03.06.2013 Views

TTC Timmler Technology TTC Active and Passive Chilled Beams ...

TTC Timmler Technology TTC Active and Passive Chilled Beams ...

TTC Timmler Technology TTC Active and Passive Chilled Beams ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Chilled</strong> Beam AECEU (passive)<br />

Specification | Capacity Charts<br />

26.1<br />

Dimensions<br />

26.2<br />

26<br />

255<br />

9x60<br />

455<br />

405<br />

9x60<br />

605<br />

39<br />

187<br />

187<br />

39<br />

700<br />

650<br />

600<br />

550<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

AECEU<br />

Specif. cooling capacity [W/m] Specific cooling capacity [q ˙ K(spez)]<br />

Unit width 60<br />

Unit width 45<br />

0 1 2 3 4 5 6 7 8 9 10 11 12<br />

26.4 Temperature difference ∆m [K]<br />

26.5<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

kg/h<br />

kg/s<br />

AECEU<br />

Specif. pressure drop [kPa/m] Specif. pressure drop [∆pw]<br />

Technical data | Weights Formulas for calculation<br />

26.3<br />

L(tot)<br />

[mm]<br />

L(finned)<br />

[mm]<br />

<strong>Chilled</strong><br />

beam<br />

width B<br />

[mm]<br />

Distance to<br />

the ceiling<br />

Dmin<br />

[mm]<br />

Mounting brackets<br />

Up to 2,4 m 2 off<br />

from 2,5 m 3 off<br />

Connections<br />

1 pipe division<br />

ø 15; 150 mm long<br />

Water<br />

content<br />

Note! Design example for passive chilled beams page 28.<br />

[l]<br />

Weight<br />

[≈kg]<br />

1000 800 450 80 0,80 8<br />

1500 1300 450 80 1,20 12<br />

2000 1800 450 80 1,60 16<br />

2500 2300 450 80 2,00 20<br />

3000 2800 450 80 2,40 24<br />

3500 3300 450 80 2,80 28<br />

4000 3800 450 80 3,20 32<br />

1000 800 600 120 1,10 10<br />

1500 1300 600 120 1,65 15<br />

2000 1800 600 120 2,20 20<br />

2500 2300 600 120 2,75 25<br />

3000 2800 600 120 3,30 30<br />

3500 3300 600 120 3,85 35<br />

4000 3800 600 120 4,40 40<br />

Unit width 60<br />

Unit width 45<br />

0 100 200 300 400 500 600 700 800 900<br />

0 0,05 0,10 0,15 0,20 0,25<br />

Water volume flow m˙ w [kg/h]<br />

Formula 1<br />

Calculating the average temperature difference ∆m<br />

tW1 [°C] + tW2 [°C]<br />

∆m[K] = tR -<br />

2<br />

Formula 3<br />

Calculating the total cooling capacity Q˙ Ktot (1 unit)<br />

Q · K(tot)[kW] = q ˙K(specif)[W/m] · L(finned)[m]<br />

Formula 4<br />

Estimating roughly the water volume flow m˙ w<br />

q˙ (spezif) [kW/m] · L(finned)[m]<br />

m˙ W[kg/h] = 860 ·<br />

tW2 - tW1 [K]<br />

Formula 5<br />

Calculating the total water-sided pressure drop (1 unit)<br />

∆pW(tot)[kPa] = ∆qW(specif)[W/m] · L(finned)[m]<br />

∆m[K] = Average temperature difference between two different media<br />

tR [°C] = Room temperature<br />

tW1 [°C] = Water inlet temperature<br />

tW2 [°C] = Water outlet temperature<br />

m · W[kg/h] = Water volume flow<br />

Q · K(tot) = Total cooling capacity of a hilled beam<br />

q · K(spezif)[W/m] = Cooling power per metre of finned chilled beam length (L(finned))<br />

(L(finned)) [m] = L(tot)[m] - 0,2 m<br />

∆pW(tot)[kPa] = Total pressure drop of a chilled beam<br />

∆pW(spezif)[kPa/m] = Specific pressure drop of 1 m finned chilled beam length (L(finned)) see Fig. 20.5<br />

Subject to technical changes · Issued 10/2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!