution at different<br />

concentrations, c (mol dm -3 ) <strong>in</strong> the absence <strong>of</strong> additive .<br />

C T/K medium ic/10 -2<br />

0.56M<br />

0.25M<br />

0.1M<br />

0.56M<br />

0.25M<br />

0.1M<br />

298<br />

-Ec<br />

ip/10 -3<br />

(55)<br />

Ep ba αa -bc αc Rp<br />

1.1 0.487 4.5 0.800 0.04 1.31 0.21 0.28 1.46<br />

308 stirred 1.3 0.485 6.5 0.770 0.05 1.31 0.22 0.28 1.29<br />

318 1.6 0.480 6.5 0.760 0.05 1.32 0.24 0.26 1.08<br />

298<br />

0.85 0.520 4 0.800 0.06 1.02 0.13 0.45 2.05<br />

308 stirred 0.9 0.510 4.9 0.780 0.06 1.11 0.19 0.32 2.06<br />

318 0.93 0.500 5 0.770 0.06 1.07 0.19 0.33 2.10<br />

298<br />

0.35 0.510 3.5 0.810 0.04 1.33 0.24 0.25 4.65<br />

308 stirred 0.4 0.510 3.7 0.800 0.05 1.33 0.27 0.23 4.26<br />

318 0.4 0.510 4.2 0.700 0.06 1.05 0.30 0.21 5.42<br />

298<br />

1 0.489 6.5 0.790 0.04 1.33 0.19 0.31 1.74<br />

un-<br />

308 2.4 0.484 6.8 0.780 0.04 1.42 0.22 0.28 0.65<br />

stirred<br />

318 2.5 0.480 7 0.760 0.04 1.44 0.26 0.24 0.65<br />

298<br />

0.75 0.520 5.8 0.780 0.05 1.24 0.08 0.72 1.74<br />

un-<br />

308 2 0.500 6.2 0.740 0.06 1.06 0.12 0.50 0.85<br />

stirred<br />

318 2 0.510 7 0.710 0.06 1.03 0.43 0.15 1.17<br />

298<br />

0.57 0.500 4.5 0.790 0.05 1.13 0.19 0.31 3.09<br />

un-<br />

308 0.6 0.500 4.7 0.770 0.06 1.01 0.22 0.28 3.44<br />

stirred<br />

318 0.85 0.500 5.1 0.730 0.06 1.02 0.23 0.27 2.48


Table(3-10):Values <strong>of</strong> corrosion current densities,ic(A cm -2 ), corrosion<br />

potentials, Ec (volt), Passivity current density, ip(A cm -2 ), passivity<br />

potentials, Ep(volt), cathodic, bc, and anodic, ba, tafel slopes (volt<br />

decade -1 ), cathodic, αc, and anodic, αa, transfer coefficients and<br />

polarization resistance, Rp(W cm -2 ) for polarization <strong>of</strong> cured positive<br />

work<strong>in</strong>g electrode <strong>in</strong> oxygenated sulphuric acid solution at different<br />

concentrations, c(mol dm -3 ) <strong>in</strong> the absence <strong>of</strong> additive .<br />

C T/K medium ic/10 -2<br />

0.56M<br />

0.25M<br />

0.1M<br />

0.56M<br />

0.25M<br />

0.1M<br />

298<br />

-Ec<br />

ip/10 -3<br />

(56)<br />

Ep ba αa -bc αc Rp<br />

2.3 0.482 7 0.780 0.07 0.87 0.08 0.76 0.68<br />

308 stirred 3.5 0.480 8.5 0.770 0.11 0.57 0.10 0.59 0.65<br />

318 3.7 0.480 8.8 0.750 0.08 0.76 0.05 1.22 0.37<br />

298<br />

1.2 0.510 2.4 0.790 0.07 0.84 0.06 0.92 1.21<br />

308 stirred 1.2 0.510 2.75 0.740 0.07 0.87 0.12 0.53 1.58<br />

318 1.4 0.500 3 0.740 0.11 0.57 0.20 0.32 2.19<br />

298<br />

0.9 0.500 3.25 0.760 0.10 0.59 0.09 0.63 2.33<br />

308 stirred 1.2 0.500 4 0.740 0.10 0.61 0.15 0.42 2.15<br />

318 1.35 0.500 4 0.720 0.12 0.54 0.18 0.34 2.30<br />

298<br />

1.6 0.485 3.7 0.780 0.08 0.71 0.08 0.72 1.13<br />

un-<br />

308 1.7 0.480 4.1 0.770 0.10 0.59 0.09 0.67 1.24<br />

stirred<br />

318 1.9 0.480 5.5 0.750 0.10 0.64 0.09 0.69 1.08<br />

298<br />

1.1 0.500 4.75 0.780 0.08 0.76 0.09 0.68 1.62<br />

un-<br />

308 1.5 0.510 5 0.750 0.08 0.81 0.13 0.48 1.37<br />

stirred<br />

318 1.5 0.500 5 0.740 0.09 0.73 0.14 0.44 1.55<br />

298<br />

0.95 0.500 5.2 0.770 0.09 0.69 0.11 0.52 2.23<br />

un-<br />

308 0.65 0.500 5.6 0.730 0.09 0.71 0.12 0.52 3.33<br />

stirred<br />

318 1.2 0.500 5.75 0.720 0.14 0.45 0.15 0.43 2.61


Table(3-11):Values <strong>of</strong> corrosion current densities,ic(A cm -2 ), corrosion<br />

potentials, Ec (volt),Passivity current density, ip(A cm -2 ),passivity<br />

potentials, Ep(volt), cathodic, bc, and anodic, ba, tafel slopes (volt<br />

decade -1 ), cathodic, αc, and anodic,aa,transfer coefficients and<br />

polarization resistance, Rp(W cm -2 ) for polarization <strong>of</strong> uncured positive<br />

work<strong>in</strong>g electrode <strong>in</strong> deaerated sulphuric acid solution at different<br />

concentrations, c(mol dm -3 ) <strong>in</strong> the absence <strong>of</strong> additive .<br />

C T/K medium ic/10 -3<br />

0.56M<br />

0.25M<br />

0.1M<br />

0.56M<br />

0.25M<br />

0.1M<br />

298<br />

-Ec<br />

ip/10 -3<br />

(57)<br />

Ep ba αa -bc αc Rp<br />

6.6 0.506 3.4 0.790 0.07 0.83 0.24 0.25 3.61<br />

308 stirred 7.8 0.500 2.25 0.750 0.07 0.83 0.25 0.25 3.15<br />

318 8.5 0.500 2.5 0.660 0.08 0.84 0.30 0.21 3.07<br />

298<br />

3 0.510 2.25 0.740 0.07 0.80 0.28 0.21 8.49<br />

308 stirred 4 0.500 2.3 0.720 0.08 0.80 0.31 0.20 6.67<br />

318 7 0.510 2.4 0.710 0.08 0.84 0.33 0.19 3.81<br />

298<br />

1.2 0.510 1.75 0.770 0.06 1.04 0.14 0.44 14.45<br />

308 stirred 1.6 0.500 1.9 0.740 0.06 0.95 0.23 0.26 13.65<br />

318 2.75 0.510 2 0.710 0.07 0.89 0.23 0.27 8.63<br />

298<br />

5.4 0.509 2.6 0.780 0.04 1.44 0.15 0.40 2.58<br />

un-<br />

308 9.5 0.500 2.75 0.770 0.05 1.35 0.33 0.18 1.82<br />

stirred<br />

318 12 0.505 3.2 0.760 0.05 1.30 0.34 0.18 1.54<br />

298<br />

2.1 0.510 1.7 0.740 0.11 0.52 0.27 0.22 16.66<br />

un-<br />

308 6.6 0.510 2.25 0.750 0.11 0.58 0.35 0.17 5.36<br />

stirred<br />

318 6.25 0.510 2.4 0.690 0.11 0.56 0.45 0.14 6.24<br />

298<br />

2 0.500 1.9 0.740 0.04 1.34 0.23 0.25 8.04<br />

un-<br />

308 2.75 0.500 2 0.740 0.06 0.97 0.33 0.18 8.35<br />

stirred<br />

318 5.75 0.510 2.35 0.700 0.17 0.37 0.93 0.07 10.88


Table(3-12):Values <strong>of</strong> corrosion current densities, ic(A cm -2 ), corrosion<br />

potentials, Ec (volt),Passivity current density, ip(A cm -2 ), passivity<br />

potentials, Ep(volt), cathodic, bc, and anodic, ba, tafel slopes (volt<br />

decade -1 ), cathodic, αc, and anodic, αa, transfer coefficients and<br />

polarization resistance, Rp(W cm -2 ) for polarization <strong>of</strong> uncured positive<br />

work<strong>in</strong>g electrode <strong>in</strong> oxygenated sulphuric acid solution at different<br />

concentrations, c(mol dm -3 ) <strong>in</strong> the absence <strong>of</strong> additive .<br />

C T/K medium ic/10 -2<br />

0.56M<br />

0.25M<br />

0.1M<br />

0.56M<br />

0.25M<br />

0.1M<br />

298<br />

-Ec<br />

ip/10 -3<br />

(58)<br />

Ep ba αa -bc αc Rp<br />

2.1 0.500 3.4 0.780 0.03 2.05 0.18 0.34 0.51<br />

308 stirred 2.25 0.500 4.5 0.770 0.04 1.37 0.31 0.20 0.75<br />

318 2.4 0.500 5 0.760 0.05 1.27 0.17 0.37 0.70<br />

298<br />

0.93 0.510 3 0.770 0.06 1.03 0.10 0.59 1.70<br />

308 stirred 1 0.500 3.4 0.750 0.06 1.08 0.31 0.20 2.07<br />

318 1.1 0.500 3.4 0.730 0.06 1.08 0.33 0.19 1.96<br />

298<br />

0.17 0.520 2 0.740 0.05 1.08 0.32 0.18 11.93<br />

308 stirred 0.26 0.510 2.25 0.720 0.05 1.14 0.45 0.14 7.98<br />

318 0.46 0.500 2.25 0.730 0.07 0.92 0.51 0.12 5.72<br />

298<br />

2 0.502 4.25 0.790 0.07 0.85 0.12 0.48 0.97<br />

un-<br />

308 2.5 0.500 5 0.780 0.07 0.85 0.22 0.28 0.94<br />

stirred<br />

318 2.6 0.500 5.5 0.720 0.08 0.80 0.61 0.10 1.17<br />

298<br />

0.82 0.500 2.5 0.730 0.12 0.48 0.20 0.30 3.99<br />

un-<br />

308 2.35 0.503 3.5 0.730 0.13 0.47 0.22 0.27 1.51<br />

stirred<br />

318 2.55 0.500 3.6 0.720 0.14 0.45 0.23 0.27 1.48<br />

298<br />

0.7 0.520 2 0.750 0.09 0.63 0.18 0.33 3.82<br />

un-<br />

308 1.15 0.520 2.5 0.700 0.10 0.63 0.21 0.29 2.50<br />

stirred<br />

318 1.5 0.510 2.5 0.680 0.14 0.47 0.27 0.24 2.60


Table(3-13):Values <strong>of</strong> corrosion current densities, ic(A cm -2 ), corrosion<br />

potentials, Ec (volt), Passivity current density, ip(A cm -2 ), passivity<br />

potentials, Ep(volt),cathodic, bc, and anodic, ba, tafel slopes (volt<br />

decade -1 ), cathodic, αc, and anodic, αa, transfer coefficients and<br />

polarization resistance, Rp(W cm -2 ) for polarization <strong>of</strong> uncured negative<br />

work<strong>in</strong>g electrode <strong>in</strong> oxygenated sulphuric acid solution at different<br />

concentrations, c(mol dm -3 ) <strong>in</strong> the absence <strong>of</strong> additive .<br />

C T/K medium ic/10 -2<br />

0.56M<br />

0.25M<br />

0.1M<br />

0.56M<br />

0.25M<br />

0.1M<br />

298<br />

-Ec<br />

ip/10 -3<br />

(59)<br />

Ep ba αa -bc αc Rp<br />

2 0.492 4.5 0.770 0.06 0.94 0.11 0.52 0.88<br />

308 stirred 2.4 0.490 5.3 0.810 0.07 0.89 0.13 0.47 0.82<br />

318 2.7 0.488 6.5 0.780 0.07 0.89 0.16 0.40 0.79<br />

298<br />

1.3 0.530 1.35 0.810 0.11 0.55 0.11 0.52 1.86<br />

308 stirred 2 0.530 1.75 0.750 0.11 0.54 0.12 0.49 1.28<br />

318 2.6 0.520 1.9 0.740 0.13 0.48 0.16 0.38 1.22<br />

298<br />

0.95 0.520 1.25 0.780 0.11 0.56 0.13 0.46 2.65<br />

308 stirred 1.1 0.500 1.25 0.770 0.12 0.52 0.15 0.42 2.57<br />

318 1.25 0.500 6.5 0.720 0.14 0.46 0.16 0.41 2.53<br />

298<br />

1.25 0.493 3.4 0.770 0.07 0.87 0.08 0.71 1.30<br />

un-<br />

308 1.3 0.500 3.9 0.760 0.09 0.66 0.10 0.61 1.60<br />

stirred<br />

318 1.46 0.490 5 0.750 0.09 0.73 0.13 0.50 1.53<br />

298<br />

1.22 0.530 2 0.790 0.10 0.59 0.10 0.59 1.77<br />

un-<br />

308 1.28 0.520 2.25 0.770 0.13 0.46 0.10 0.61 1.93<br />

stirred<br />

318 1.4 0.500 2.5 0.750 0.14 0.44 0.11 0.55 1.97<br />

298<br />

0.87 0.500 2.3 0.790 0.11 0.52 0.11 0.52 2.82<br />

un-<br />

308 1 0.510 3.2 0.760 0.13 0.48 0.12 0.50 2.70<br />

stirred<br />

318 1.25 0.510 5.5 0.740 0.15 0.41 0.12 0.53 2.33


Table(3-14):Values <strong>of</strong> corrosion current densities,ic(A cm -2 ), corrosion<br />

potentials, Ec (volt), Passivity current density, ip(A cm -2 ), passivity<br />

potentials, Ep(volt), cathodic, bc, and anodic, ba, tafel slopes (volt<br />

decade -1 ), cathodic, αc, and anodic, αa, transfer coefficients and<br />

polarization resistance, Rp(W cm -2 ) for polarization <strong>of</strong> uncured negative<br />

work<strong>in</strong>g electrode <strong>in</strong> deaerated sulphuric acid solution at different<br />

concentrations, c(mol dm -3 ) <strong>in</strong> the absence <strong>of</strong> additive .<br />

C T/K medium ic/10 -2<br />

0.56M<br />

0.25M<br />

0.1M<br />

0.56M<br />

0.25M<br />

0.1M<br />

298<br />

-Ec<br />

ip/10 -3<br />

(60)<br />

Ep ba αa -bc αc Rp<br />

1.05 0.495 4.25 0.770 0.05 1.16 0.15 0.39 1.38<br />

308 stirred 1.9 0.495 4.9 0.760 0.05 1.14 0.19 0.33 0.95<br />

318 2.2 0.490 5.5 0.730 0.07 0.96 0.25 0.26 1.02<br />

298<br />

0.55 0.510 32 0.750 0.07 0.90 0.09 0.67 2.97<br />

308 stirred 0.7 0.520 37.5 0.730 0.07 0.84 0.14 0.45 2.92<br />

318 0.82 0.530 39 0.700 0.07 0.85 0.33 0.19 3.21<br />

298<br />

0.53 0.510 2.2 0.780 0.06 0.98 0.14 0.44 3.42<br />

308 stirred 0.6 0.510 2.85 0.770 0.06 0.97 0.17 0.36 3.32<br />

318 0.7 0.510 3.25 0.690 0.08 0.82 0.26 0.24 3.70<br />

298<br />

0.9 0.497 4.1 0.760 0.08 0.76 0.10 0.58 1.73<br />

un-<br />

308 2.75 0.491 3.8 0.800 0.08 0.74 0.11 0.57 0.74<br />

stirred<br />

318 2.7 0.490 4.5 0.770 0.08 0.77 0.15 0.42 0.86<br />

298<br />

1.1 0.510 2.85 0.780 0.07 0.87 0.13 0.47 1.75<br />

un-<br />

308 1.5 0.510 3.1 0.780 0.07 0.86 0.16 0.38 1.42<br />

stirred<br />

318 1.6 0.500 4.1 0.740 0.08 0.81 0.31 0.20 1.68<br />

298<br />

1 0.520 2.5 0.790 0.08 0.71 0.09 0.68 1.85<br />

un-<br />

308 1.2 0.510 2.8 0.770 0.09 0.65 0.27 0.23 2.53<br />

stirred<br />

318 1.4 0.500 4 0.760 0.09 0.72 0.38 0.17 2.20


3.2.1- <strong>Corrosion</strong> Potentials (Ec)<br />

The results <strong>of</strong> Figs.(3.8-3.14) <strong>in</strong>dicate that the sequence for the<br />

<strong>in</strong>creas<strong>in</strong>g negativity <strong>of</strong> the Ec values for the corrosion <strong>of</strong> the various<br />

work<strong>in</strong>g electrodes <strong>in</strong> the four different corrosion media was as:<br />

4 > 3 > 2 >1<br />

where the numbers refer to the different corrosion media:<br />

1. for stirred oxygenated 0.56 M sulphuric acid,<br />

2. for un-stirred oxygenated acid solution,<br />

3. for stirred deaerated acid solution, and ,<br />

4. for un-stirred deaerated acid solution.<br />

Thus, the corrosion attack on the different work<strong>in</strong>g electrodes was<br />

relatively more feasible on thermodynamic ground <strong>in</strong> un-stirred deaerated<br />

acid solution and less feasible <strong>in</strong> stirred oxygenated acid solution. The<br />

stirr<strong>in</strong>g and oxygenation <strong>of</strong> the acid solution may result <strong>in</strong> the formation <strong>of</strong><br />

a protective passive oxide layer with ultimate depression <strong>of</strong> the<br />

thermodynamic feasibility for corrosion.<br />

The results <strong>of</strong> Figs.(3.15-3.18) present different work<strong>in</strong>g electrode<br />

materials <strong>in</strong> the four different corrosion media. It is shown from the results<br />

<strong>of</strong> these figures that the sequence for the decreas<strong>in</strong>g corrosion feasibilities<br />

<strong>in</strong> each medium was as:<br />

2 > 3 > 1> 4> 6> 5> 7<br />

where the numbers stand for:<br />

1,lead alloy work<strong>in</strong>g electrode,<br />

2,Grid lead,<br />

3,Pure lead,<br />

4,Uncured positive electrode,<br />

5,Cured positive electrode,<br />

6,Uncured negative electrode, and ,<br />

7,Cured negative electrode.<br />

(61)


The grid lead showed greatest tendency for corrosion while the cured<br />

negative electrode material had the least tendency. Cur<strong>in</strong>g <strong>of</strong> the positive or<br />

the negative electrodes reduces its tendency for corrosion. The cur<strong>in</strong>g on<br />

the other hand had greater <strong>in</strong>fluence on the reduction <strong>of</strong> the corrosion<br />

tendency with negative electrode as compared with the positive electrode.<br />

The lead alloy had less corrosion tendency <strong>in</strong> any corrosion medium than<br />

grid lead. Pure lead on the other hand greater corrosion tendency than lead<br />

alloy.<br />

(62)


(63)


(64)


(65)


(66)


(67)


(68)


3.2.2- <strong>Corrosion</strong> Current Densities (ic)<br />

Values <strong>of</strong> ic represent the corrosion rates <strong>of</strong> the work<strong>in</strong>g electrode<br />

material <strong>in</strong> the sulphuric acid solution at a constant temperature. The results<br />

<strong>of</strong> Figs.(3.19-3.25) <strong>in</strong>dicate that the corrosion rates <strong>of</strong> all the electrode<br />

materials were highest <strong>in</strong> stirred oxygenated solution and lowest <strong>in</strong> unstirred<br />

deaerated acid solution. The electrode materials differed <strong>in</strong> their<br />

corrosion rates <strong>in</strong> un-stirred oxygenated and stirred deaerated media. The<br />

largest corrosion rate <strong>in</strong> stirred oxygenated solution may be accounted for<br />

on the basis <strong>of</strong> the greater reactivity <strong>of</strong> the material surface towards<br />

oxygen. On the contrary, the smallest corrosion rate <strong>in</strong> un-stirred deaerated<br />

medium is expected when the corrosion medium is de-oxygenated (or<br />

deaerated).<br />

The behaviours <strong>of</strong> the various electrode materials <strong>in</strong> each <strong>of</strong> the four<br />

corrosion media may also be compared with the aid <strong>of</strong> the Figs.(3.26-3.29).<br />

The corrosion rates <strong>of</strong> the materials <strong>in</strong> each medium may be presented <strong>in</strong><br />

the follow<strong>in</strong>g four sequences:<br />

sequence (1)- <strong>in</strong> stirred oxygenated acid solution (Fig. 3.26):-<br />

7 > 5 > 4 > 6 > 1 > 3 >2<br />

sequence (2)- <strong>in</strong> un-stirred oxygenated acid solution (Fig. 3.27):-<br />

4 > 7 > 5 > 6 > 1 > 3 >2<br />

sequence (3) – <strong>in</strong> stirred deaerated acid solution (Fig. 3.28):-<br />

7 > 5 > 6 > 4 > 3 >1 > 2<br />

sequence (4)- <strong>in</strong> un-stirred deaerated acid solution (Fig. 3.29):-<br />

7 > 5 > 6 > 4 > 1 > 3 > 2<br />

The largest corrosion rate was with cured negative electrode material<br />

<strong>in</strong> stirred oxygenated and <strong>in</strong> stirred and un-stirred deaerated acid solution,<br />

and with uncured positive electrode material <strong>in</strong> un-stirred oxygenated<br />

solution. The lowest corrosion rate was atta<strong>in</strong>ed <strong>in</strong> all the four different<br />

corrosion media with grid lead material.<br />

(69)


(70)


(71)


(72)


(73)


(74)


(75)


3.2.3- Passive Potentials (Ep)<br />

Passivity is an unusual phenomenon observed dur<strong>in</strong>g the corrosion <strong>of</strong><br />

certa<strong>in</strong> metals and alloys, it can be def<strong>in</strong>ed as a loss <strong>of</strong> chemical reactivity<br />

under certa<strong>in</strong> environmental conditions (79) .<br />

Tables (3.1) to (3.14) show values <strong>of</strong> Ep <strong>in</strong> each case for the different<br />

work<strong>in</strong>g electrodes <strong>in</strong> the absence <strong>of</strong> additives decreased with <strong>in</strong>creas<strong>in</strong>g<br />

temperature <strong>in</strong> the four different corrosion media.<br />

The sequence <strong>of</strong> the decreas<strong>in</strong>g Ep values for the different work<strong>in</strong>g<br />

electrodes <strong>in</strong> stirred oxygenated 0.56 M H2SO4 solution was as follow<strong>in</strong>g:<br />

2 > 3 > 1 > 4 > 5 > 6 >7<br />

and <strong>in</strong> un-stirred oxygenated 0.56 M H2SO4 solution was as:<br />

2 > 1 > 7 > 4 > 3 > 5 > 6<br />

<strong>in</strong> stirred deaerated acid solution the sequence was as:<br />

2 > 3 > 1 > 7 > 5 > 4 > 6<br />

and <strong>in</strong> un-stirred acid solution the sequence was as:<br />

2 > 3 > 1 > 5 > 4 > 7 > 6<br />

The largest passive potential was acquired <strong>in</strong> all the four different<br />

corrosion media with grid lead material. The lowest passive potentials were<br />

atta<strong>in</strong>ed <strong>in</strong> stirred and un-stirred deaerated and un-stirred oxygenated acid<br />

solution with uncured negative electrode, and with cured negative <strong>in</strong><br />

stirred oxygenated acid solution.<br />

The passive potentials <strong>of</strong> a passive film on a metal or alloy depend<br />

upon the nature <strong>of</strong> the metal or the alloy, it becomes more or less positive<br />

depend<strong>in</strong>g on the stability <strong>of</strong> the exist<strong>in</strong>g oxide film. The presence <strong>of</strong><br />

certa<strong>in</strong> anions destroys the passivity and results <strong>in</strong> localized corrosion (80)(81) .<br />

(76)


3.2.4 – Passive Current Densities (ip)<br />

Values <strong>of</strong> ip represent the passive current densities <strong>of</strong> the work<strong>in</strong>g<br />

electrode material <strong>in</strong> the sulphuric acid solution at a constant temperature.<br />

The behaviours <strong>of</strong> the various electrode materials <strong>in</strong> each <strong>of</strong> the four<br />

corrosion media may also be compared with the aid <strong>of</strong> the tables (3.1) to<br />

(3.14). The passive current densities <strong>of</strong> the work<strong>in</strong>g electrodes <strong>in</strong> each<br />

medium may be presented <strong>in</strong> the follow<strong>in</strong>g four sequences:<br />

sequence (1)- <strong>in</strong> stirred oxygenated acid solution:<br />

7 > 5> 6> 4> 2> 1> 3<br />

sequence (2)- <strong>in</strong> un-stirred oxygenated acid solution:<br />

7 > 4 > 5 > 6 > 3 > 1 > 2<br />

sequence (3)- <strong>in</strong> stirred deaerated acid solution:<br />

7 > 5 > 6 > 4 > 3 > 1> 2<br />

sequence (4)- <strong>in</strong> un-stirred deaerated acid solution:<br />

4 > 6 > 7 > 5 > 3 > 1 >2<br />

The largest passive current density was obta<strong>in</strong>ed with cured negative<br />

electrode material <strong>in</strong> stirred and un-stirred oxygenated and <strong>in</strong> stirred<br />

deaerated acid solution, and also with uncured positive electrode material<br />

<strong>in</strong> un-stirred deaerated acid solution. The lowest passive current density<br />

was obta<strong>in</strong>ed with grid lead electrode <strong>in</strong> stirred and un-stirred deaerated<br />

and <strong>in</strong> un-stirred oxygenated acid solution, and also with pure lead<br />

electrode material <strong>in</strong> stirred oxygenated acid solution.<br />

The decreas<strong>in</strong>g passive current density(ip) for the electrodes <strong>in</strong> each<br />

sequence may be connected with the <strong>in</strong>creas<strong>in</strong>g stability <strong>of</strong> the oxide<br />

films, while the <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> ip for implies a decrease <strong>in</strong> the stability <strong>of</strong> the<br />

oxide film which tends to dissociate at and close to the transpassive<br />

potential (82) .<br />

(77)


3.3-Tafel Slopes and Transfer Coefficients<br />

Values <strong>of</strong> the transfer coefficients for the cathodic (ac) and anoxic<br />

(aa) processes have been calculated from the correspond<strong>in</strong>g cathodic (bc)<br />

and anodic (ba) Tafel slopes us<strong>in</strong>g the relationships (83)(84) :<br />

c<br />

2.<br />

303RT<br />

=<br />

b F<br />

a ---- (3.1)<br />

a<br />

c<br />

2.<br />

303RT<br />

=<br />

b F<br />

a ---- (3.2)<br />

a<br />

Tables (3.1) to (3.14) show the cathodic (bc) and anodic (ba) Tafel<br />

slopes which are obta<strong>in</strong>ed from the polarization curves for the corrosion <strong>of</strong><br />

the electrode materials <strong>in</strong> deaerated and oxygenated solution <strong>of</strong> the<br />

different sulphuric acid concentrations and temperatures.<br />

Values <strong>of</strong> Tafel slopes (ba or bc) for the both anodic and cathodic<br />

reactions were generally close to 0.120 V decade-1 and the correspond<strong>in</strong>g<br />

values <strong>of</strong> the transfer coefficients (aa and ac) were close to 0.5. The ma<strong>in</strong><br />

exception to this result was the relatively some higher or lower values <strong>of</strong><br />

the Tafel slopes (ba and bc) or <strong>of</strong> the transfer coefficients (aa and ac) for<br />

certa<strong>in</strong> specimens <strong>in</strong> sulphuric acid solutions. Increas<strong>in</strong>g the temperature<br />

from 298 to 318 K caused only a slight change <strong>in</strong> the values <strong>of</strong> ba and bc.<br />

A value <strong>of</strong> the cathodic transfer coefficient (ac) <strong>of</strong> @ 0.5, or <strong>of</strong> the<br />

cathodic Tafel slope <strong>of</strong> –0.120V decade -1 , may be diagnostic <strong>of</strong> a proton<br />

discharge-chemical desorption mechanism <strong>in</strong> which the proton discharge is<br />

the rate- determ<strong>in</strong><strong>in</strong>g step (r.d.s).<br />

The two basic reactions paths for the hydrogen evolution reaction are:<br />

H3O + (bulk solution) H3O + diffusion<br />

(metal / solution <strong>in</strong>terface) ---- (3.3)<br />

which is followed by the discharge step (D):<br />

H3O + D<br />

+ M + e M – H + H2O ----(3.4)<br />

(78)


where M is the metal electrode and M-H represents a hydrogen atom which<br />

is adsorbed on the metal surface. The discharge (D) step is usually<br />

followed by a chemical desorption (C-D) step as:<br />

C-D<br />

M-H + M-H 2M + H2 .…(3.5)<br />

<strong>in</strong> which two adjacent adsorbed hydrogen atoms unite together to form one<br />

molecule <strong>of</strong> gaseous hydrogen. If the chemical desorption is the rate-<br />

determ<strong>in</strong><strong>in</strong>g step, the rate would be <strong>in</strong>dependent <strong>of</strong> the overpotential s<strong>in</strong>ce<br />

no charge transfer occurs <strong>in</strong> such a step and the rate becomes directly<br />

proportional to the concentration or the coverage (q) <strong>of</strong> adsorbed hydrogen<br />

atoms. On the other hand, if the discharge process is followed by a rate-<br />

determ<strong>in</strong><strong>in</strong>g step <strong>in</strong>volv<strong>in</strong>g chemical desorption, the expected value <strong>of</strong> a<br />

should be 2.0.<br />

In some cases, the previous two steps (D) and (C.D) may unite<br />

together to form one electrochemical desorption (E.D) step as:<br />

M-H + H3O + +<br />

E-D<br />

M(electrode) 2M + H2 + H2O .…(3.6)<br />

When electrochemical desorption becomes the rate-determ<strong>in</strong><strong>in</strong>g step<br />

for hydrogen evolution reaction on the casthode, the expected value <strong>of</strong> a<br />

will be 1.5.<br />

The results <strong>of</strong> the tables (3.1-3.14) <strong>in</strong>dicate that the variation <strong>of</strong> the<br />

Tafel slopes and <strong>of</strong> the correspond<strong>in</strong>g transfer coefficients could be<br />

<strong>in</strong>terpreted <strong>in</strong> terms <strong>of</strong> the variation <strong>in</strong> the nature <strong>of</strong> the rate-determ<strong>in</strong><strong>in</strong>g<br />

step from charge transfer process to either chemical–desorption or to<br />

electrochemical desorption.<br />

The variation <strong>of</strong> the anodic Tafel slopes (ba), or <strong>of</strong> the anodic transfer<br />

coefficient (aa), as shown <strong>in</strong> tables (3.1-3.14) may be attributed to the<br />

variation <strong>of</strong> the rate-determ<strong>in</strong><strong>in</strong>g step throughout the metal dissolution<br />

reaction (85)(86) .<br />

Two mechanisms have been proposed for the formation <strong>of</strong> precursor<br />

passive film on the materials. The first is the precipitation-oxidation<br />

(79)


mechanism and the second is the solid state mechanism, the latter<br />

mechanism would not be mass transfer affected, but would account for the<br />

formation <strong>of</strong> the precursor film (87)(88) .<br />

3.4- Polarization Resistance<br />

The polarization resistance, Rp, <strong>of</strong> accord<strong>in</strong>g electrode is def<strong>in</strong>ed as<br />

the slope <strong>of</strong> a potential (E)-current density (i) plot <strong>of</strong> the corrosion potential<br />

(Ec) as :<br />

h<br />

Rp = ( ) T , C at h fi 0<br />

i<br />

(80)<br />

---- (3.7)<br />

where h =E-Ec, is the extent <strong>of</strong> polarization <strong>of</strong> the corrosion potential<br />

and i is the current density (c.d.) correspond<strong>in</strong>g to a particular value <strong>of</strong> h.<br />

From the polarization resistance, Rp the corrosion current density (c.d) ic<br />

can be calculated as:<br />

ic =<br />

b<br />

----(3.8)<br />

R p<br />

where b is a comb<strong>in</strong>ation <strong>of</strong> the anodic and cathodic Tafel slopes (ba,<br />

bc) as (89)(90) :<br />

babc<br />

=<br />

2. 303(<br />

ba<br />

+ bc<br />

)<br />

b ---- (3.9)<br />

For the general case, by <strong>in</strong>sert<strong>in</strong>g equation (3.8) <strong>in</strong>to equation (3.9)<br />

one obta<strong>in</strong>s the so-called the stern-Geary equation (91) :<br />

R<br />

p<br />

babc<br />

2. 303(<br />

ba<br />

+ bc<br />

) i<br />

= ----(3.10)<br />

The results <strong>of</strong> tables (3.1) to (3.14) show that the polarization<br />

resistance for the corrosion <strong>of</strong> the work<strong>in</strong>g electrodes <strong>in</strong> an un-stirred<br />

sulphuric acid solution is greater than its values <strong>in</strong> the stirred sulphuric<br />

acid solution <strong>in</strong>dicat<strong>in</strong>g an <strong>in</strong>crease <strong>in</strong> the resistance o the <strong>in</strong>terface <strong>in</strong> the<br />

absence <strong>of</strong> stirr<strong>in</strong>g.<br />

c


In general, the polarization resistance (Rp) decreased with <strong>in</strong>creas<strong>in</strong>g<br />

sulphuric acid concentration, and Rp values <strong>of</strong> the first three types <strong>of</strong> the<br />

work<strong>in</strong>g electrodes were greater than for the other work<strong>in</strong>g electrodes as<br />

given <strong>in</strong> tables (3.1) to (3.14).<br />

The polarization resistance (Rp) <strong>of</strong> the materials <strong>in</strong> each medium may<br />

be presented <strong>in</strong> the follow<strong>in</strong>g four sequences:<br />

sequence (1)- <strong>in</strong> stirred oxygenated acid solution<br />

2 > 3 > 1> 6 > 7 > 5 > 4<br />

sequence (2)- <strong>in</strong> un-stirred oxygenated acid solution<br />

3 > 2 > 1 > 6 > 7 > 5 > 4<br />

sequence (3)- <strong>in</strong> stirred deaerated acid solution<br />

1 > 3 > 2 > 4 > 7 > 5 > 6<br />

sequence (4)- <strong>in</strong> un-stirred deaerated acid solution<br />

3 > 1 > 2 > 4 > 5 > 6 > 7<br />

The largest polarization resistance was obta<strong>in</strong>ed with pure lead<br />

electrode <strong>in</strong> un-stirred oxygenated and <strong>in</strong> deareated acid solution, and with<br />

lead alloy electrode <strong>in</strong> stirred deaerated acid solution and also with grid<br />

lead <strong>in</strong> stirred oxygenated acid solution. The lowest polarization<br />

resistance was obta<strong>in</strong>ed with uncured positive electrode <strong>in</strong> stirred and <strong>in</strong><br />

un-stirred oxygenated acid solution and also with uncured negative<br />

electrode <strong>in</strong> stirred deaerated acid solution and also with cured negative <strong>in</strong><br />

un-stirred deaerated acid solution.<br />

(81)


3.5- Thermodynamics <strong>of</strong> <strong>Corrosion</strong><br />

When a metal undergoes corrosion there is a change <strong>in</strong> Gibbs free<br />

energy, DG, <strong>of</strong> the system, which is equal to the work associated with the<br />

corrosion reaction. The performance <strong>of</strong> such a work is accompanied usually<br />

by a decrease <strong>in</strong> the Gibbs free energy <strong>of</strong> the system, (-DG) (20) .<br />

If the metal tends to corrode, the work done ( the free energy change<br />

<strong>of</strong> the corrosion process) may be expressed <strong>in</strong> terms <strong>of</strong> the corrosion<br />

potential, Ec us<strong>in</strong>g the equation:<br />

DG = - n FEc --- (3.11)<br />

where F is the Faraday constant and n is the number <strong>of</strong> electrons <strong>in</strong>volved<br />

the corrosion reaction.<br />

The equation <strong>in</strong>dicates that the free energy change is directly measurable<br />

from electrochemical corrosion potential determ<strong>in</strong>ation. From the value <strong>of</strong><br />

DG at several temperatures, the change <strong>in</strong> the entropy (DS) <strong>of</strong> the corrosion<br />

could be derived accord<strong>in</strong>g to the thermodynamic relation:<br />

-d(DG) / dT = DS ---- (3.12)<br />

Values <strong>of</strong> DG are usually plotted aga<strong>in</strong>st temperature (T); thus at any<br />

temperature (T) the value <strong>of</strong> -d(DG) / dT is equal to DS which corresponds<br />

the slope <strong>of</strong> the -DG versus T plot at a constant temperature.<br />

The change <strong>in</strong> the free energy, DG, is related to DH, the change <strong>in</strong> the<br />

enthalpy, and DS, the change <strong>in</strong> entropy, <strong>of</strong> the corrosion reaction at a<br />

constant temperature, T, by the equation (72) :<br />

DG = DH - TDS ---- (3.13)<br />

Tables (3.15) to (3.21) give values <strong>of</strong> the thermodynamics quantities<br />

DG, DH and DS for the corrosion <strong>of</strong> all the work<strong>in</strong>g electrodes and <strong>in</strong>dicate<br />

that the values <strong>of</strong> DG and DH <strong>in</strong> the un-stirred oxygenated 0.56 M H2SO4<br />

(82)


solution are more negative than the correspond<strong>in</strong>g values <strong>in</strong> stirred<br />

oxygenated 0.56 M H2SO4 solution while DS was more positive.<br />

The more negative DG values implies generally a greater corrosion<br />

feasibility on thermodynamic ground, while DH values <strong>in</strong>dicate exothermic<br />

or endothermic nature <strong>of</strong> the corrosion reaction.<br />

The Gibbs free energies obta<strong>in</strong>ed for work<strong>in</strong>g electrodes, <strong>in</strong> stirred<br />

and un-stirred oxygenated 0.56M H2SO4 solution as shown <strong>in</strong> tables<br />

(3.15 –3.21) may be arranged <strong>in</strong> more negativity as <strong>in</strong> the sequence:<br />

2 > 3 > 1 > 4 > 6 > 5 > 7<br />

The sequence shows that the more corrosion feasibility was obta<strong>in</strong>ed<br />

with grid lead electrode <strong>of</strong> more negative DG value, while the less<br />

corrosion feasibility was obta<strong>in</strong>ed with the cured negative electrode, which<br />

had less negative value <strong>of</strong> DG.<br />

(83)


Table(3-15):Values <strong>of</strong> the thermodynamics quantities -ΔG, ΔH<br />

(k J mol -1 ) and ΔS(J mol -1 K -1 )for the corrosion <strong>of</strong> the lead alloy<br />

work<strong>in</strong>g electrode <strong>in</strong> (0.56M) oxygenated H2SO4 solution <strong>in</strong> the<br />

absence <strong>of</strong> additives.<br />

Electrode T/K medium -ΔG ΔH ΔS<br />

lead alloy<br />

1<br />

298<br />

308 stirred 98.42 -59.80 98.23<br />

(84)<br />

99.00 -61.63 98.80<br />

318 96.49 -56.62 96.32<br />

298<br />

99.58 -53.57 99.40<br />

308 un-stirred 98.42 -50.87 98.26<br />

318 96.49 -47.39 96.34<br />

Table(3-16):Values <strong>of</strong> the thermodynamics quantities -ΔG,ΔH<br />

(k J mol -1 ) and ΔS(J mol -1 K -1 )for the corrosion <strong>of</strong> the grid lead<br />

work<strong>in</strong>g electrode <strong>in</strong> (0.56M) oxygenated H2SO4 solution <strong>in</strong> the<br />

absence <strong>of</strong> additives.<br />

Electrode T/K medium -ΔG ΔH ΔS<br />

lead grid<br />

2<br />

298<br />

100.68 -53.41 100.63<br />

308 stirred 100.16 -49.65 100.00<br />

318 99.00 -46.85 98.86<br />

298<br />

101.72 -70.96 101.45<br />

308 un-stirred 101.51 -68.74 101.29<br />

318 100.55 -66.71 100.34


Table(3-17):Values <strong>of</strong> the thermodynamics quantities -ΔG,ΔH<br />

(k J mol -1 ) and ΔS(J mol -1 K -1 )for the corrosion <strong>of</strong> the pure lead<br />

work<strong>in</strong>g electrode <strong>in</strong> (0.56M) oxygenated H2SO4 solution <strong>in</strong> the<br />

absence <strong>of</strong> additives.<br />

Electrode T/K medium -ΔG ΔH ΔS<br />

pure lead<br />

3<br />

298<br />

308 stirred 99.39 -66.71 99.17<br />

(85)<br />

100.55 -68.93 100.32<br />

318 98.42 -64.68 98.22<br />

298<br />

100.93 -80.82 100.66<br />

308 un-stirred 100.35 -79.56 100.10<br />

318 99.58 -78.12 99.34<br />

Table(3-18):Values <strong>of</strong> the thermodynamics quantities -ΔG,ΔH<br />

(k J mol -1 ) and ΔS(J mol -1 K -1 )for the corrosion <strong>of</strong> the uncured<br />

positive work<strong>in</strong>g electrode <strong>in</strong> (0.56M) oxygenated H2SO4 solution <strong>in</strong><br />

the absence <strong>of</strong> additives.<br />

Electrode T/K medium -ΔG ΔH ΔS<br />

Uncured<br />

Positive<br />

4<br />

298<br />

98.42 -69.67 98.19<br />

308 stirred 97.46 -67.74 97.24<br />

318 96.49 -65.81 96.29<br />

298<br />

96.88 -91.13 96.57<br />

308 un-stirred 96.49 -90.55 96.20<br />

318 96.49 -90.36 96.21


Table(3-19):Values <strong>of</strong> the thermodynamics quantities -ΔG,ΔH<br />

(k J mol -1 ) and ΔS(J mol -1 K -1 )for the corrosion <strong>of</strong> the cured positive<br />

work<strong>in</strong>g electrode <strong>in</strong> (0.56M) oxygenated H2SO4 solution <strong>in</strong> the<br />

absence <strong>of</strong> additives.<br />

Electrode T/K medium -ΔG ΔH ΔS<br />

Cured<br />

Positive<br />

5<br />

298<br />

308 stirred 92.63 -33.19 92.53<br />

(86)<br />

93.02 -35.51 92.90<br />

318 92.63 -31.26 92.54<br />

298<br />

93.60 -79.24 93.33<br />

308 un-stirred 93.21 -78.37 92.96<br />

318 92.63 -77.31 92.39<br />

Table(3-20):Values <strong>of</strong> the thermodynamics quantities -ΔG,ΔH<br />

(k J mol -1 ) and ΔS(J mol -1 K -1 )for the corrosion <strong>of</strong> the uncured<br />

negative work<strong>in</strong>g electrode <strong>in</strong> (0.56M) oxygenated H2SO4 solution <strong>in</strong><br />

the absence <strong>of</strong> additives.<br />

Electrode T/K medium -ΔG ΔH ΔS<br />

Uncured<br />

Negative<br />

6<br />

298<br />

94.95 -80.59 94.68<br />

308 Stirred 94.56 -79.72 94.31<br />

318 93.99 -78.66 93.74<br />

298<br />

95.14 -86.53 94.85<br />

308 un-stirred 95.14 -86.24 94.86<br />

318 94.56 -85.37 94.30


Table(3-21):Values <strong>of</strong> the thermodynamics quantities -ΔG,ΔH<br />

(k J mol -1 ) and ΔS(J mol -1 K -1 )for the corrosion <strong>of</strong> the cured negative<br />

work<strong>in</strong>g electrode <strong>in</strong> (0.56M) oxygenated H2SO4 solution <strong>in</strong> the<br />

absence <strong>of</strong> additives.<br />

Electrode T/K medium -ΔG ΔH ΔS<br />

cured<br />

negative<br />

7<br />

298<br />

308 stirred 90.90 -87.94 90.61<br />

(87)<br />

90.90 -88.04 90.60<br />

318 90.70 -87.65 90.43<br />

298<br />

91.28 -85.53 91.00<br />

308 un-stirred 90.90 -84.95 90.62<br />

318 90.90 -84.76 90.63


3.6- K<strong>in</strong>etics <strong>of</strong> <strong>Corrosion</strong><br />

The rate(r) <strong>of</strong> the corrosion <strong>of</strong> the work<strong>in</strong>g electrode material<br />

<strong>in</strong>creased with <strong>in</strong>creas<strong>in</strong>g temperature from 298 to 318 K and the behaviour<br />

may be described by Arrhenius equation as (93) :<br />

r= A exp(-E/RT) ----(3.14)<br />

where A and Ea are the Pre-exponential factor and the energy <strong>of</strong> activation<br />

respectively. The value <strong>of</strong> (r) at any temperature (T) was taken to be<br />

proportional to the corrosion current density (ic). The values <strong>of</strong> Ea were<br />

derived from the slopes <strong>of</strong> the log(ic) (85) versus 1/T plots <strong>of</strong> Fig.(3.30),<br />

while those <strong>of</strong> A were obta<strong>in</strong>ed from <strong>in</strong>tercepts <strong>of</strong> the such plots at 1/T =<br />

zero; values <strong>of</strong> A, were expressed <strong>in</strong> term <strong>of</strong> A cm -2 , and have then been<br />

converted <strong>in</strong>to molecules per cm -2 per second (94) .<br />

Table (3.22) show the result<strong>in</strong>g values <strong>of</strong> Ea and A for the corrosion <strong>of</strong><br />

the work<strong>in</strong>g electrode material.<br />

The activation energy values obta<strong>in</strong>ed from work<strong>in</strong>g electrodes, <strong>in</strong><br />

stirred oxygenated 0.56 M H2SO4 Solution as shown <strong>in</strong> table (3.22) may be<br />

arranged <strong>in</strong> a sequence as:<br />

2 > 3 > 5 > 1 > 6 > 7 > 4<br />

The pre-exponential values may also be arranged as <strong>in</strong> the sequence:<br />

2 > 3 > 1 > 5 > 6 > 7 > 4<br />

The sequence <strong>of</strong> the activation energies and pre-exponential values <strong>in</strong><br />

the un-stirred oxygenated 0.56 M H2SO4 solution was as:<br />

3 > 1 > 2 > 7 > 4 > 5 > 6<br />

In stirred oxygenated 0.56 M H2SO4 solution, the highest value <strong>of</strong> the<br />

activation energy and <strong>of</strong> the pre-exponential was found with the grid lead<br />

electrode, while the lowest value <strong>of</strong> Ea and A was with obta<strong>in</strong>ed the<br />

uncured positive electrode. In un-stirred oxygenated 0.56 M H2SO4<br />

solution the highest value <strong>of</strong> Ea and A was with the pure lead electrode,<br />

(88)


while the lowest value <strong>of</strong> Ea and <strong>of</strong> A was with uncured negative electrode.<br />

Thus, the corrosion reaction proceeded on special surface sites, which are<br />

associated with different energies <strong>of</strong> activation (Ea). When the corrosion<br />

occurs on sites with low values <strong>of</strong> Ea, then log A is expected to be also low.<br />

On the other hand, when the activation energy <strong>of</strong> the surface site was high,<br />

the correspond<strong>in</strong>g value <strong>of</strong> A was also high.<br />

Two mechanism have been proposed for the corrosion <strong>of</strong> lead grids,<br />

the first is based on the release <strong>of</strong> divalent lead ions (pb 2+ ) through a porous<br />

lead dioxide layer (50) and the second assumes the growth <strong>of</strong> a relatively<br />

impervious lead dioxide layer through ionic diffusion (95)(96) . Figs. (3.31–<br />

3.37) show the <strong>in</strong>fluence <strong>of</strong> temperature on corrosion rates which are<br />

expressed as corrosion current densities.<br />

(89)


(90)


Table (3-22):Values <strong>of</strong> activation Energies(Ea/k J mol -1 ) , pre-exponential<br />

factors(A/molecules cm -2 s -1 ) and Entropy <strong>of</strong> activation(DS ≠ /J mol -1 K -1 )<br />

for the corrosion work<strong>in</strong>g electrodes <strong>in</strong> (0.56M)oxygenated H2SO4<br />

solution <strong>in</strong> the absence <strong>of</strong> additives.<br />

Electrode medium log A A Ea ΔS ≠<br />

lead alloy<br />

1<br />

grid lead<br />

2<br />

pure lead<br />

3<br />

uncured<br />

positive<br />

4<br />

cured<br />

positive<br />

5<br />

uncured<br />

negative<br />

6<br />

cured<br />

negative<br />

7<br />

stirred 9.47 2.96 X 10 +9<br />

un-stirred 19.57 3.71 X 10 +19<br />

stirred 13.97 9.34 X 10 +13<br />

un-stirred 15.73 5.41 X 10 +15<br />

stirred 13.72 5.20 X 10 +13<br />

un-stirred 20.9 7.92 X 10 +20<br />

stirred 3.77 5.91 X 10 +3<br />

un-stirred 5.8 6.38 X 10 +5<br />

stirred 9.29 1.82 X 10 +9<br />

un-stirred 4.52 3.30 X 10 +4<br />

stirred 6.4 2.52 X 10 +6<br />

un-stirred 4.34 2.20 X 10 +4<br />

stirred 3.98 9.54 X 10 +3<br />

un-stirred 12.4 2.54 X 10 +12<br />

(91)<br />

14.64 -64.71<br />

38.09 129.55<br />

25.72 22.39<br />

28.56 56.14<br />

25.24 17.52<br />

41.95 154.99<br />

5.26 -172.79<br />

10.41 -133.88<br />

18.87 -67.77<br />

6.74 -158.48<br />

11.84 -122.45<br />

6.08 -161.88<br />

6.08 -168.80<br />

26.30 -7.58


(92)


(93)


(94)


(95)


4.1- Results <strong>of</strong> the Polarization Curves:<br />

Four types <strong>of</strong> work<strong>in</strong>g electrodes have been used <strong>in</strong> the research and<br />

these <strong>in</strong>volved:<br />

1, cured positive electrode,<br />

2, cured negative electrode,<br />

3, lead alloy electrode, and ,<br />

4, grid lead electrode.<br />

Four different additives have been added separately <strong>in</strong>to the 0.56M<br />

sulphuric acid solution and these were:<br />

1, H3PO4 (11g dm -3 ),<br />

2, H3PO4 (11g dm -3 ) + FeSO4 (0.2g dm -3 ) mixture,<br />

3, NaCl (4 g dm -3 ), and ,<br />

4, FeSO4 (0.2 g dm -3 ).<br />

Addition <strong>of</strong> the additive to the corrosion medium caused numerous<br />

alterations <strong>in</strong> the polarization behaviours <strong>of</strong> the work<strong>in</strong>g electrodes.<br />

These <strong>in</strong>volved changes which occurred <strong>in</strong> the values <strong>of</strong> ic, Ec, ip, Ep,<br />

ba, bc, aa, ac and Rp as compared with the correspond<strong>in</strong>g values which have<br />

been obta<strong>in</strong>ed <strong>in</strong> the absence <strong>of</strong> additives.<br />

Tables (4.1) to (4.4) show results <strong>of</strong> the polarization curves for the<br />

corrosion <strong>of</strong> the four types <strong>of</strong> the work<strong>in</strong>g electrodes, both <strong>in</strong> the stirred and<br />

<strong>in</strong> the unstirred oxygenated 0.56M H2SO4 solution <strong>in</strong> the presence <strong>of</strong><br />

additive.<br />

(96)


Table(4-1):Values <strong>of</strong> ic,Ec,ip,Ep,ba,bc,αa,αc and Rp for the polarization <strong>of</strong><br />

lead alloy work<strong>in</strong>g electrode <strong>in</strong> 0.56M oxygenated sulphuric acid<br />

solution <strong>in</strong> the presence <strong>of</strong> additives .Symbols were def<strong>in</strong>ed <strong>in</strong> Tables(3-1<br />

to 3-14).<br />

additive T/K Medium ic/10 -5 -Ec ip/10 -4 Ep ba αa -bc αc Rp<br />

H3PO4<br />

(11g<br />

dm -3 )<br />

H3PO4<br />

(11g<br />

dm -3 )<br />

+<br />

FeSO4<br />

(o.2g<br />

dm -3 )<br />

NaCl<br />

(4g dm -<br />

3 )<br />

FeSO4<br />

(o.2g<br />

dm -3 )<br />

298 4 0.520 0.8 0.840 0.12 0.50 0.27 0.22 886.77<br />

308<br />

Unstirred<br />

6.2 0.515 0.98 0.810 0.12 0.49 0.23 0.27 560.23<br />

318 7.4 0.513 1.5 0.800 0.17 0.36 0.14 0.47 447.03<br />

298 8.5 0.519 1.3 0.790 0.07 0.81 0.24 0.25 286.39<br />

308 Stirred 9 0.515 1.4 0.780 0.08 0.77 0.33 0.19 309.38<br />

318 1.3 0.515 1.85 0.750 0.10 0.63 0.43 0.15 269.65<br />

298 4.6 0.518 1 0.690 0.11 0.56 0.13 0.46 549.60<br />

308<br />

Unstirred<br />

6.4 0.517 2.1 0.690 0.13 0.46 0.14 0.45 452.86<br />

318 8.6 0.515 2.3 0.670 0.15 0.43 0.17 0.37 398.39<br />

298 9 0.517 2.7 0.700 0.04 1.39 0.17 0.35 164.45<br />

308 Stirred 11 0.514 3.9 0.670 0.04 1.42 0.19 0.32 138.13<br />

318 15 0.510 4.8 0.600 0.04 1.43 0.23 0.27 107.06<br />

298 6.3 0.516 3.5 0.710 0.07 0.81 0.25 0.23 390.78<br />

308<br />

Unstirred<br />

12 0.514 4.3 0.700 0.08 0.79 0.27 0.22 219.22<br />

318 15 0.513 6 0.700 0.09 0.73 0.29 0.21 193.51<br />

298 19 0.513 5.2 0.690 0.07 0.82 0.22 0.27 123.92<br />

308 Stirred 31 0.511 7.8 0.690 0.10 0.62 0.23 0.26 95.13<br />

318 33 0.511 8.3 0.670 0.31 0.20 0.27 0.23 191.57<br />

298 5 0.517 2.5 0.640 0.05 1.30 0.15 0.39 304.38<br />

308<br />

unstirred<br />

5.3 0.517 3 0.630 0.05 1.29 0.16 0.38 298.44<br />

318 6.8 0.515 5 0.620 0.05 1.22 0.17 0.37 253.27<br />

298 12.5 0.515 3.6 0.630 0.07 0.88 0.16 0.37 164.69<br />

308 stirred 13 0.513 4 0.630 0.09 0.66 0.18 0.34 203.11<br />

318 20 0.511 5.3 0.630 0.11 0.57 0.26 0.24 168.45<br />

(97)


Table(4-2):Values <strong>of</strong> ic,Ec,ip,Ep,ba,bc,αa,αc and Rp for the polarization <strong>of</strong><br />

lead grid work<strong>in</strong>g electrode <strong>in</strong> 0.56M oxygenated sulphuric acid solution<br />

<strong>in</strong> the presence <strong>of</strong> additives.Symbols were def<strong>in</strong>ed <strong>in</strong> Tables(3-1 to 3-14).<br />

Additiv<br />

e<br />

H3PO4<br />

(11g<br />

dm -3 )<br />

H3PO4<br />

(11g<br />

dm -3 )<br />

+<br />

FeSO4<br />

(o.2g<br />

dm -3 )<br />

NaCl<br />

(4g dm -<br />

3 )<br />

FeSO4<br />

(o.2g<br />

dm -3 )<br />

T/K medium ic/10 -5<br />

-Ec ip/10 -4 Ep ba αa -bc αc Rp<br />

298 3 0.529 7 0.980 0.08 0.72 0.25 0.24 894.56<br />

308<br />

unstirred<br />

5 0.527 8 0.860 0.15 0.41 0.31 0.20 878.74<br />

318 8.8 0.526 8.5 0.840 0.16 0.40 0.52 0.12 592.40<br />

298 4.2 0.527 7.2 0.900 0.18 0.33 0.22 0.27 1014.59<br />

308 stirred 7 0.525 7.9 0.850 0.23 0.26 0.28 0.22 793.62<br />

318 9.6 0.524 9 0.840 0.35 0.18 0.29 0.22 710.72<br />

298 4.6 0.528 8.9 1.030 0.04 1.43 0.37 0.16 350.19<br />

308<br />

unstirred<br />

6.2 0.527 9.3 0.880 0.05 1.28 0.22 0.27 275.61<br />

318 9.1 0.525 9.8 0.860 0.10 0.63 0.21 0.31 322.63<br />

298 10 0.526 8 0.930 0.04 1.53 0.57 0.10 156.78<br />

308 stirred 12 0.525 8.1 0.870 0.04 1.42 0.59 0.10 115.86<br />

318 16 0.524 10 0.840 0.04 1.51 0.93 0.07 108.72<br />

298 12 0.522 33 0.760 0.03 1.89 0.16 0.37 183.07<br />

308<br />

unstirred<br />

7.5 0.521 43 0.760 0.04 1.55 0.17 0.36 185.20<br />

318 9 0.520 57 0.750 0.04 1.53 0.20 0.32 164.01<br />

298 12 0.521 55 0.740 0.12 0.51 0.20 0.30 263.65<br />

308 stirred 15 0.520 8 0.730 0.15 0.40 0.25 0.25 275.31<br />

318 22 0.519 9.6 0.720 0.18 0.35 0.45 0.14 251.59<br />

298 5 0.525 1.2 0.730 0.35 0.17 0.22 0.27 1179.48<br />

308<br />

unstirred<br />

6.5 0.524 2 0.700 0.41 0.15 0.24 0.25 1012.93<br />

318 8.2 0.520 2.5 0.710 0.51 0.12 0.37 0.17 1128.33<br />

298 11 0.523 25 0.720 0.09 0.63 0.25 0.24 266.46<br />

308 stirred 15 0.523 27.5 0.710 0.10 0.61 0.28 0.22 212.73<br />

318 16.5 0.522 33 0.610 0.12 0.52 0.31 0.20 229.78<br />

(98)


Table(4-3):Values <strong>of</strong> ic,Ec,ip,Ep,ba,bc,αa,αc and Rp for the polarization <strong>of</strong><br />

cured positive lead alloy work<strong>in</strong>g electrode <strong>in</strong> 0.56M oxygenated<br />

sulphuric acid solution <strong>in</strong> the presence <strong>of</strong> additives .Symbols were<br />

def<strong>in</strong>ed <strong>in</strong> Tables (3-1 to 3-14).<br />

Additiv<br />

e<br />

H3PO4<br />

(11g<br />

dm -3 )<br />

H3PO4<br />

(11g<br />

dm -3 )<br />

+<br />

FeSO4<br />

(o.2g<br />

dm -3 )<br />

NaCl<br />

(4g dm -<br />

3 )<br />

FeSO4<br />

(o.2g<br />

dm -3 )<br />

T/K medium ic/10 -5<br />

-Ec ip/10 -4 Ep ba αa -bc αc Rp<br />

298 5 0.539 1 0.830 0.05 1.13 0.12 0.50 3.15<br />

308<br />

unstirred<br />

5.5 0.539 1 0.820 0.05 1.23 0.14 0.45 2.89<br />

318 6.3 0.538 2 0.810 0.06 1.05 0.22 0.29 3.25<br />

298 9 0.537 1.2 0.810 0.05 1.21 0.15 0.39 1.79<br />

308 stirred 10 0.537 1.3 0.790 0.06 1.11 0.19 0.32 1.86<br />

318 13 0.536 1.7 0.760 0.08 0.80 0.22 0.28 1.95<br />

298 5.6 0.527 1.4 0.840 0.09 0.67 0.11 0.56 3.72<br />

308<br />

unstirred<br />

6 0.526 1.52 0.840 0.10 0.61 0.11 0.57 3.75<br />

318 6.7 0.525 1.9 0.830 0.17 0.37 0.11 0.56 4.41<br />

298 9 0.521 1.12 0.790 0.05 1.22 0.11 0.54 1.62<br />

308 stirred 15 0.520 1.25 0.770 0.07 0.93 0.13 0.47 1.27<br />

318 17.5 0.520 1.65 0.730 0.09 0.69 0.14 0.47 1.35<br />

298 10.6 0.485 3.4 0.730 0.04 1.42 0.15 0.39 1.34<br />

308<br />

unstirred<br />

18 0.484 3.4 0.700 0.05 1.13 0.16 0.37 0.98<br />

318 20 0.483 3.9 0.710 0.06 1.03 0.18 0.34 1.00<br />

298 13 0.483 3.6 0.740 0.04 1.40 0.15 0.38 1.11<br />

308 stirred 21 0.483 6.3 0.730 0.05 1.29 0.18 0.35 0.77<br />

318 24 0.481 9 0.720 0.05 1.21 0.19 0.33 0.74<br />

298 6.3 0.518 3 0.740 0.05 1.26 0.13 0.45 2.37<br />

308<br />

unstirred<br />

6.9 0.518 3.3 0.740 0.05 1.23 0.18 0.33 2.46<br />

318 8 0.516 5 0.720 0.05 1.17 0.28 0.22 2.46<br />

298 10 0.505 3.2 0.720 0.04 1.55 0.12 0.51 1.25<br />

308 stirred 12 0.503 3.4 0.710 0.04 1.46 0.12 0.50 1.13<br />

318 15 0.500 3.55 0.710 0.05 1.25 0.17 0.37 1.12<br />

(99)


Table(4-4):Values <strong>of</strong> ic,Ec,ip,Ep,ba,bc,αa,αc and Rp for the polarization <strong>of</strong><br />

cured negative lead alloy work<strong>in</strong>g electrode <strong>in</strong> 0.56M oxygenated<br />

sulphuric acid solution <strong>in</strong> the presence <strong>of</strong> additives .Symbols were<br />

def<strong>in</strong>ed <strong>in</strong> Tables(3-1 to 3-14).<br />

Additive T/K medium ic/10 -5<br />

H3PO4<br />

(11g dm -3 )<br />

H3PO4<br />

(11g dm -3 )<br />

+<br />

FeSO4<br />

(o.2g dm -3 )<br />

NaCl<br />

(4g dm -3 )<br />

FeSO4<br />

(o.2g dm -3 )<br />

-Ec ip/10 -4 Ep ba αa -bc αc Rp<br />

298 0.82 0.537 2.7 0.820 0.08 0.73 0.14 0.42 2.73<br />

308<br />

unstirred<br />

0.93 0.536 2.9 0.810 0.09 0.64 0.17 0.37 2.82<br />

318 0.95 0.535 3.2 0.810 0.10 0.62 0.18 0.35 2.97<br />

298 0.825 0.533 3.1 0.790 0.23 0.26 0.15 0.39 4.83<br />

308 stirred 0.925 0.530 3.1 0.780 0.27 0.22 0.17 0.37 4.84<br />

318 0.98 0.530 4.25 0.780 0.33 0.19 0.18 0.35 5.23<br />

298 0.95 0.525 3.4 0.820 0.05 1.19 0.15 0.40 1.71<br />

308<br />

unstirred<br />

1.15 0.523 3.5 0.800 0.06 0.98 0.19 0.32 1.78<br />

318 1.2 0.523 4.5 0.790 0.07 0.97 0.38 0.17 2.01<br />

298 1.1 0.521 3.3 0.800 0.08 0.78 0.09 0.63 1.65<br />

308 stirred 1.15 0.520 3.8 0.790 0.08 0.76 0.16 0.39 2.01<br />

318 1.2 0.520 3.9 0.790 0.10 0.61 0.19 0.33 2.42<br />

298 2 0.473 6.9 0.700 0.04 1.38 0.13 0.46 0.70<br />

308<br />

unstirred<br />

2.4 0.472 7 0.690 0.04 1.37 0.14 0.43 0.61<br />

318 3.3 0.471 8.9 0.690 0.05 1.38 0.16 0.41 0.46<br />

298 1.5 0.472 6.5 0.690 0.05 1.27 0.11 0.54 0.95<br />

308 stirred 1.9 0.470 6.9 0.690 0.06 1.04 0.12 0.53 0.89<br />

318 2 0.470 9.5 0.670 0.06 1.00 0.13 0.49 0.92<br />

298 1 0.516 3.1 0.740 0.05 1.25 0.12 0.49 1.48<br />

308<br />

unstirred<br />

1 0.514 3.4 0.730 0.05 1.16 0.17 0.36 1.74<br />

318 1.2 0.513 3.5 0.730 0.06 1.10 0.19 0.33 1.60<br />

298 1.2 0.513 5 0.740 0.04 1.47 0.14 0.44 1.12<br />

308 stirred 1.7 0.513 5.25 0.720 0.04 1.58 0.21 0.29 0.83<br />

318 2.25 0.511 5.7 0.710 0.05 1.30 0.52 0.12 0.85<br />

(100)


4.1.1- <strong>Corrosion</strong> Potentials (Ec):<br />

Tables (4.1) to (4.4) show values <strong>of</strong> the Ec which have been obta<strong>in</strong>ed<br />

from the polarization curves <strong>in</strong> the presence <strong>of</strong> the additives which may be<br />

summarized as <strong>in</strong> the follow<strong>in</strong>g:<br />

1. Values <strong>of</strong> Ec for the different work<strong>in</strong>g electrodes shifted to more<br />

negative values <strong>in</strong> the presence <strong>of</strong> additive as compared with the<br />

correspond<strong>in</strong>g values <strong>in</strong> the absence <strong>of</strong> additive <strong>in</strong>dicat<strong>in</strong>g an <strong>in</strong>creas<strong>in</strong>g<br />

tendency <strong>of</strong> the electrode for corrosion.<br />

2. Values <strong>of</strong> Ec <strong>in</strong> stirred oxygenated 0.56 M sulphuric acid solution<br />

was less negative than the values <strong>in</strong> the un-stirred oxygenated 0.56M<br />

H2SO4 solution.<br />

3. Values <strong>of</strong> Ec for the corrosion <strong>of</strong> the four work<strong>in</strong>g electrodes<br />

<strong>in</strong>creased at constant H2SO4 concentration with <strong>in</strong>creas<strong>in</strong>g temperature.<br />

The results <strong>of</strong> Figs.(4.1) to (4.8) show the effect <strong>of</strong> additives on the<br />

values <strong>of</strong> the corrosion potentials <strong>of</strong> the electrode materials <strong>in</strong> stirred<br />

oxygenated 0.56M sulphuric acid solution which may be arranged from<br />

more negative to less negative <strong>in</strong> a sequence as:<br />

was as:<br />

2 > 3 > 5 > 4 > 1<br />

The sequence <strong>in</strong> un-stirred oxygenated acid solution on similar basis<br />

2 > 3 > 5 > 1 > 4<br />

Thus, <strong>in</strong> both stirred and un-stirred oxygenated 0.56 M sulphuric acid<br />

solution, the addition <strong>of</strong> H3PO4 had a greater <strong>in</strong>fluence on shif<strong>in</strong>g the<br />

corrosion potential to a more negative value. The addition <strong>of</strong> sodium<br />

chloride shifted the Ec to least negative value <strong>in</strong> un-stirred acid solution. In<br />

stirred oxygenated acid solution, the values <strong>of</strong> Ec were less negative <strong>in</strong> the<br />

absence <strong>of</strong> additives as compared with the presence <strong>of</strong> the additives.<br />

(101)


The grid lead showed the greatest tendency for corrosion, while the<br />

cured negative electrode material had the least tendency for corrosion.<br />

Cur<strong>in</strong>g <strong>of</strong> the positive electrode or <strong>of</strong> the negative electrode reduced the<br />

tendency for corrosion. The additives reduced the corrosion tendency as<br />

compared with the tendency <strong>in</strong> the absence <strong>of</strong> additives.<br />

(102)


(103)


(104)


(105)


(106)


4.1.2- <strong>Corrosion</strong> Current Densities (ic)<br />

The corrosion current density (ic) represents the rate <strong>of</strong> corrosion<br />

under equilibrium condition.<br />

Tables (4.1) to (4.4) show values <strong>of</strong> ic, and hence <strong>of</strong> corrosion rates,<br />

<strong>of</strong> the electrode materials <strong>in</strong> the presence <strong>of</strong> additives <strong>in</strong> the both unstirred<br />

and stirred oxygenated acid solutions. In general, values <strong>of</strong> ic were higher<br />

<strong>in</strong> stirred solution than <strong>in</strong> unstirred solution.<br />

The behaviours <strong>of</strong> the four electrode materials <strong>in</strong> the presence <strong>of</strong> the<br />

various additives may be compared with each other with the aid <strong>of</strong> the<br />

Figs.(4.9) to (4.16). The corrosion rates <strong>of</strong> the materials <strong>in</strong> stirred and un-<br />

stirred oxygenated acid solution may be presented <strong>in</strong> the follow<strong>in</strong>g<br />

sequence:<br />

1 > 4 > 5 > 3 > 2<br />

Thus, the highest corrosion <strong>in</strong>hibition was caused by the addition <strong>of</strong><br />

phosphoric acid (11g dm -3 ) <strong>in</strong> both stirred and un-stired 0.56 M H2SO4<br />

solution with respect to all the electrode materials. The less corrosion<br />

<strong>in</strong>hibition was caused by ferrous sulphate (0.2g dm -3 ) and sodium chloride<br />

(4g dm -3 ) <strong>in</strong> stirred and un-stirred oxygenated 0.56 M H2SO4 solution as<br />

compared with acid solution without additives.<br />

The largest coorosion rate <strong>in</strong> stirred oxygenated solution may be<br />

accounted for on the bases <strong>of</strong> the greater reactivity <strong>of</strong> the material surface<br />

towards oxygen.<br />

(107)


(108)


(109)


(110)


(111)


4.1.3- Passive Potentials (Ep)<br />

The passive potential (Ep) is the potential at which a stable passive<br />

layer is formed on the electrode surface. The greater value <strong>of</strong> Ep, the more<br />

noble is the passive potential and hence a greater work should be required<br />

to atta<strong>in</strong> such state. When the value <strong>of</strong> Ep is low, a relatively smaller<br />

electrical work is needed to lay down a compact passive layer on the<br />

electrode surface. When two values <strong>of</strong> Ep are compared for two different<br />

electrodes or under two different experimental conditions, the lowest value<br />

<strong>of</strong> Ep then corresponds to a smaller work that is required to achieve<br />

passivity as compared with the larger value <strong>of</strong> Ep. The passive lay is<br />

expected <strong>in</strong> all cases to be an oxide or sulphate layer on the electrode<br />

surface.<br />

Values <strong>of</strong> passive potentials (Ep) for the corrosion <strong>of</strong> the four electrode<br />

materials decreased with <strong>in</strong>creas<strong>in</strong>g temperature and the values <strong>of</strong> (Ep) <strong>in</strong><br />

un-stirred oxygenated acid solution were generally greater than the values<br />

<strong>in</strong> stirred oxygenated acid solution <strong>in</strong> the presence <strong>of</strong> the additives as<br />

shown <strong>in</strong> tables(4.1) to (4.4).<br />

The sequence <strong>of</strong> Ep values for the corrosion <strong>of</strong> lead alloy electrode <strong>in</strong><br />

un-stirred oxygenated acid solution may be arranged as <strong>in</strong> the follow<strong>in</strong>g :<br />

2 > 1 > 3 > 5 > 4<br />

the sequence <strong>in</strong> stirred oxygenated acid solution was:<br />

1 > 2 > 3 > 5 > 4<br />

For grid lead the sequence <strong>of</strong> Ep values <strong>in</strong> un-stirred oxygenated acid<br />

solution was:<br />

2 > 3 > 1 > 5 > 4<br />

and <strong>in</strong> stirred oxygenated acid solution the sequence was:<br />

2 > 1 > 3 > 5 > 4<br />

(112)


For cured positive and cured negative electrodes the sequence <strong>of</strong> Ep values<br />

<strong>in</strong> un-stirred acid solution was:<br />

2 > 3 > 1 > 5 > 4<br />

In the stirred oxygenated acid solution the sequence <strong>of</strong> Ep values for<br />

cured positive and cured negative electrodes was:<br />

3 > 2 > 1 > 5 > 4<br />

(113)


4.1.4- Passive Current Densities (ip)<br />

The passive current density (ip) represents the corrosion rate <strong>of</strong> the<br />

electrode surface <strong>in</strong> the passive state. The lower the value <strong>of</strong> ip the more<br />

stable is the passive layer on the electrode surface and hence the lower is<br />

the corrosion rate when the electrode surface atta<strong>in</strong>s such state. On the<br />

other hand, the greater the value <strong>of</strong> ip, the less stable is the passive layer,<br />

and hence the higher is the corrosion rate <strong>of</strong> the electrode when it atta<strong>in</strong>s<br />

such state. When two values <strong>of</strong> ip are compared, the greater ip value<br />

corresponds to less stable passive state and hence to larger corrosion rate as<br />

compared with the lower value <strong>of</strong> ip. The ip value is the corrosion current<br />

density <strong>of</strong> the electrode surface subsequent to its coat<strong>in</strong>g with the surface<br />

passive (oxide or sulphate) layer.<br />

Tables (4.1) to (4.4) show values <strong>of</strong> the passive current densities (ip)<br />

<strong>of</strong> the four work<strong>in</strong>g electrode materials <strong>in</strong> the stirred and un-stirred<br />

oxygenated 0.56 M H2SO4 solution <strong>in</strong> the presence <strong>of</strong> additives.<br />

Values <strong>of</strong> ip for all electrode materials <strong>in</strong>creased with <strong>in</strong>creas<strong>in</strong>g<br />

temperature and the values <strong>of</strong> ip <strong>in</strong> stirred oxygenated acid solution were<br />

greater than the correspond<strong>in</strong>g values <strong>in</strong> un-stirred oxygenated acid<br />

solution.<br />

Tables (4.1) to (4.4) <strong>in</strong>dicate the effect <strong>of</strong> the various additives on the<br />

values <strong>of</strong> ip for the electrodes as compared with ip values <strong>in</strong> the absence <strong>of</strong><br />

additives. The effect <strong>of</strong> additive for lead alloy <strong>in</strong> stirred and un-stirred<br />

oxygenated acid solution may be arranged as:<br />

4 > 5 > 3 > 2 > 1<br />

For grid lead, the sequence <strong>in</strong> stirred oxygenated acid solution was:<br />

1 > 4 > 5 > 3 > 2<br />

In un-stirred oxygenated acid solution the sequence was:<br />

4 > 5 > 3 > 1 > 2<br />

(114)


The sequence for the cured positive electrode and cured negative electrode<br />

<strong>in</strong> the both stirred and un-stirred oxygenated acid solution was as:<br />

1 > 4> 5> 3 > 2<br />

The greatest effect was obta<strong>in</strong>ed <strong>in</strong> the presence <strong>of</strong> NaCl, while the<br />

smallest effect was observed <strong>in</strong> the presence <strong>of</strong> H3PO4.<br />

The passive current density (ip) decreased generally on mov<strong>in</strong>g from<br />

the left to right <strong>in</strong> the sequences. The decrease <strong>of</strong> (ip) should be connected<br />

with the <strong>in</strong>creas<strong>in</strong>g stability <strong>of</strong> the oxide film, while the subsequent<br />

<strong>in</strong>crease <strong>in</strong> ip implies a decrease <strong>in</strong> the stability <strong>of</strong> the oxide or sulphate film<br />

which is formed on the electrode surface.<br />

(115)


4.2- Tafel Slopes and Transfer Coefficients<br />

Tables (4.1) to (4.4) show the <strong>in</strong>fluence <strong>of</strong> temperature (T) and<br />

concentration (C) <strong>of</strong> the additives on the cathodic (bc) and anodic (ba) Tafel<br />

slopes which have been obta<strong>in</strong>ed from the polarization curves <strong>of</strong> the<br />

work<strong>in</strong>g electrodes <strong>in</strong> stirred and un-stirred oxygenated 0.56M H2SO4<br />

solution over the temperature range 298-318K.<br />

Values <strong>of</strong> the transfer coefficients for the cathodic (ac) and anodic<br />

(aa) processes have been calculated from the correspond<strong>in</strong>g cathodic (bc)<br />

and anodic (ba)Tafel slopes us<strong>in</strong>g the relationships (97) :<br />

c<br />

2.<br />

303RT<br />

=<br />

b F<br />

a ----- (3.1)<br />

a<br />

c<br />

2.<br />

303RT<br />

=<br />

b F<br />

a ----- (3.2)<br />

where R is the gas constant and F the Faraday constant.<br />

a<br />

A cathodic Tafel slope <strong>of</strong> -0.120V (or <strong>of</strong> ac =0.5) may be diagnostic<br />

<strong>of</strong> a discharge–chemical desorption mechanism for hydrogen evolution<br />

reaction <strong>of</strong> the cathode <strong>in</strong> which the proton discharge is the rate-<br />

determ<strong>in</strong><strong>in</strong>g step. If chemical desorption is the rate- determ<strong>in</strong><strong>in</strong>g step, the<br />

rate will then be <strong>in</strong>dependent <strong>of</strong> the overpotential s<strong>in</strong>ce no charge transfer<br />

occurs <strong>in</strong> such step and the rate becomes directly proportional to the<br />

concentration or the coverage (q) <strong>of</strong> the adsorbed hydrogen atoms, and<br />

may occur at coverages rang<strong>in</strong>g from very small values to almost full<br />

surface layer formation (88) . The expected Tafel slope <strong>in</strong> such step would<br />

then be –0.03V decade -1 and ac=2.0.<br />

When electrochemical desorption becomes the rate–determ<strong>in</strong><strong>in</strong>g step<br />

for the hydrogen evolution reaction on the cathode, the expected value <strong>of</strong><br />

bc is –0.05 decade -1 and ac=1.5.<br />

(116)


Values <strong>of</strong> the anodic Tafel slopes (ba) are shown <strong>in</strong> the tables <strong>of</strong><br />

chapter III (Tables (3.1-3.14)) and IV(Tables(4.1-4.4)) to be close to 0.120<br />

decade -1 <strong>in</strong> some cases, and those <strong>of</strong> the correspond<strong>in</strong>g anodic transfer<br />

coefficients (aa) were also close to 0.5, <strong>in</strong>dicat<strong>in</strong>g that the metal dissolution<br />

reaction to be the rate- determ<strong>in</strong><strong>in</strong>g step for the dissolution reactions tak<strong>in</strong>g<br />

place at the anode.<br />

The results <strong>of</strong> the tables <strong>in</strong>dicate that the variation <strong>of</strong> the Tafel slopes<br />

and <strong>of</strong> the correspond<strong>in</strong>g transfer coefficients could be <strong>in</strong>terpreted <strong>in</strong> terms<br />

<strong>of</strong> the variation <strong>of</strong> the rate-determ<strong>in</strong><strong>in</strong>g step from charge transfer process to<br />

either chemical-desorption or to electrochemical desorption.<br />

The variation <strong>of</strong> the anodic transfer coefficients (aa) may be attributed<br />

to the variation <strong>of</strong> the rate-determ<strong>in</strong><strong>in</strong>g step <strong>in</strong> the metal dissolution<br />

reaction. A change <strong>in</strong> mechanism as well as <strong>in</strong> the rate- determ<strong>in</strong><strong>in</strong>g step,<br />

cannot be ignored throughout the anodic processes (98) .<br />

(117)


4.3- Polarization Resistance<br />

Another approach to the problem <strong>of</strong> electrochemical corrosion rate<br />

measurement is to apply only a small potential difference to the specimen<br />

and then measure the current density. The potential –current density plot is<br />

approximately l<strong>in</strong>ear <strong>in</strong> the region with<strong>in</strong> –10mV <strong>of</strong> the corrosion potential.<br />

The slope <strong>of</strong> this plot <strong>in</strong> terms <strong>of</strong> potential divided by current density has<br />

the units <strong>of</strong> resistance area and is <strong>of</strong>ten called the polarization resistance<br />

(Rp). The polarization resistance (Rp) is related to the corrosion current<br />

density by the relationship: (99)<br />

Rp =<br />

babc<br />

2 . 303(<br />

b + b ) i<br />

a<br />

c<br />

c<br />

(118)<br />

---- (3.10)<br />

Where ic is the corrosion current density, and ba and bc are the magnitudes<br />

<strong>of</strong> the Tafel slopes <strong>of</strong> the anodic and cathodic Tafel l<strong>in</strong>es respectively.<br />

The measurement <strong>of</strong> polarization resistance has very similar<br />

requirements to the measurement <strong>of</strong> full polarization curves and it is<br />

particularly useful as a method to rapidly identify corrosion upsets and<br />

<strong>in</strong>itiates remedial action. (100)<br />

The results <strong>of</strong> Tables (4.1-4.4) <strong>in</strong>dicate the follow<strong>in</strong>g:<br />

1. Values <strong>of</strong> the polarization resistance were higher <strong>in</strong> un-stirred<br />

oxygenated acid solution than <strong>in</strong> stirred oxygenated solution <strong>in</strong> all cases<br />

and this may be accounted for on the basis <strong>of</strong> the smaller reactivity <strong>of</strong><br />

the material surface towards oxygen.<br />

2. For the four work<strong>in</strong>g electrodes, the values <strong>of</strong> the polarization<br />

resistance <strong>in</strong> the presence <strong>of</strong> additives were generally greater than <strong>in</strong> the<br />

absence <strong>of</strong> additives <strong>in</strong> the both media, except <strong>in</strong> certa<strong>in</strong> cases, where<br />

the reverse was true, and such cases were:<br />

a. for lead alloy <strong>in</strong> the presence <strong>of</strong> NaCl <strong>in</strong> stirred acid solution,<br />

b. for cured negative electrode <strong>in</strong> the presence <strong>of</strong> NaCl.


3. The greatest values <strong>of</strong> the polarization resistance which were observed<br />

for the electrodes <strong>in</strong> some cases were:<br />

a. for lead alloy and for cured negative electrode <strong>in</strong> the presence <strong>of</strong><br />

H3PO4,<br />

b. for grid lead and cured positive electrode <strong>in</strong> un-stirred acid solution<br />

<strong>in</strong> the presence <strong>of</strong> H3PO4,<br />

c. for grid lead <strong>in</strong> stirred acid solution <strong>in</strong> the presence FeSO4,<br />

d. for cured positive electrode <strong>in</strong> stirred acid solution <strong>in</strong> the presence <strong>of</strong><br />

(H3PO4 + FeSO4 ) mixture.<br />

4. The smallest values <strong>of</strong> the polarization resistance were observed <strong>in</strong> the<br />

follow<strong>in</strong>g cases:<br />

a. for cured positive and cured negative electrodes <strong>in</strong> the presence <strong>of</strong><br />

NaCl,<br />

b. for grid lead <strong>in</strong> stirred acid solution <strong>in</strong> the presence <strong>of</strong> NaCl,<br />

c. for lead alloy <strong>in</strong> the presence <strong>of</strong> FeSO4,<br />

d. for grid lead <strong>in</strong> un-stirred acid solution <strong>in</strong> the presence (H3PO4 +<br />

FeSO4) mixture.<br />

(119)


4.4 – Effect <strong>of</strong> Additives<br />

4.4.1- Phosphoric <strong>Acid</strong><br />

Several attempts have been made to improve the corrosion resistance<br />

<strong>of</strong> lead and lead-antimony alloy electrodes. <strong>Lead</strong> forms an <strong>in</strong>soluble<br />

phosphate that provides protection <strong>in</strong> phosphoric acid (101) .<br />

Boctor (102) stated that the addition <strong>of</strong> few grams per liter <strong>of</strong><br />

phosphoric acid <strong>in</strong> relatively higher concentration <strong>of</strong> sulphuric acid <strong>in</strong> the<br />

storage batteries, is useful to <strong>in</strong>hibit corrosion specially under high<br />

temperature conditions.<br />

Bullock and McClelland (103) have shown that phosphoric acid<br />

decrease the rate <strong>of</strong> the self-discharge reaction <strong>of</strong> the positive electrode:<br />

PbO2 + H2SO4 fi PbSO4 + H2O + ½ O2 ------ (4.1)<br />

<strong>in</strong> sealed lead-acid cells with pure lead grids. Visscher (104) confirmed that<br />

add<strong>in</strong>g small quantities <strong>of</strong> phosphoric acid to approximately 5M H2SO4<br />

modifies the k<strong>in</strong>etics <strong>of</strong> the PbO2/ PbSO4 couple reactions.<br />

Bullock (105) studied the effect <strong>of</strong> H3PO4 on the constant potential<br />

corrosion <strong>of</strong> pure lead positive grid <strong>in</strong> the lead acid batter and found that<br />

the PbO2 film formed <strong>in</strong> the presence <strong>of</strong> phosphoric acid requires longer<br />

time to self-discharge to PbSO4 than the PbO2 film formed <strong>in</strong> pure<br />

electrolyte.<br />

Phosphoric acid reduces corrosion rate, it is apparent that the greatest<br />

effect is <strong>in</strong> go<strong>in</strong>g from zero to 0.2% H3PO4. Further <strong>in</strong>crease <strong>in</strong> H3PO4<br />

concentration decreases the rate only slightly.<br />

Thus, it may be concluded that (105) :<br />

1- Phosphorate modifies the morphology <strong>of</strong> PbO2 formed by grid<br />

corrosion.<br />

2- Phosphate is <strong>in</strong>corporated <strong>in</strong> the PbO2 structure dur<strong>in</strong>g corrosion<br />

process.<br />

3- These effects occur on pure lead, antimonial and non-antimonial lead<br />

alloys as well.<br />

(120)


4.4.2- Mixture <strong>of</strong> H3PO4 and FeSO4<br />

The addition <strong>of</strong> (11g) <strong>of</strong> phosphoric acid (H3PO4) to one litre <strong>of</strong><br />

sulphuric acid electrolyte results <strong>in</strong> a solution <strong>in</strong> which the H3PO4 is<br />

subjected to a change dur<strong>in</strong>g discharg<strong>in</strong>g and charg<strong>in</strong>g processes <strong>of</strong> the<br />

lead-acid battery. It is established that H3PO4 undergoes some absorption<br />

by the positive plates (PbO2) through the charg<strong>in</strong>g process <strong>of</strong> the battery<br />

and ah part <strong>of</strong> the absorbed H3PO4 will return and transfer to the<br />

electrolyte.<br />

It was proved (106) that the addition <strong>of</strong> phosphoric acid to the<br />

electrolyte causes formation <strong>of</strong> Pb(IV) ions on charg<strong>in</strong>g <strong>of</strong> the positive<br />

plates and he particles <strong>of</strong> Pb(IV) may precipitate as a jelly like mass <strong>of</strong><br />

white colour <strong>in</strong> the bottom <strong>of</strong> the electrolyte. The particles may oxidize<br />

some organic materials, which are present <strong>in</strong> the battery structure result<strong>in</strong>g<br />

<strong>in</strong> the formation <strong>of</strong> Pb at he negative plates <strong>of</strong> the battery.<br />

As a result it will cause premature failure <strong>of</strong> the negative plates. The<br />

formation <strong>of</strong> Pb(IV) is therefore undesirable whether as soluble ions or<br />

jellylike particles and <strong>in</strong> order to prevent this an amount <strong>of</strong> Fe +2 ions<br />

(0.2 g) is usually added to the electrolyte to reduce the corrosion <strong>of</strong><br />

Pb(IV) particles to Pb(II).<br />

As a conclusion, the H3PO4 decreases the rate <strong>of</strong> corrosion <strong>of</strong> the<br />

positive plates and hence the rate <strong>of</strong> dropp<strong>in</strong>g <strong>of</strong> the active mass <strong>of</strong> the<br />

plates. The presence <strong>of</strong> Fe 2+ with H3PO4 <strong>in</strong> the acid solution reduces the<br />

conversion <strong>of</strong> Pb (IV) to Pb(II). (107)<br />

(121)


4.4.3- Ferrous Sulphate (FeSO4)<br />

Add<strong>in</strong>g an amount <strong>of</strong> Fe +2 ions (0.2g dm -3 ) as FeSO4 to the electrolyte<br />

is necessary to control the extent <strong>of</strong> the formation <strong>of</strong> Pb(IV) and it is<br />

confirmed that :- (108)<br />

1- The Fe +2 ions should be added to the electrolyte as a soluble ferrous<br />

sulphate (FeSO4).<br />

2- Add<strong>in</strong>g 0.05 g <strong>of</strong> FeSO4 to the electrolyte has no effect on the<br />

capacity <strong>of</strong> the battery and on the dropp<strong>in</strong>g <strong>of</strong> active mass <strong>of</strong> the plates.<br />

3- The formation <strong>of</strong> Pb(IV) particles may be presented only when the<br />

concentration <strong>of</strong> FeSO4 <strong>in</strong> the acid solution becomes 0.2 g for each litre<br />

<strong>of</strong> the sulphuric acid electrolyte.<br />

At this concentration <strong>of</strong> FeSO4, the capacity <strong>of</strong> the battery may<br />

decrease by 5% and the rate <strong>of</strong> dropp<strong>in</strong>g <strong>of</strong> the active mass <strong>of</strong> the positive<br />

plates decreases by about 80%.<br />

4.4.4- Sodium Chloride (NaCl):<br />

Add<strong>in</strong>g (4g) <strong>of</strong> NaCl to one litre <strong>of</strong> the sulphuric acid electrolyte may<br />

cause corrosion <strong>of</strong> lead by the formation <strong>of</strong> PbCl2 film (48) .<br />

The film <strong>of</strong> poorly soluble PbCl2 is formed via the process:<br />

Pb + 2Cl - fi PbCl2 + 2e ----- (4.2)<br />

This reaction may be compared with the formation <strong>of</strong> the sulphate<br />

system as represented by the reaction:<br />

Pb + SO4 2- fi PbSO4 + 2e ----- (4.3)<br />

The analogy ends when it is realized firstly that the chloride <strong>of</strong> lead is<br />

some 300 times more soluble <strong>in</strong> water or <strong>in</strong> an aqueous media than lead<br />

sulphate, and secondly, <strong>in</strong> practice, the importance <strong>of</strong> lead <strong>in</strong> sulphate<br />

media focuses on solutions high <strong>in</strong> sulphate concentration (strong sulphuric<br />

acid) which are relatively quiescent.<br />

(122)


4.5- Protection Efficiency<br />

The corrosion current densities <strong>in</strong> the presence and absence <strong>of</strong><br />

additives <strong>in</strong> the corrosion medium have been used to determ<strong>in</strong>e the<br />

protection efficiency (P%) us<strong>in</strong>g the relation (109,110,94)<br />

i 2<br />

P%= 100 [ 1- ] ----- (4.4)<br />

i1<br />

where i1 and i2 are the corrosion current densities <strong>in</strong> the absence and<br />

presence additive <strong>in</strong> the corrosion medium respectively.<br />

A positive value <strong>of</strong> P% <strong>in</strong>dicates <strong>in</strong>hibition <strong>of</strong> corrosion by the added<br />

additive while a negative value <strong>of</strong> P% implies corrosion stimulation or<br />

corrosion acceleration.<br />

The results <strong>of</strong> Tables (4.5-4.8) and <strong>of</strong> Figs.(4.17-4.28) reveal the<br />

follow<strong>in</strong>g:<br />

1. Values <strong>of</strong> the protection efficiency (P%) were higher <strong>in</strong> stirred<br />

oxygenated acid solution than <strong>in</strong> unstirred oxygenated solution <strong>in</strong> the<br />

all cases except for cured positive electrode where the reverse case was<br />

hold<strong>in</strong>g. Stirr<strong>in</strong>g <strong>in</strong> the former cases may cause a closer contact<br />

between the additive and the electrode surface result<strong>in</strong>g <strong>in</strong> a higher<br />

percentage <strong>of</strong> protection efficiency. Stirr<strong>in</strong>g may also result <strong>in</strong> the<br />

formation <strong>of</strong> a more compact passive layer by the dissolved oxygen.<br />

For cured positive electrode, the values <strong>of</strong> P% were higher <strong>in</strong> unstirred<br />

oxygenated solution than <strong>in</strong> the stirred solution <strong>in</strong> the presence <strong>of</strong> the<br />

additives 1, 2 and 4. Such behaviour may be attributed to the different<br />

nature <strong>of</strong> this electrode which was ma<strong>in</strong>ly <strong>in</strong> the form <strong>of</strong> PbO2 and not as<br />

metallic lead.<br />

2. The order <strong>of</strong> the variation <strong>of</strong> P% values <strong>in</strong> most cases lied <strong>in</strong> the<br />

sequence :<br />

1 > 2 > 4 > 3<br />

(123)


irrespective <strong>of</strong> the type <strong>of</strong> the additive which was present <strong>in</strong> the oxygenated<br />

acid solution, and also irrespective <strong>of</strong> the presence or the absence <strong>of</strong><br />

stirr<strong>in</strong>g.<br />

3. The lowest P% values were obta<strong>in</strong>ed <strong>in</strong> such cases as:<br />

a- for grid lead, lead alloy and cured negative electrode <strong>in</strong> unstirred<br />

oxygenated acid solution conta<strong>in</strong><strong>in</strong>g dissolved NaCl,<br />

b- For grid lead <strong>in</strong> unstirred oxygenated acid solution conta<strong>in</strong><strong>in</strong>g<br />

dissolved FeSO4,<br />

c- NaCl caused the lowest protection efficiency than the other three<br />

additives <strong>in</strong> the both stirred and unstirred oxygenated solution with<br />

respect to all the four types <strong>of</strong> electrode materials.<br />

4. Stirr<strong>in</strong>g <strong>of</strong> the acid solution had largest effect <strong>in</strong> enhanc<strong>in</strong>g the value<br />

<strong>of</strong> protection effect <strong>in</strong> enhanc<strong>in</strong>g the value <strong>of</strong> protection efficiency P%<br />

<strong>in</strong> the case <strong>of</strong> grid lead and lead alloy electrodes <strong>in</strong> the presence <strong>of</strong> NaCl<br />

as additive.<br />

5. H3PO4 was most effective <strong>in</strong> rais<strong>in</strong>g P% values:<br />

(a) with grid lead, lead alloy and cured negative electrode <strong>in</strong> the stirred<br />

oxygenated solution.<br />

(b) with cured positive electrode <strong>in</strong> unstirred oxygenated acid solution.<br />

6. The (H3PO4 + FeSO4) mixture was less effective than H3PO4 alone <strong>in</strong><br />

rais<strong>in</strong>g the value <strong>of</strong> P% and such effect was more pronounced <strong>in</strong> the<br />

case <strong>of</strong> lead alloy <strong>in</strong> the stirred oxygenated solution.<br />

7. The temperature dependencies <strong>of</strong> P% values were as follows:-<br />

a. for lead alloy, were lowest <strong>in</strong> the presence <strong>of</strong> NaCl. The temperature<br />

dependence rema<strong>in</strong>ed almost constant <strong>in</strong> stirred oxygenated solution; it<br />

may be specified as almost <strong>in</strong>dependent <strong>of</strong> temperature <strong>in</strong> such cases.<br />

With the other three cases, the temperature dependence <strong>in</strong> unstirred<br />

oxygenated acid solution was markedly temperature dependent and the<br />

(124)


dependence atta<strong>in</strong>ed maximum values at 308K. NaCl presence <strong>in</strong> certa<strong>in</strong><br />

cases caused corrosion acceleration.<br />

b. P% values with grid lead <strong>in</strong> the presence <strong>of</strong> H3PO4 <strong>in</strong> stirred<br />

oxygenated solution were almost <strong>in</strong>dependent <strong>of</strong> temperature. With the<br />

other additives <strong>in</strong>clud<strong>in</strong>g NaCl, values <strong>of</strong> P% <strong>in</strong>creased by some 5%<br />

with temperature <strong>in</strong> the stirred oxygenated solution. In the unstirred<br />

solution, P% became highest at 298K <strong>in</strong> the presence <strong>of</strong> H3PO4 but<br />

decreased sharply with the rise <strong>of</strong> temperature. With (H3PO4 + FeSO4<br />

)mixture, P% values <strong>in</strong>creased with temperature from 298 to 308K and<br />

then decreased with further <strong>in</strong>crease <strong>in</strong> temperature. With the other<br />

additives, there was an <strong>in</strong>crease <strong>in</strong> P% with the rise <strong>of</strong> temperature.<br />

c. with cured positive electrode, the variation <strong>of</strong> P% with temperature<br />

<strong>in</strong> the unstirred solution was almost similar to that obta<strong>in</strong>ed with H3PO4<br />

for lead alloy electrode <strong>in</strong> the stirred oxygenated solution. In the<br />

unstirred oxygenated solution, the variation <strong>of</strong> P% values was almost<br />

similar to the behaviour <strong>of</strong> lead alloy <strong>in</strong> the unstirred oxygenated<br />

solution.<br />

d. With cured negative electrodes, the variation <strong>of</strong> P% values with<br />

temperature had certa<strong>in</strong> similarities with those for lead alloy with the<br />

exception <strong>of</strong> NaCl behaviour. While NaCl caused an <strong>in</strong>crease <strong>in</strong> P%<br />

values with temperature <strong>in</strong> the unstirred oxygenated solution, it resulted,<br />

on the other hand, <strong>in</strong> a decrease <strong>of</strong> P% values with <strong>in</strong>creas<strong>in</strong>g<br />

temperature.<br />

(125)


Table(4-5):Protection efficiencies(P%) for the corrosion <strong>of</strong> the lead<br />

alloy <strong>in</strong> (0.56M) oxygenated H2SO4 solution <strong>in</strong> the presence <strong>of</strong><br />

additives.<br />

(126)<br />

p%<br />

T/K medium H3PO4 (H3PO4<br />

(11g dm -3 )+<br />

(11g dm -3 ) FeSO4(0.2g<br />

dm -3 ))<br />

NaCl FeSO4<br />

(4g dm -3 ) (0.2g dm -3 )<br />

298 38.46 29.23 3.08 23.08<br />

308 un-stirred 55.71 54.29 14.29 62.14<br />

318 56.47 49.41 11.76 60.00<br />

298 69.09 67.27 30.91 54.55<br />

308 stirred 68.97 62.07 -8.62 55.17<br />

318 67.50 62.50 17.50 50.00<br />

Table(4-6):Protection efficiencies(P%) for the corrosion <strong>of</strong> the grid<br />

lead <strong>in</strong> (0.56M) oxygenated H2SO4 solution <strong>in</strong> the presence <strong>of</strong><br />

additives.<br />

p%<br />

T/K medium H3PO4 (H3PO4<br />

(11g dm -3 )+<br />

(11g dm -3 ) FeSO4(0.2g<br />

dm -3 ))<br />

NaCl FeSO4<br />

(4g dm -3 ) (0.2g dm -3 )<br />

298 52.38 26.98 1.59 20.63<br />

308 un-stirred 47.37 34.74 21.05 31.58<br />

318 32.31 30.00 30.77 36.92<br />

298 83.85 61.54 53.85 57.69<br />

308 stirred 80.00 65.71 57.14 61.43<br />

318 80.80 68.00 56.00 67.00


Table(4-7):Protection efficiencies(P%) for the corrosion <strong>of</strong> the cured<br />

positive <strong>in</strong> (0.56M) oxygenated H2SO4 solution <strong>in</strong> the presence <strong>of</strong><br />

additives.<br />

(127)<br />

p%<br />

T/K medium H3PO4 (H3PO4<br />

(11g dm -3 )+<br />

(11g dm -3 ) FeSO4(0.2g<br />

dm -3 ))<br />

NaCl FeSO4<br />

(4g dm -3 ) (0.2g dm -3 )<br />

298 68.75 65.00 33.75 60.63<br />

308 un-stirred 67.65 64.71 -5.88 59.41<br />

318 66.84 64.74 -5.26 57.89<br />

298 60.87 60.87 43.48 56.52<br />

308 stirred 71.43 57.14 40.00 65.71<br />

318 64.86 52.70 35.14 59.46<br />

Table(4-8):Protection efficiencies(P%) for the corrosion <strong>of</strong> the cured<br />

negative <strong>in</strong> (0.56M) oxygenated H2SO4 solution <strong>in</strong> the presence <strong>of</strong><br />

additives.<br />

T/K medium H3PO4 (H3PO4<br />

(11g dm -3 )+<br />

(11g dm -3 ) FeSO4(0.2g<br />

dm -3 ))<br />

p%<br />

NaCl FeSO4<br />

(4g dm -3 ) (0.2g dm -3 )<br />

298 50.30 42.42 9.09 39.39<br />

308 un-stirred 69.00 61.67 36.67 66.67<br />

318 70.31 62.50 37.50 62.50<br />

298 72.50 63.33 33.33 60.00<br />

308 stirred 71.97 65.15 27.27 48.48<br />

318 72.00 65.71 5.71 35.71


(128)


(129)


(130)


(131)


(132)


(133)


4.6- Thermodynamics <strong>of</strong> <strong>Corrosion</strong><br />

Thermodynamic laws tell us that there is a strong tendency for high<br />

energy states <strong>of</strong> metals to transform <strong>in</strong>to low energy states. It is this<br />

tendency <strong>of</strong> metals to recomb<strong>in</strong>e with components <strong>of</strong> the environment that<br />

leads to the phenomenon which is known as corrosion (111) .<br />

Tables (4.9) to (4.12) give values <strong>of</strong> the thermodynamic quantities<br />

(DG, DH and DS) for the corrosion <strong>of</strong> the work<strong>in</strong>g electrodes <strong>in</strong> the stirred<br />

and unstirred oxygenated sulphuric acid solution. Figs.(4.29-4.32) represent<br />

the temperature dependencies <strong>of</strong> DG <strong>in</strong> the both media.<br />

The results <strong>of</strong> tables (4.9-4.12) and <strong>of</strong> Figs.(4.33-4.44) <strong>in</strong>dicate the<br />

follow<strong>in</strong>g:-<br />

1- Values <strong>of</strong> DG were generally negative suggest<strong>in</strong>g the existence <strong>of</strong><br />

thermodynamic feasibility for the corrosion <strong>of</strong> the electrodes materials<br />

<strong>in</strong> oxygenated sulphuric acid solution <strong>in</strong> the absence or the presence <strong>of</strong><br />

the additives <strong>in</strong> the acid solution.<br />

Values <strong>of</strong> DG for the different work<strong>in</strong>g electrodes were slightly more<br />

negative <strong>in</strong> the unstirred oxygenated acid solution than <strong>in</strong> the stirred<br />

oxygenated acid solution. The presence <strong>of</strong> additives <strong>in</strong> the oxygenated acid<br />

solution caused a shift to more negative DG values as compared with the<br />

case where no additive was present <strong>in</strong> the acid solution.<br />

It is also shown that the effect <strong>of</strong> shift<strong>in</strong>g DG to more negative values<br />

may be arranged <strong>in</strong> a sequence as:<br />

2 > 3 > 5 > 4<br />

Thus, H3PO4 and its mixture with FeSO4 were the most effective <strong>in</strong><br />

shift<strong>in</strong>g the DG to more negative values.<br />

2- DH values were generally negative <strong>in</strong>dicat<strong>in</strong>g a stronger bond<strong>in</strong>g <strong>of</strong><br />

the metal ions, result<strong>in</strong>g from electrode corrosion, with the species that<br />

are present <strong>in</strong> the corrosion medium as compared with the bond<strong>in</strong>g <strong>of</strong><br />

(134)


the metal atoms <strong>in</strong> the crystal lattice <strong>of</strong> the solid electrode. Values <strong>of</strong> DH<br />

were more negative <strong>in</strong> the presence <strong>of</strong> additives <strong>in</strong> the corrosion<br />

medium than when such additives were absent.<br />

Stirr<strong>in</strong>g <strong>of</strong> the oxygenated acid solution resulted <strong>in</strong> a less negative DH<br />

values, except <strong>in</strong> certa<strong>in</strong> cases, where the reverse behaviour was true, and<br />

such cases were:-<br />

a. for lead alloy <strong>in</strong> the presence <strong>of</strong> H3PO4,<br />

b. for grid lead, for cured positive and cured negative electrodes <strong>in</strong> the<br />

presence <strong>of</strong> H3PO4 + FeSO4 mixture <strong>in</strong> the corrosion medium, and,<br />

c. for cured negative electrode <strong>in</strong> the presence <strong>of</strong> FeSO4.<br />

The most effective additives <strong>in</strong> alter<strong>in</strong>g the DH values <strong>in</strong> the more<br />

negative direction were:<br />

(i) FeSO4, NaCl, (FeSO4+ H3PO4) mixture, and H3PO4 with lead<br />

alloy,<br />

(ii) (FeSO4 + H3PO4) mixture, NaCl, H3PO4 and FeSO4 with grid<br />

lead,<br />

(iii) H3PO4, (H3PO4 + FeSO4) mixture, FeSO4 and NaCl with cured<br />

positive electrode, and ,<br />

(iv) H3PO4, (H3PO4 + FeSO4)mixture, FeSO4 and NaCl with cured<br />

negative electrode.<br />

These results suggest stronger bond<strong>in</strong>g <strong>in</strong> the presence <strong>of</strong> these<br />

additives <strong>of</strong> the result<strong>in</strong>g metal ions with the exist<strong>in</strong>g charged species<br />

which are present <strong>in</strong> the oxygenated acid medium as compared with the<br />

state <strong>of</strong> the metal atoms while they are present <strong>in</strong> the surface lattices <strong>of</strong> the<br />

corrod<strong>in</strong>g electrodes.<br />

3- Values <strong>of</strong> DS were generally positive due to greater negativity <strong>of</strong> DG<br />

values than the correspond<strong>in</strong>g DH values. This suggests a smaller order<br />

(135)


<strong>in</strong> the solvated states <strong>of</strong> the metal ions as compared with the state <strong>of</strong><br />

metal atoms <strong>in</strong> the crystal lattice <strong>of</strong> the corrod<strong>in</strong>g electrodes.<br />

Values <strong>of</strong> DS were more positive <strong>in</strong> the presence <strong>of</strong> additives than <strong>in</strong><br />

their absence. The only exception to this statement was for grid lead and<br />

cured negative electrode <strong>in</strong> the presence <strong>of</strong> NaCl <strong>in</strong> the corrosion medium.<br />

Stirr<strong>in</strong>g <strong>of</strong> the acid solution caused a slight decrease <strong>in</strong> the values <strong>of</strong> DS<br />

with respect to all the work<strong>in</strong>g electrodes.<br />

The H3PO4 and its mixture with FeSO4 were the most effective<br />

additives <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g the values <strong>of</strong> DS.<br />

(136)


Table(4-9):Values <strong>of</strong> the thermodynamics quantities -ΔG,ΔH(k J mol -1 )<br />

and ΔS (J mol -1 K -1 )for the corrosion <strong>of</strong> the lead alloy work<strong>in</strong>g electrode<br />

<strong>in</strong> (0.56M) oxygenated H2SO4 solution <strong>in</strong> the presence <strong>of</strong> additives.<br />

Additive T/K medium -ΔG ΔH ΔS<br />

H3PO4<br />

(11g dm -3 )<br />

FeSO4<br />

(o.2g dm -3 )<br />

+<br />

H3PO4<br />

(11g dm -3 )<br />

NaCl<br />

(4g dm -3 )<br />

FeSO4<br />

(o.2g dm -3 )<br />

298<br />

308 un-stirred 99.39 -69.67 99.16<br />

(137)<br />

100.35 -71.60 100.11<br />

318 98.42 -67.74 98.21<br />

298<br />

100.16 -88.66 99.86<br />

308 stirred 99.39 -87.50 99.10<br />

318 99.39 -87.11 99.11<br />

298<br />

99.97 -91.36 99.66<br />

308 un-stirred 99.78 -90.88 99.49<br />

318 99.40 -90.20 99.11<br />

298<br />

99.78 -85.42 99.49<br />

308 stirred 99.20 -84.36 98.93<br />

318 98.82 -83.49 98.55<br />

298<br />

99.59 -90.95 99.28<br />

308 un-stirred 99.20 -90.27 98.91<br />

318 99.01 -89.79 98.73<br />

298<br />

99.01 -90.40 98.71<br />

308 stirred 98.62 -89.72 98.33<br />

318 98.43 -89.24 98.15<br />

298<br />

99.78 -94.03 99.47<br />

308 un-stirred 99.78 -93.84 99.48<br />

318 99.40 -93.26 99.10<br />

298<br />

99.40 -85.00 99.11<br />

308 stirred 98.43 -83.55 98.16<br />

318 98.43 -83.07 98.17


Table(4-10):Values <strong>of</strong> the thermodynamics quantities -ΔG,ΔH(k J mol -1 )<br />

and ΔS (J mol -1 K -1 )for the corrosion <strong>of</strong> the grid lead work<strong>in</strong>g electrode<br />

<strong>in</strong> (0.56M) oxygenated H2SO4 solution <strong>in</strong> the presence <strong>of</strong> additives.<br />

additive T/K medium -ΔG ΔH ΔS<br />

H3PO4<br />

(11g dm -3 )<br />

FeSO4<br />

(o.2g dm -3 )<br />

+<br />

H3PO4<br />

(11g dm -3 )<br />

NaCl<br />

(4g dm -3 )<br />

FeSO4<br />

(o.2g dm -3 )<br />

298<br />

308 un-stirred 101.71 -92.78 101.41<br />

(138)<br />

102.10 -93.46 101.78<br />

318 101.52 -92.30 101.23<br />

298<br />

101.71 -93.07 101.40<br />

308 stirred 101.33 -92.39 101.03<br />

318 101.13 -91.91 100.84<br />

298<br />

101.90 -93.29 101.59<br />

308 un-stirred 101.71 -92.81 101.41<br />

318 101.33 -92.13 101.04<br />

298<br />

101.52 -95.77 101.20<br />

308 stirred 101.33 -95.38 101.02<br />

318 101.13 -94.99 100.83<br />

298<br />

100.75 -94.99 100.43<br />

308 un-stirred 100.55 -94.61 100.25<br />

318 100.36 -94.22 100.06<br />

298<br />

100.55 -94.80 100.23<br />

308 stirred 100.36 -94.42 100.05<br />

318 100.17 -94.03 99.87<br />

298<br />

101.33 -92.71 101.01<br />

308 un-stirred 101.13 -92.23 100.83<br />

318 100.75 -91.56 100.46<br />

298<br />

100.94 -92.33 100.63<br />

308 stirred 100.94 -92.04 100.64<br />

318 100.75 -91.56 100.46


Table(4-11):Values <strong>of</strong> the thermodynamics quantities -ΔG,ΔH(k J mol -1 )<br />

and ΔS (J mol -1 K -1 )for the corrosion <strong>of</strong> the cured positive work<strong>in</strong>g<br />

electrode <strong>in</strong> (0.56M) oxygenated H2SO4 solution <strong>in</strong> the presence <strong>of</strong><br />

additives.<br />

additive T/K medium -ΔG ΔH ΔS<br />

H3PO4<br />

(11g dm -3 )<br />

FeSO4<br />

(o.2g dm -3 )<br />

+<br />

H3PO4<br />

(11g dm -3 )<br />

NaCl<br />

(4g dm -3 )<br />

FeSO4<br />

(o.2g dm -3 )<br />

298<br />

308 un-stirred 104.03 -101.04 103.70<br />

(139)<br />

104.03 -101.14 103.69<br />

318 103.83 -100.75 103.52<br />

298<br />

103.64 -100.75 103.30<br />

308 stirred 103.64 -100.65 103.31<br />

318 103.45 -100.36 103.13<br />

298<br />

101.71 -95.96 101.39<br />

308 un-stirred 101.52 -95.57 101.21<br />

318 101.33 -95.19 101.03<br />

298<br />

100.55 -97.66 100.23<br />

308 stirred 100.36 -97.37 100.04<br />

318 100.36 -97.28 100.05<br />

298<br />

93.61 -87.85 93.31<br />

308<br />

un-stirred<br />

93.41 -87.47 93.13<br />

318 93.22 -87.08 92.95<br />

298<br />

93.22 -87.47 92.93<br />

308 stirred 93.22 -87.27 92.94<br />

318 92.83 -86.70 92.56<br />

298<br />

99.97 -94.22 99.66<br />

308 un-stirred 99.97 -94.03 99.67<br />

318 99.59 -93.45 99.29<br />

298<br />

97.47 -88.82 97.17<br />

308 stirred 97.08 -88.15 96.79<br />

318 96.89 -87.66 96.61


Table(4-12):Values <strong>of</strong> the thermodynamics quantities -ΔG,ΔH(k J mol -1 )<br />

and ΔS (J mol -1 K -1 )for the corrosion <strong>of</strong> the cured negative work<strong>in</strong>g<br />

electrode <strong>in</strong> (0.56M) oxygenated H2SO4 solution <strong>in</strong> the presence <strong>of</strong><br />

additives.<br />

additive T/K medium -ΔG ΔH ΔS<br />

H3PO4<br />

(11g dm -3 )<br />

FeSO4<br />

(o.2g dm -3 )<br />

+<br />

H3PO4<br />

(11g dm -3 )<br />

NaCl<br />

(4g dm -3 )<br />

FeSO4<br />

(o.2g dm -3 )<br />

298<br />

308 un-stirred 103.45 -97.50 103.13<br />

(140)<br />

103.64 -97.89 103.31<br />

318 103.26 -97.12 102.95<br />

298<br />

102.87 -94.26 102.55<br />

308 stirred 102.29 -93.39 101.99<br />

318 102.29 -93.10 102.00<br />

298<br />

101.33 -95.57 101.00<br />

308 un-stirred 100.94 -94.99 100.63<br />

318 100.94 -94.80 100.64<br />

298<br />

100.55 -97.66 100.23<br />

308 stirred 100.36 -97.37 100.04<br />

318 100.36 -97.28 100.05<br />

298<br />

91.29 -85.54 91.00<br />

308 un-stirred 91.10 -85.15 90.82<br />

318 90.90 -84.77 90.64<br />

298<br />

91.10 -85.34 90.81<br />

308 stirred 90.71 -84.77 90.43<br />

318 90.71 -84.57 90.44<br />

298<br />

99.59 -90.95 99.28<br />

308 un-stirred 99.20 -90.27 98.91<br />

318 99.01 -89.79 98.73<br />

298<br />

99.01 -93.26 98.70<br />

308 stirred 99.01 -93.06 98.71<br />

318 98.62 -92.49 98.33


(141)


(142)


(143)


(144)


(145)


(146)


(147)


(148)


4.7- K<strong>in</strong>etic <strong>of</strong> <strong>Corrosion</strong><br />

The rate(r) <strong>of</strong> the corrosion <strong>of</strong> lead-acid battery plates and components<br />

<strong>in</strong>creased with <strong>in</strong>creas<strong>in</strong>g temperature form 298 to 318K. The behaviour<br />

obeyed Arrhenius type equation as:<br />

ic = A exp(-Ea/RT) ----- (4.5)<br />

where ic is the rate <strong>of</strong> corrosion <strong>in</strong> terms <strong>of</strong> corrosion current density, A and<br />

Ea are the pre- exponential factor and energy <strong>of</strong> activation <strong>of</strong> the corrosion<br />

process respectively.<br />

Values <strong>of</strong> Ea were derived from the slopes <strong>of</strong> the log ic versus 1/T<br />

l<strong>in</strong>ear plots as <strong>in</strong> Figs. (4.45-4.52), while those <strong>of</strong> A were obta<strong>in</strong>ed from the<br />

<strong>in</strong>tercepts <strong>of</strong> the plots at 1/T = zero; values <strong>of</strong> A, expressed <strong>in</strong> term <strong>of</strong> Am -2 ,<br />

have then been converted <strong>in</strong>to molecules per m 2 per second . A was def<strong>in</strong>ed<br />

as:<br />

where<br />

K =Boltzman constant,<br />

h= Planck constant,<br />

KT /<br />

„<br />

D S R<br />

A = Ce<br />

----- (4.6)<br />

T= temperature on Kelv<strong>in</strong> Scale, and,<br />

h<br />

C= concentration <strong>of</strong> corrosion sites per m 2 <strong>of</strong> the surface.<br />

Tables (4.13-4.16) and Figs. (4.53-4.60) show the follow<strong>in</strong>g results:<br />

1- Values <strong>of</strong> the activation energy (Ea) and the pre-exponential factor (A)<br />

had the same k<strong>in</strong>etic effects <strong>of</strong> the additives <strong>in</strong> both media and these were:<br />

a. for lead alloy and cured negative electrode <strong>in</strong> the un-stirred acid<br />

solution, the additive caused a decrease <strong>in</strong> Ea and A values as compared<br />

with the values <strong>in</strong> the absence <strong>of</strong> the additive,<br />

b. H3PO4 caused an <strong>in</strong>crease <strong>in</strong> the values <strong>of</strong> Ea and A to maximum for<br />

grid lead <strong>in</strong> the both media.<br />

(149)


c. The lead alloy <strong>in</strong> the stirred acid solution and the cured positive<br />

electrode <strong>in</strong> the un-stirred solution <strong>in</strong> the presence <strong>of</strong> NaCl resulted <strong>in</strong><br />

the maximum values <strong>of</strong> Ea and A.<br />

d. The (H3PO4+ FeSO4) mixture atta<strong>in</strong>ed maximum values for Ea and<br />

A <strong>in</strong> the stirred oxygenated acid solution for the cured positive<br />

electrode.<br />

e. For cured negative electrode <strong>in</strong> the presence FeSO4 showed greatest<br />

values <strong>of</strong> Ea and A <strong>in</strong> stirred the acid solution.<br />

2- The m<strong>in</strong>imum values <strong>of</strong> Ea and A were atta<strong>in</strong>ed <strong>in</strong> such cases as:<br />

a. for lead alloy <strong>in</strong> the un-stirred acid solution <strong>in</strong> the presence <strong>of</strong><br />

FeSO4,<br />

b. <strong>in</strong> the presence <strong>of</strong> FeSO4 <strong>in</strong> the stirred solution for the grid lead<br />

electrode,<br />

c. <strong>in</strong> the absence <strong>of</strong> additive for lead alloy <strong>in</strong> the stirred solution and<br />

for the cured positive electrode <strong>in</strong> the un-stirred acid solution,<br />

d. H3PO4 caused a decrease <strong>in</strong> Ea and values to m<strong>in</strong>imum for the cured<br />

positive and negative electrodes <strong>in</strong> the both stirred and un-stirred media<br />

respectively,<br />

e. <strong>in</strong> the presence <strong>of</strong> (H3PO4 + FeSO4) mixture for the cured negative<br />

electrode <strong>in</strong> the stirred solution,<br />

f. for the grid lead electrode <strong>in</strong> the presence <strong>of</strong> NaCl <strong>in</strong> the un-stirred<br />

solution.<br />

Thus, the smaller activation energy <strong>of</strong> a reaction which was atta<strong>in</strong>ed<br />

by additives (the lower the height <strong>of</strong> the energy barrier) the more rapid is<br />

the reaction at a given temperature, corrosion reaction proceeded on<br />

special surface sites start<strong>in</strong>g on sites with low values <strong>of</strong> Ea and proceeded<br />

to others with higher Ea. (111,84)<br />

4- DS „ values <strong>in</strong> the presence <strong>of</strong> different amounts <strong>of</strong> additives shifted<br />

to more positive or to less negative values than the correspond<strong>in</strong>g<br />

(150)


values <strong>in</strong> the absence <strong>of</strong> additives <strong>in</strong>dicat<strong>in</strong>g a decrease <strong>in</strong> the rate<br />

corrosion <strong>of</strong> electrodes.<br />

Table (4.13):Values <strong>of</strong> activation Energies(Ea/k J mol -1 ) , preexponential<br />

factors(A/molecules cm -2 s -1 )and Entropy <strong>of</strong><br />

activation(ΔS ≠ /J mol -1 K -1 ) for the corrosion <strong>of</strong> lead alloy work<strong>in</strong>g<br />

electrode <strong>in</strong>(0.56M) oxygenated H2SO4 solution <strong>in</strong> the presence and<br />

absence <strong>of</strong> additives.<br />

additive medium log A A Ea ∆S ≠<br />

without<br />

additive<br />

H3PO4<br />

(11g dm -3 )<br />

FeSO4<br />

(0.2g dm -3 )<br />

+<br />

H3PO4<br />

(11g dm -3 )<br />

NaCl<br />

(4g dm -3 )<br />

FeSO4<br />

(0.2g dm -3 )<br />

un-stirred 19.57 3.71 X 10 +19<br />

stirred 9.47 2.96 X 10 +9<br />

un-stirred 14.03 1.08 X 10 +14<br />

stirred 10.75 5.58 X 10 +10<br />

un-stirred 14.15<br />

1.40 X 10 +14<br />

Stirred 12.06 1.12 X 10 +12<br />

un-stirred 17.78 6.09 X 10 +17<br />

stirred 12.36 2.28 X 10 +12<br />

un-stirred 9.13 1.35 X 10+9<br />

(151)<br />

38.09 129.55<br />

14.64 -64.71<br />

24.33 23.59<br />

16.59 -39.29<br />

24.65<br />

25.78<br />

20.06 -14.15<br />

34.33 95.39<br />

21.91 -8.46<br />

12.02 -70.22


stirred 11.29 1.95X 10 +11<br />

(152)<br />

18.34 -28.89


Table (4.14):Values <strong>of</strong> activation Energies(Ea/k J mol -1 ) , preexponential<br />

factors(A/molecules cm -2 s -1 ) and Entropy <strong>of</strong><br />

activation(ΔS ≠ /J mol -1 K -1 ) for the corrosion <strong>of</strong> grid lead work<strong>in</strong>g<br />

electrode <strong>in</strong> (0.56M) oxygenated H2SO4 solution <strong>in</strong> the presence and<br />

absence <strong>of</strong> additives.<br />

additive medium log A A Ea ∆S ≠<br />

without<br />

additive<br />

H3PO4<br />

(11g dm -3 )<br />

FeSO4<br />

(0.2g dm -3 )<br />

+<br />

H3PO4<br />

(11g dm -3 )<br />

NaCl<br />

(4g dm -3 )<br />

FeSO4<br />

(0.2g dm -3 )<br />

un-stirred 15.73 5.41 X 10 +15<br />

stirred 13.97 9.34 X 10 +13<br />

un-stirred 21.40 2.51 X 10 +21<br />

stirred 17.33 2.14 X 10 +17<br />

un-stirred 15.04 1.09 X 10 +15<br />

stirred 11.37 2.37 X 10 +11<br />

un-stirred 10.58 3.78 X 10 +10<br />

stirred 13.43 2.71 X 10 +13<br />

un-stirred 12.06 1.14 X 10 +12<br />

stirred 10.31 2.03 X 10 +10<br />

(153)<br />

28.56 56.14<br />

25.72 22.39<br />

42.34 164.58<br />

32.63 86.71<br />

26.82 42.84<br />

18.46 -27.28<br />

15.98 -42.53<br />

23.79 12.10<br />

19.49 -14.23<br />

16.05 -47.72


Table (4.15):Values <strong>of</strong> activation Energies(Ea/k J mol -1 ), preexponential<br />

factors(A/molecules cm -2 s -1 ) and Entropy <strong>of</strong><br />

activation(ΔS ≠ /J mol -1 K -1 ) for the corrosion <strong>of</strong> cured positive<br />

work<strong>in</strong>g electrode <strong>in</strong> (0.56M) oxygenated H2SO4 solution <strong>in</strong> the<br />

presence and absence <strong>of</strong> additives<br />

additive medium log A A Ea ∆S ≠<br />

without<br />

additive<br />

H3PO4<br />

(11g dm -3 )<br />

FeSO4<br />

(0.2g dm -3 )<br />

+<br />

H3PO4<br />

(11g dm -3 )<br />

NaCl<br />

(4g dm -3 )<br />

FeSO4<br />

(0.2g dm -3 )<br />

un-stirred 4.52 3.30 X 10 +4<br />

stirred 9.29 1.82 X 10 +9<br />

un-stirred 5.93 8.45 X 10 +5<br />

stirred 7.82 6.59 X 10 +7<br />

un-stirred 5.07 1.16 X 10 +5<br />

stirred 12.46 2.86 X 10 +12<br />

un-stirred 11.91 8.14 X 10 +11<br />

stirred 11.48 3.05 X 10 +11<br />

un-stirred 5.95 8.89 X 10 +5<br />

stirred 8.36 2.29 X 10 +8<br />

(154)<br />

6.74 -158.48<br />

18.87 -67.77<br />

9.08 -131.54<br />

14.41 -95.33<br />

7.04 -148.02<br />

26.33 -6.58<br />

25.17 -17.03<br />

24.28 -25.18<br />

9.38 -131.11<br />

15.94 -84.98


Table (4.16):Values <strong>of</strong> activation Energies(Ea/k J mol -1 ), preexponential<br />

factors(A/molecules cm -2 s -1 ) and Entropy <strong>of</strong><br />

activation(ΔS ≠ /J mol -1 K -1 ) for the corrosion <strong>of</strong> cured negative<br />

work<strong>in</strong>g electrode <strong>in</strong> (0.56M) oxygenated H2SO4 solution <strong>in</strong> the<br />

presence and absence <strong>of</strong> additives.<br />

additive medium log A A Ea ∆S ≠<br />

without<br />

additive<br />

H3PO4<br />

(11g dm -3 )<br />

FeSO4<br />

(0.2g dm -3 )<br />

+<br />

H3PO4<br />

(11g dm -3 )<br />

NaCl<br />

(4g dm -3 )<br />

FeSO4<br />

(0.2g dm -3 )<br />

un-stirred 12.40 2.54 X 10 +12<br />

stirred 3.98 9.54 X 10 +3<br />

un-stirred 4.39 2.45 X 10 +4<br />

stirred 4.78 6.03 X 10 +4<br />

un-stirred 5.68 4.77 X 10 +5<br />

stirred 3.32 2.10 X 10 +3<br />

un-stirred 9.56 3.61 X 10 +9<br />

stirred 6.33 2.12 X 10 +6<br />

un-stirred 4.86 7.22 X 10 +4<br />

stirred 11.77 5.95 X 10 +11<br />

(155)<br />

26.3 -7.58<br />

6.08 -168.80<br />

5.84 -160.97<br />

6.80 -153.47<br />

9.26 -136.29<br />

3.43 -181.37<br />

19.66 -62.06<br />

11.40 -123.89<br />

7.18 -151.98<br />

24.78 -19.63


(156)


(157)


(158)


(159)


(160)


(161)


(162)


(163)


The results <strong>of</strong> Figs.(4.61-4.62) <strong>in</strong>dicate the existence <strong>of</strong> a l<strong>in</strong>ear<br />

relationship between the values <strong>of</strong> log A and the correspond<strong>in</strong>g values <strong>of</strong><br />

log A and the correspond<strong>in</strong>g values <strong>of</strong> Ea, which may be expressed as (112) :<br />

Log A = mE + I ----- (4.7)<br />

where m and I are respectively the slope and <strong>in</strong>tercept <strong>of</strong> the plots <strong>in</strong><br />

Figs.(4.61-4.62) such a behaviour is referred to as “compensation effect”<br />

which describes the k<strong>in</strong>etics <strong>of</strong> a great number <strong>of</strong> catalytic and tarnish<strong>in</strong>g<br />

reactions on metals (113,114) . Equation (4.7) <strong>in</strong>dicates that simultaneous<br />

<strong>in</strong>crease or decrease <strong>in</strong> Ea and log A for a system tend to compensate from<br />

the standpo<strong>in</strong>t <strong>of</strong> the reaction rate.<br />

A number <strong>of</strong> <strong>in</strong>terpretations<br />

(164)<br />

(115) have been <strong>of</strong>fered for the<br />

phenomenon <strong>of</strong> the compensation effect <strong>in</strong> surface reaction, among which<br />

the effect could be ascribed to the presence <strong>of</strong> energetically heterogeneous<br />

reaction sites on the electrode surface, which suffered corrosion <strong>in</strong> the<br />

electrolytic solution. A decrease <strong>in</strong> Ea at constant log A implies a higher<br />

rate, while an <strong>in</strong>crease <strong>in</strong> Ea at constant log A implies a lower rate;<br />

simultaneous <strong>in</strong>crease <strong>in</strong> Ea and log A therefore tend to compensate from<br />

the standpo<strong>in</strong>t <strong>of</strong> the corrosion rate. When such a compensate operates, it is<br />

possible for strik<strong>in</strong>g variations <strong>in</strong> Ea and log A through a series <strong>of</strong> surface<br />

sites on a metal or an alloy to yield only a small variation <strong>in</strong> reactivity.


(165)


(166)


5.1- Conclusions:<br />

The conclusions that could be drawn from the experimental results<br />

and the related discussions may be put as:<br />

1. The rate <strong>of</strong> corrosion was generally higher <strong>in</strong> the stirred oxygenated<br />

acid solution than <strong>in</strong> the correspond<strong>in</strong>g unstirred deaerated media.<br />

2. The grid lead showed greatest tendency for corrosion while the cured<br />

negative electrode material had the least tendency for corrosion.<br />

3. The grid lead showed the lowest and the cured negative the greatest<br />

rate <strong>of</strong> corrosion <strong>in</strong> the stirred oxygenated acid solution.<br />

4. The higher protection efficiencies (p%) were atta<strong>in</strong>ed for the<br />

corrosion <strong>of</strong> the work<strong>in</strong>g electrode materials <strong>in</strong> the stirred oxygenated<br />

acid solution than <strong>in</strong> the unstirred oxygenated acid solution <strong>in</strong> the<br />

presence <strong>of</strong> H3PO4 <strong>in</strong> the corrosion medium.<br />

5. The additives had an <strong>in</strong>hibit<strong>in</strong>g effect on the corrosion <strong>of</strong> battery<br />

6.<br />

plates and components <strong>in</strong> the stirred and un-stirred oxygenated sulphuric<br />

acid solution and the corrosion potential shifted <strong>in</strong> the noble direction.<br />

The stimulat<strong>in</strong>g effect <strong>of</strong> the additives was noticed <strong>in</strong> the some cases <strong>in</strong><br />

the presence <strong>of</strong> sodium chloride <strong>in</strong> the acid solution.<br />

The Gibbs free energy changes (DG) for the corrosion <strong>of</strong> the battery<br />

plates and components was always negative <strong>in</strong>dicat<strong>in</strong>g the<br />

7.<br />

thermodynamic feasibility <strong>of</strong> the corrosion <strong>of</strong> the battery plates and<br />

components. The dependencies <strong>of</strong> such changes on temperature<br />

(-dDG/dt) were either negative or positive result<strong>in</strong>g either <strong>in</strong> negative or<br />

positive value <strong>of</strong> DH and DS for the corrosion process.<br />

The corrosion processes for battery plates and components <strong>in</strong> the<br />

absence or the presence <strong>of</strong> the various additives followed k<strong>in</strong>etically<br />

Arrhenius type rate equation. Positive values have been derived for the<br />

energy <strong>of</strong> activation (Ea). A l<strong>in</strong>ear relationship existed between the<br />

values at Ea and the logarithm <strong>of</strong> the pre- exponential factor (log A)<br />

suggest<strong>in</strong>g the operation <strong>of</strong> a compensation effect <strong>in</strong> the k<strong>in</strong>etics <strong>of</strong><br />

corrosion.<br />

١٦٦(


5.2- Suggestions for Future Research<br />

1. The corrosion medium may be extended to other concentrations <strong>of</strong><br />

the sulphuric acid <strong>in</strong> the presence and the absence <strong>of</strong> different other salts<br />

and organic <strong>in</strong>hibitors.<br />

2. The corrosion <strong>in</strong>vestigations may be carried out for the same<br />

electrodes under stirred and un-stirred conditions <strong>of</strong> the corrosion<br />

medium which should also be subjected to the both aeration and<br />

deaeration conditions.<br />

3. The corrosion medium may also be subjected to thorough chemical<br />

analysis after corrosion tests <strong>in</strong> order to identify the types and extends <strong>of</strong><br />

the various metallic ions that may be formed throughout anodic<br />

dissolution <strong>of</strong> the work<strong>in</strong>g electrode.<br />

4. The work<strong>in</strong>g electrodes may also be exam<strong>in</strong>ed carefully by scann<strong>in</strong>g<br />

electron microscope, ESCA and other sophisticated techniques<br />

subsequent to all the corrosion experiments.<br />

5. Other additives may be used <strong>in</strong> exam<strong>in</strong><strong>in</strong>g the corrosion behaviours<br />

<strong>of</strong> the electrodes and these may <strong>in</strong>volve picric acid, boric acid and<br />

chromates.<br />

6. The additives may also be added to the paste or to the grid <strong>of</strong> battery<br />

plates and to the other battery components prior to corrosion<br />

experiments <strong>in</strong> the various corrosion media.<br />

١٦٧(


References<br />

1. R.J. Brodd, Batteries for cordless Appliances, (John Wiley and Sons,<br />

Inc. New York, 1987).P.(154-155).<br />

2. M. Silberberg, Chemistry, The Molecular Nature <strong>of</strong> Matter and<br />

change, (John Wiley and Sons, New York, 1996).<br />

3. H. Bode, <strong>Lead</strong>-<strong>Acid</strong> Batteries, (John Wiley and Sons, New York,<br />

London,1977).<br />

4. Gregory M.Williams,Chemistry,The Molecular Science,(John Wiley<br />

and Sons,Inc.New York 1999).<br />

5. D.A.J.R and , J. Power Sources, 1989,28, 107.<br />

6. M.Barak, Electrochemical Power Sources, (Stevenage, U.K., 1980).<br />

7. D. L<strong>in</strong>den, Handbook <strong>of</strong> Batteries and Fuel Cells, (McGraw-Hill<br />

Book Co, 1984).<br />

8. J.E.Dix, J. Power Sources , 1987, 19, 157.<br />

9. D.A.J. Rand , The <strong>Battery</strong> Man, 1987, September, 14.<br />

10. Kirk- Othmer, Encyclopedia <strong>of</strong> chemical Technology, 2 nd edition,<br />

(John Wiley and Sons, Inc. New York , 1964), vol.3.<br />

11. P. Scharf and R. Wagner, J. Power Sources, 2000, 35, 117.<br />

12. V.Iliv and D. Pavlor, J. Appl. Electrochem., 1979, 9, 555.<br />

13. T.Inoue and N. Koura, Electrochemistry , 2000, 68, 789.<br />

14. N.K. Grigaluk, J.Apply. Chem. USSR, 1979, 52, 742.<br />

15. B.K.Mahato, J. Electrochem. Soc., 1980, 127, 1679.<br />

16. G.J. Szava, J. Power Sources, 1988, 23, 119.<br />

17. G.W.V<strong>in</strong>al, Storage Batteries, 4 th edition, (John Wiley and Sons,<br />

Inc. New York , 1955).<br />

18. R.J. Hill, J. Power Sources, 1983, 9, 55.<br />

19. D.Pavlov , E. Bashtavelova, J. Electrochem. Soc., 1984, 131, 1468.<br />

20. E. Bashtavelova, J. Electrochem. Soc., 1986, 133, 241<br />

(168)


21. D. Pavlov, J. Electrochem. Soc., 1992, 139, 3075.<br />

22. M.Dimitrov, J. Power Sources, 2001, 93, 234.<br />

23. D. Pavlov, and V. Iliev, J. Power Sources, 1981, 7, 153.<br />

24. V.Iliev and D.Pavlov, J.Appl. Electrochem., 1985, 15, 39.<br />

25. D. Pavlov, J. Electrochem. Soc., 1974, 121, 854.<br />

26. D. Pavlov, Power Source for Electric vehicles, B.D. McNicol, D.A.<br />

J. Rand . eds, Chapter 5. <strong>Lead</strong> <strong>Acid</strong> Batteries. P. 313-327. ( Elsevier,<br />

Amsterdam, 1984).<br />

27. N.Iordonov, J. Electrochem. Soc., 1970, 117, 9.<br />

28. L. Semynov, Storage Batteries, 1967, P. 78.<br />

29. E.S.Napoleon,J.Power Sources,1987,19,169.<br />

30. D.J.G.Ives, Reference <strong>Electrodes</strong>, (Acadeic Press, New York,<br />

London, 1961).<br />

31. Col<strong>in</strong> A. V<strong>in</strong>cent and B. Scrosati, Modern Batteries An Introduction<br />

to electrochemical Power Source, 1997, P. 145.<br />

32. D.Pavlov, Berichfe der Bunsengeselchaft, 1967, 71, 398.<br />

33. C.N. Poulieff and N. Iodanov, J. Electrochem. Soc., 1969,116, 316.<br />

34. D. Pavlov, J. Electrochem. Soc., 1970, 117, 1103.<br />

35. S. Ruevski, J. Power Sources, 1990, 31, 217.<br />

36. D. Pavlov, G. Papazov, J. Electrochem. Soc., 1972, 119, 8.<br />

37. G. Papazov, J. Electrochem. Soc. , 1980, 127, 2104.<br />

38. E. Bashtavelova, J. Power Sources, 1990, 31, 243.<br />

39. D.Pavlov, J. Electroanal. Chem., 1976, 72, 319.<br />

40. V.Iliv, J. Electrochem. Soc., 1974, 121, 854.<br />

41. V.S. Bagotzky, Chemical Power Sources, (Academic Press, New<br />

York, London, 1980).<br />

42. R.J.Ball,J.Power Sources,20002,111,23.<br />

43. B. Monahov, J.Appl. Electrochem., 1993, 23, 1244.<br />

44. T. Lait<strong>in</strong>en, K. Salmi, Electrochem. Acta, 1991, 36, 605.<br />

(169)


45. D. Pavlov, B. Monahov, J. Electroanal. Chem., 1991, 305, 57.<br />

46. D.Pavlov,J.Appl.Electrochem.,1997,27,6.<br />

47. U.R. Evans, Metallic corrosion, Passivity and protection, (Arnold,<br />

London, 1947).<br />

48. A.T.Kuhn, The Electrochemistry <strong>of</strong> <strong>Lead</strong>, (John Wiley and Sons,<br />

Inc. New York, 1979).<br />

49. P.Ruestschi and R.T. Angstadt, J.Electrochem. Soc., 1964, 12, 111.<br />

50. W.H.Boctor, Proced<strong>in</strong>g <strong>Corrosion</strong> Sem<strong>in</strong>ar, 13-16 Dec., (1976)<br />

Baghdad.<br />

51. G.Tedeschi, Mat. Nat., 1937, 25, 641.<br />

52. P. Delalay, M.Pourbaix, J. Electrochem. Soc., 1951, 98, 97.<br />

53. J.Lander, J. Electrochem Soc., 1951, 98, 6.<br />

54. J. Casey and K.M. Camprey, J. Electrochem Soc., 1955, 102, 219.<br />

55. G. Hohlste<strong>in</strong> and E. Pelzell, Metall., 1960, 14, 765.<br />

56. G.W. V<strong>in</strong>al, Storage Batteries, (John Wiely Inc. 1962).<br />

57. A .A. Abdul Azim and K.M. El-Sobki, Corr. Sci., 1971, 11, 821.<br />

58. U.R. Evans, The corrosion and Oxidation <strong>of</strong> Metals., (Edward<br />

Arnold, 1971).<br />

59. P.Ruetschi, Electrochem. Acta., 1963, 8, 333.<br />

60. T. Rogachev, J.Power Sources, 1988, 23, 4.<br />

61. G. Papazov, J. Power Sources, 1983, 10,3.<br />

62. R.H.Newnham, D.A.J.Rand, J. Power sources, 1995, 53, 93.<br />

63. Guo-L<strong>in</strong> Wei, Jia-Rong Wang, J. Power sources, 1994, 52, 25.<br />

64. W.A.Badaway, S.S.El-Egamy, J.Power Sources, 1995, 55, 11.<br />

65. Takao. Omae, J.Power Sources, 1997, 65,2.<br />

66. W.H. Bactor, S.Zhong, J. Power Sources, 1999, 77, 56.<br />

67. D. Slavkov, J. Power Sources, 2002, 112, 199.<br />

68. J.A. Van Frawnh<strong>of</strong>er and G.H. Banks , potentiostat and Its<br />

Applications, (Butter Worths, London, 1972).<br />

(170)


69. J.O.M. Bockris and A. K. Reddy, Modern Electrochemistry , Press,<br />

New York, 1970), Vol. 2, P. 1315.<br />

70. A. I. Karim, M.Sc. Thesis, College <strong>of</strong> Science, University <strong>of</strong><br />

Baghdad, Jan., (2003).<br />

71. Kh. S. Abed, Ph. D. Thesis, College <strong>of</strong> Science, University <strong>of</strong><br />

Baghdad, October, 1997.<br />

72. Q.A. Yousif, M.Sc. Thesis, College <strong>of</strong> Science, University <strong>of</strong><br />

Baghdad, July,(2001).<br />

73. N.A. Hikmat, Ph. D. Thesis, College <strong>of</strong> Science, University <strong>of</strong><br />

Baghdad, Jan., 2002.<br />

74. N.D. Green, Experimental Electrode K<strong>in</strong>etics, (Troy, New York,<br />

1965), P. 64.<br />

75. J.W.D. France, Mat. Res., 1969, 9,21.<br />

76. S.Glasstone,Pr<strong>in</strong>ciple <strong>of</strong> Elrctrochemistry,Van Nastrand, New York,<br />

1942,P.448.<br />

77. American Society for Test<strong>in</strong>g and material, Annual Book <strong>of</strong> ASTM<br />

standard, 1980, Part 10.<br />

78. American Society for Test<strong>in</strong>g and Material Annual Book <strong>of</strong> ASTM<br />

Standard, 1978-G5<br />

79. H.H.Uhlig, <strong>Corrosion</strong> and <strong>Corrosion</strong> Control, (Wiley, New York),<br />

(2000), P. 411.<br />

80. L. L. Shrier (ed.), <strong>Corrosion</strong>; Metal/Environment Reactions, (Butter<br />

Worths, Boston, Mass., 1978), Vol.1.<br />

81. F. Mansfeld, <strong>Corrosion</strong> science, 1973, 29, 397.<br />

82. Stern. M., and Roth, J. Electrochem.Soc., 1957, 104, 390.<br />

83. E. Heitz and W. Schwenk, Br. Corros. J., 1976, 11, 2.<br />

84.<br />

85. I.G. Murgulessue and O. Radorici, 2 nd -Inter. Congr. Metal corrosion,<br />

(London, 1961), P. 202-205.<br />

(171)


86. A.M. Farhan, Ph.D., Thesis, College <strong>of</strong> Science, University <strong>of</strong><br />

Baghdad, June, 2000.<br />

87. W.J. Lorenz and F. Mansfeld , Proc. 8 th . Intr. Congr. Of Metal<br />

88.<br />

<strong>Corrosion</strong> (Dechema,Germany, 6-11 September, 1981).<br />

89. B.N. Kabanov, Electrochemica, Acta, 1964, 9, 1197.<br />

90. J. Lander, J. Electrochem. Soc., 1951, 98, 213.<br />

91. Pierre R. Roberge, Handbook <strong>of</strong> <strong>Corrosion</strong> Eng<strong>in</strong>eer<strong>in</strong>g, (Mc Graw-<br />

Hill, New York, 1999).<br />

92. G.B. Roger, Determ<strong>in</strong>ation <strong>of</strong> pH (Wiley, New York, 1972), P. 307.<br />

93. L.M. Al-Shama’a , Ph. D., Thesis, College <strong>of</strong> Science, University <strong>of</strong><br />

Baghdad, April, 1999.<br />

94. J.O.M. Bockris and A. K. Reddy, Modern Electrochemistry , Press,<br />

New York, 1970), P.176.<br />

95. Mars G. Fontana and Norbert D. Greene, <strong>Corrosion</strong> Eng<strong>in</strong>eer<strong>in</strong>g,<br />

(Mc Graw-Hill, New York, 1978), P. 319.<br />

96. H.Y. Chen, Journal <strong>of</strong> Power Sources, 2000, 88, 78.<br />

97. E. Rocca, J. Electronal. Chem. 2003, 543, 153.<br />

98. K.R. Trethewey and J. Chamberla<strong>in</strong>, <strong>Corrosion</strong> for science and<br />

Eng<strong>in</strong>eer<strong>in</strong>g , 2 nd . ed. (Addision Wesley Longman Ltd. 1996).<br />

99. M. G. Fontana, N.D. Green, <strong>Corrosion</strong> Eng<strong>in</strong>eer<strong>in</strong>g, 2 nd Edn.,<br />

(McGraw-Hill, New York, 1963).<br />

100. W.H. Boctor, J. Electrochem. Soc., 1976, 123, 12.<br />

101. K.R. Bullock and D.H. Mcclelland, J. Electrochem. Soc., 1976, 123,<br />

327.<br />

102. W. Visscher, J. Power Sources, 1977, 1, 257.<br />

103. K.R. Bullock, J. Electrochem. Soc., 1979, 126, 3.<br />

104.<br />

105. E. Kunse and K. Schwabe, <strong>Corrosion</strong> Sci., 1964, 15, 419.<br />

(172)


106. A.M. Farhan, M.Sc., Thesis, College <strong>of</strong> Science, University <strong>of</strong><br />

107.<br />

Baghdad, 1989.<br />

108. G. Chond, Catalysis by Metals, (Academic Press, New York, 1962),<br />

p.140.<br />

109. Y.K. Al-Haydari, J.M. Saleh and M.H. Matloob, J. Phys. Chem. ,<br />

1985, 89, 3286.<br />

110. S.A. Isa and J.M. Saleh, J. Phys. Chem., 1972, 76, 2530.<br />

111. E.Cremer, Advances <strong>in</strong> Catalysis, (Academic Press, New York, 1955)<br />

vol 7, p. 75.<br />

112. H.H.Uhlig, <strong>Corrosion</strong> and <strong>Corrosion</strong> Control, (Wiley, New York,<br />

2000), P. 74-76.<br />

113. M. Stern and A.L. Grary , J. Electrochem Soc., 1957, 56, 104.<br />

114. K.R. Trethewey and J. Chamberla<strong>in</strong>, <strong>Corrosion</strong> for Science and<br />

Eng<strong>in</strong>eer<strong>in</strong>g, 2 nd . ed. (Addision Wesley Longman Ltd. 1996).<br />

115. T.A. Sakman, Thesis, College <strong>of</strong> Science, Saddam University,<br />

January, 1996.<br />

116. Driver, R., and Meak<strong>in</strong>s, R.J., Br. Corros. J., 1974, 9, 227.<br />

117. Jssel<strong>in</strong>g, F.P., Corros. Sci., 1974, 14, 97.<br />

118. D. Pavlov and N. Kapkov, J. Electrochem. Soc., 1990, 137, 28.<br />

119. L.A. Beckctaeva and K.V. Rybalka, J. Power Sources, 1990, 32, 143.<br />

120. R.J. Hill, J. Power Sources, 1988, 22, 175.<br />

(173)


ﺔﺻﻼﺨﻟﺍ<br />

ﻦﻣ ﺝﺫﺎﻤﻧ ﺔﻌﺒﺳ ﻞﻛﺄﺘﻟ ﻲﺑﺎﻄﻘﺘﺳﻻﺍ ﻙﻮﻠﺴﻟﺍ ﺔﺳﺍﺭﺩ ﺔﻟﺎﺳﺮﻟﺍ ﻉﻮﺿﻮﻣ ﻝﻭﺎﻨﺘﻳ<br />

ﺹﺎﺻﺮﻟﺍ ﺓﺪﻴﻀﻧ ﺕﺎﻧﻮﻜﻣﻭ ﺡﺍﻮﻟﺍ ﺔﻋﺎﻨﺻ ﻲﻓ ﺔﻣﺪﺨﺘﺴﻤﻟﺍ ﺏﺎﻄﻗﻻﺍ<br />

: ﻲﻫﻭ ﺔﻴﻀﻣﺎﺤﻟﺍ<br />

. ﺹﺎﺻﺮﻟﺍ ﺔﻜﻴﺒﺳ ﺐﻄﻗ -۱<br />

. ﺹﺎﺻﺮﻟﺍ ﻚﺒﺸﻣ ﺐﻄﻗ -۲<br />

. ﻲﻘﻨﻟﺍ ﺹﺎﺻﺮﻟﺍ ﺐﻄﻗ<br />

-۳<br />

. ﺮﻤﻌﻤﻟﺍ ﺮﻴﻏ ﺐﺟﻮﻤﻟﺍ ﺐﻄﻘﻟﺍ -٤<br />

.ﺮﻤﻌﻤﻟﺍ<br />

ﺐﺟﻮﻤﻟﺍ ﺐﻄﻘﻟﺍ -٥<br />

.ﺮﻤﻌﻤﻟﺍ ﺮﻴﻏ ﺐﻠﺴﻟﺍ ﺐﻄﻘﻟﺍ -٦<br />

.ﺮﻤﻌﻤﻟﺍ ﺐﻟﺎﺴﻟﺍ ﺐﻄﻘﻟﺍ -۷<br />

ﻝﻮﻣ ( 0.56,0.25,0.1)<br />

ﺰﻴﻛﺍﺮﺘﺑ ﻚﻴﺘﻳﺮﺒﻜﻟﺍ ﺾﻣﺎﺣ ﻝﻮﻠﺤﻣ ﻲﻓ ﺎﻫﺮﻤﻏ ﺪﻨﻋ<br />

ﻰﻟﺍ ۲۹۸ ﻦﻣ ﺖﺣﻭﺍﺮﺗ ﺓﺭﺍﺮﺤﻟﺍ ﺕﺎﺟﺭﺩ ﻦﻣ ﻯﺪﻣ ﻰﻠﻋ ﺐﻌﻜﻤﻟﺍ ﺮﺘﻤﺳ ﺪﻠﻟ<br />

ﺔﻌﺑﺭﺍ ﻰﻟﺍ ﺔﺳﺍﺭﺪﻠﻟ ﺔﻴﻠﻤﻌﻟﺍ ﺔﻐﻴﺼﻟﺍﻭ ﻡﺎﻌﻟﺍ ﻂﻤﻨﻟﺍ ﻢﻴﺴﻘﺗ ﻦﻜﻤﻳﻭ ﻦﻔﻠﻛ ۳۱۸<br />

: ﻲﺗﺄﻳ<br />

ﺎﻤﻛﻭ ﻡﺎﺴﻗﺍ<br />

ﻂﺳﻭ ﻲﻓ ﻦﻴﺠﺴﻛﻷﺍﺯﺎﻏ ﺩﻮﺟﻮﺑ ﺝﺫﺎﻤﻨﻠﻟ ﻲﺑﺎﻄﻘﺘﺳﻻﺍ ﻙﻮﻠﺴﻟﺍ ﺔﺳﺍﺭﺩ -ﺃ<br />

.ﻞﻛﺄﺘﻟﺍ<br />

ﻮﺟ ﻲﻓﻭ ﻦﻴﺠﺴﻛﻭﻷﺍ ﺯﺎﻏ ﺩﻮﺟﻮﺑ ﺝﺫﺎﻤﻨﻠﻟ ﻲﺑﺎﻄﻘﺘﺳﻻﺍ<br />

ﻙﻮﻠﺴﻟﺍ ﺔﺳﺍﺭﺩ – ﺏ<br />

. ﻞﻛﺎﺘﻟﺍ ﻂﺳﻮﻟ ﻲﻜﻳﺮﺤﺗ<br />

ﻂﺳﻭ ﻲﻓ ﻦﻴﺟﻭﺮﺘﻨﻟﺍﺯﺎﻏ ﺩﻮﺟﻮﺑ ﺝﺫﺎﻤﻨﻠﻟ ﻲﺑﺎﻄﻘﺘﺳﻻﺍ ﻙﻮﻠﺴﻟﺍ ﺔﺳﺍﺭﺩ -ﺝ<br />

.ﻞﻛﺄﺘﻟﺍ<br />

ﻮﺟ ﻲﻓﻭ ﻦﻴﺟﻭﺮﺘﻨﻟﺍ ﺯﺎﻏ ﺩﻮﺟﻮﺑ ﺝﺫﺎﻤﻨﻠﻟ<br />

ﻲﺑﺎﻄﻘﺘﺳﻻﺍ ﻙﻮﻠﺴﻟﺍ ﺔﺳﺍﺭﺩ – -ﺩ<br />

. ﻞﻛﺎﺘﻟﺍ ﻂﺳﻮﻟ ﻲﻜﻳﺮﺤﺗ<br />

ﺩﺎﻬﺠﻤﻟﺍ ﺯﺎﻬﺟ ﻡﺍﺪﺨﺘﺳﺎﺑ ﺝﺫﺎﻤﻨﻠﻟ ﻲﺑﺎﻄﻘﺘﺳﻻﺍ ﻙﻮﻠﺴﻟﺍ ﺔﺳﺍﺭﺩ ﺖﻤﺗ -۱<br />

ﻦﻣ ﻞﺼﺤﺘﺴﻤﻟﺍ( CORROSCRIPT)ﻰﻤﺴﻤﻟﺍ(<br />

Potentiostat)<br />

ﻲﻧﻮﻜﺴﻟﺍ<br />

ﻰﻠﻋ ﻝﻮﺼﺤﻟﺍ ﻪﺘﻄﺳﺍﻮﺑ ﻦﻜﻣﺃﻭ ﺔﻴﺴﻧﺮﻔﻟﺍ( Taccussel)<br />

ﻞﻴﺳﻮﻛﺎﺗ ﺔﻛﺮﺷ<br />

ﺩﻮﻬﺠﻟﺍ ﻦﻣ ﻯﺪﻣ ﻰﻠﻋ( Polarization Curves)<br />

ﺏﺎﻄﻘﺘﺳﻻﺍ ﺕﺎﻴﻨﺤﻨﻣ<br />

Scan ) ﺢﺴﻣ ﺔﻋﺮﺳ ﻝﺎﻤﻌﺘﺳﺄﺑ ﺖﻟﻮﻓ+2.0<br />

ﻰﻟﺍ-2.0<br />

ﻦﻣ ﺖﺣﻭﺍﺮﺗ<br />

ﺔﻘﻴﻗﺪﻟﺍ ﻲﻓ ﺮﺘﻤﻠﻣ 30 ﺖﻐﻠﺑ ( x-y Recorder)<br />

ﻞﻴﺠﺴﺘﻟﺍ ﺯﺎﻬﺠﻟ( Rate<br />

ﺢﺒﺼﻳ( Ec)<br />

ﻞﻛﺄﺘﻟﺍ ﺪﻬﺟ ﻥﺃ ﺔﻠﺼﺤﺘﺴﻤﻟﺍ ﺞﺋﺎﺘﻨﻟﺍ ﻦﻣ ﻦﻴﺒﺗ ﺪﻗﻭ ( mm/m<strong>in</strong>)<br />

ﻂﺳﻭ ﻲﻓ<br />

ﻦﻴﺟﻭﺮﺘﻨﻟﺍﺯﺎﻏ ﺩﻮﺟﻮﺑ ﻚﻴﺘﻳﺮﺒﻜﻟﺍ ﺾﻣﺎﺣ ﻝﻮﻠﺤﻣ ﻲﻓ ﺔﻴﺒﻟﺎﺳﺮﺜﻛﺃ


ﻥﺃﻭ ﻙﺮﺤﺘﻣ ﻂﺳﻭ ﻲﻓ ﻦﻴﺠﺴﻛﻭﻻﺍ ﺯﺎﻏ ﺩﻮﺟﻮﺑ ﺔﻴﺒﻟﺎﺳ ﻞﻗﺃﻭ ﻙﺮﺤﺘﻣ ﺮﻴﻏ<br />

ﻚﻴﺘﻳﺮﺒﻜﻟﺍ ﺾﻣﺎﺣ ﻲﻓ ﺔﻴﻟﺎﻋ ﺖﻧﺎﻛ ﺎﻣﻮﻤﻋ ( ic)<br />

ﻞﻛﺄﺘﻟﺍ ﺭﺎﻴﺗ ﺔﻓﺎﺜﻛ ﺕﺍﺮﻴﻐﺗ<br />

ﺮﻴﻏ ﻦﻴﺟﻭﺮﺘﻨﻟﺍ ﻮﺠﺑ ﺔﻧﺭﺎﻘﻣ ﻙﺮﺤﺘﻣ ﻮﺟ ﻲﻓﻭ ﻦﻴﺠﺴﻛﻭﻻﺍ ﺯﺎﻏ ﺩﻮﺟﻮﺑ<br />

.ﺎﻀﻔﺨﻨﻣ ( ic)<br />

ﺮﻴﻐﺗ ﺎﻬﻴﻓ ﻥﺎﻛ ﻲﺘﻟﺍﻭ ﻙﺮﺤﺘﻤﻟﺍ<br />

:ﻰﻠﻋ ﺖﻠﻤﺘﺷﺃ ﺕﺎﻓﺎﻀﻤﻟﺍ ﻦﻣ ﺩﺪﻋ ﺮﻴﺛﺄﺗ ﺔﺳﺍﺭﺩ ﺖﻤﺗ -۲<br />

.(ﺐﻌﻜﻤﻟﺍ ﺮﺘﻤﺳﺪﻠﻟ ﻢﻏ۱۱)ﻚﻳﺭﻮﻔﺳﻮﻔﻟﺍ<br />

ﺾﻣﺎﺣ -۱<br />

ﺕﺎﺘﻳﺮﺒﻛ ﻊﻣ ( ﻢﻏ۱۱)<br />

ﻚﻳﺭﻮﻔﺳﻮﻔﻟﺍ ﺾﻣﺎﺣ ﻦﻣ ﺞﻳﺰﻣ -۲<br />

. ﺐﻌﻜﻤﻟﺍ ﺮﺘﻤﺴﻠﻟ (ﻢﻏ0.2)ﺯﻭﺪﻳﺪﺤﻟﺍ<br />

.(ﺐﻌﻜﻤﻟﺍﺮﺘﻤﺳﺪﻠﻟ ﻢﻏ4)<br />

ﻡﻮﻳﺩﻮﺼﻟﺍ ﺪﻳﺭﻮﻠﻛ -۳<br />

.(ﺐﻌﻜﻤﻟﺍ ﺮﺘﻤﺳﺪﻠﻟ ﻢﻏ0.2)ﺯﻭﺪﻳﺪﺤﻟﺍ<br />

ﺕﺎﺘﻳﺮﺒﻛ -٤<br />

ﺩﻮﺟﻭ ﻲﻓ ﻱﺭﻻﻮﻣ( 0.56)<br />

ﻚﻴﺘﻳﺮﺒﻜﻟﺍ ﺾﻣﺎﺤﻟ ﻲﺘﻴﻟﻭﺮﺘﻜﻟﻷﺍ ﻝﻮﻠﺤﻤﻟﺍ ﻲﻓ<br />

ﺏﺎﻄﻗﻻﺍ ﻦﻣ ﺔﻔﻠﺘﺨﻣ ﺝﺫﺎﻤﻧ ﺔﻌﺑﺭﺃ ﻰﻠﻋ ﻦﻛﺎﺳﻭ ﻙﺮﺤﺘﻣﻮﺟﻭ ﻦﻴﺠﺴﻛﻭﻻﺍ<br />

: ﻲﺗﺎﻳ ﺎﻤﻛﻭ<br />

.ﺹﺎﺻﺮﻟﺍ ﺔﻜﻴﺒﺳ ﺐﻄﻗ -۱<br />

.ﺹﺎﺻﺮﻟﺍ ﻚﺒﺸﻣ ﺐﻄﻗ -۲<br />

.ﺮﻤﻌﻤﻟﺍ ﺐﺟﻮﻤﻟﺍ ﺐﻄﻘﻟﺍ -۳<br />

.ﺮﻤﻌﻤﻟﺍ ﺐﻟﺎﺴﻟﺍ ﺐﻄﻘﻟﺍ -٤<br />

ﺕﺎﺑﺎﺴﺣ ﺖﻟﺩ ﺪﻗﻭ ﻦﻔﻠﻛ( 318-298)ﻦﻣ<br />

ﺔﻳﺭﺍﺮﺤﻟﺍ ﺕﺎﺟﺭﺪﻟﺍ ﻯﺪﻣ ﻲﻓ<br />

ﺔﻳﺎﻤﺣ ﻰﺼﻗﺍ ﻍﻮﻠﺑ ﻰﻠﻋ ( Protection Efficiency)ﺔﻳﺎﻤﺤﻟﺍ<br />

ﺔﻳﺎﻔﻛ<br />

ﺔﻨﻜﻤﻣ ﺔﻳﺎﻤﺣ ﻰﻧﺩﺍﻭ ﻚﻳﺭﻮﻔﺳﻮﻔﻟﺍ ﺾﻣﺎﺣ ﻂﺒﺜﻤﻟﺍ ﻝﺎﻤﻌﺘﺳﺎﺑ ﺔﻨﻜﻤﻣ<br />

.ﺏﺎﻄﻗﻻﺍ ﻊﻴﻤﺟ ﻰﻟﺍ ﺔﺒﺴﻨﻟﺎﺑ ﺪﻳﺭﻮﻠﻛ ﻝﺎﻤﻌﺘﺳﺄﺑ<br />

( ∆S،∆H،∆G)ﻞﻛﺄﺘﻟﺍ<br />

ﺕﻼﻋﺎﻔﺘﻟ ﺔﻴﻜﻴﻤﻨﻳﺍﺩﻮﻣﺮﺜﻟﺍ ﺕﺎﻴﻤﻜﻟﺍ ﺖﺒﺴﺣ -۳<br />

ﺔﻗﺎﻁ ﻢﻴﻗ ﻥﺃ ﺔﺳﺍﺭﺪﻟﺍ ﺕﺮﻬﻅﺃ ﺪﻗﻭ ﺕﺎﻓﺎﻀﻤﻟﺍ ﺩﻮﺟﻭﻭ ﺏﺎﻴﻏ ﺔﻟﺎﺣ ﻲﻓ<br />

ﻲﻓ ﻲﻀﻣﺎﺤﻟﺍ ﻂﺳﻮﻟﺍ ﻲﻓ ﺔﻴﺒﻟﺎﺳ ﺮﺜﻛﺃ ﻡﻮﻤﻌﻟﺍ ﻰﻠﻋ ﺖﻧﺎﻛ ∆G ﺓﺮﺤﻟﺍ ﺰﺒﻴﻛ<br />

ﺔﺳﺍﺭﺪﻟﺍ ﺕﺮﻬﻅﺄﻓ ﺕﺎﻓﺎﻀﻤﻟﺍ ﺩﻮﺟﻭ ﺔﻟﺎﺣ ﻲﻓ ﺎﻣﺃ، ﻦﻴﺟﻭﺮﺘﻨﻟﺍ ﺯﺎﻏ ﺩﻮﺟﻭ<br />

ﺔﻴﺒﻟﺎﺳ ﻞﻗﺃﻭ ﻚﻳﺭﻮﻔﺳﻮﻔﻟﺍ ﺾﻣﺎﺣ ﺩﻮﺟﻭ ﻲﻓ ﺔﻴﺒﻟﺎﺳ ﺮﺜﻛﺃ ﺖﻧﺎﻛ ∆Gﻢﻴﻗ<br />

ﻥﺃ<br />

ﻢﻴﻗ ﻲﻓ ﺕﺍﺮﻴﻐﺗ ﺕﺪﺟﻭ ﺎﻤﻛ. ﻡﻮﻳﺩﻮﺼﻟﺍ ﺪﻳﺭﻮﻠﻛ ﺩﻮﺟﻭ ﻲﻓ<br />

ﻲﻓ ﻦﻳﺎﺒﺗ ﺙﻭﺪﺣ ﻰﻠﻋ ﺮﻴﻐﺘﻟﺍ ﺍﺬﻫ ﻝﺪﻳﻭ ﻅﻮﺤﻠﻣ ﺭﺍﺪﻘﻤﺑ ( ∆S)<br />

ﻲﺑﻭﺮﺘﻧﻻﺍ<br />

ﺔﺟﺭﺩ ﻰﻠﻋ ﻞﻛﺄﺘﻟﺍ ﺔﻴﻠﻤﻌﻟﺍ ﺓﺮﺤﻟﺍ ﺔﻗﺎﻄﻟﺍ ﺕﺍﺮﻴﻐﺗ ﺔﻳﺩﺎﻤﺘﻋﺍ ﻯﺪﻣﻭ ﻉﻮﻧ<br />

ﺕﺍﺮﻴﻐﺗ ﺙﻭﺪﺣ ﻰﻟﺍ ( ∆S)<br />

ﻲﺑﻭﺮﺘﻧﻻﺍ ﻢﻴﻗ ﺕﺍﺮﻴﻐﺗ ﺕﺩﺃﻭ. ﺓﺭﺍﺮﺤﻟﺍ<br />

.ﺎﻀﻳﺃ ( ∆H)<br />

ﻲﺒﻟﺎﺜﻧﻻﺍ ﻲﻓ ﺓﺮﻅﺎﻨﻣ<br />

ﻡﺪﻋﻭ ﺩﻮﺟﻭ ﺔﻟﺎﺣ ﻲﻓ ﻞﻛﺄﺘﻟﺍ ﺕﻼﻋﺎﻔﺗ( K<strong>in</strong>etics)ﺕﺎﻴﻛﺮﺣ<br />

ﺖﻌﻀﺧ -٤<br />

ﻦﻴﺑ ﺔﻴﻄﺧ ﺔﻗﻼﻋ ﺩﻮﺟﻮﺑ ﻲﻀﻘﺗ ﻲﺘﻟﺍ ﺱﻮﻨﻳﺭﺃ ﺔﻟﺩﺎﻌﻤﻟ ﺕﺎﻓﺎﻀﻤﻟﺍ ﺩﻮﺟﻭ


ﺔﻘﻠﻄﻤﻟﺍ ﺓﺭﺍﺮﺤﻟﺍ ﺔﺟﺭﺩ ﺏﻮﻠﻘﻣﻭ( Log ic)<br />

ﻞﻛﺄﺘﻟﺍ ﺔﻋﺮﺳ ﻢﺘﻳﺭﺎﻏﻮﻟ ﻢﻴﻗ<br />

Energy ,Ea)<br />

ﻂﻴﺸﻨﺘﻟﺍ ﺔﻗﺎﻁ ﻢﻴﻗ ﺏﺎﺴﺣ ﺎﻬﻨﻣ ﻦﻜﻣﺃ ﻲﺘﻟﺍﻭ ( 1/T)<br />

( pre-exponential,A)ﻲﺳﻻﺍ<br />

ﺭﺍﺪﻘﻤﻟﺍ ﻕﻮﺒﺴﻣ ﻢﻴﻗﻭ ( Activation<br />

ﻦﻣ ﻦﻴﺒﺗ ﺎﻤﻛ( Entropy <strong>of</strong> Activation, ∆S≠)<br />

ﻲﺸﻨﺘﻟﺍ ﻲﺑﻭﺮﺘﻧﺍﻭ<br />

Log ) ﻲﺳﻻﺍ ﺭﺍﺪﻘﻤﻟﺍ ﻕﻮﺒﺴﻣ ﻢﺘﻳﺭﺎﻏﻮﻟ ﻦﻴﺑ ﺔﻴﻄﺧ ﺔﻓﻼﻋ ﺩﻮﺟﻭ ﺔﺳﺍﺭﺪﻟﺍ<br />

ﻥﺄﺑ ﺔﻴﻄﺨﻟﺍ ﺔﻗﻼﻌﻟﺍ ﻩﺬﻫ ﻝﺪﺗﻭ.ﺎﻬﻟ ﺓﺮﻅﺎﻨﻤﻟﺍ( Ea)<br />

ﻂﻴﺸﻨﺘﻟﺍ ﺔﻗﺎﻁ ﻢﻴﻗﻭ ( A<br />

ﺡﺍﻮﻟﺃ ﺝﺫﺎﻤﻧ ﺢﻄﺳ ﻰﻠﻋ ﺔﻨﻳﺎﺒﺘﻣ ﻊﻗﺍﻮﻣ ﻰﻠﻋ ﺙﺪﺤﻳ ﻞﻛﺄﺘﻟﺍ ﻞﻋﺎﻔﺗ<br />

ﻥﺃﻭ ﻂﻴﺸﻨﺘﻟﺍ ﺔﻗﺎﻁ ﻢﻴﻗ ﺚﻴﺣ ﻦﻣ ﺔﻴﻀﻣﺎﺤﻟﺍ ﺹﺎﺻﺮﻟﺍ ﺓﺪﻴﻀﻧ ﺕﺎﻧﺍﻮﻜﻣﻭ<br />

ﺮﺸﺘﻨﻳ ﻢﺛ ﺔﺌﻁﺍﻭ ﻂﻴﺸﻨﺗ ﺔﻗﺎﻄﺑ ﻊﺘﻤﺘﺗ ﻲﺘﻟﺍ ﻊﻗﺍﻮﻤﻟﺎﺑ ﻻﻭﺃ ﺍﺪﺒﻳ ﻞﻛﺄﺘﻟﺍ ﻞﻋﺎﻔﺗ<br />

.ﻰﻠﻋﺃ ﻂﻴﺸﻨﺗ ﺕﺎﻗﺎﻄﺑ ﻊﺘﻤﺘﺗ ﻲﺘﻟﺍ ﻊﻗﺍﻮﻤﻟﺍ ﻰﻟﺍ ﺎﻬﻨﻣ


ﺩﺍﺪﻐﺑ ﺔﻌﻣﺎﺟ<br />

ﻡﻮﻠﻌﻟﺍ ﺔﻴﻠﻛ<br />

ءﺎﻴﻤﻴﻜﻟﺍ ﻢﺴﻗ<br />

ﺔﻴﻀﻣﺎﺤﻟﺍ ﺹﺎﺻﺮﻟﺍ ﺓﺪﻴﻀﻧ ﺡﺍﻮﻟﺍ ﻞﻛﺂﺗ<br />

ﻲﻓ<br />

ﻚﻴﺘﻳﺮﺒﻜﻟﺍ ﺾﻣﺎﺣ<br />

ﻰﻟﺍ ﺔﻣﺪﻘﻣ ﺔﻟﺎﺳﺭ<br />

ﺔﺟﺭﺩ ﻞﻴﻧ ﺕﺎﺒﻠﻄﺘﻣ ﻦﻣ ءﺰﺠﻛ ﺩﺍﺪﻐﺑ ﺔﻌﻣﺎﺠﺑ ﻡﻮﻠﻌﻟﺍ ﺔﻴﻠﻛ<br />

ءﺎﻴﻤﻴﻜﻟﺍ ﻲﻓ ﻡﻮﻠﻋ ﺮﻴﺘﺴﺟﺎﻤﻟﺍ<br />

ــﻫ۱٤۲٥<br />

ﻞﺒﻗ ﻦﻣ<br />

ﺪـــــﻤﺣ<br />

ﻞﻛﺎﻛ ﺭﺎﻴﺘﺨﺑ<br />

ﺱﻮﻳﺭﻮﻟﺎﻜﺑ<br />

۲۰۰۰<br />

ﻥﺎﺒﻌﺷ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!