04.10.2012 Views

On the nature of ill-posedness of an inverse problem arising in option

On the nature of ill-posedness of an inverse problem arising in option

On the nature of ill-posedness of an inverse problem arising in option

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

INSTITUTE OF PHYSICS PUBLISHING INVERSE PROBLEMS<br />

Inverse Problems 19 (2003) 1319–1338 PII: S0266-5611(03)64786-6<br />

<strong>On</strong> <strong>the</strong> <strong>nature</strong> <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong> <strong>of</strong> <strong>an</strong> <strong><strong>in</strong>verse</strong> <strong>problem</strong><br />

<strong>aris<strong>in</strong>g</strong> <strong>in</strong> <strong>option</strong> pric<strong>in</strong>g<br />

1. Introduction<br />

Torsten He<strong>in</strong> <strong>an</strong>d Bernd H<strong>of</strong>m<strong>an</strong>n<br />

Faculty <strong>of</strong> Ma<strong>the</strong>matics, Technical University Chemnitz, D-09107 Chemnitz, Germ<strong>an</strong>y<br />

E-mail: Torsten.He<strong>in</strong>@ma<strong>the</strong>matik.tu-chemnitz.de <strong>an</strong>d<br />

Bernd.H<strong>of</strong>m<strong>an</strong>n@ma<strong>the</strong>matik.tu-chemnitz.de<br />

Received 11 June 2003, <strong>in</strong> f<strong>in</strong>al form 25 September 2003<br />

Published 24 October 2003<br />

<strong>On</strong>l<strong>in</strong>eat stacks.iop.org/IP/19/1319<br />

Abstract<br />

Inverse <strong>problem</strong>s <strong>in</strong> <strong>option</strong> pric<strong>in</strong>g are frequently regarded as simple <strong>an</strong>d<br />

resolved if a formula <strong>of</strong> Black–Scholes type def<strong>in</strong>es <strong>the</strong> forward operator.<br />

However, precisely because <strong>the</strong> structure <strong>of</strong> such <strong>problem</strong>s is straightforward,<br />

<strong>the</strong>y may serve as benchmark <strong>problem</strong>s for study<strong>in</strong>g <strong>the</strong> <strong>nature</strong> <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong><br />

<strong>an</strong>d <strong>the</strong> impact <strong>of</strong> data smoothness <strong>an</strong>d no arbitrage on solution properties. In<br />

this paper, we <strong>an</strong>alyse <strong>the</strong> <strong><strong>in</strong>verse</strong> <strong>problem</strong> (IP) <strong>of</strong> calibrat<strong>in</strong>g a purely timedependent<br />

volatility function from a term-structure <strong>of</strong> <strong>option</strong> prices by solv<strong>in</strong>g<br />

<strong>an</strong> <strong>ill</strong>-posed nonl<strong>in</strong>ear operator equation <strong>in</strong> spaces <strong>of</strong> cont<strong>in</strong>uous <strong>an</strong>d power<strong>in</strong>tegrable<br />

functions over a f<strong>in</strong>ite <strong>in</strong>terval. The forward operator <strong>of</strong> <strong>the</strong> IP under<br />

consideration is decomposed <strong>in</strong>to <strong>an</strong> <strong>in</strong>ner l<strong>in</strong>ear convolution operator <strong>an</strong>d <strong>an</strong><br />

outer nonl<strong>in</strong>ear Nemytskii operator given by a Black–Scholes function. The<br />

<strong>in</strong>version <strong>of</strong> <strong>the</strong> outer operator leads to <strong>an</strong> <strong>ill</strong>-<strong>posedness</strong> effect localized at<br />

small times, whereas <strong>the</strong> <strong>in</strong>ner differentiation <strong>problem</strong> is <strong>ill</strong> posed <strong>in</strong> a global<br />

m<strong>an</strong>ner. Several aspects <strong>of</strong> regularization <strong>an</strong>d <strong>the</strong>ir properties are discussed. In<br />

particular, a detailed <strong>an</strong>alysis <strong>of</strong> local <strong>ill</strong>-<strong>posedness</strong> <strong>an</strong>d Tikhonov regularization<br />

<strong>of</strong> <strong>the</strong> complete IP <strong>in</strong>clud<strong>in</strong>g convergence rates is given <strong>in</strong> a Hilbert space sett<strong>in</strong>g.<br />

Abrief numerical case study on syn<strong>the</strong>tic data <strong>ill</strong>ustrates <strong>an</strong>d completes <strong>the</strong><br />

paper.<br />

The past ten years c<strong>an</strong> be considered as a very active period <strong>in</strong> develop<strong>in</strong>g <strong>the</strong> practice <strong>of</strong><br />

pric<strong>in</strong>g structured f<strong>in</strong><strong>an</strong>cial <strong>in</strong>struments <strong>in</strong> <strong>the</strong> context <strong>of</strong> modern risk m<strong>an</strong>agement. This<br />

was also <strong>the</strong> reason for a dramatically grow<strong>in</strong>g <strong>in</strong>terest <strong>in</strong> derivative pric<strong>in</strong>g <strong>the</strong>ory as <strong>an</strong><br />

actual part <strong>of</strong> f<strong>in</strong><strong>an</strong>cial ma<strong>the</strong>matics. Proceed<strong>in</strong>g from <strong>the</strong> basic papers <strong>of</strong> Black, Scholes<br />

<strong>an</strong>d Merton [6, 31] stochastic calculus comb<strong>in</strong>ed with adv<strong>an</strong>ced numerical techniques could<br />

be applied successfully for <strong>the</strong> fair price calculation <strong>of</strong> <strong>option</strong>s <strong>an</strong>do<strong>the</strong>rf<strong>in</strong><strong>an</strong>cial derivatives<br />

written on <strong>an</strong> underly<strong>in</strong>g asset <strong>in</strong> arbitrage-free markets (see, for example, [5, 26, 29] <strong>an</strong>d [33]).<br />

0266-5611/03/061319+20$30.00 © 2003 IOP Publish<strong>in</strong>g Ltd Pr<strong>in</strong>ted <strong>in</strong> <strong>the</strong> UK 1319


1320 THe<strong>in</strong><strong>an</strong>dBH<strong>of</strong>m<strong>an</strong>n<br />

There also occur <strong><strong>in</strong>verse</strong> <strong>option</strong> pric<strong>in</strong>g<strong>problem</strong>s aimed at calibrat<strong>in</strong>g (identify<strong>in</strong>g) not<br />

directly observable volatilities σ <strong>in</strong> general as functions depend<strong>in</strong>g on time τ <strong>an</strong>d current<br />

asset price X from <strong>option</strong> prices u observed at <strong>the</strong> f<strong>in</strong><strong>an</strong>cial market. In particular, <strong>the</strong><br />

ma<strong>the</strong>matical background <strong>of</strong> <strong>the</strong> so-called volatility smile phenomenon <strong>of</strong> strike-dependent<br />

implied volatilities is underconsideration. Research results concern<strong>in</strong>g <strong><strong>in</strong>verse</strong> <strong>problem</strong>s (IPs)<br />

<strong>of</strong> <strong>option</strong> pric<strong>in</strong>g have been <strong>in</strong>tensively published <strong>in</strong> recent years (see, e.g., [3, 7, 8, 10–13]<br />

<strong>an</strong>d [30]). Most <strong>of</strong> <strong>the</strong> papers remark on <strong>an</strong>d motivate <strong>the</strong> fact that <strong>the</strong> IPs under consideration<br />

are <strong>ill</strong> posed <strong>in</strong> Hadamard’s sense. Frequently <strong>the</strong>y discuss regularizationapproaches for stable<br />

solutions <strong>of</strong> <strong>the</strong> IPs without <strong>an</strong>alys<strong>in</strong>g <strong>the</strong> <strong>ill</strong>-<strong>posedness</strong> phenomena <strong>of</strong> such <strong>problem</strong>s <strong>in</strong> detail.<br />

Inverse <strong>problem</strong>s <strong>in</strong> <strong>option</strong> pric<strong>in</strong>g are frequently regarded as simple <strong>an</strong>d resolved if a<br />

formula <strong>of</strong> Black–Scholes type def<strong>in</strong>es <strong>the</strong> forward operator, as <strong>in</strong> <strong>the</strong> case <strong>of</strong> a const<strong>an</strong>t<br />

volatility, where <strong>the</strong> classical Black–Scholes formula holds. Also purely time-dependent<br />

volatility functions <strong>in</strong> comb<strong>in</strong>ation with families <strong>of</strong> maturity-dependent <strong>option</strong> prices do not<br />

seem to be <strong>of</strong> much <strong>in</strong>terest, s<strong>in</strong>ce <strong>the</strong> model is ra<strong>the</strong>r restricted. But precisely because <strong>the</strong><br />

structure <strong>of</strong> such <strong>problem</strong>s is straightforward, <strong>the</strong>y may serve as benchmark <strong>problem</strong>s for<br />

study<strong>in</strong>g several <strong>ill</strong>-<strong>posedness</strong> phenomena occurr<strong>in</strong>g <strong>in</strong> <strong><strong>in</strong>verse</strong> <strong>option</strong> pric<strong>in</strong>g <strong>problem</strong>s. In<br />

this paper, based on <strong>the</strong> prelim<strong>in</strong>ary studies <strong>in</strong> [16] <strong>an</strong>d [21], we try to f<strong>ill</strong> a gap <strong>in</strong> <strong>the</strong> literature<br />

by <strong>an</strong>alys<strong>in</strong>g <strong>ill</strong>-posed situations <strong>an</strong>d additionalconditions enforc<strong>in</strong>g well-posed sub<strong>problem</strong>s<br />

associated with time-dependent <strong>option</strong> price <strong>an</strong>d volatility functions <strong>in</strong> spaces <strong>of</strong> cont<strong>in</strong>uous<br />

<strong>an</strong>d power-<strong>in</strong>tegrable functions over a f<strong>in</strong>ite time <strong>in</strong>terval. This also provides <strong>an</strong> <strong>in</strong>sight <strong>in</strong>to<br />

<strong>the</strong> impact <strong>of</strong> data smoothness <strong>an</strong>d no arbitrage on solution properties <strong>an</strong>d <strong>in</strong>to <strong>the</strong> s<strong>in</strong>gular<br />

character <strong>of</strong> at-<strong>the</strong>-money <strong>option</strong>s. Nei<strong>the</strong>r phenomenon becomes apparent if one considers<br />

asset price-dependent volatilities <strong>an</strong>d strike-dependent <strong>option</strong> prices. We believe that <strong>the</strong><br />

<strong>an</strong>alysis <strong>of</strong> <strong>the</strong> purely time-dependent case is import<strong>an</strong>t as <strong>an</strong> <strong>in</strong>termediary step towards <strong>the</strong><br />

more general<strong>problem</strong> <strong>of</strong> fitt<strong>in</strong>g <strong>the</strong> volatility smile as a whole.<br />

The paper is org<strong>an</strong>ized as follows: <strong>in</strong> <strong>the</strong> rema<strong>in</strong><strong>in</strong>g part <strong>of</strong> <strong>the</strong> <strong>in</strong>troduction we formulate<br />

<strong>in</strong> <strong>the</strong> context <strong>of</strong> time-dependent functions <strong>the</strong> <strong>option</strong> price formula us<strong>in</strong>g <strong>the</strong> Black–Scholes<br />

function <strong>an</strong>d def<strong>in</strong>e <strong>the</strong> specific IP under consideration. The IP consists <strong>of</strong> solv<strong>in</strong>g a nonl<strong>in</strong>ear<br />

operator equation <strong>in</strong> B<strong>an</strong>ach spaces <strong>of</strong> real functions def<strong>in</strong>ed on a f<strong>in</strong>ite <strong>in</strong>terval. The<br />

solution process is decomposed <strong>in</strong>to solv<strong>in</strong>g a nonl<strong>in</strong>ear outer operator equation by <strong>in</strong>vert<strong>in</strong>g<br />

aNemytskiioperator <strong>an</strong>d solv<strong>in</strong>g a l<strong>in</strong>ear <strong>in</strong>ner operator equation by differentiation. Ma<strong>in</strong><br />

properties <strong>of</strong> <strong>the</strong> used Black–Scholes function <strong>an</strong>d Nemytskii operator are summarized <strong>in</strong><br />

section 2. Based on those properties section 3 deals with <strong>the</strong> solution <strong>of</strong> <strong>the</strong> outer equation<br />

<strong>of</strong> <strong>the</strong> IP for smooth <strong>option</strong> data <strong>in</strong> spaces <strong>of</strong> cont<strong>in</strong>uous functions. Both <strong>ill</strong>-posed <strong>an</strong>d, <strong>in</strong> <strong>the</strong><br />

case <strong>of</strong> arbitrage-free data, well-posed situations occur for this outer equation, whereas <strong>the</strong><br />

<strong>in</strong>ner equation act<strong>in</strong>g as numerical differentiation is always <strong>ill</strong> posed. In section 4 we consider<br />

quasisolutions <strong>of</strong> <strong>the</strong> outer equation <strong>of</strong> <strong>the</strong> IP <strong>an</strong>d <strong>the</strong>ir properties <strong>in</strong> <strong>the</strong> case <strong>of</strong> noisy data <strong>in</strong><br />

L p-spaces. Section 5 is devoted to <strong>the</strong> study <strong>of</strong> local <strong>ill</strong>-<strong>posedness</strong> properties <strong>of</strong> <strong>the</strong> complete<br />

<strong>ill</strong>-posed nonl<strong>in</strong>ear IP <strong>in</strong> a Hilbert space sett<strong>in</strong>g by consider<strong>in</strong>g <strong>the</strong> character <strong>of</strong> convergence<br />

conditions for <strong>the</strong> Tikhonov regularization. A brief case study discussion <strong>of</strong> a discrete approach<br />

<strong>in</strong> section 6 <strong>ill</strong>ustrates <strong>an</strong>d completes <strong>the</strong> paper.<br />

We consider <strong>in</strong> this paper a vari<strong>an</strong>t <strong>of</strong> <strong>the</strong> Black–Scholes model, which is focused on timedependent<br />

functions over <strong>the</strong> <strong>in</strong>terval [0, T ]us<strong>in</strong>gageneralized geometric Browni<strong>an</strong> motion<br />

as stochastic process for <strong>the</strong> price X (τ) > 0<strong>of</strong><strong>an</strong>asset, on which <strong>option</strong>s are written. With<br />

const<strong>an</strong>t drift µ ∈ R, time-dependent volatilities σ(τ) > 0<strong>an</strong>dast<strong>an</strong>dard Wiener process<br />

W(τ), <strong>the</strong>stochastic differential equation<br />

dX (τ)<br />

= µ dτ + σ(τ)dW(τ) (0 � τ � T )<br />

X (τ)


<strong>On</strong> <strong>the</strong> <strong>nature</strong> <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong> <strong>of</strong> <strong>an</strong> <strong><strong>in</strong>verse</strong> <strong>problem</strong> <strong>aris<strong>in</strong>g</strong> <strong>in</strong> <strong>option</strong> pric<strong>in</strong>g 1321<br />

is assumed to hold. At <strong>the</strong> <strong>in</strong>itial time τ = 0let<strong>the</strong>re exist <strong>an</strong> idealized family <strong>of</strong> Europe<strong>an</strong><br />

v<strong>an</strong><strong>ill</strong>a call <strong>option</strong>s written on <strong>the</strong> asset with current asset price X := X (0) >0, fixed strike<br />

K > 0, fixed risk-free <strong>in</strong>terest rate r � 0<strong>an</strong>drema<strong>in</strong><strong>in</strong>g times to maturity t cont<strong>in</strong>uously<br />

vary<strong>in</strong>g between zero <strong>an</strong>d <strong>the</strong> upper time limit T .<br />

Neglect<strong>in</strong>g <strong>the</strong> role <strong>of</strong> dividends <strong>an</strong>d sett<strong>in</strong>g for simplicity<br />

a(τ) := σ 2 (τ) (0 � τ � T ) <strong>an</strong>d S(t) :=<br />

� t<br />

0<br />

a(τ) dτ (0 � t � T )<br />

it follows from stochastic <strong>an</strong>d <strong>an</strong>alytic considerations (for details see, e.g., [29, p 71f.]) that<br />

fair <strong>option</strong> prices u(t) on arbitrage-free markets are explicitly given by <strong>the</strong> Black–Scholes-type<br />

formula<br />

u(t) = UBS(X, K, r, t, S(t)) (0 � t � T ). (1)<br />

This formula is based on <strong>the</strong> Black–Scholes function UBS,whichwec<strong>an</strong> def<strong>in</strong>e for <strong>the</strong> variables<br />

X > 0, K > 0, r � 0, τ � 0<strong>an</strong>ds� 0as<br />

�<br />

X�(d1) − K e<br />

UBS(X, K, r,τ,s) :=<br />

−rτ �(d2) (s > 0)<br />

max(X − K e −rτ (2)<br />

, 0) (s = 0)<br />

with<br />

d1 :=<br />

ln( X<br />

K<br />

s ) + rτ + 2<br />

√ , d2 := d1 −<br />

s<br />

√ s (3)<br />

<strong>an</strong>d <strong>the</strong> cumulative density function <strong>of</strong> <strong>the</strong> st<strong>an</strong>dard normal distribution<br />

�(z) := 1<br />

√ 2π<br />

� z<br />

−∞<br />

x2<br />

−<br />

e 2 dx. (4)<br />

In <strong>the</strong> follow<strong>in</strong>g we always express <strong>the</strong> volatility term structure <strong>of</strong> <strong>the</strong> underly<strong>in</strong>g asset<br />

by <strong>the</strong> not directly observable volatility function a. Although <strong>the</strong> formulae (1)–(4) were<br />

orig<strong>in</strong>ally derived only for positive <strong>an</strong>d Hölder cont<strong>in</strong>uous functions a, <strong>the</strong>seformulae also<br />

yield well def<strong>in</strong>ed non-negative functions u(t) (0 � t � T ) <strong>in</strong> <strong>the</strong> case <strong>of</strong> not necessarily<br />

cont<strong>in</strong>uous but Lebesgue-<strong>in</strong>tegrable <strong>an</strong>d almost everywhere f<strong>in</strong>ite <strong>an</strong>d non-negative functions<br />

a(τ) (0 � τ � T ). Namely, such functions a have non-negative <strong>an</strong>d absolutely cont<strong>in</strong>uous<br />

primitives S(t) (0 � t � T ), which imply non-negative functions u as a consequence <strong>of</strong> <strong>the</strong><br />

properties <strong>of</strong> <strong>the</strong> function UBS listed <strong>in</strong> lemma 2.1 below.<br />

Now let <strong>the</strong>re be given at time τ = 0adata function u δ (t) (0 � t � T ) <strong>of</strong> observed<br />

call <strong>option</strong> prices as noisy data <strong>of</strong> <strong>the</strong> fair price function u(t) (0 � t � T ) accord<strong>in</strong>g to<br />

formula (1) with a noise level δ � 0. Then we c<strong>an</strong> formulate <strong>the</strong> IP under consideration aimed<br />

at calibrat<strong>in</strong>g <strong>the</strong> volatility function a as follows.<br />

Def<strong>in</strong>ition 1.1 (Inverse <strong>problem</strong>—IP). Under <strong>the</strong> assumptions stated above f<strong>in</strong>d at time<br />

τ = 0 <strong>the</strong> time-dependent volatility function a(τ) (0 � τ � T ) from noisy observations<br />

u δ (t) (0 � t � T ) <strong>of</strong> <strong>the</strong> maturity-dependent fair price function u(t) (0 � t � T ).<br />

2. Black–Scholes function <strong>an</strong>d Nemytskii operators<br />

We first summarize <strong>the</strong> ma<strong>in</strong> properties <strong>of</strong> <strong>the</strong> Black–Scholes function UBS def<strong>in</strong>ed by <strong>the</strong><br />

formulae (2)–(4). The results <strong>of</strong> <strong>the</strong> follow<strong>in</strong>g lemma c<strong>an</strong> be proven straightforwardly by<br />

elementary calculations.


1322 THe<strong>in</strong><strong>an</strong>dBH<strong>of</strong>m<strong>an</strong>n<br />

Lemma 2.1. Let <strong>the</strong> parameters X > 0, K > 0 <strong>an</strong>d r � 0 be fixed. Then <strong>the</strong> nonnegative<br />

function UBS(X, K, r,τ,s) is cont<strong>in</strong>uous for (τ, s) ∈ [0, ∞) × [0, ∞). Moreover, for<br />

(τ, s) ∈ [0, ∞) × (0, ∞),this function is cont<strong>in</strong>uously differentiable with respect to τ,where<br />

we have<br />

∂UBS(X, K, r,τ,s)<br />

= rKe<br />

∂τ<br />

−rτ �(d2) � 0,<br />

<strong>an</strong>d twice cont<strong>in</strong>uously differentiable with respect to s, where we have with ν := ln(<br />

(5)<br />

X<br />

K )<br />

∂UBS(X, K, r,τ,s)<br />

= �<br />

∂s<br />

′ (d1)X 1<br />

2 √ s<br />

X<br />

=<br />

2 √ 2πs exp<br />

�<br />

[ν + rτ]2 [ν + rτ]<br />

− − −<br />

2s 2<br />

s<br />

�<br />

> 0<br />

8<br />

(6)<br />

<strong>an</strong>d<br />

∂2UBS(X, K, r,τ,s)<br />

∂s 2<br />

=−� ′ (d1)X 1<br />

4 √ �<br />

[ν + rτ]2<br />

−<br />

s s2 + 1<br />

�<br />

1<br />

+<br />

4 s<br />

=−<br />

X<br />

4 √ �<br />

[ν + rτ]2<br />

−<br />

2πs s2 + 1<br />

� �<br />

1 [ν + rτ]2 [ν + rτ]<br />

+ exp − − −<br />

4 s<br />

2s 2<br />

s<br />

�<br />

.<br />

8<br />

(7)<br />

Fur<strong>the</strong>rmore, we f<strong>in</strong>d <strong>the</strong> limit conditions<br />

�<br />

∂UBS(X, K, r,τ,s) ∞<br />

lim<br />

=<br />

s→0 ∂s<br />

0<br />

−rτ (X = K e )<br />

(X �= K e−rτ <strong>an</strong>d<br />

)<br />

(8)<br />

lim<br />

s→∞ UBS(X, K, r,τ,s) = X.<br />

<strong>On</strong> <strong>the</strong> o<strong>the</strong>r h<strong>an</strong>d, <strong>the</strong> partial derivative<br />

(9)<br />

∂UBS(X, K, r,τ,s)<br />

=−e<br />

∂ K<br />

−rτ �(d2) 0forall(τ, s) ∈ [0, T ]×(0, ∞)<br />

∂s<br />

<strong>an</strong>d hence <strong>the</strong> follow<strong>in</strong>g lemma.<br />

Lemma 2.2. The Nemytskii operator N def<strong>in</strong>ed by formulae (11) <strong>an</strong>d (12) is <strong>in</strong>jective on its<br />

doma<strong>in</strong> D+.<br />

In general (see, e.g., [1, p 15]), a Nemytskii operator N : v(t) ↦→ k(t,v(t)) applied<br />

to real-valued scalar functions v(t) is def<strong>in</strong>ed by a kernel function k(t, s), wheret varies<br />

<strong>in</strong> a f<strong>in</strong>ite <strong>in</strong>terval I ⊂ R <strong>an</strong>d s varies <strong>in</strong> R. If s ↦→ k(t, s) is cont<strong>in</strong>uous for almost<br />

every t ∈ I <strong>an</strong>d t ↦→ k(t, s) is measurable for all s ∈ R, <strong>the</strong> Nemytskii operator<br />

satisfies <strong>the</strong> Carathéodory condition. If<strong>the</strong>Nemytskii operator moreover satisfies a growth


<strong>On</strong> <strong>the</strong> <strong>nature</strong> <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong> <strong>of</strong> <strong>an</strong> <strong><strong>in</strong>verse</strong> <strong>problem</strong> <strong>aris<strong>in</strong>g</strong> <strong>in</strong> <strong>option</strong> pric<strong>in</strong>g 1323<br />

condition |k(t, s)| � c1 + c2|s| p/q with positive const<strong>an</strong>ts c1 <strong>an</strong>d c2,<strong>the</strong>n it maps cont<strong>in</strong>uously<br />

from L p (I) to Lq (I) for 1 � p, q < ∞ (see, e,g, [1, <strong>the</strong>orem 2.2]). In <strong>the</strong> context <strong>of</strong><br />

formula (11) we set I := [0, T ]<strong>an</strong>d<br />

k(t, s) := UBS(X, K, r, t, s) (s�0), k(t, s) := UBS(X, K, r, t, 0) (s < 0).<br />

From lemma 2.1 it follows that <strong>the</strong> function UBS(X, K, r, t, s) generat<strong>in</strong>g <strong>the</strong> Nemytskii<br />

operator N is cont<strong>in</strong>uous <strong>an</strong>d uniformly bounded with |UBS(X, K, r, t, s)| < X due to <strong>the</strong><br />

formulae (6) <strong>an</strong>d (9) for all (t, s) ∈ [0, T ] × [0, ∞). Then<strong>the</strong> Carathéodory condition <strong>an</strong>d a<br />

growth condition are satisfied <strong>an</strong>d we have cont<strong>in</strong>uity <strong>of</strong> N between spaces <strong>of</strong> power-<strong>in</strong>tegrable<br />

functions on <strong>the</strong> <strong>in</strong>terval [0, T ]as<strong>the</strong>follow<strong>in</strong>g lemma asserts.<br />

Lemma 2.3. The Nemytskii operator N def<strong>in</strong>ed by formula (11) with doma<strong>in</strong> D+ ∩ L p (0, T )<br />

maps cont<strong>in</strong>uously from L p (0, T ) to L q (0, T ) for all 1 � p, q < ∞.<br />

As obvious throughout this paper we denote by L p (a, b) (1 � p < ∞) <strong>the</strong> B<strong>an</strong>ach<br />

space <strong>of</strong> p-power <strong>in</strong>tegrable real functions x(t) (a � t � b) with <strong>the</strong> norm �x�L p (a,b) :=<br />

( � b<br />

a |x(t)|p dt) 1/p ,byL∞ (a, b) <strong>the</strong> B<strong>an</strong>ach space <strong>of</strong> essentially bounded real functions on<br />

<strong>the</strong> <strong>in</strong>terval (a, b) with <strong>the</strong> norm �x�L ∞ (a,b) := ess sup t∈(a,b) |x(t)| <strong>an</strong>d by C[a, b] <strong>the</strong><br />

B<strong>an</strong>ach space <strong>of</strong> cont<strong>in</strong>uous real functions def<strong>in</strong>ed on [a, b] with <strong>the</strong> norm �x�C[a,b] :=<br />

maxt∈[a,b] |x(t)|.<br />

If we restrict <strong>the</strong> doma<strong>in</strong> <strong>of</strong> N to <strong>the</strong> set<br />

D0 := {v ∈ C[0, T ]:v(0) = 0,v(t) � 0 (0 < t � T )},<br />

<strong>the</strong>n because <strong>of</strong> lemma 2.1 we have<br />

N : D0 ⊂ C[0, T ] −→ D+ ∩ C[0, T ].<br />

Us<strong>in</strong>g <strong>the</strong> substitutions w := � v<br />

t as well as �(t,w) := UBS(X, K, r, t,v) we derive for all<br />

t > 0<strong>an</strong>dw>0<br />

0 < ∂�(t,w)<br />

∂w<br />

= X √ t� ′ ( ¯d1) � X√ t<br />

√ 2π<br />

with<br />

X<br />

w2<br />

ln(<br />

¯d1<br />

K ) + t(r + 2<br />

:= )<br />

√ .<br />

tw<br />

Consequently, for functions v1,v2,w1,w2 ∈ D0 with vi(t) = tw2 i (t) (i = 1, 2) <strong>the</strong>re are<br />

po<strong>in</strong>twise estimations<br />

� �<br />

�<br />

|[N(v1)](t) − [N(v2)](t)| � �<br />

∂�(t,wt) �<br />

�<br />

1<br />

�<br />

�<br />

� ∂w �√<br />

�<br />

t<br />

� v1(t) − � �<br />

�<br />

v2(t) � (0 < t � T )<br />

with <strong>an</strong> <strong>in</strong>termediate value wt between w1(t) <strong>an</strong>d w2(t) <strong>an</strong>d<br />

|[N(v1)](t) − [N(v2)](t)| � X<br />

�<br />

�<br />

√ �<br />

2π<br />

� v1(t) − � �<br />

�<br />

v2(t) � (0 � t � T ). (13)<br />

From (13) we directly obta<strong>in</strong> <strong>the</strong> follow<strong>in</strong>g.<br />

Lemma 2.4. The Nemytskii operator N def<strong>in</strong>ed by formula (11) with doma<strong>in</strong> D0 maps<br />

cont<strong>in</strong>uously from C[0, T ] to C[0, T ].<br />

If we denote by B1, B2 <strong>an</strong>d B3 B<strong>an</strong>ach spaces <strong>of</strong> functions def<strong>in</strong>ed on <strong>the</strong> <strong>in</strong>terval [0, T ],<br />

<strong>the</strong>n we c<strong>an</strong> write <strong>the</strong> IP as a nonl<strong>in</strong>ear operator equation<br />

F(a) = u (a ∈ D(F) ⊂ B1, u ∈ D+ ∩ B2), (14)


1324 THe<strong>in</strong><strong>an</strong>dBH<strong>of</strong>m<strong>an</strong>n<br />

where <strong>the</strong> nonl<strong>in</strong>ear operator<br />

F = N ◦ J : D(F) ⊂ B1 −→ B2<br />

with doma<strong>in</strong><br />

D(F) := {ã ∈ L 1 (0, T ) ∩ B1 : ã(t) � 0a.e.<strong>in</strong>[0, T ]}<br />

is decomposed <strong>in</strong>to <strong>the</strong> <strong>in</strong>ner l<strong>in</strong>ear convolution operator J : B1 −→ B3 with<br />

[J(h)](t) :=<br />

� t<br />

0<br />

h(τ) dτ (0 � t � T ) (15)<br />

<strong>an</strong>d <strong>the</strong> outer nonl<strong>in</strong>ear Nemytskii operator N : D+ ∩ B3 ⊂ B3 −→ B2 def<strong>in</strong>ed by (11).<br />

Consequently, <strong>the</strong> <strong>problem</strong> <strong>of</strong> solv<strong>in</strong>g <strong>the</strong> operator equation (14) c<strong>an</strong> be decomposed <strong>in</strong>to<br />

solv<strong>in</strong>g, successively, <strong>the</strong> nonl<strong>in</strong>ear outer operator equation<br />

N(S) = u (S ∈ D+ ∩ B3, u ∈ D+ ∩ B2) (16)<br />

<strong>an</strong>d <strong>the</strong> l<strong>in</strong>ear <strong>in</strong>ner operator equation<br />

J(a) = S (a ∈ D(F) ⊂ B1, S ∈ D+ ∩ B3). (17)<br />

For our doma<strong>in</strong> D(F), allfunctions <strong>of</strong> <strong>the</strong> r<strong>an</strong>ge J(D(F)) are absolutely cont<strong>in</strong>uous, nonnegative<br />

<strong>an</strong>d nondecreas<strong>in</strong>g <strong>an</strong>d belong to <strong>the</strong> set<br />

D ↗<br />

0 := {˜S ∈ C[0, T ]: ˜S(0) = 0, ˜S(t1) � ˜S(t2)(0 � t1 < t2 � T )} ⊂D0 ⊂ D+.<br />

Therefore <strong>the</strong> <strong>in</strong>ner equation (17) is only solvable if <strong>the</strong> solution S <strong>of</strong> <strong>the</strong> outer equation (16)<br />

belongs to D ↗<br />

0 .<br />

Note that <strong>the</strong> composition F = N ◦ J under consideration <strong>in</strong> this paper is reverse to <strong>the</strong><br />

situation discussed <strong>in</strong> [27, chapter 7.5], where as occurr<strong>in</strong>g <strong>in</strong> <strong>the</strong> case <strong>of</strong> Hammerste<strong>in</strong> <strong>in</strong>tegral<br />

equations nonl<strong>in</strong>ear composite operators ˜F = A ◦ N with <strong>an</strong> <strong>in</strong>ner Nemytskii<strong>an</strong>d <strong>an</strong> outer<br />

bounded l<strong>in</strong>ear operator A are <strong>an</strong>alysed.<br />

To solve forward <strong>problem</strong>s <strong>of</strong> comput<strong>in</strong>g maturity-dependent price functions û(t) :=<br />

UBS( ˆX, ˆK , ˆr, t, S(t)) (0 � t � T ) <strong>of</strong> Europe<strong>an</strong> v<strong>an</strong><strong>ill</strong>a call <strong>option</strong>s with vary<strong>in</strong>g parameters<br />

ˆX, ˆK <strong>an</strong>d ˆr based on <strong>the</strong> solution <strong>of</strong> <strong>the</strong> IP it is sufficient to determ<strong>in</strong>e <strong>the</strong> auxiliary function<br />

S from <strong>the</strong> outer equation (16). In view <strong>of</strong> <strong>the</strong> cont<strong>in</strong>uity <strong>of</strong> Nemytskii operators N under<br />

consideration here (see lemma 2.4), <strong>the</strong> <strong>problem</strong>s <strong>of</strong> f<strong>in</strong>d<strong>in</strong>g û from S are well posed if we<br />

measure <strong>the</strong> deviations <strong>of</strong> S <strong>an</strong>d û <strong>in</strong> <strong>the</strong> maximum norm. <strong>On</strong> <strong>the</strong> o<strong>the</strong>r h<strong>an</strong>d, <strong>the</strong> volatility<br />

function a(t) (0 � t � T ) itself is not used explicitly for comput<strong>in</strong>g û. As <strong>the</strong> subsequent<br />

section w<strong>ill</strong> show, this is <strong>an</strong> adv<strong>an</strong>tage. Namely, for arbitrage-free <strong>option</strong> data uδ <strong>of</strong> <strong>the</strong> fair<br />

price function u <strong>the</strong> outer equation (16) is well posed <strong>in</strong> a C-space sett<strong>in</strong>g. However, <strong>the</strong> <strong>in</strong>ner<br />

equation (17) aimed at f<strong>in</strong>d<strong>in</strong>g <strong>the</strong> derivative a(t) = S ′ (t) (0 � t � T ) <strong>of</strong> <strong>the</strong> function S is <strong>ill</strong><br />

posed <strong>in</strong> usual B<strong>an</strong>ach spaces B1 <strong>an</strong>d B3 <strong>of</strong> <strong>in</strong>tegrable or cont<strong>in</strong>uous functions on <strong>the</strong> <strong>in</strong>terval<br />

[0, T ]<strong>an</strong>dleads to <strong>ill</strong>-conditioned <strong>problem</strong>s after discretization (see, e.g., [18]). In <strong>the</strong> Hilbert<br />

space sett<strong>in</strong>g B1 = B3 = L2 (0, T ) <strong>the</strong> differentiation <strong>problem</strong> is weakly <strong>ill</strong> posed <strong>an</strong>d has <strong>an</strong><br />

<strong>ill</strong>-<strong>posedness</strong> degree <strong>of</strong> one (see, e.g., [28, p 235] <strong>an</strong>d [22, p 33ff]).<br />

Note that for <strong>the</strong> practitioners it is preferably <strong>of</strong> <strong>in</strong>terest to solve <strong>the</strong> complete IP, s<strong>in</strong>ce<br />

<strong>the</strong> calibration <strong>of</strong> volatility functions a is required for pric<strong>in</strong>g Americ<strong>an</strong> or exotic <strong>option</strong>s by<br />

solv<strong>in</strong>g <strong>in</strong>itial boundary value <strong>problem</strong>s <strong>of</strong> parabolic PDEs, where <strong>the</strong> volatilities occur as<br />

parameters <strong>in</strong> <strong>the</strong> differential equation. The stable approximate solution <strong>of</strong> <strong>the</strong> overall IP is<br />

discussed <strong>in</strong> section5below.<br />

Throughout this paper we only <strong>an</strong>alyse <strong>the</strong> IP for calls. S<strong>in</strong>ce out-<strong>of</strong>-<strong>the</strong>-money <strong>option</strong><br />

prices are more <strong>in</strong>formative regard<strong>in</strong>g <strong>the</strong> unknown volatilities th<strong>an</strong> <strong>in</strong>-<strong>the</strong>-money <strong>option</strong> prices,<br />

it could be helpful to calibrate fromreal data <strong>of</strong> put <strong>option</strong>s <strong>in</strong> <strong>the</strong> case X > K .S<strong>in</strong>ceforcall<br />

prices ucall <strong>an</strong>d associated put prices uput with fixed parameters X, K, r <strong>an</strong>d <strong>the</strong> same maturity<br />

t <strong>the</strong> usual put–call parity relation uput(t) = ucall(t) − X + K e−rt holds (see, e.g., [29, p 121]),<br />

<strong>the</strong> results <strong>of</strong> <strong>the</strong> call <strong>an</strong>alysis c<strong>an</strong> be easily tr<strong>an</strong>sformed to <strong>the</strong> put case.


<strong>On</strong> <strong>the</strong> <strong>nature</strong> <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong> <strong>of</strong> <strong>an</strong> <strong><strong>in</strong>verse</strong> <strong>problem</strong> <strong>aris<strong>in</strong>g</strong> <strong>in</strong> <strong>option</strong> pric<strong>in</strong>g 1325<br />

3. Solv<strong>in</strong>g <strong>the</strong> outer equation <strong>of</strong> <strong>the</strong> IP <strong>in</strong> C-spaces for smooth <strong>an</strong>d arbitrage-free <strong>option</strong><br />

data<br />

In this section we are go<strong>in</strong>g to solve with B2 = B3 = C[0, T ]<strong>the</strong>outer equation (16) <strong>of</strong> <strong>the</strong><br />

IP for a given function uδ (t) (0 � t � T ) <strong>of</strong> observed <strong>option</strong> price data that approximate <strong>the</strong><br />

fair price function u = F(a) = N(S). Let <strong>the</strong> admissible volatility functions possess <strong>in</strong> <strong>the</strong><br />

follow<strong>in</strong>g a positive essential <strong>in</strong>fimum, i.e., we assume a ∈ D∗ (F),where<br />

D ∗ (F) := {ã ∈ L 1 (0, T ) :ess<strong>in</strong>fã(t)<br />

>0}.<br />

t∈(0,T )<br />

Moreover, let <strong>the</strong> data uδ satisfy <strong>the</strong> follow<strong>in</strong>g assumption, which is reasonable for data <strong>in</strong> <strong>an</strong><br />

arbitrage-free market (see, e.g., [31]).<br />

Assumption 3.1. The data function uδ (t)(0 � t � T ) is assumed to be cont<strong>in</strong>uous <strong>an</strong>d strictly<br />

<strong>in</strong>creas<strong>in</strong>g with<br />

u δ (0) = max(X − K, 0), max(X − K e −rt , 0) 0<br />

∂t<br />

∂s<br />

is cont<strong>in</strong>uous <strong>in</strong> both variables t <strong>an</strong>d s, nondecreas<strong>in</strong>g with respect to t <strong>an</strong>d strictly <strong>in</strong>creas<strong>in</strong>g<br />

with respect to s for (t, s) ∈ [0, T ] × (0, ∞). Moreover, we have for all t ∈ (0, T ]<br />

lim<br />

s→0 k(t, s) = k(t, 0) = max(X − K e−rt , 0) < lim k(t, s) = X<br />

s→∞<br />

(see <strong>the</strong> formulae (2) <strong>an</strong>d (9)). S<strong>in</strong>ce <strong>the</strong> data uδ with uδ (t) � uδ (T )(0 � t � T ) satisfy <strong>the</strong><br />

condition (18), from <strong>the</strong> family <strong>of</strong> equations<br />

k(t, s) = u δ (t) (20)<br />

<strong>in</strong> s, where<strong>the</strong>parameter t varies <strong>in</strong> <strong>the</strong> <strong>in</strong>terval [0, T ], we f<strong>in</strong>d <strong>in</strong> a unique m<strong>an</strong>ner values<br />

s = S δ (t) >0forallt ∈ (0, T ]<strong>an</strong>ds = S δ (0) = 0fort = 0because <strong>of</strong> k(0, 0) = u δ (0).<br />

The value ¯S satisfy<strong>in</strong>g k(0, ¯S) = u δ (T ) is also uniquely determ<strong>in</strong>ed. From <strong>the</strong> estimation<br />

k(0, S δ (t)) � k(t, S δ (t)) = u δ (t) � u δ (T ) = k(0, ¯S) we get S δ (t) � ¯S. F<strong>in</strong>ally, <strong>the</strong><br />

cont<strong>in</strong>uity <strong>of</strong> <strong>the</strong> function S δ (t) (0 � t � T ) follows from <strong>the</strong> implicit function <strong>the</strong>orem


1326 THe<strong>in</strong><strong>an</strong>dBH<strong>of</strong>m<strong>an</strong>n<br />

(see, e.g., [17, p 421]) consider<strong>in</strong>g that k(t, s) is cont<strong>in</strong>uous <strong>in</strong> both variables <strong>an</strong>d strictly<br />

monotonic with respect to s. Thisproves <strong>the</strong> <strong>the</strong>orem. �<br />

Note that <strong>the</strong> functions Sδ provided by <strong>the</strong>orem 3.2 are not necessarily monotonic. We<br />

w<strong>ill</strong> evaluate po<strong>in</strong>twise for 0 < t � T <strong>the</strong> error |Sδ (t) − S(t)| <strong>of</strong> <strong>the</strong> cont<strong>in</strong>uous positive<br />

function Sδ (t) with limt→0 Sδ (t) = 0thus obta<strong>in</strong>ed, by us<strong>in</strong>g <strong>the</strong> formula<br />

|S δ � �−1 ∂UBS(X, K, r, t, Sim(t))<br />

(t) − S(t)| =<br />

|u<br />

∂s<br />

δ (t) − u(t)|, (21)<br />

where Sim(t) ∈ [m<strong>in</strong>(Sδ (t), S(t)), max(Sδ (t), S(t))] is a positive <strong>in</strong>termediate function<br />

<strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> error amplification factor<br />

� �−1 ∂UBS(X, K, r, t, Sim(t))<br />

ϕ(t) :=<br />

> 0 (0 < t � T ).<br />

∂s<br />

With limt→0 Sim(t) = 0weobta<strong>in</strong> from formula (6) <strong>in</strong> <strong>the</strong> case X �= K <strong>the</strong> limit conditions<br />

1<br />

lim √<br />

t→0 Sim(t) exp<br />

� X �<br />

[ln( ) + rt]2<br />

K<br />

− = 0<br />

2Sim(t)<br />

<strong>an</strong>d consequently<br />

lim ϕ(t) =∞ (X �= K ) (22)<br />

t→0<br />

for <strong>the</strong> error amplification factor. That me<strong>an</strong>s, <strong>in</strong> <strong>the</strong> case X �= K ,<strong>the</strong><strong>problem</strong> <strong>of</strong> determ<strong>in</strong><strong>in</strong>g<br />

Sδ from data uδ satisfy<strong>in</strong>g <strong>the</strong> assumption 3.1 is <strong>ill</strong> posed <strong>in</strong> a C-space sett<strong>in</strong>g. The <strong>ill</strong>-<strong>posedness</strong><br />

is locally concentrated <strong>in</strong> a neighbourhood <strong>of</strong> t = 0. As a consequence <strong>of</strong> (22), for X �= K<br />

<strong>an</strong>d sufficiently small t, <strong>the</strong>errors |Sδ (t) − S(t)| may rema<strong>in</strong> large, although <strong>the</strong> data errors<br />

�uδ −u�C[0,T ] get arbitrarily small. In practice <strong>the</strong> approximate solutions Sδ (t) tend to osc<strong>ill</strong>ate<br />

for small t <strong>in</strong> such a data situation (see also figures 3 <strong>an</strong>d 4 <strong>in</strong> section 6).<br />

<strong>On</strong> <strong>the</strong> o<strong>the</strong>r h<strong>an</strong>d, <strong>the</strong> case X = K is more ambiguous. Namely, <strong>in</strong> that case<br />

√<br />

1<br />

Sim(t) exp(− r 2t 2<br />

2Sim(t) ) tends to <strong>in</strong>f<strong>in</strong>ity as t → 0whenever wehave <strong>an</strong><strong>in</strong>equality <strong>of</strong> <strong>the</strong> form<br />

Sim(t) � Ct2 (0 � t � T ) with a const<strong>an</strong>t C > 0<strong>an</strong>dweget from formula (6) <strong>the</strong> reverse<br />

limit condition<br />

lim ϕ(t) = 0 (X = K ) (23)<br />

t→0<br />

1<br />

for <strong>the</strong> amplification factor. If however lim <strong>in</strong>ft→0 √<br />

Sim(t) exp(− r 2t 2<br />

2Sim(t) ) = 0, <strong>the</strong>n for X = K<br />

we obta<strong>in</strong> lim supt→0 ϕ(t) =∞.<br />

Closely connected with <strong>the</strong> limit jump <strong>in</strong> formula (8) we f<strong>in</strong>d a jump situation by compar<strong>in</strong>g<br />

<strong>the</strong> formulae (22) <strong>an</strong>d (23). At-<strong>the</strong>-money <strong>option</strong>s with X = K represent a s<strong>in</strong>gular situation,<br />

s<strong>in</strong>ce <strong>the</strong> <strong>in</strong>stability <strong>of</strong> <strong>the</strong> outer equation at t = 0for<strong>in</strong>-<strong>the</strong>-money <strong>option</strong>s <strong>an</strong>d out-<strong>of</strong>-<strong>the</strong>money<br />

<strong>option</strong>s expressed by formula (22) disappears if formula (23) holds. Such a s<strong>in</strong>gular<br />

behaviour <strong>of</strong> at-<strong>the</strong>-money <strong>option</strong>s seems to be well known <strong>in</strong> f<strong>in</strong><strong>an</strong>ce. Namely, for a const<strong>an</strong>t<br />

volatility σ ,<strong>the</strong>frequently used <strong>option</strong> measure <strong>the</strong>ta written <strong>in</strong> our terms as<br />

�(t) := d<br />

d(−t) UBS(X, K, r, t, S(t)) with S(t) = σ 2 t<br />

explodes to −∞ as <strong>the</strong> time to maturity t tends to zero if <strong>an</strong>donly if X = K (see figure 13.6<br />

<strong>in</strong> [26, p 321]).<br />

The <strong>ill</strong>-<strong>posedness</strong> effect just described <strong>in</strong> particular for X �= K as well as <strong>the</strong> miss<strong>in</strong>g<br />

monotonicity <strong>of</strong> Sδ c<strong>an</strong> be overcome for <strong>the</strong> outer equation by pos<strong>in</strong>g a fur<strong>the</strong>r assumption.


<strong>On</strong> <strong>the</strong> <strong>nature</strong> <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong> <strong>of</strong> <strong>an</strong> <strong><strong>in</strong>verse</strong> <strong>problem</strong> <strong>aris<strong>in</strong>g</strong> <strong>in</strong> <strong>option</strong> pric<strong>in</strong>g 1327<br />

Assumption 3.3. In addition to assumption 3.1 <strong>the</strong> data function uδ (t) is assumed tobe<br />

cont<strong>in</strong>uously differentiable for 0 < t � Twith<br />

(u δ ) ′ (t) − Kre −rt � X<br />

ln( K<br />

�<br />

) + rt − Sδ (t) �<br />

2 � � 0 (0 < t � T ), (24)<br />

Sδ (t)<br />

where uδ implies <strong>the</strong> function Sδ ∈ D0 with Sδ (t) >0 for t > 0 via equation (19) <strong>in</strong> a unique<br />

m<strong>an</strong>ner.<br />

The condition (24) is also a consequence <strong>of</strong> <strong>an</strong> arbitrage-free market. Namely, by<br />

compar<strong>in</strong>g appropriate portfolios it c<strong>an</strong> be shown that <strong>option</strong> prices u(K, t) at time τ = 0<br />

considered as differentiable functions <strong>of</strong> strike price K <strong>an</strong>d maturity t satisfy <strong>in</strong>equalities <strong>of</strong><br />

<strong>the</strong> form (see[2,p11])<br />

∂u(K, t) ∂u(K, t)<br />

+ Kr � 0. (25)<br />

∂t<br />

∂ K<br />

For <strong>the</strong> IP we have u(K, t) = UBS(X, K, r, t, S(t)), where ∂u(K,t)<br />

∂t = u′ (t) <strong>an</strong>d with (10)<br />

∂u(K, t)<br />

=<br />

∂ K<br />

∂UBS(X, K, r, t, S(t))<br />

=−e<br />

∂ K<br />

−rt � X<br />

S(t) �<br />

ln( K ) + rt − 2<br />

� √ .<br />

S(t)<br />

Consequently, <strong>the</strong> <strong>in</strong>equality (25) atta<strong>in</strong>s here <strong>the</strong> form (24).<br />

Theorem 3.4. Under <strong>the</strong> assumptions 3.1 <strong>an</strong>d 3.3 <strong>the</strong> uniquely determ<strong>in</strong>ed solution Sδ <strong>of</strong><br />

equation (19) with Sδ (0) = 0 <strong>an</strong>d Sδ (t) >0 (0 < t � T ) is a nondecreas<strong>in</strong>g <strong>an</strong>d absolutely<br />

cont<strong>in</strong>uous function with a cont<strong>in</strong>uous <strong>an</strong>d <strong>in</strong>tegrable derivative (Sδ ) ′ (t) � 0 (0 < t � T ),<br />

where Sδ (t) = � t<br />

0 (Sδ ) ′ (τ) dτ (0 < t � T ) <strong>an</strong>d<br />

(S δ ) ′ (t) = 2�Sδ (t)[(u δ ) ′ (t) − Kre−rt�(d∗ 2 )]<br />

� ′ (d∗ 1 )X<br />

� 0 (0 < t � T ) (26)<br />

with<br />

d ∗ X<br />

ln( K<br />

1 := ) + rt + Sδ (t)<br />

2<br />

� , d<br />

Sδ (t)<br />

∗ 2 := d∗ 1 − � Sδ (t).<br />

Pro<strong>of</strong>. Consider<strong>in</strong>g <strong>the</strong>formulae (5), (6) <strong>an</strong>d (24) for 0 < t � T from <strong>the</strong> implicit<br />

function <strong>the</strong>orem (see, e.g., [17, p 423ff]) we obta<strong>in</strong> cont<strong>in</strong>uous differentiability <strong>of</strong> Sδ with<br />

(Sδ ) ′ (t) � 0<strong>an</strong>dformula (26). Hence Sδ (t) (0 � t � T ) is nondecreas<strong>in</strong>g <strong>an</strong>d based<br />

on [32, <strong>the</strong>orems 4 <strong>an</strong>d 5, p 236f] we have <strong>an</strong> <strong>in</strong>tegrable derivative (Sδ ) ′ ∈ L1 � (0, T ) with<br />

t<br />

0 (Sδ ) ′ (τ) dτ � Sδ (t) − Sδ (0) = Sδ (t)(0 � t � T ). Choos<strong>in</strong>g ε from <strong>the</strong> <strong>in</strong>terval 0


1328 THe<strong>in</strong><strong>an</strong>dBH<strong>of</strong>m<strong>an</strong>n<br />

Theorem 3.5. Let {un = N(Sn)} ∞ n=1 with N from formula (11) be a sequence <strong>of</strong> arbitragefree<br />

noisy <strong>option</strong> price functions satisfy<strong>in</strong>g <strong>the</strong> assumptions 3.1 <strong>an</strong>d 3.3 that converges <strong>in</strong> <strong>the</strong><br />

B<strong>an</strong>ach space B2 = C[0, T ] to <strong>the</strong> fair <strong>option</strong> price function u = N(S). Then<strong>the</strong> associated<br />

sequence <strong>of</strong> functions {Sn} ∞ n=1 also converges to S <strong>in</strong> <strong>the</strong> B<strong>an</strong>ach space B3 = C[0, T ].<br />

Pro<strong>of</strong>. In view <strong>of</strong> <strong>the</strong> positivity <strong>an</strong>d cont<strong>in</strong>uity <strong>of</strong> <strong>the</strong> partial derivative<br />

∂UBS(X, K, r, t, s)<br />

on <strong>the</strong> doma<strong>in</strong> (t, s) ∈ [0, T ] × (0, ∞) (see lemma 2.1) we have,<br />

∂s<br />

for fixed t ∈ (0, T ],<br />

� �−1 ∂UBS(X, K, r, t, Sim(t))<br />

|Sn(t) − S(t)| �<br />

|un(t) − u(t)|<br />

∂s<br />

with <strong>in</strong>termediate values Sim(t) between <strong>the</strong> positive values Sn(t) <strong>an</strong>d S(t). Now, for given<br />

sufficiently small ε>0wechoose tε ∈ (0, T ]suchthat S(tε) = ε<br />

4 .S<strong>in</strong>ce<strong>the</strong> function UBS is<br />

<strong>in</strong>creas<strong>in</strong>g with respect to s > 0, <strong>the</strong> functions Sn <strong>an</strong>d S are <strong>in</strong>creas<strong>in</strong>g for t ∈ [tε, T ]<strong>an</strong>d<strong>the</strong>re<br />

holds limn→∞ un(tε) = u(tε) >max(X − K ertε , 0) as well as limn→∞ un(T ) = u(T )0 (0 < t � T ).


<strong>On</strong> <strong>the</strong> <strong>nature</strong> <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong> <strong>of</strong> <strong>an</strong> <strong><strong>in</strong>verse</strong> <strong>problem</strong> <strong>aris<strong>in</strong>g</strong> <strong>in</strong> <strong>option</strong> pric<strong>in</strong>g 1329<br />

4. Solv<strong>in</strong>g <strong>the</strong> outer equation <strong>of</strong> <strong>the</strong> IP <strong>in</strong> L p -spaces for noisy <strong>option</strong> data<br />

In this section we measure deviations <strong>of</strong> <strong>the</strong> functions u δ <strong>an</strong>d S δ from u <strong>an</strong>d S on <strong>the</strong><br />

<strong>in</strong>terval [0, T ]byme<strong>an</strong>s <strong>of</strong> L p -norms. We consider <strong>the</strong> B<strong>an</strong>ach spaces B2 = L q (0, T ) <strong>an</strong>d<br />

B3 = L p (0, T ) with 1 � p, q < ∞ for <strong>the</strong> outer equation (16) <strong>of</strong> <strong>the</strong> IP.<br />

The positive data function u δ (t)(0 � t � T ) <strong>of</strong> observed maturity-dependent <strong>option</strong><br />

prices is not necessarily smooth <strong>an</strong>d arbitrage free <strong>in</strong> <strong>the</strong> sense <strong>of</strong> assumptions 3.1 <strong>an</strong>d 3.3, but<br />

it satisfies assumption 4.1.<br />

Assumption 4.1. The non-negative data function uδ ∈ Lq approximated by <strong>the</strong> estimate<br />

(0, T ) (1 � q < ∞) is<br />

�u δ − u�L q (0,T ) � δ (27)<br />

<strong>the</strong> fair <strong>option</strong> price function u = F(a) = N(S) for a given noise level δ>0. Moreover, let<br />

a ∈ L∞ (0, T ) hold for <strong>the</strong> volatility function, where we assume <strong>an</strong> upper bound ¯c � �a�L ∞ (0,T )<br />

imply<strong>in</strong>g 0 � S(t) � κ(0� t � T ) with κ := ¯cT.<br />

We apply a vari<strong>an</strong>t <strong>of</strong> <strong>the</strong> method <strong>of</strong> quasisolutions exploit<strong>in</strong>g <strong>the</strong> fact that<br />

D κ + :={˜S ∈ D+ :0� ˜S(t) � κ(0� t � T ), ˜S(t1) � ˜S(t2) (0 � t1 < t2 � T )}<br />

is a compactum <strong>in</strong> <strong>the</strong> B<strong>an</strong>ach space L p (0, T )(1 � p < ∞) (see, e.g., [4, example 3, p 26]).<br />

As <strong>an</strong> approximate solution <strong>of</strong> <strong>the</strong> outer equation (16) we use a quasisolution associated with<br />

<strong>the</strong> data uδ ,whichisam<strong>in</strong>imizer Sδ ∈ Dκ + <strong>of</strong> <strong>the</strong> extremal <strong>problem</strong><br />

�N( ˜S) − u δ �L q (0,T ) −→ m<strong>in</strong>, subject to ˜S ∈ D κ + .<br />

Then we c<strong>an</strong> prove <strong>the</strong> follow<strong>in</strong>g convergence assertion.<br />

Theorem 4.2. Let {Sδn ∞ } n=1 be a sequence <strong>of</strong> quasisolutions associated with a sequence <strong>of</strong><br />

data {uδn ∞ } n=1 satisfy<strong>in</strong>g <strong>the</strong> <strong>in</strong>equality (27), where δn → 0 as n →∞.Then<strong>the</strong> convergence<br />

properties<br />

lim<br />

n→∞ �Sδn − S�L p (0,T ) = 0 (1 � p < ∞) (28)<br />

<strong>an</strong>d<br />

lim<br />

n→∞ �Sδn − S�L ∞ (0,γ ) = 0 for all 0


1330 THe<strong>in</strong><strong>an</strong>dBH<strong>of</strong>m<strong>an</strong>n<br />

for arbitrarily small values β>0. For <strong>an</strong>y given ε>0<strong>the</strong>reisavalueβ0 > 0suchthat<br />

S(β0) < ε<br />

4 ,s<strong>in</strong>ce limβ→0 S(β) = 0. For sufficiently large n we moreover have with (30)<br />

�Sδn − S�L ∞ (β0,γ ) < ε<br />

2 <strong>an</strong>d hence �Sδn − S�L ∞ (0,γ ) 0}<br />

t∈(0,T )<br />

with agiven uniform positive lower bound c. S<strong>in</strong>ce J : L2 (0, T ) → L2 (0, T ) def<strong>in</strong>ed by<br />

formula (15) is a compact l<strong>in</strong>ear operator (see, e.g., [28, p 235]) <strong>an</strong>d N : D+ ∩ L2 (0, T ) ⊂<br />

L2 (0, T ) → L2 (0, T ) def<strong>in</strong>ed by formula (11) is a cont<strong>in</strong>uous nonl<strong>in</strong>ear operator as a<br />

consequence <strong>of</strong> lemma 2.3, <strong>the</strong> composite nonl<strong>in</strong>ear operator F = N ◦ J : D † (F) ⊂<br />

L2 (0, T ) → L2 (0, T ) is also compact <strong>an</strong>d cont<strong>in</strong>uous. Then based on results <strong>of</strong> section 2<br />

we have <strong>the</strong> follow<strong>in</strong>g lemma.<br />

Lemma 5.1. The nonl<strong>in</strong>ear operator F : D † (F) ⊂ L 2 (0, T ) → L 2 (0, T ) possess<strong>in</strong>g a convex<br />

<strong>an</strong>d weakly closed doma<strong>in</strong> D † (F) is <strong>in</strong>jective, compact, cont<strong>in</strong>uous, weakly cont<strong>in</strong>uous <strong>an</strong>d<br />

consequently weakly closed, <strong>an</strong>d <strong>the</strong> <strong><strong>in</strong>verse</strong> operator F −1 def<strong>in</strong>ed on F(D † (F)) exists.<br />

Then proposition A.3 <strong>of</strong> [15] applies <strong>an</strong>d we c<strong>an</strong> formulate <strong>the</strong> follow<strong>in</strong>g as a corollary <strong>of</strong><br />

lemma 5.1.<br />

Corollary 5.2. Foragiven right-h<strong>an</strong>d side u ∈ F(D † (F)) <strong>the</strong> operator equation (31) has a<br />

uniquely determ<strong>in</strong>ed solution a ∈ D † (F). For<strong>an</strong>y ball Br(a) with centre a <strong>an</strong>d radius r > 0<br />

<strong>the</strong>re existsasequence {<strong>an</strong>} ∞ n=1 ⊂ Br(a) ∩ D † (F) with<br />

<strong>an</strong> ⇀ a but<strong>an</strong> �→ a <strong>an</strong>d F(<strong>an</strong>) → u <strong>in</strong> L 2 (0, T ) as n →∞.<br />

Thus, equation (31) is locally <strong>ill</strong> posed <strong>in</strong> <strong>the</strong> sense <strong>of</strong> [25, def<strong>in</strong>ition 2] <strong>an</strong>d F −1 is not<br />

cont<strong>in</strong>uous <strong>in</strong> u.


<strong>On</strong> <strong>the</strong> <strong>nature</strong> <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong> <strong>of</strong> <strong>an</strong> <strong><strong>in</strong>verse</strong> <strong>problem</strong> <strong>aris<strong>in</strong>g</strong> <strong>in</strong> <strong>option</strong> pric<strong>in</strong>g 1331<br />

Consequently, a regularization is required for <strong>the</strong> stable approximate solution <strong>of</strong> (31). We<br />

consider for data uδ with<br />

�u δ − u�L 2 (0,T ) � δ<br />

<strong>an</strong>d a fixed <strong>in</strong>itial guess a ∗ ∈ L 2 (0, T ) Tikhonov regularized solutions a δ α<br />

as m<strong>in</strong>imizers <strong>of</strong><br />

�F(ã) − u δ � 2<br />

L2 (0,T ) + α�ã − a∗� 2<br />

L2 (0,T ) −→ m<strong>in</strong>, subject to ã ∈ D† (F),<br />

which exist for all regularization parameters α > 0<strong>an</strong>dstablydepend on <strong>the</strong> data uδ (see [15, <strong>the</strong>orem 2.1]). Moreover, for<br />

αn = αn(δn) → 0 <strong>an</strong>d<br />

δ2 n<br />

αn(δn) → 0 asδn→0 forn→∞ <strong>an</strong>y sequence {aδn αn }∞ n=1 converges to a <strong>in</strong> L2 (0, T ) (see [15, <strong>the</strong>orem 2.3]).<br />

Now we <strong>an</strong>alyse <strong>the</strong> usual sufficient conditions for obta<strong>in</strong><strong>in</strong>g a convergence rate<br />

�a δ α − a�L 2 (0,T ) = O( √ δ). (32)<br />

Us<strong>in</strong>g a well known modification <strong>of</strong> <strong>the</strong>orem 2.4 <strong>in</strong> [15] we have <strong>the</strong> follow<strong>in</strong>g proposition.<br />

Proposition 5.3. Under <strong>the</strong> conditions stated above we obta<strong>in</strong> for <strong>the</strong> parameter choice α ∼ δ<br />

aconvergence rate (32) <strong>of</strong> <strong>the</strong> Tikhonov regularization if <strong>the</strong>re exists a cont<strong>in</strong>uous l<strong>in</strong>ear<br />

operator<br />

G : L 2 (0, T ) → L 2 (0, T )<br />

with adjo<strong>in</strong>t G∗ <strong>an</strong>d a positive const<strong>an</strong>t L such that<br />

(i) �F(ã) − F(a) − G(ã − a)�L 2 (0,T ) � L<br />

2 �ã − a�2 L2 (0,T ) for all ã ∈ D† (F),<br />

(ii) <strong>the</strong>re exists a function w ∈ L2 (0, T ) satisfy<strong>in</strong>g a − a∗ = G∗w <strong>an</strong>d<br />

(iii) L�w�L 2 (0,T ) < 1.<br />

If <strong>the</strong>re exists a cont<strong>in</strong>uous l<strong>in</strong>ear operator G mapp<strong>in</strong>g <strong>in</strong> L2 (0, T ) <strong>an</strong>d satisfy<strong>in</strong>g condition<br />

(i) <strong>in</strong> proposition 5.3, <strong>the</strong>n it c<strong>an</strong> be considered as <strong>the</strong> Fréchet derivative ˜F ′ (a) at <strong>the</strong> po<strong>in</strong>t a<br />

<strong>of</strong> <strong>an</strong> operator ˜F, forwhichFis <strong>the</strong> restriction to <strong>the</strong> doma<strong>in</strong> D † (F) with <strong>an</strong> empty <strong>in</strong>terior<br />

<strong>in</strong> <strong>the</strong> sense <strong>of</strong> [14, remark 10.30]. Follow<strong>in</strong>g <strong>the</strong> ideas <strong>of</strong> [23], <strong>in</strong> particular <strong>the</strong> strength <strong>of</strong><br />

requirements (ii) <strong>an</strong>d (iii) yields <strong>in</strong>formation about <strong>the</strong> possibly locally vary<strong>in</strong>g <strong>ill</strong>-<strong>posedness</strong><br />

character <strong>of</strong> <strong>the</strong> IP. If <strong>the</strong> derivative G at <strong>the</strong> po<strong>in</strong>t a ∈ D † (F) exists <strong>in</strong> <strong>the</strong> case <strong>of</strong> equation (31),<br />

it is compact as a consequence <strong>of</strong> <strong>the</strong> compactness <strong>of</strong> F (cf [9, p 101]). Then <strong>the</strong> decay rate<br />

<strong>of</strong> <strong>the</strong> ordered s<strong>in</strong>gular values θi(G) <strong>of</strong> G to zero as i →∞determ<strong>in</strong>es <strong>the</strong> local degree <strong>of</strong><br />

<strong>ill</strong>-<strong>posedness</strong> (cf [25, section 3]) <strong>of</strong> (31) at <strong>the</strong> po<strong>in</strong>t a.<br />

The operator G c<strong>an</strong> be derived as a (formal) Gâteaux derivative by <strong>the</strong> limits<br />

[F(a + εh)](t) − [F(a)](t)<br />

[G(h)](t) = lim<br />

ε→0<br />

ε<br />

a.e. on [0, T ] for ε > 0 <strong>an</strong>d admissible directions h ∈ L2 (0, T ). With k(t, s) =<br />

UBS(X, K, r, t, s) we c<strong>an</strong> write that limit for 0 < t � T as<br />

[F(a + εh)](t) − [F(a)](t)<br />

lim<br />

ε→0<br />

ε<br />

∂k(t,S<br />

k(t, S(t) + ε[J(h)](t)) − k(t, S(t))<br />

= lim<br />

= lim<br />

ε→0<br />

ε<br />

ε→0<br />

ε im (t))<br />

∂s ε[J(h)](t)<br />

ε<br />

�<br />

∂k(t, S<br />

= lim<br />

ε→0<br />

ε im (t))<br />

�<br />

∂k(t, S(t))<br />

[J(h)](t) = [J(h)](t),<br />

∂s<br />

∂s


1332 THe<strong>in</strong><strong>an</strong>dBH<strong>of</strong>m<strong>an</strong>n<br />

where Sε im is <strong>an</strong> <strong>in</strong>termediate function satisfy<strong>in</strong>g <strong>the</strong> <strong>in</strong>equalities<br />

m<strong>in</strong>(S(t), S(t) + ε[J(h)](t)) � S ε im (t) � max(S(t), S(t) + ε[J(h)](t)).<br />

This limit<strong>in</strong>g process leads to a composition G = M ◦ J <strong>of</strong> <strong>the</strong> convolution operator J with a<br />

multiplication operatorM described by a multiplier function m <strong>in</strong> <strong>the</strong> form<br />

[G(h)](t) = m(t)[J(h)](t) (0�t�T, h ∈ L 2 (0, T )). (33)<br />

The multiplier function atta<strong>in</strong>s <strong>the</strong> form<br />

m(0) = 0, m(t) = ∂UBS(X, K, r, t, S(t))<br />

> 0 (0 < t � T ) (34)<br />

∂s<br />

with S = J(a) <strong>an</strong>d we c<strong>an</strong> prove <strong>the</strong> follow<strong>in</strong>g.<br />

Theorem 5.4. In <strong>the</strong> case X �= K,<strong>the</strong>l<strong>in</strong>ear operator G def<strong>in</strong>ed by <strong>the</strong> formulae (33) <strong>an</strong>d (34)<br />

maps cont<strong>in</strong>uously <strong>in</strong> L2 (0, T ) with m ∈ L∞ (0, T ). Then condition (i) <strong>of</strong> proposition 5.3 is<br />

satisfied with aconst<strong>an</strong>t<br />

�<br />

�<br />

L = TC2, where C2 := sup �<br />

∂<br />

�<br />

(t,s)∈Mc<br />

2UBS(X, K, r, t, s)<br />

∂s 2<br />

�<br />

�<br />

�<br />

� < ∞<br />

is determ<strong>in</strong>ed from <strong>the</strong> set<br />

Mc := {(t, s) ∈ R 2 : s � ct, 0 < t � T }.<br />

Pro<strong>of</strong>. To prove <strong>the</strong> cont<strong>in</strong>uity <strong>of</strong> G = M ◦ J <strong>in</strong> L2 (0, T ) with <strong>the</strong> cont<strong>in</strong>uous convolution<br />

operator J,itissufficient to show m ∈ L∞ (0, T ),s<strong>in</strong>ce <strong>the</strong>n <strong>the</strong> multiplication operator M is<br />

also cont<strong>in</strong>uous <strong>in</strong> L2 (0, T ). Fromformula (6) we obta<strong>in</strong> for (t, s) ∈ [0, T ] × (0, ∞) <strong>in</strong> <strong>the</strong><br />

case X �= K <strong>the</strong> estimate<br />

�<br />

�<br />

�<br />

�<br />

∂UBS(X, K, r, t, s) �<br />

�<br />

� ∂s � �<br />

� � X �<br />

XK 1 [ln( K ) + rt]2<br />

√ exp − .<br />

8π s 2s<br />

This implies for (t, s) ∈ Mc<br />

�<br />

�<br />

�<br />

�<br />

∂UBS(X, K, r, t, s) �<br />

�<br />

� ∂s � �<br />

� � � r �<br />

XK K c X<br />

1 [ln( K<br />

√s exp −<br />

8π X<br />

)]2<br />

�<br />

. (35)<br />

2s<br />

The right-h<strong>an</strong>d expression <strong>in</strong> <strong>in</strong>equality (35) is cont<strong>in</strong>uous with respect to s ∈ (0, ∞) <strong>an</strong>d tends<br />

∂UBS(X,K,r,t,s)<br />

to zero as s → 0<strong>an</strong>dass →∞.With a f<strong>in</strong>ite const<strong>an</strong>t C1 := sup | (t,s)∈Mc ∂s | < ∞<br />

we have m ∈ L∞ (0, T ),where�m�L∞ (0,T ) � C1 comes from <strong>the</strong> <strong>in</strong>equality S(t) � ct (0 � t �<br />

T ), whichisaconsequence <strong>of</strong> a ∈ D † (F). Inorder to prove condition (i) <strong>of</strong> proposition 5.3<br />

we verify <strong>the</strong> structure <strong>of</strong> <strong>the</strong> second derivative ∂ 2 UBS(X,K,r,t,s)<br />

∂s 2 from formula (7). Similar<br />

considerations as <strong>in</strong> <strong>the</strong> case <strong>of</strong> <strong>the</strong> first derivative also show <strong>the</strong> existence <strong>of</strong> a const<strong>an</strong>t<br />

C2 := sup (t,s)∈Mc | ∂ 2UBS(X,K,r,t,s) ∂s 2 | < ∞. Thenwec<strong>an</strong> estimate with S = J(a), ˜S = J(ã) <strong>an</strong>d<br />

a, ã ∈ D † (F) for all t ∈ (0, T ]:<br />

|[F(ã) − F(a) − G(ã − a)](t)|<br />

�<br />

�<br />

= �<br />

�UBS(X, K, r, t, ˜S(t)) − UBS(X, K, r, t, S(t))<br />

− ∂UBS(X,<br />

�<br />

K, r, t, S(t))<br />

�<br />

( ˜S(t) − S(t)) �<br />

∂s<br />

�<br />

= 1<br />

�<br />

�<br />

�<br />

∂<br />

2 �<br />

2UBS(X, K, r, t, Sim(t))<br />

∂s 2<br />

( ˜S(t) − S(t)) 2<br />

� ��<br />

�<br />

t<br />

�2 C2 �<br />

� � (ã(τ) − a(τ)) dτ ,<br />

2<br />

0


<strong>On</strong> <strong>the</strong> <strong>nature</strong> <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong> <strong>of</strong> <strong>an</strong> <strong><strong>in</strong>verse</strong> <strong>problem</strong> <strong>aris<strong>in</strong>g</strong> <strong>in</strong> <strong>option</strong> pric<strong>in</strong>g 1333<br />

where Sim with m<strong>in</strong>( ˜S(t), S(t)) � Sim(t) � max( ˜S(t), S(t)) for 0 < t � T is <strong>an</strong> <strong>in</strong>termediate<br />

function such that <strong>the</strong> pairs <strong>of</strong> real numbers (t, ˜S(t)), (t, S(t)) <strong>an</strong>d (t, Sim(t)) all belong to <strong>the</strong><br />

set Mc. Byapply<strong>in</strong>g Schwarz’s <strong>in</strong>equality this provides<br />

�F(ã) − F(a) − G(ã − a)�L 2 (0,T ) � TC2<br />

�ã − a�2 L 2 2 (0,T )<br />

<strong>an</strong>d hence <strong>the</strong> required condition (i), which proves <strong>the</strong> <strong>the</strong>orem. �<br />

For X �= K <strong>the</strong> <strong>nature</strong> <strong>of</strong> local <strong>ill</strong>-<strong>posedness</strong> <strong>of</strong> (31) at a po<strong>in</strong>t a ∈ D † (F) arises from two<br />

components, namely from <strong>the</strong> global decay rate <strong>of</strong> s<strong>in</strong>gular values θi(J) ∼ 1/i <strong>of</strong> <strong>the</strong> l<strong>in</strong>ear<br />

<strong>in</strong>tegral operator J form<strong>in</strong>g <strong>the</strong> compact part <strong>in</strong> G <strong>an</strong>d from <strong>the</strong> local decay rate <strong>of</strong> m(t) → 0as<br />

t tends to zero <strong>of</strong> <strong>the</strong> multiplication operator M as <strong>the</strong> noncompact part <strong>in</strong> G. Both components<br />

w<strong>ill</strong> occur aga<strong>in</strong> <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g if we consider <strong>the</strong> source condition (ii) <strong>an</strong>d <strong>the</strong> closeness<br />

condition (iii) <strong>of</strong> proposition 5.3.<br />

In orderto<strong>in</strong>terpret <strong>the</strong> conditions (ii) <strong>an</strong>d (iii) <strong>in</strong> <strong>the</strong> case X �= K ,wewrite (ii) as<br />

(a − a ∗ )(t) =<br />

� T<br />

t<br />

m(τ)w(τ) dτ (0 � t � T, w∈ L 2 (0, T )) (36)<br />

us<strong>in</strong>g <strong>the</strong> equations G∗ = J ∗ ◦ M∗ = J ∗ ◦ M <strong>an</strong>d [J ∗ (h)](t) = � T<br />

t h(τ) dτ (0� t � T ).<br />

Formula (36) directly implies<br />

(a − a ∗ )(T ) = 0 <strong>an</strong>d<br />

(a − a∗ ) ′<br />

∈ L<br />

m<br />

2 (0, T ) (37)<br />

with a difference a−a ∗ ∈ H 1 (0, T ),forwhich<strong>the</strong> generalized derivative belongs to a weighted<br />

L2-space with a weight 1<br />

m �∈ L∞ (0, T ). The closeness condition (iii) <strong>the</strong>n atta<strong>in</strong>s <strong>the</strong> form<br />

�<br />

�<br />

�<br />

(a − a<br />

�<br />

∗ ) ′ �<br />

�<br />

�<br />

m � <<br />

L2 (0,T )<br />

1<br />

. (38)<br />

L<br />

The right-h<strong>an</strong>d condition <strong>in</strong> (37) <strong>an</strong>d condition (38) express <strong>the</strong> character <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong><br />

<strong>of</strong> (31) at <strong>the</strong> po<strong>in</strong>t a as smoothness <strong>an</strong>d smallness requirements on <strong>the</strong> difference a − a∗ .<br />

Follow<strong>in</strong>g <strong>the</strong> concept <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong> rates developed <strong>in</strong> [24, section 4] for IPs <strong>in</strong>clud<strong>in</strong>g<br />

multiplication operators it should be noted that we have <strong>an</strong> exponential growth rate <strong>of</strong><br />

1<br />

m(t) →∞as t → 0. Based on formula (6) we derive for X �= K<br />

1<br />

m(t) = K � S(t) exp(ψ(t)) (0 < t � T )<br />

with a const<strong>an</strong>t K > 0<strong>an</strong>d<br />

ψ(t) = ν2<br />

2S(t) + r 2t 2<br />

� �<br />

νrt ν rt S(t)<br />

X<br />

+ + + + , ν := ln �= 0.<br />

2S(t) S(t) 2 2 8 K<br />

For S ∈ I (D † (F)) we have ct � S(t) � ¯c √ t (0 � t � T ) with ¯c := �a�L2 (0,T ). Thisimplies<br />

for positive const<strong>an</strong>ts K <strong>an</strong>d ¯K <strong>the</strong> estimates<br />

K √ � 2 ν<br />

t exp<br />

2 ¯c √ �<br />

�<br />

t<br />

1<br />

m(t) � ¯K 4√ � 2 �<br />

ν<br />

t exp<br />

(0 < t � T ) (39)<br />

2ct<br />

below <strong>an</strong>d above. S<strong>in</strong>ce, for fixed ν �= 0, <strong>the</strong> function 1<br />

m(t) exponentially grows to <strong>in</strong>f<strong>in</strong>ity as<br />

t → 0, <strong>the</strong> condition (38) on <strong>the</strong> difference a − a∗ is very rigorous with respect to small t.<br />

Formula (39) also shows that for X − K → 0imply<strong>in</strong>g ν → 0<strong>the</strong>norm �m�L ∞ (0,T ) tends to<br />

<strong>in</strong>f<strong>in</strong>ity.<br />

Here we also see that at-<strong>the</strong>-money <strong>option</strong>s with X = K represent a s<strong>in</strong>gular situation <strong>in</strong><br />

our purely time-dependent model, s<strong>in</strong>ce we derive from (6) <strong>an</strong>d (7) for ν = 0<strong>the</strong>formulae


1334 THe<strong>in</strong><strong>an</strong>dBH<strong>of</strong>m<strong>an</strong>n<br />

∂UBS(X,K,r,t,s)<br />

limt→0 m(t) = ∞,sup (t,s)∈Mc ∂s = ∞ <strong>an</strong>d sup (t,s)∈Mc | ∂ 2UBS(X,K,r,t,s) ∂s 2 | = ∞.<br />

Hence, <strong>the</strong> multiplication operator M def<strong>in</strong>ed by <strong>the</strong> formulae (34) fails to be bounded <strong>in</strong><br />

L2 (0, T ) <strong>in</strong> that case <strong>an</strong>d condition (i) <strong>of</strong> proposition 5.3 c<strong>an</strong>not be verified along <strong>the</strong> l<strong>in</strong>es <strong>of</strong><br />

<strong>the</strong>pro<strong>of</strong> <strong>of</strong> <strong>the</strong>orem 5.4. This s<strong>in</strong>gularity <strong>of</strong> X = K disappears if a variety <strong>of</strong> strike prices K<br />

is used as done <strong>in</strong> <strong>the</strong> sophisticated paper [12] present<strong>in</strong>g a Tikhonov regularization <strong>an</strong>alysis<br />

for <strong>the</strong> more general IP <strong>of</strong> <strong>option</strong> pric<strong>in</strong>g that comb<strong>in</strong>es <strong>the</strong> time- <strong>an</strong>d price-dependent case.<br />

We note, however, that <strong>the</strong> considerations <strong>of</strong> [12] with H 1-solutions a <strong>an</strong>d data u from a<br />

non-Hilberti<strong>an</strong> Sobolev space do not implicate <strong>the</strong> L2-results <strong>of</strong> this section.<br />

6. The discrete approach<strong>an</strong>dsome case studies<br />

F<strong>in</strong>ally, we brieflyaddress <strong>the</strong> situation where we have <strong>option</strong> data uδ j := uδ (t j) approximat<strong>in</strong>g<br />

fair prices u j := u(t j) only for adiscrete set <strong>of</strong> maturities t0 = 0 < t1 < t2 < ··· < tk = T<br />

(for fur<strong>the</strong>r studies see [20]). We assume accord<strong>in</strong>g to formula (18)<br />

u δ 0 = max(X − K, 0), max(X − K e−rtj δ<br />

) 0, due to (6), (9) <strong>an</strong>d (40) all values<br />

Sδ j are uniquely determ<strong>in</strong>ed from (41). The second step conta<strong>in</strong>s a numerical differentiation,<br />

which is regularized accord<strong>in</strong>g to<br />

�J a − S δ � 2 2 + α�L a�2 2 −→ m<strong>in</strong>, subject to a ∈ Rk + ,<br />

with a m<strong>in</strong>imiz<strong>in</strong>g vector aα = (aα 1 , ...,aα k )T ∈ Rk + ,whereα > 0is<strong>the</strong>regularization<br />

parameter, �·�2 denotes <strong>the</strong> Euclide<strong>an</strong> norm, J is a discretization <strong>of</strong> <strong>the</strong> l<strong>in</strong>ear Volterra <strong>in</strong>tegral<br />

operator J <strong>an</strong>d �L a�2 2 expresses <strong>the</strong> usual discretization <strong>of</strong> <strong>the</strong> L2-norm square �a ′′ �2 L2 (0,T ) <strong>of</strong><br />

<strong>the</strong> second derivative <strong>of</strong> <strong>the</strong> function a.<br />

For a case study with computer-generated <strong>option</strong> price data we use <strong>the</strong> values X = 0.6,<br />

K = 0.5, r = 0.05, T = 1, t j = j<br />

k ( j = 1, ...,k = 20) <strong>an</strong>d <strong>the</strong> convex function<br />

σ(t) = (t − 0.5) 2 +0.1 (0 � t � 1).<br />

The exact data u = (u1, ...,uk) T are computed by us<strong>in</strong>g <strong>the</strong> generalized Black–Scholes<br />

formula (1)–(4). Perturbed with a r<strong>an</strong>dom noise vector η = (η1, ...,ηk) T ∈ Rk <strong>the</strong>y yield<br />

noisy data <strong>in</strong> <strong>the</strong> form<br />

u δ j = u j + δ �u�2<br />

η j ( j = 1, ...,k)<br />

�η�2<br />

for a given relative error δ>0. Some results <strong>of</strong> <strong>the</strong> case study are presented by figures 1<br />

<strong>an</strong>d 2 show<strong>in</strong>g on <strong>the</strong> one h<strong>an</strong>d <strong>the</strong> exact solution as a solid curve <strong>an</strong>d on <strong>the</strong> o<strong>the</strong>r h<strong>an</strong>d <strong>the</strong><br />

l<strong>in</strong>early <strong>in</strong>terpolated approximate solution as a dashed curve. Figure 1 <strong>ill</strong>ustrates <strong>the</strong> osc<strong>ill</strong>at<strong>in</strong>g<br />

character <strong>of</strong> <strong>the</strong> unregularized volatility reconstruction, although <strong>the</strong> data error is ra<strong>the</strong>r small<br />

(δ = 0.1%). For <strong>the</strong> same situation a quite good regularized solution is presented <strong>in</strong> figure 2,<br />

where <strong>the</strong> regularization parameter choice is based on H<strong>an</strong>sen’s L-curve criterion (see [19]).<br />

As shown <strong>in</strong> section 3, arbitrage-free <strong>option</strong> data uδ yield <strong>in</strong> a unique <strong>an</strong>d stable m<strong>an</strong>ner<br />

non<strong>in</strong>creas<strong>in</strong>g functions Sδ . If, however, <strong>the</strong> noisy discrete <strong>option</strong> data uδ j are not necessarily<br />

arbitrage free, <strong>the</strong>n for very small δ <strong>the</strong> monotonicity may also be lost for values Sδ j obta<strong>in</strong>ed


<strong>On</strong> <strong>the</strong> <strong>nature</strong> <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong> <strong>of</strong> <strong>an</strong> <strong><strong>in</strong>verse</strong> <strong>problem</strong> <strong>aris<strong>in</strong>g</strong> <strong>in</strong> <strong>option</strong> pric<strong>in</strong>g 1335<br />

volatility<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

maturity<br />

estimated volatility<br />

exact volatility<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

Figure 1. Unregularized solution (δ = 0.001, α = 0).<br />

volatility<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

maturity<br />

estimated volatility<br />

exact volatility<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

Figure 2. Regularized solution (δ = 0.001, α = 7.1263 × 10 −7 from <strong>the</strong> L-curve method).<br />

by a po<strong>in</strong>twise <strong>in</strong>version <strong>of</strong> <strong>the</strong> Nemytskii operator N. Inparticular, if <strong>the</strong> rema<strong>in</strong><strong>in</strong>g time to<br />

maturity t j <strong>of</strong> <strong>the</strong> <strong>option</strong> is small, <strong>the</strong> correspond<strong>in</strong>g values Sδ j tend to osc<strong>ill</strong>ate (see figure 3).<br />

This phenomenon is a consequence <strong>of</strong> <strong>the</strong> fact that Sδ (t) tends to zero for small t. Namely,<br />

as shown <strong>in</strong> figure 4, <strong>the</strong> error amplification factor ϕ(t) approximated by ( ∂UBS(X,K,r,t,S(t))<br />

∂s ) −1<br />

grows to <strong>in</strong>f<strong>in</strong>ity as t tends to zero.


1336 THe<strong>in</strong><strong>an</strong>dBH<strong>of</strong>m<strong>an</strong>n<br />

7. Conclusions<br />

0.015<br />

0.01<br />

0.005<br />

estimated S–function<br />

exact S–function<br />

0<br />

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2<br />

maturity<br />

Figure 3. Po<strong>in</strong>twise reconstruction <strong>of</strong> S δ (t) (δ = 0.001, k = 50 grids on [0, 0.2]).<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

error factor<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5<br />

maturity<br />

0.6 0.7 0.8 0.91 Figure 4. Behaviour <strong>of</strong><br />

� �−1 ∂UBS(X,K,r,t,S(t))<br />

∂s approximat<strong>in</strong>g <strong>the</strong> error factor ϕ(t).<br />

By study<strong>in</strong>g <strong>the</strong> <strong>problem</strong> <strong>of</strong> calibrat<strong>in</strong>g a time-dependent volatility function from a termstructure<br />

<strong>of</strong> <strong>option</strong> prices <strong>an</strong>d its <strong>ill</strong>-<strong>posedness</strong> phenomena <strong>the</strong> paper tries to f<strong>ill</strong> a gap <strong>in</strong> <strong>the</strong><br />

literature <strong>of</strong> IPs <strong>in</strong> <strong>option</strong> pric<strong>in</strong>g. The explicitly available structure <strong>of</strong> <strong>the</strong> forward operator <strong>in</strong><br />

<strong>the</strong> purely time-dependent case as a composition <strong>of</strong> <strong>an</strong> <strong>in</strong>ner l<strong>in</strong>ear convolution operator <strong>an</strong>d <strong>an</strong><br />

outer nonl<strong>in</strong>ear Nemytskii operator allows us to <strong>an</strong>alyse <strong>in</strong> detail <strong>the</strong> occurr<strong>in</strong>g <strong>ill</strong>-<strong>posedness</strong><br />

phenomena <strong>an</strong>d ways <strong>of</strong> regularization. For <strong>the</strong> outer IP treated <strong>in</strong> a C-space sett<strong>in</strong>g <strong>the</strong><br />

use <strong>of</strong> arbitrage-free data acts as a specific regularizer. In <strong>an</strong>y case, however, <strong>the</strong> <strong>in</strong>ner classic


<strong>On</strong> <strong>the</strong> <strong>nature</strong> <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong> <strong>of</strong> <strong>an</strong> <strong><strong>in</strong>verse</strong> <strong>problem</strong> <strong>aris<strong>in</strong>g</strong> <strong>in</strong> <strong>option</strong> pric<strong>in</strong>g 1337<br />

deconvolution (differentiation)<strong>problem</strong> requires <strong>an</strong> additional regularization. To overcome <strong>the</strong><br />

local <strong>ill</strong>-<strong>posedness</strong> <strong>of</strong> <strong>the</strong> completeIP, Tikhonov regularization<strong>in</strong> L 2 is applicable, convergence<br />

rates c<strong>an</strong> be proven <strong>an</strong>d source conditions c<strong>an</strong> be evaluated. It is po<strong>in</strong>ted out that at-<strong>the</strong>-money<br />

<strong>option</strong>s represent a s<strong>in</strong>gular situation, <strong>in</strong> which <strong>in</strong>stability effects occurr<strong>in</strong>g for small times<br />

<strong>in</strong> <strong>the</strong> cases <strong>of</strong> <strong>in</strong>-<strong>the</strong>-money <strong>an</strong>d out-<strong>of</strong>-<strong>the</strong>-money <strong>option</strong>s may disappear <strong>an</strong>d properties <strong>of</strong><br />

<strong>the</strong> forward operator may degenerate. Although, due to <strong>the</strong> completely different <strong>problem</strong><br />

structure, <strong>the</strong> ma<strong>the</strong>matical <strong>an</strong>alysis used <strong>in</strong> this paper c<strong>an</strong>not be generalized to <strong>the</strong> case<br />

<strong>of</strong> calibrat<strong>in</strong>g price-dependent volatility functions, <strong>the</strong> observed <strong>ill</strong>-<strong>posedness</strong> effects also<br />

<strong>in</strong>fluence <strong>the</strong> ch<strong>an</strong>ces <strong>of</strong> <strong>the</strong> most import<strong>an</strong>t practical <strong>problem</strong> <strong>of</strong> fitt<strong>in</strong>g <strong>the</strong> volatility smile as<br />

awhole.<br />

Acknowledgments<br />

The authors are very grateful to Pr<strong>of</strong>essors Ra<strong>in</strong>er Kress (Gött<strong>in</strong>gen) <strong>an</strong>d Ulrich Tautenhahn<br />

(Zittau) <strong>an</strong>d two <strong>an</strong>onymous referees for <strong>the</strong>ir valuable suggestions, that improved <strong>the</strong> paper<br />

subst<strong>an</strong>tially.<br />

References<br />

[1] Ambrosetti A <strong>an</strong>d Prodi G 1993 APrimer<strong>of</strong>Nonl<strong>in</strong>ear Analysis (Cambridge: Cambridge University Press)<br />

[2] Andersen L B G <strong>an</strong>d Bro<strong>the</strong>rton-Ratcliffe R 1998 The equity <strong>option</strong> volatility smile: <strong>an</strong> implicit f<strong>in</strong>ite-difference<br />

approach J. Comput. F<strong>in</strong><strong>an</strong>ce 1 5–37<br />

[3] Avell<strong>an</strong>eda M, Friedm<strong>an</strong> C, Holmes R <strong>an</strong>d Samperi D 1997 Calibrat<strong>in</strong>g volatility surfaces via relative entropy<br />

m<strong>in</strong>imization Appl. Math. F<strong>in</strong><strong>an</strong>ce 4 3–64<br />

[4] Bakush<strong>in</strong>sky A <strong>an</strong>d Goncharsky A 1994 Ill-Posed Problems: Theory <strong>an</strong>d Applications (Dordrecht: Kluwer)<br />

[5] B<strong>in</strong>der A, Engl H W <strong>an</strong>d Schatz A 2003 Adv<strong>an</strong>ced Numerical Techniques for F<strong>in</strong><strong>an</strong>cial Eng<strong>in</strong>eer<strong>in</strong>g (L<strong>in</strong>z:<br />

MathConsult)<br />

[6] Black F <strong>an</strong>d Scholes M 1973 The pric<strong>in</strong>g <strong>of</strong> <strong>option</strong>s <strong>an</strong>d corporate liabilities J. Political Econom. 81 637–54<br />

[7] Bouchouev I <strong>an</strong>d Isakov V 1997 The <strong><strong>in</strong>verse</strong> <strong>problem</strong> <strong>of</strong> <strong>option</strong> pric<strong>in</strong>g Inverse Problems 13 L11–7<br />

[8] Bouchouev I <strong>an</strong>d Isakov V 1999 Uniqueness, stability <strong>an</strong>d numerical methods for <strong>the</strong> <strong><strong>in</strong>verse</strong> <strong>problem</strong> that arises<br />

<strong>in</strong> f<strong>in</strong><strong>an</strong>cial markets Inverse Problems 15 R95–116<br />

[9] Colton D <strong>an</strong>d Kress R 1992 Inverse Acoustic <strong>an</strong>d Electromagnetic Scatter<strong>in</strong>g Theory (Berl<strong>in</strong>: Spr<strong>in</strong>ger)<br />

[10] Cont R 2003 Inverse Problems <strong>in</strong> F<strong>in</strong><strong>an</strong>cial Model<strong>in</strong>g (Lecture Series) (Berl<strong>in</strong>: Humboldt-Universität)<br />

[11] Crépey S 2003 Calibration <strong>of</strong> <strong>the</strong> local volatility <strong>in</strong> a tr<strong>in</strong>omial tree us<strong>in</strong>g Tikhonov regularization Inverse<br />

Problems 19 91–127<br />

[12] Crépey S 2003 Calibration <strong>of</strong> <strong>the</strong> local volatility <strong>in</strong> a generalized Black–Scholes model us<strong>in</strong>g Tikhonov<br />

regularization SIAM J. Math. Anal. 34 1183–206<br />

[13] Dupire B 1994 Pric<strong>in</strong>g with a smile Risk 7 18–20<br />

[14] Engl H W, H<strong>an</strong>ke M <strong>an</strong>d Neubauer A 1996 Regularization <strong>of</strong> Inverse Problems (Dordrecht: Kluwer)<br />

[15] Engl H W, Kunisch K <strong>an</strong>d Neubauer A 1989 Convergence rates for Tikhonov regularization <strong>of</strong> non-l<strong>in</strong>ear<br />

<strong>ill</strong>-posed <strong>problem</strong>s Inverse Problems 5 523–40<br />

[16] Emvudu Y, He<strong>in</strong> T <strong>an</strong>d H<strong>of</strong>m<strong>an</strong>n B 2001 Some approach for solv<strong>in</strong>g <strong>an</strong> <strong><strong>in</strong>verse</strong> <strong>option</strong> pric<strong>in</strong>g <strong>problem</strong> Prepr<strong>in</strong>t<br />

2001-7 Technische Universität, Fakultät für Ma<strong>the</strong>matik, Chemnitz<br />

[17] Fichtenholz G M 1970 Differential- und Integralrechnung 5th edn, vol 1 (Berl<strong>in</strong>: Deutsche)<br />

[18] H<strong>an</strong>ke M <strong>an</strong>d Scherzer O 2001 Inverse <strong>problem</strong>s light: numerical differentiation Am. Math. Mon. 108 512–21<br />

[19] H<strong>an</strong>sen P C 1998 R<strong>an</strong>k-Deficient <strong>an</strong>d Discrete Ill-Posed Problems—Numerical Aspects <strong>of</strong> L<strong>in</strong>ear Inversion<br />

(Philadelphia, PA: SIAM)<br />

[20] He<strong>in</strong> T 2003 Numerische Studie zu e<strong>in</strong>em <strong><strong>in</strong>verse</strong>n Problem der Optionspreisbildung im zeitabhängigen Fall<br />

Prepr<strong>in</strong>t 2003-2 Technische Universität, Fakultät für Ma<strong>the</strong>matik, Chemnitz<br />

[21] He<strong>in</strong> T <strong>an</strong>d H<strong>of</strong>m<strong>an</strong>n B 2003 <strong>On</strong> <strong>the</strong> <strong><strong>in</strong>verse</strong> <strong>problem</strong> <strong>of</strong> <strong>option</strong> pric<strong>in</strong>g <strong>in</strong> <strong>the</strong> time-dependent case Prepr<strong>in</strong>t<br />

2003-1 Technische Universität, Fakultät für Ma<strong>the</strong>matik, Chemnitz<br />

[22] H<strong>of</strong>m<strong>an</strong>n B 1986 Regularization for Applied Inverse <strong>an</strong>d Ill-Posed Problems (Leipzig: Teubner)<br />

[23] H<strong>of</strong>m<strong>an</strong>n B 1994 <strong>On</strong> <strong>the</strong> degree <strong>of</strong> <strong>ill</strong>-<strong>posedness</strong> for nonl<strong>in</strong>ear <strong>problem</strong>s J. Inv. Ill-Posed Problems 2 61–76


1338 THe<strong>in</strong><strong>an</strong>dBH<strong>of</strong>m<strong>an</strong>n<br />

[24] H<strong>of</strong>m<strong>an</strong>n B <strong>an</strong>d Fleischer G 1999 Stability rates for l<strong>in</strong>ear <strong>ill</strong>-posed <strong>problem</strong>s with compact <strong>an</strong>d non-compact<br />

operators Z. Anal. Anw. 18 267–86<br />

[25] H<strong>of</strong>m<strong>an</strong>n B <strong>an</strong>d Scherzer O 1994 Factors <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> <strong>ill</strong>-<strong>posedness</strong> <strong>of</strong> nonl<strong>in</strong>ear <strong>problem</strong>s Inverse Problems<br />

10 1277–97<br />

[26] Hull J C 2000 Options, Futures <strong>an</strong>d O<strong>the</strong>r Derivatives 4th edn (London: Prentice-Hall)<br />

[27] Krasnoselskii M A 1995 Asymptotics <strong>of</strong> Nonl<strong>in</strong>earities <strong>an</strong>d Operator Equations (Basle: Birkhäuser)<br />

[28] Kress R 1989 L<strong>in</strong>ear Integral Equations (Berl<strong>in</strong>: Spr<strong>in</strong>ger)<br />

[29] Kwok Y K 1998 Ma<strong>the</strong>matical Models <strong>of</strong> F<strong>in</strong><strong>an</strong>cial Derivatives (S<strong>in</strong>gapore: Spr<strong>in</strong>ger)<br />

[30] Lish<strong>an</strong>g J <strong>an</strong>d Yoush<strong>an</strong> T 2001 Identify<strong>in</strong>g <strong>the</strong> volatility <strong>of</strong> underly<strong>in</strong>g assets from <strong>option</strong> prices Inverse Problems<br />

17 137–55<br />

[31] Merton R C 1973 Theory <strong>of</strong> rational <strong>option</strong> pric<strong>in</strong>g Bell J. Econom. M<strong>an</strong>ag. Sci. 4 141–83<br />

[32] Nat<strong>an</strong>son I P 1975 Theorie der Funktionen e<strong>in</strong>erreellen Veränderlichen (Berl<strong>in</strong>: Akademie)<br />

[33] Wilmott P, Dewynne J <strong>an</strong>d Howison S 1998 The Ma<strong>the</strong>matics <strong>of</strong> F<strong>in</strong><strong>an</strong>cial Derivatives (Cambridge: Cambridge<br />

University Press)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!