03.06.2013 Views

Mathematical Surprises from off- shell SUSY Representation Theory

Mathematical Surprises from off- shell SUSY Representation Theory

Mathematical Surprises from off- shell SUSY Representation Theory

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<br />

<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong><br />

Kory Stiffler<br />

Miami 2011<br />

Based on 4D, N = 1 Supersymmetry Genomics (II), 1112.2147 [hep-th]<br />

S. James Gates, Jr.†, Jared Hallett‡, James Parker†,<br />

Vincent G. J. Rodgers∗, and Kory Stiffler†<br />

and<br />

The Real Anatomy of Complex Linear Superfields (manuscript in progress)<br />

S.James Gates, Jr. †, Jared Hallett‡, Tristan Hübsch**, and Kory Stiffler†<br />

†Center for String and Particle <strong>Theory</strong>, Department of Physics, University of Maryland, College Park MD<br />

‡Department of Mathematics, Williams College, Williamstown, MA<br />

∗Department of Physics and Astronomy, The University of Iowa, Iowa City, IA<br />

** Dept. of Physics, University of Central Florida, Orlando, FL and<br />

Dept. of Physics & Astronomy, Howard University, Washington, DC


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Review: <strong>Representation</strong> <strong>Theory</strong> for<br />

Compact Lie Groups<br />

• SU(2) representation size: d= 2 j + 1,<br />

j = 0,½,1,…<br />

• j = 0, trivial<br />

• j= ½, d=2 fundamental representation, e.g.<br />

acted on by 2x2 matrices generated by Pauli<br />

spin matrices<br />

• j=1, d=3 Adjoint representation<br />

• ……more


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Review: <strong>Representation</strong> <strong>Theory</strong> for<br />

Compact Lie Groups<br />

• SU(3) representation size:<br />

d = (p+1)(q+1)(p+q+2)/2, p,q =0,1,2,….<br />

• p,q = 0: d=1 trivial<br />

• p=1, q =0: d=3 fundamental: e.g. acted on by<br />

3x3 matrices generated by Gell-Mann<br />

matrices<br />

• p=0, q =1: d=3 anti-fundamental<br />

• p=1,q=1: d=8 adjoint<br />

• p=2,q=0 or p=0, q=2: d=6 sextet,…..more


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

<strong>Representation</strong> <strong>Theory</strong> and the<br />

Standard Model<br />

SU(3) color<br />

<strong>Representation</strong> Fundamental (matter) Adjoint (force carriers)<br />

Particles Quarks gluons<br />

SU(2) Left<br />

<strong>Representation</strong> Fundamental (l. h. matter) Adjoint (force carriers)<br />

Particles Quarks, leptons weak bosons: W ± , Z<br />

Generally speaking, matter transforms in the fundamental representation, force<br />

carriers in the adjoint.


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Supersymmetric (<strong>SUSY</strong>)<br />

Extension of Standard Model (SM)?<br />

• sleptons, squarks, gluinos, winos, binos,<br />

Higgsinos, more?<br />

• No <strong>off</strong>-<strong>shell</strong> representation theory of<br />

supersymmetry exists, <strong>SUSY</strong> extensions of SM<br />

would benefit <strong>from</strong> its construction


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

<strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong>,<br />

Currently Under Construction<br />

F: fundamental, A: Anti-fundamental, O: Octet(adjoint), D: Decuplet<br />

C: chiral multiplet, V:vector multiplet, T: tensor multiplet, RSS: real scalar superfield<br />

multiplet, CLS: complex linear superfield multiplet<br />

d: size of representation<br />

p, q: 0,1,2,….<br />

The topic of the rest of the talk are n c and n t: the number of cis- and trans-Adinkras,<br />

respectively, in the <strong>SUSY</strong> representation.


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Adinkras: Chiral Multiplet (CM)<br />

Lagrangian is supersymmetric<br />

with respect to the transformation laws:<br />

which satisfy:


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Adinkras: CM One Dimensional<br />

Reduction<br />

• Consider only time dependent fields (prime (‘) denotes time derivative)<br />

• <strong>SUSY</strong> transformation laws become


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Adinkras (West Africa) :<br />

“symbols with hidden meaning”<br />

• Consider only time dependent fields (prime (‘) denotes time derivative)<br />

• <strong>SUSY</strong> transformation laws become


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Adinkras (West Africa) :<br />

“symbols with hidden meaning”<br />

• Consider only time dependent fields (prime (‘) denotes time derivative)<br />

• <strong>SUSY</strong> transformation laws become


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Build your own Adinkra in 6 easy steps!<br />

e.g. CM<br />

• Color encodes transformation identity: D 1, D 2, D 3, D 4


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Build your own Adinkra in 6 easy steps!<br />

e.g. CM<br />

• Color encodes transformation identity: D 1, D 2, D 3, D 4<br />

• D-operator on lower node yields upper node


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Build your own Adinkra in 6 easy steps!<br />

e.g. CM<br />

• Color encodes transformation identity: D 1, D 2, D 3, D 4<br />

• D-operator on lower node yields upper node<br />

• D-operator on upper node yields derivative of lower node


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Build your own Adinkra in 6 easy steps!<br />

e.g. CM<br />

• Color encodes transformation identity: D 1, D 2, D 3, D 4<br />

• D-operator on lower node yields upper node<br />

• D-operator on upper node yields derivative of lower node<br />

• So higher node has ½ more engineering dimensions than lower node


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Build your own Adinkra in 6 easy steps!<br />

e.g. CM<br />

• Color encodes transformation identity: D 1, D 2, D 3, D 4<br />

• D-operator on lower node yields upper node<br />

• D-operator on upper node yields derivative of lower node<br />

• So higher node has ½ more engineering dimensions than lower node<br />

• Dashed line encodes an overall minus sign in both transformations


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Build your own Adinkra in 6 easy steps!<br />

e.g. CM<br />

• Color encodes transformation identity: D 1, D 2, D 3, D 4<br />

• D-operator on lower node yields upper node<br />

• D-operator on upper node yields derivative of lower node<br />

• So higher node has ½ more engineering dimensions than lower node<br />

• Dashed line encodes an overall minus sign in both transformations<br />

• Transformations <strong>from</strong> fermion to boson have an additional factor of i<br />

(imaginary number) multiplying boson.


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Surprise 1: Can Succinctly Represent<br />

the CM as an Adinkra picture


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Where:<br />

Adinkra Matrices<br />

We can write these transformation laws as:


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Where:<br />

Adinkra Matrices<br />

We can write these transformation laws as:


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Where:<br />

Adinkra Matrices<br />

We can write these transformation laws as:<br />

Important Result: L I=(R I) T =(R I) -1<br />

without which, the representation would not be Adinkraic:


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Where:<br />

We also have:<br />

Adinkra Matrices and the<br />

Garden Algebra<br />

We can write these transformation laws as:<br />

Important Result: L I=(R I) T =(R I) -1<br />

without which, the representation would not be Adinkraic<br />

We call this a GR(d,N) Algebra: General Real d x d matrices encoding N <strong>SUSY</strong>’s.<br />

• AKA: A Garden Algebra which is essentially a real representation of a Clifford algebra.


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

One Basis is as Good as the Next<br />

We would like to preserve the basic features


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

One Basis is as Good as the Next<br />

We would like to preserve the basic features<br />

• Transformation Laws:<br />

• Adinkraic: L I=(R I) T =(R I) -1<br />

• Garden Algebra:


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

One Basis is as Good as the Next<br />

We would like to preserve the basic features<br />

• Transformation Laws:<br />

• Adinkraic: L I=(R I) T =(R I) -1<br />

• Garden Algebra:<br />

Can accomplish this with simultaneous orthogonal transformations on:<br />

• bosons:<br />

• fermions:<br />

• Adinkra matrices:<br />

T<br />

O , O O I<br />

B B B<br />

T T<br />

O , O O I<br />

F F F<br />

L OL O , R ORO<br />

T T<br />

I B I F I F I B


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

e.g.: the Valise Adinkra for CM<br />

Valise Adinkra: An adinkra with one row each of bosons and fermions, drawn fermions<br />

over bosons.<br />

Via Integrating to lower F and G and applying Orthogonal Transformations:<br />

T<br />

T T<br />

O , O O I O , O O I<br />

B B B<br />

L OL O , R ORO<br />

T T<br />

I B I F I F I B<br />

F F F


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Adinkras: Vector Multiplet (VM)<br />

Lagrangian is supersymmetric<br />

with respect to the transformation laws:


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Adinkras: Vector Multiplet (VM)<br />

1-D reduced <strong>SUSY</strong> transformation laws<br />

can be succinctly written canonically as the Adinkra


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Adinkras: Vector Multiplet (VM)<br />

1-D reduced <strong>SUSY</strong> transformation laws<br />

vector multiplet<br />

valise Adinkra:


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Compare with the Adinkra for the CM<br />

(flip back and forth between previous slide, watch the colors, are these the same Adinkra?)<br />

1-D reduced <strong>SUSY</strong> transformation laws<br />

chiral multiplet<br />

valise Adinkra:


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

vector multiplet<br />

valise Adinkra :<br />

chiral multiplet<br />

valise Adinkra:<br />

Surprise 2:<br />

“Reflection” about<br />

“orange” axis


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

vector multiplet<br />

valise Adinkra :<br />

chiral multiplet<br />

valise Adinkra:<br />

But are these truly distinct?<br />

?<br />

Are they related by O B<br />

and/or O F<br />

transformations ?


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Chromocharacters: Basis Independent<br />

Comparison Tools<br />

Invariant w.r.t.<br />

orthogonal<br />

transformations<br />

O B and O F


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Chromocharacters: Basis Independent<br />

P=1: (VM)<br />

Comparison Tools<br />

Invariant w.r.t.<br />

orthogonal<br />

transformations<br />

O B and O F<br />

(CM)


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Chromocharacters: Basis Independent<br />

P=1: (VM)<br />

P=2:<br />

(VM)<br />

(CM)<br />

Comparison Tools<br />

Invariant w.r.t.<br />

orthogonal<br />

transformations<br />

O B and O F<br />

(CM)


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Chromocharacters: Basis Independent<br />

P=1:<br />

P=2:<br />

(VM)<br />

(CM)<br />

Comparison Tools<br />

(VM)<br />

Invariant w.r.t.<br />

orthogonal<br />

transformations<br />

O B and O F<br />

(CM)<br />

The sign in front of the epsilon shows that the valise Adinkras for the<br />

vector and chiral multiplets are indeed distinct: no O B and O F<br />

transformations exist between them: they are indeed distinct!


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Draw an analogy:<br />

Enantiomers<br />

chiral multiplet valise Adinkra<br />

“Reflection”<br />

about<br />

“orange” axis<br />

vector multiplet valise Adinkra<br />

Draw an analogy <strong>from</strong> chemistry: molecules that are identical up to a spatial<br />

reflection are called cis- and trans-enantiomers (mirror images)<br />

Spatial Reflections


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Define:<br />

‘<strong>SUSY</strong> enantiomer’ numbers<br />

“Reflection”<br />

about<br />

“orange” axis<br />

(nc = 1, nt = 0) (nc = 0, nt = 1)<br />

cis-Adinkra trans-Adinkra<br />

Draw an analogy <strong>from</strong> chemistry: molecules that are identical up to a spatial<br />

reflection are called cis- and trans-enantiomers (mirror images)<br />

Spatial Reflections


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Surprise 3: A conjecture:<br />

All 4D N=1 <strong>SUSY</strong> <strong>off</strong>-<strong>shell</strong> multiplets can be represented by their <strong>SUSY</strong> enantiomer numbers:<br />

the numbers of its n c cis- and n t trans-valise Adinkras<br />

“Reflection”<br />

about<br />

“orange” axis<br />

(n c = 1, n t = 0) (n c = 0, n t = 1)<br />

cis-Adinkra trans-Adinkra<br />

Conjecture also: all chromocharacters for 4D N=1 <strong>SUSY</strong> <strong>off</strong>-<strong>shell</strong> Adinkras


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Use Tensor Multiplet to test Conjecture:<br />

All 4D N=1 <strong>SUSY</strong> <strong>off</strong>-<strong>shell</strong> multiplets can be represented by their <strong>SUSY</strong> enantiomer numbers:<br />

the numbers of its n c cis- and n t trans-valise Adinkras<br />

“Reflection”<br />

about<br />

“orange” axis<br />

(n c = 1, n t = 0) (n c = 0, n t = 1)<br />

cis-Adinkra trans-Adinkra<br />

The tensor multiplet:


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Use Tensor Multiplet to test Conjecture:<br />

All 4D N=1 <strong>SUSY</strong> <strong>off</strong>-<strong>shell</strong> multiplets can be represented by their <strong>SUSY</strong> enantiomer numbers:<br />

the numbers of its n c cis- and n t trans-valise Adinkras<br />

“Reflection”<br />

about<br />

“orange” axis<br />

(n c = 1, n t = 0) (n c = 0, n t = 1)<br />

cis-Adinkra trans-Adinkra<br />

The tensor multiplet: 1-D reduction


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Use Tensor Multiplet to test Conjecture:<br />

All 4D N=1 <strong>SUSY</strong> <strong>off</strong>-<strong>shell</strong> multiplets can be represented by their <strong>SUSY</strong> enantiomer numbers:<br />

the numbers of its n c cis- and n t trans-valise Adinkras<br />

“Reflection”<br />

about<br />

“orange” axis<br />

(n c = 1, n t = 0) (n c = 0, n t = 1)<br />

cis-Adinkra trans-Adinkra<br />

The tensor multiplet can be represented by the trans-Adinkra and has (n c = 0, n t = 1)


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Conjecture works for Tensor Multiplet:<br />

All 4D N=1 <strong>SUSY</strong> <strong>off</strong>-<strong>shell</strong> multiplets can be represented by their <strong>SUSY</strong> enantiomer numbers:<br />

the numbers of its n c cis- and n t trans-valise Adinkras<br />

“Reflection”<br />

about<br />

“orange” axis<br />

(n c = 1, n t = 0) (n c = 0, n t = 1)<br />

cis-Adinkra trans-Adinkra<br />

The tensor multiplet can be represented by the trans-Adinkra and has (n c = 0, n t = 1), and<br />

of course, it’s chromocharacters match up with these numbers:


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Data Supporting Surprise 3: A conjecture:<br />

All 4D N=1 <strong>SUSY</strong> <strong>off</strong>-<strong>shell</strong> multiplets can be represented by their <strong>SUSY</strong> enantiomer numbers, the<br />

numbers of its n c cis- and n t trans-Adinkras<br />

Conjecture works for the following 4D N=1 <strong>off</strong> <strong>shell</strong> multiplets each with<br />

d = 4 fermion = 4 boson d.o.f:<br />

Chiral Multiplet<br />

(n c = 1, n t = 0)<br />

Vector Multiplet<br />

(n c = 0, n t = 1)<br />

Tensor Multiplet<br />

(n c = 0, n t = 1)


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Data Supporting Surprise 3: A conjecture:<br />

All 4D N=1 <strong>SUSY</strong> <strong>off</strong>-<strong>shell</strong> multiplets can be represented by their <strong>SUSY</strong> enantiomer numbers, the<br />

numbers of its n c cis- and n t trans-Adinkras<br />

Conjecture works for the following 4D N=1 <strong>off</strong> <strong>shell</strong> multiplets each with<br />

d = 4 fermion = 4 boson d.o.f:<br />

Chiral Multiplet<br />

(n c = 1, n t = 0)<br />

Vector Multiplet<br />

(n c = 0, n t = 1)<br />

Tensor Multiplet<br />

(n c = 0, n t = 1)<br />

What about more complicated multiplets?<br />

• Real Scalar Superfield Multiplet (d=8 fermion = 8 boson d.o.f.)<br />

• Complex Linear Superfield Multiplet (d=12 fermion =12 boson d.o.f.)


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Real Scalar Superfield (RSS)


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Real Scalar Superfield (RSS)<br />

bosons: fermions:


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Real Scalar Superfield (RSS):<br />

Tesseract Adinkra<br />

* Notice, we have had to<br />

combine fields in nodes<br />

to make this Adinkraic


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Real Scalar Superfield (RSS):<br />

Valise Adinkra<br />

(n c = 1, n t = 0) + (n c = 0, n t = 1)<br />

= (n c = 1, n t = 1)


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Real Scalar Superfield (RSS):<br />

Valise Adinkra<br />

Check chromocharacters:<br />

(n c = 1, n t = 1)


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Real Scalar Superfield (RSS):<br />

Valise Adinkra<br />

Check chromocharacters:<br />

(n c = 1, n t = 1)


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Real Scalar Superfield (RSS):<br />

Valise Adinkra<br />

Check chromocharacters:<br />

(n c = 1, n t = 1)


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Real Scalar Superfield (RSS):<br />

Valise Adinkra<br />

Check chromocharacters:<br />

(n c = 1, n t = 1)


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Real Scalar Superfield (RSS):<br />

Valise Adinkra<br />

Check chromocharacters:<br />

(n c = 1, n t = 1)


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Complex Linear Superfield (CLS)


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Complex Linear Superfield (CLS)<br />

bosons: fermions:


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Complex Linear Superfield (CLS)<br />

Valise Adinkra<br />

(n c = 1, n t = 0) + (n c = 0, n t = 1) + (n c = 0, n t = 1)<br />

= (n c = 1, n t = 2)


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Complex Linear Superfield (CLS)<br />

Valise Adinkra<br />

*Notice the node content has rather non-trivial linear combinations of the fields, this seems to<br />

be the main challenge in finding these larger representations<br />

(n c = 1, n t = 0) + (n c = 0, n t = 1) + (n c = 0, n t = 1)<br />

= (n c = 1, n t = 2)


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Complex Linear Superfield (CLS)<br />

Valise Adinkra<br />

*Notice the node content has rather non-trivial linear combinations of the fields, this seems to<br />

be the main challenge in finding these larger representations<br />

Check chromocharacters:<br />

(n c = 1, n t = 2)


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Complex Linear Superfield (CLS)<br />

Valise Adinkra<br />

*Notice the node content has rather non-trivial linear combinations of the fields, this seems to<br />

be the main challenge in finding these larger representations<br />

Check chromocharacters:<br />

(n c = 1, n t = 2)


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Complex Linear Superfield (CLS)<br />

Valise Adinkra<br />

*Notice the node content has rather non-trivial linear combinations of the fields, this seems to<br />

be the main challenge in finding these larger representations<br />

Check chromocharacters:<br />

(n c = 1, n t = 2)


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Complex Linear Superfield (CLS)<br />

Valise Adinkra<br />

*Notice the node content has rather non-trivial linear combinations of the fields, this seems to<br />

be the main challenge in finding these larger representations<br />

Check chromocharacters:<br />

(n c = 1, n t = 2)


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Complex Linear Superfield (CLS)<br />

Valise Adinkra<br />

*Notice the node content has rather non-trivial linear combinations of the fields, this seems to<br />

be the main challenge in finding these larger representations<br />

Check chromocharacters:<br />

(n c = 1, n t = 2)


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Summary<br />

• Standard model: matter transforms in the fundamental representation, force carriers in the<br />

adjoint.<br />

• No representation theory for <strong>off</strong>-<strong>shell</strong> supersymmetry exists<br />

• <strong>SUSY</strong> extensions of the Standard Model would benefit <strong>from</strong> its construction<br />

F: fundamental, A: Anti-fundamental, O: Octet(adjoint), D: Decuplet<br />

C: chiral multiplet, V:vector multiplet, T: tensor multiplet, RSS: real scalar superfield<br />

multiplet, CLS: complex linear superfield multiplet<br />

d: size of representation<br />

p, q: 0,1,2,….<br />

n c and n t: the number of cis- and trans-Adinkras, respectively, in the <strong>SUSY</strong> representation.


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Summary<br />

(n c = 1, n t = 0) (n c = 0, n t = 1) (n c = 0, n t = 1)<br />

(n c = 1, n t = 1)<br />

(nc = 1, nt = 2)<br />

+ other 4D N=1 <strong>SUSY</strong> Multiplets? + extensions to d=10<br />

YM, SG, Superstring/M-theory? To be continued…


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Thank You<br />

• You the audience<br />

• Co-authors: Profs. Gates, Rodgers, and Hübsch, and Jared<br />

Hallett and James Parker<br />

• Prof. Curtright , the organizers, and the U<br />

• Lago Mar Resort<br />

• Funding: Endowment of John S. Toll Professorship, the<br />

University of Maryland, CSPT, MCFP, NSF Grant PHY-<br />

0354401, MLK visiting professorship and MIT Center for<br />

Theoretical Physics<br />

• Leo Rodgriguez, Abdul Khan, many SSTPRS summer school<br />

students, and Universities of Iowa and Maryland for hosting<br />

• Gred Landweber, creator of Adinkramat ©2008


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Back-Up Slides


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Canonical Adinkra to Valise Adinkra:<br />

Chiral Multiplet


Kory Stiffler - <strong>Mathematical</strong> <strong>Surprises</strong> <strong>from</strong> <strong>off</strong>-<strong>shell</strong> <strong>SUSY</strong> <strong>Representation</strong> <strong>Theory</strong> 1112.2147<br />

Canonical Adinkra to Valise Adinkra:<br />

Vector Multiplet

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!