04.06.2013 Views

DRAM Technology

DRAM Technology

DRAM Technology

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>DRAM</strong><br />

<strong>Technology</strong><br />

Research & Development Division<br />

Yunseok Chun, Ph.D. (yunseok.chun@skhynix.com)<br />

© 2012 SK hynix Semiconductor Inc.<br />

This document is proprietary and confidential of SK hynix Semiconductor Inc.


Tutorial Overview<br />

<strong>DRAM</strong> <strong>Technology</strong><br />

Objectives<br />

• To provide an introduction to current <strong>DRAM</strong><br />

technology, <strong>DRAM</strong> fundamental,<br />

scaling trends & challenges


Contents<br />

• Overview<br />

• <strong>DRAM</strong> Fundamentals<br />

• <strong>DRAM</strong> Scaling<br />

• Wrap-up


Overview<br />

• Applications & Classification<br />

• Business<br />

• Cost<br />

• <strong>Technology</strong> Acceleration


Chips<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 5


Memory Chip Applications<br />

<strong>DRAM</strong><br />

Flash<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 6


Classification of Memory<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 7


Industry<br />

반도체 회사<br />

• 제조<br />

• 불량부품 교체 불가<br />

• Yield ~80%<br />

• 파급효과 : 小<br />

자동차 회사<br />

• 조립<br />

• 불량부품 교체 가능<br />

• Yield ~100%<br />

• 파급효과 : 大<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 8


History of <strong>DRAM</strong><br />

Dr. Robert H. Dennard,<br />

IBM Fellow<br />

created the one-transistor<br />

<strong>DRAM</strong> in 1966<br />

World 1’st Available <strong>DRAM</strong> Chip<br />

Intel 1103<br />

1966<br />

. 1 Kb<br />

. 3 Transistors<br />

1’st <strong>DRAM</strong> Chip with 1-Tr. & 1-Cap.<br />

MK4096<br />

[Source : S.Y. Cha(Hynix), VLSI Short Course 2011]<br />

1970<br />

. 4 Kb<br />

. 1-Tr. & 1-Cap.<br />

. Address multiplexing<br />

. VDD : 11.4~12.6V<br />

. Access time of 300ns<br />

. Refresh time of 2ms<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 9<br />

1973


<strong>DRAM</strong> in Semiconductor Industry<br />

Sensor<br />

[Source : WSTS 2011]<br />

Analog<br />

Opto<br />

Discrete<br />

$ 226.2 billion in 2011<br />

Other<br />

Memory<br />

Logic<br />

NAND SRAM<br />

Memory<br />

MPU<br />

Other Micro<br />

$ 22.4 billion for <strong>DRAM</strong><br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 10


<strong>DRAM</strong> Producer<br />

▷ Elpida<br />

▷ Hynix<br />

▷ Micron<br />

▷ Nanya<br />

▷ PowerChip<br />

▷ ProMos<br />

▷ Samsung<br />

▷ Winbond<br />

1985 1995 2000 2009 2015<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 11


Rapid Scaling<br />

2002<br />

58,062ea of 130nm<br />

256Mb DDR <strong>DRAM</strong> cell in a hair<br />

Thickness of a human hair : ~ 100㎛ (Average)<br />

[Source : S.Y. Cha(Hynix), VLSI Short Course 2011]<br />

2010<br />

506,844ea of 4xnm<br />

1Gb DDR3 <strong>DRAM</strong> cell in a hair<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 12


<strong>DRAM</strong> Scaling Trend<br />

Minimum Feature Size [nm]<br />

200<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

Die cost =<br />

Cost =<br />

wafer cost<br />

net die * yield<br />

Die cost + Test cost + Package cost<br />

final test yield<br />

[Source : ITRS]<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 13<br />

[Year]


Net die ?<br />

200mm (8 inch)<br />

4<br />

10<br />

82<br />

86<br />

18<br />

76<br />

28<br />

38<br />

48<br />

58<br />

68<br />

ex) 86 ea vs. 210 ea<br />

300mm (12 inch)<br />

2배 이상의 cost가 들어가지 않으면 300mm Wafer 사용이 이익<br />

8<br />

18<br />

30<br />

44<br />

194<br />

204<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 14<br />

210<br />

58<br />

74<br />

90<br />

106<br />

122<br />

138<br />

154<br />

168<br />

182


<strong>DRAM</strong> 제품 제조 과정<br />

Design<br />

Circuit Design<br />

Wafer Processing<br />

Photo<br />

Lithography<br />

Test & Package<br />

Wafer<br />

Test<br />

Etch<br />

Layout Drawing Mask Making<br />

Diffusion<br />

Implantation<br />

Inspection & Measurement<br />

Thin Film<br />

(CVD/PVD)<br />

Die & Wire Encap-<br />

Dicing Bonding sulation <br />

CMP<br />

Cleaning<br />

Test &<br />

Burn-in<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 15


<strong>DRAM</strong> Fundamentals<br />

• MOSFET<br />

• Chip Architecture<br />

• <strong>DRAM</strong> Operation


What is MOSFET ?<br />

Source<br />

0V<br />

Gate<br />

Gate Oxide Gate Oxide<br />

N+ N+<br />

N+<br />

- - - - - - - - - N+<br />

X<br />

P-Substrate<br />

B<br />

V DS<br />

Drain<br />

Source<br />

Channel<br />

V GS > V T V DS<br />

Gate<br />

P-Substrate<br />

Off State On State<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 17<br />

B<br />

Drain


MOS-C ?<br />

Metal-Oxide-Semiconductor Capacitor<br />

MOSFET ?<br />

Metal-Oxide-Semiconductor Field Effect Transistor<br />

CMOS ?<br />

Oxide<br />

Complementary MOSFET : NMOS + PMOS Low Power<br />

V GB<br />

N+ Gate<br />

2 terminal 4 terminal<br />

N+ N+<br />

P-Substrate P-Substrate P-Substrate<br />

V GS<br />

B<br />

Short channel effect<br />

MOS-C MOSFET (Long Channel) MOSFET (Short Channel)<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 18<br />

V DS<br />

V GS<br />

B<br />

V DS


NMOS & PMOS Structure<br />

Vs<br />

NMOSFET PMOSFET<br />

Vg(Vgs>0) Vd(Vds>0)<br />

N+ Poly<br />

oxide<br />

e<br />

N+ N+<br />

P-type 기판(P-Well)<br />

Vb(Vbs0, Vbs


MOSFET Performance<br />

x<br />

Source<br />

L D<br />

V GS<br />

Gate<br />

N+ N+<br />

Leff<br />

Ldrawn<br />

P-Substrate<br />

B<br />

V DS<br />

Drain<br />

High Performance<br />

& Low Power<br />

1. Maximize On Current !<br />

2. Minimize Off Current !<br />

Z<br />

y<br />

I D V DS =2V<br />

V DS =0.05V<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 20<br />

Logarithmic Scale<br />

0<br />

V T<br />

Ideal MOS Current<br />

1 2 3<br />

On Current<br />

COX<br />

W<br />

I D GS <br />

2 L<br />

<br />

Off Current<br />

2 V V<br />

T<br />

V GS


<strong>DRAM</strong> Chip Architecture<br />

1 MAT<br />

Cell Array<br />

Bit line sense amp<br />

Peripheral Circuit<br />

Word Line<br />

Sub WL<br />

driver<br />

Bit Line<br />

Cell Transistor<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 21<br />

Cell Capacitor<br />

SN<br />

SNC<br />

BLC<br />

Cell<br />

BL<br />

Peripheral Transistor<br />

Peripheral


Devices inside <strong>DRAM</strong> Chip<br />

Cell<br />

Cell Transistor<br />

Cell Capacitor<br />

Word line, Bit line, Contacts<br />

1 MAT<br />

Cell Array<br />

Bit line sense amp<br />

Sub WL<br />

driver<br />

Peripheral Transistors<br />

High speed/ Low power<br />

S/A Transistor for Sensing<br />

SWD Transistor for driving WL<br />

with High Voltage<br />

Transistors for voltage generation<br />

Role Area Ratio<br />

Cell Data storage 50~55 %<br />

Core Data restoring 25~30 %<br />

peripheral Control-logic / In-Out interface ~20 %<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 22<br />

Word Line<br />

Bit Line


<strong>DRAM</strong> Cell<br />

Word Line<br />

SN SN<br />

SN<br />

Gate<br />

Cell capacitor<br />

(Charge storage)<br />

Si<br />

BL<br />

Bit Line<br />

capacitor<br />

1. Word Line<br />

Access Transistor Gate Control ( On/Off )<br />

Storage Node High Data 보다 승압된 젂원 Level 사용<br />

Poly-Si Layer (또는 WSi 2, W)<br />

2. Bit Line<br />

Data Transfer Line<br />

Read/Write 공용<br />

Half Vcore level Precharge for Power Saving<br />

3. Access Transistor<br />

Switch기능의 NMOS Transistor 1개<br />

Refresh 특성강화 위해 High Vt 설정<br />

4. Capacitor<br />

Data 저장 장소<br />

Storage Node의 Charge량에 의해 Data유지<br />

REFRESH 필요<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 23


BL<br />

1 Transistor 1 Capacitor <strong>DRAM</strong> Cell<br />

WL<br />

CAP<br />

BL<br />

WL<br />

2 Transistors on 1 Active<br />

Bit Line (V BL)<br />

: Data Path<br />

to Bit Line Sense Amp.<br />

Word Line (V (VWL) WL) WL)<br />

: Control signal<br />

to Access Transistor<br />

Body (V (VBB) BB) BB)<br />

: Substrate<br />

Storage Node (V SN)<br />

: Storing charges<br />

to Word line Driver<br />

Access (Cell) Transistor<br />

: Switching Bit line to storage node<br />

Common Plate (V CP)<br />

: Keeping Plate constant<br />

Cell Capacitor (C S)<br />

: Keeping stored charges<br />

If V SN is high voltage, then cell data is “1”.<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 24


Basic <strong>DRAM</strong> operation<br />

Capacitor<br />

(Cs)<br />

Q s=Cs*Vcore<br />

Cell Tr.<br />

(Vth, Ids, Rc)<br />

Bit-Line<br />

(Cbl)<br />

Vcore/2<br />

Q b=Cbl*Vcore/2<br />

Sense<br />

Amplifier<br />

/Bit-Line<br />

(Cbl)<br />

Vcore/2<br />

Q b=Cbl*Vcore/2<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 25


Basic <strong>DRAM</strong> Operation<br />

WL<br />

BL /BL<br />

BL S/A<br />

BL /BL<br />

Restore<br />

Sensing<br />

Active (RAS) → Row Address Input & Decoding → BL S/A Activation<br />

→ Read/Write (CAS) → Column Address Input & Decoding<br />

→ Column selection signal enable (Yi) → Data Sensing (or Write Drive) → Data Out<br />

V PP<br />

V Core<br />

V BLP<br />

V SS<br />

BL & /BL<br />

Data<br />

S/A<br />

Write<br />

Driver<br />

Active<br />

WL<br />

Command<br />

Enable<br />

S/A<br />

Enable<br />

Data Input<br />

Register<br />

Pipe<br />

Register<br />

WL<br />

Read/Write<br />

Available<br />

Output<br />

Buffer<br />

BL<br />

△V Charge Sharing<br />

/BL<br />

Input<br />

Buffer<br />

Precharge<br />

Command<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 26<br />

I/O<br />

PAD<br />

WL & S/A<br />

Disable


Basic Operation : Write<br />

V PP<br />

Total Cell Resistance to write data (Rc)<br />

= R ch (Channel Resistance of Cell Tr)<br />

+ R BLC (Bit Line Plug Contact Resistance)<br />

+ R SNC (Storage Node Contact Resistance)<br />

+ R BL (Bit Line Resistance)<br />

Vcore for writing “1”<br />

V SS (0V) for writing “0”<br />

Even though the technology shrinks down,<br />

Rext<br />

R ch is mainly depends on the V PP Level, mobility,<br />

dimension of Cell transistor, gate oxide thickness.<br />

But, the maximum value of V PP is limited by the<br />

reliability of gate oxide.<br />

Total Rc should be maintained under a certain<br />

value in order to satisfy tWR specification(~12ns).<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 27


Basic Operation : Read<br />

V core or V ss<br />

When the desired WL is selected, charge of<br />

capacitor is transferred between the storage cell<br />

/BL<br />

BL<br />

and the connected bit line.<br />

But, only small voltage is applied to the connected<br />

bit line due to high capacitance of bit line.<br />

Sense amplifier has to amplify that small difference.<br />

V BLP (~1/2V core)<br />

V BLP ± ΔV<br />

C B : Bit line capacitance ~ (3~4)xCs<br />

B<br />

Sense<br />

Amplifier<br />

( V V<br />

1<br />

C / C<br />

core BLP<br />

V <br />

~ 150 mV<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 28<br />

S<br />

)


Basic Operation : Retention<br />

Field<br />

Ox.<br />

4<br />

5<br />

-<br />

+<br />

-<br />

+<br />

-<br />

+<br />

-<br />

+<br />

SNC Gate BLC<br />

1<br />

Capacitor<br />

2<br />

Leakage paths losing data<br />

1) Junction leakage<br />

2) GIDL<br />

3) Off-leakage<br />

3<br />

The dynamic nature of <strong>DRAM</strong> requires that the memory<br />

be refreshed periodically so as not to lose the contents<br />

of the memory cells.<br />

Refreshed every 64ms typically (as defined by JEDEC)<br />

4) Field Tr. leakage<br />

5) Capacitor leakage<br />

Cells with low retention time (Tail Cells)<br />

are screened, and then replaced<br />

(repaired) by redundancy cells.<br />

Stored charge<br />

CS<br />

C<br />

<br />

tREF <br />

<br />

V<br />

B<br />

BLP 1 VOffset<br />

<br />

a CS<br />

<br />

Sensing ability<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 29


Basic Operation : Sensing Margin<br />

Sensing Signal<br />

ΔV =<br />

V core-V blp<br />

1+C BL/C S<br />

Sensing Margin<br />

= ΔV – S/A Offset<br />

S/A Offset<br />

In order for sense amplifier to amplify<br />

successfully, a certain amount of<br />

sensing margin is necessary except for<br />

intrinsic offset and noise from total<br />

charge sharing voltage.<br />

Noise by data pattern<br />

As technology shrinks down,<br />

△V decrease due to reduced Cell<br />

Capacitance (Cs) & Vcore<br />

Intrinsic offset increase by RDF<br />

Intrinsic offset by VT Mismatch<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 30


<strong>DRAM</strong> Scaling<br />

• Scaling Methods<br />

• Scaling Challenges


Target of Bit growth<br />

[Source : WSTS ]<br />

We should keep the cost-down to<br />

36% every year.<br />

Therefore, Bit growth should be<br />

more than 50% (considering Costdown<br />

and investments) for each<br />

technology generation.<br />

the number of net die can increase<br />

about 40% as the technology shrinks<br />

about 20%.<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 32


Scaling<br />

1. Design Rule<br />

. 80nm → 60nm → 40nm<br />

. Resolution<br />

2. Cell Layout<br />

. 16F 2 → 8F 2 → 6F 2 → 4F 2<br />

3. Chip Design<br />

. Cell Efficiency<br />

. Chip Architecture<br />

Wavelength Wavelength (nm) (nm)<br />

436<br />

365<br />

365<br />

248<br />

248<br />

193<br />

193<br />

Optical<br />

(Ultraviolet)<br />

DUV : Deep Ultraviolet<br />

VUV : Vacuum Ultraviolet<br />

EUV : Extreme Ultraviolet<br />

157<br />

126<br />

광원의 g-line i-line i-line line KrF KrF<br />

종류<br />

ArF ArF F 2 Ar 2<br />

DUV VUV<br />

13<br />

Non-Optical<br />

1 4x10-3 5x10-5 1 4x10-3 5x10-5 EUV XRL EPL IPL<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 33


Cell Area Factor<br />

toward more compact<br />

Unit Cell Area 8F 2 6F 2 4F 2<br />

Schematic<br />

Special<br />

Feature<br />

Normal Twist Tr Vertical Tr<br />

Sensing Folded Open Open<br />

Cell Cap. Area 4F 2 3F 2 2F 2<br />

S/A Pitch 4 BL Pitch 2 BL Pitch 2 BL pitch<br />

Merits<br />

WL<br />

BL<br />

SNC BLC<br />

2F<br />

Noise immunity<br />

Large Cs<br />

Demerits Large cell size<br />

Active area<br />

4F<br />

2F<br />

WL<br />

BL<br />

3F<br />

Medium cell<br />

Small Cb<br />

WL<br />

2F<br />

Large noise<br />

BL<br />

Integration difficulty<br />

2F<br />

Small cell<br />

Small Cb<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 34


Folded vs. Open BL Scheme<br />

SA<br />

Scheme<br />

Folded<br />

Bit line<br />

(8F 2 )<br />

Open<br />

Bit line<br />

(4/6F 2 )<br />

SA<br />

SA<br />

SA<br />

Cell Architecture<br />

6F 2<br />

Layout<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 35


Types of Transistors<br />

Type of<br />

Transistor<br />

Applied<br />

Voltage<br />

Gate Oxide<br />

Thickness<br />

Gate Length<br />

Contact<br />

Key<br />

Requirements<br />

Cell Transistor<br />

VPP ( ~ 3.0V) VDD (1.5V @DDR3)<br />

Peripheral Transistors<br />

Normal Transistor BLSA Latch Transistor SWD Transistor<br />

Vcore<br />

( 1.0~1.3V @DDR3)<br />

VPP (~3.0V)<br />

Thick Oxide Slim Oxide Thick Oxide<br />

Minimum Feature Size<br />

(ex. 45nm)<br />

Self-aligned contact<br />

with minimum gate<br />

spacer<br />

Low Junction leakage<br />

Short channel margin<br />

High operating current<br />

Minimum Lg in the<br />

peripheral circuit<br />

(ex. ≥ 80nm)<br />

Maximize Lg within<br />

pitched layout<br />

(ex. ≥ 120nm)<br />

Maximize Lg within<br />

pitched layout<br />

(ex. ≥ 140nm)<br />

Hole or Slit contact <br />

High Speed<br />

Short channel margin<br />

Small local variation Good Reliability<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 36


<strong>DRAM</strong> <strong>Technology</strong> Node<br />

Scaling Challenges of <strong>DRAM</strong> <strong>Technology</strong><br />

50nm<br />

40nm<br />

30nm<br />

20nm<br />

10nm<br />

Patterning<br />

Cell Capacitor<br />

Retention Time<br />

Sensing Margin<br />

Parasitic resistance<br />

Gate Oxide of Peri Tr<br />

Big Challenges !<br />

2008 2009 2010 2011 2012 2013 2014 2015<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 37<br />

Year


Shrink Limitations : Transistor<br />

Cell Tr<br />

Peri Tr<br />

Planar<br />

WSix<br />

N+<br />

BC-PMOS<br />

Recessed Fin Vertical Nanowire<br />

WSix<br />

P+<br />

SC-PMOS<br />

P+<br />

100 100 80 80 60 40 40 20 1020<br />

W<br />

W-SC<br />

<strong>Technology</strong> (nm)<br />

<strong>Technology</strong> Node (nm)<br />

W<br />

P+<br />

Strained<br />

/ ESD<br />

Fin<br />

/HKMG<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 38


Cell Transistor : Considerations on Scaling<br />

Lower Retention time caused<br />

by increased electric field.<br />

Lower On-Current caused by<br />

decreased dimension.<br />

Higher Off-Leakage current<br />

caused by short channel effect.<br />

[Source : S.Y. Cha(Hynix), VLSI Short Course 2011]<br />

Process margin<br />

D/R<br />

Refresh Time<br />

On-Current<br />

Off-Leakage<br />

Scale down<br />

How to increase retention time ?<br />

How to increase on-current ?<br />

How to improve short channel margin ?<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 39


Cell Transistor : History & Future Trends<br />

Cell Area [um2]<br />

0.2<br />

0.1<br />

0.05<br />

0.01<br />

0.005<br />

0.003<br />

0.002<br />

Planar Cell<br />

C-Halo<br />

Recess Gate<br />

8F2<br />

8F2<br />

Sphere RG<br />

150 120 100 80 60 50 40 30 20<br />

6F2<br />

6F2<br />

Gate<br />

Active<br />

Saddle Fin FET<br />

Buried Gate<br />

4F2<br />

Vertical Gate<br />

4F2<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 40


Why Scaling ?<br />

T<br />

pd<br />

<br />

CV<br />

I<br />

<br />

C ox WLV<br />

W<br />

eff C ox<br />

L<br />

( V <br />

V th ) <br />

Lateral scaling<br />

Iop ↑, Cap. ↓<br />

Higher density<br />

Higher performance<br />

Low Power<br />

Vertical scaling<br />

Vt ↓/ St ↑/△Vt↑/μ↓ Ig↑/Cj↑/Rs↑<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 41


Conventional Scaling Method for Peri Tr.<br />

Power<br />

Jn↓<br />

Vth↓<br />

Tox↓<br />

Lg↓<br />

+<br />

New<br />

<strong>Technology</strong><br />

Goal<br />

High performance<br />

Low power<br />

Performance<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 42


MOSFET Scaling Method<br />

S<br />

Wd<br />

eff COX<br />

W<br />

IOP GS <br />

2 L<br />

<br />

TSC<br />

2 V V<br />

V by DIBL <br />

l <br />

T<br />

G<br />

Lg<br />

Sub<br />

Vgs<br />

Tox<br />

Vds<br />

L<br />

/ 2l<br />

L<br />

/ l<br />

2( V 2 ) V<br />

e 2e<br />

<br />

bi<br />

t<br />

<br />

si oxWd<br />

ox<br />

<br />

B<br />

As gate length & width are scaling down,<br />

Tox should be also scaled by 1/k<br />

in order to maintain the same Iop & DIBL.<br />

DS<br />

D<br />

I<br />

'<br />

op<br />

<br />

l<br />

eff<br />

' <br />

C<br />

2<br />

Scaling factor k<br />

Gate Length (L) 1/k<br />

Gate Width (W) 1/k<br />

Gate Oxide (t ox) 1/k<br />

Depletion width (W d) 1/k<br />

'<br />

Voltage (V)<br />

W '<br />

L'<br />

Iop 1<br />

Power<br />

2 ' '<br />

V <br />

OX V<br />

GS T<br />

t<br />

' '<br />

si Wd<br />

<br />

ox<br />

ox<br />

<br />

'<br />

Iop Iop<br />

G<br />

S D<br />

Wd<br />

k<br />

1<br />

1<br />

Lg<br />

k<br />

Sub<br />

k<br />

k<br />

Vgs<br />

k<br />

Tox<br />

k<br />

' '<br />

& L / l L / l<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 43<br />

Vds<br />

k


How to Increase the Transistor Performance?<br />

COX<br />

W<br />

I D GS <br />

2 L<br />

<br />

(1) VDD 증가<br />

I D<br />

0 V T<br />

On Current 증가<br />

2 V V<br />

V GS<br />

T<br />

(2) Vt 감소<br />

I D<br />

Off Current 증가<br />

0 V T<br />

On Current 증가<br />

V GS<br />

(3) Width 증가<br />

I D<br />

Off Current 증가<br />

0 V T<br />

VDD는 감소 추세 Stand-by Power 증가 면적 증가<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 44<br />

On Current 증가<br />

V GS


How to Increase the Transistor Performance?<br />

COX<br />

W<br />

I D GS <br />

2 L<br />

<br />

(4) Gate Length 감소<br />

I D<br />

0 V T<br />

On Current 증가<br />

Off Current 증가<br />

2 V V<br />

V GS<br />

T<br />

(5) Gate Oxide thickness 감소<br />

I D<br />

Off Current 감소<br />

0 V T<br />

On Current 증가<br />

Transistor margin 열화 Best Practice !!<br />

V GS<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 45


New Approaches for Peripheral Tr.<br />

Structural<br />

Change<br />

Material<br />

Change<br />

Substrate<br />

Change<br />

eff COX<br />

W<br />

IOP GS <br />

2 L<br />

<br />

▶ Elevated S/D<br />

▶ FinFET<br />

▶ Multi-channel MOSFET<br />

▶ SOI Wafer<br />

▶ Hybrid Oriented Substrate<br />

▶ High Mobility Substrate<br />

▶ High-k / Metal Gate<br />

▶ Strained Si<br />

2 V V<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 46<br />

T


Homework<br />

1. “Peripheral Transistor Scaling” 하기위한 많은 Paper 들이 있습니다.<br />

다양한 Paper들 중 위 내용에 해당되는 Paper 한 개를 선택하여 요약 하십시오.<br />

- Title<br />

- Author<br />

- Journal name (IEDM, SOVT 등)<br />

- 기존 문제 및 연구 목적<br />

- 목적을 달성하기 위한 기본 원리 (무엇을 개선하기 위해 어떤 기술을 사용했는지)<br />

- 결과 (무엇이 얼마나 개선되었는지)<br />

- A4 1~2 Page 분량<br />

<strong>DRAM</strong> <strong>Technology</strong> SK hynix Lecture for POSTECH<br />

Page 47


Thank you

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!