05.06.2013 Views

A.R. Offringa - LOFAR - CHIME

A.R. Offringa - LOFAR - CHIME

A.R. Offringa - LOFAR - CHIME

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>LOFAR</strong><br />

André <strong>Offringa</strong> – June 15, 2011<br />

The <strong>LOFAR</strong>-EoR project<br />

and the <strong>LOFAR</strong> collaboration<br />

(many slides from Ger de Bruyn and Michiel Brentjes)


<strong>LOFAR</strong><br />

(and a little bit of RFI)<br />

André <strong>Offringa</strong> – June 15, 2011<br />

The <strong>LOFAR</strong>-EoR project<br />

and the <strong>LOFAR</strong> collaboration<br />

(many slides from Ger de Bruyn and Michiel Brentjes)


The <strong>LOFAR</strong> telescope<br />

<strong>LOFAR</strong>'s key properties:<br />

● 10-90 and 110-300 MHz<br />

● Beamformed stations from dipoles, tiles<br />

● Wide field of view<br />

● Very flexible observing modes<br />

● Large collecting area<br />

● Core in the Netherlands<br />

● International baselines up to 1000 km.


The low and high band antennas


Beam former


WSRT<br />

RS307<br />

RS503<br />

CS302<br />

RS208<br />

RS106


1 km<br />

18 core stations<br />

(all split-stations<br />

with 2x24 tiles)<br />

+ 4 more stations<br />

in core<br />

(CS011,013,028,03<br />

1)


Superterp core stations


HBA tiles:<br />

2x24<br />

LBA dipoles:<br />

96<br />

Core stations


International<br />

stations<br />

Effelsberg<br />

Tautenburg 96 tiles


Widefield beam for HBA & LBA<br />

~20<br />

deg<br />

digitally formed station beam<br />

~100<br />

deg<br />

Inner/outer 48<br />

dipoles


Stations are calibrated<br />

● Using redundancy :)


<strong>LOFAR</strong> observing modes


<strong>LOFAR</strong>'s correlator<br />

● Software correlator (Blue Gene, Groningen)<br />

● Very flexible<br />

● Superb frequency resolution: 0.76 kHz<br />

● Default integration time: 1 sec<br />

● Currently 48 MHz bandwidth, upgrade to 96<br />

(192?) MHz.<br />

● Bandwidth and beams interchangeable, e.g.<br />

24 x 2 MHz beams.


<strong>LOFAR</strong> key science projects<br />

● Epoch of Reionization!<br />

● Pulsars & transients<br />

● Survey<br />

● Magnetism<br />

● Solar (system)<br />

● Ultra high energy physics / CR


The <strong>LOFAR</strong> – EoR project<br />

● Exposure/field: 100 x 6h<br />

● 112-190 MHz<br />

● Raw resolution: 1s / 0.76 Khz<br />

● After RFI detection, average time and freq<br />

5-10 times.<br />

● Raw data rate: 30 TB/h<br />

● Averaged data rate: 0.2 – 0.4 TB/h


EoR fields


<strong>LOFAR</strong> imaging results


3C196 (Wucknitz)


Cas A (Yatawatta)


Cas A (Chandra)


<strong>LOFAR</strong> offline processing<br />

● Standard pipeline:<br />

– Flags (AOFlagger),<br />

– Averages (NDPPP),<br />

– Subtracts bright sources (demixing),<br />

– Calibrates (BBS),<br />

– Images


<strong>LOFAR</strong> offline processing<br />

● Offline processing on cluster of ~100<br />

nodes<br />

● Sub-bands are concurrently processed.<br />

● Averaging + flagging takes 25%-50% of<br />

observation time.


● Very fast &<br />

accurate<br />

● Rough estimate of<br />

astronomical<br />

data<br />

● SumThreshold<br />

● Iterative (2.5x)<br />

● Density dilation<br />

AOFlagger


<strong>LOFAR</strong> and RFI<br />

● RFI environment behaves well<br />

● Few percentage of data requires flagging<br />

● High frequency resolution!<br />

● Antennas on the ground


LBA Total power, before flagging


LBA Virgo, total power, after flagging


HBA “RFI survey” observation, percentages


RFI survey: variance of channel difference (“the noise”)


RFI<br />

● Possible 2 nd stage flagger<br />

● Same algorithm, other input


LBA RFI


HBA RFI


4 observations combined


● <strong>LOFAR</strong> works<br />

Summary<br />

● RFI environment is benign

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!