05.06.2013 Views

sediment management in run-of the-river schemes - Sedinet

sediment management in run-of the-river schemes - Sedinet

sediment management in run-of the-river schemes - Sedinet

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SEDIMENT MANAGEMENT IN<br />

RUN-OF THE-RIVER SCHEMES<br />

(Reservoir Flush<strong>in</strong>g & Desilt<strong>in</strong>g Bas<strong>in</strong>s)<br />

Dr. I. D. Gupta, Director<br />

&<br />

Mrs. V. V. Bhosekar, Jo<strong>in</strong>t Director<br />

Central Water and Power Research, Pune-411024


ABOUT CWPRS<br />

Established <strong>in</strong> 1916 by <strong>the</strong> <strong>the</strong>n Bombay Presidency,<br />

today a premier research <strong>in</strong>stitute under MOWR <strong>in</strong><br />

hydraulics and allied areas.<br />

The research activities are ma<strong>in</strong>ly based on conduct<strong>in</strong>g<br />

physical and ma<strong>the</strong>matical model studies<br />

supplemented with field and laboratory experiments.<br />

CWPRS receive references ma<strong>in</strong>ly from Central/ State<br />

Govt. organizations, Municipal Corporations, Ports,<br />

Public/ Private Sector undertak<strong>in</strong>gs, etc.<br />

UN Recognized Regional Laboratory for ESCAP s<strong>in</strong>ce<br />

1971. Also takes problems from neighbour<strong>in</strong>g<br />

countries.


Ma<strong>in</strong> Functions<br />

Applied research supported by necessary basic research<br />

lead<strong>in</strong>g to safe and cost effective designs <strong>of</strong> projects<br />

deal<strong>in</strong>g with water resources, <strong>river</strong> eng<strong>in</strong>eer<strong>in</strong>g, power<br />

and coastal developments.<br />

Offer<strong>in</strong>g advisory services to various m<strong>in</strong>istries and<br />

departments with<strong>in</strong> <strong>the</strong> sphere <strong>of</strong> its activities by<br />

participation <strong>in</strong> Experts’ Committees.<br />

Dissem<strong>in</strong>at<strong>in</strong>g research f<strong>in</strong>d<strong>in</strong>gs amongst hydraulic<br />

research fraternity by way <strong>of</strong> publications and tra<strong>in</strong><strong>in</strong>g<br />

programmes.<br />

Evolv<strong>in</strong>g and updat<strong>in</strong>g standards (ISO & BIS) and<br />

advis<strong>in</strong>g <strong>the</strong> apex regulatory agencies to ascerta<strong>in</strong><br />

compliance to required stipulations.


Major Discipl<strong>in</strong>es and Technical Divisions<br />

1. RIVER ENGINEERING<br />

River Hydraulics<br />

Hydraulic Analysis and Prototype Test<strong>in</strong>g<br />

Bridge Eng<strong>in</strong>eer<strong>in</strong>g<br />

2. RIVER AND RESERVOIR SYSTEMS MODELING<br />

Hydrometeorology<br />

Surface Water Hydraulics<br />

Water Quality Analysis and Model<strong>in</strong>g<br />

3. RESERVOIR AND APPURTENANT STRUCTURES<br />

Spillways and Energy Dissipators<br />

Control Structures and Water Conductor Systems<br />

Sediment Management<br />

4. COASTAL AND OFFSHORE ENGINEERING<br />

Ports and Harbours<br />

Coastal Hydraulic Structures<br />

Ma<strong>the</strong>matical Model<strong>in</strong>g for Coastal Eng<strong>in</strong>eer<strong>in</strong>g<br />

5. FOUNDATION AND STRUCTURES<br />

Geotechnical Eng<strong>in</strong>eer<strong>in</strong>g<br />

Model<strong>in</strong>g and Analysis <strong>of</strong> Structures<br />

Concrete Technology<br />

6. APPLIED EARTH SCIENCES<br />

Eng<strong>in</strong>eer<strong>in</strong>g Seismology<br />

Vibration Technology<br />

Geophysics<br />

Isotope Hydrology<br />

7. INSTRUMENTATION, CALIBRATION AND<br />

TESTNG SERVICES<br />

Hydraulic Instrumentation<br />

Hydraulic Mach<strong>in</strong>ery and Cavitation<br />

Current Meter Calibration


SEDIMENTATION IN HIMALAYAN RESERVOIRS<br />

High erosion rates due to steep<br />

<strong>river</strong> slopes and fragile geology<br />

Himalayan <strong>river</strong>s carry huge<br />

quantity <strong>of</strong> <strong>sediment</strong>.<br />

Many reservoirs are los<strong>in</strong>g<br />

capacity at <strong>the</strong> rate <strong>of</strong> about 2 %<br />

per annum<br />

Orifice spillways & <strong>sediment</strong><br />

exclusion devices


METHODS FOR MITIGATING RESERVOIR SEDIMENTATION<br />

To <strong>in</strong>crease <strong>the</strong> pass<strong>in</strong>g <strong>of</strong> <strong>sediment</strong> through reservoir<br />

dur<strong>in</strong>g high floods with heavy <strong>sediment</strong> concentrations.<br />

To bypass high flow with heavy <strong>sediment</strong> concentration<br />

from enter<strong>in</strong>g <strong>the</strong> reservoir.<br />

To flush <strong>sediment</strong> accumulation through <strong>the</strong> reservoir.<br />

To remove reservoir <strong>sediment</strong> by mechanical means<br />

such as dredg<strong>in</strong>g and siphon<strong>in</strong>g


SILTATION PROFILE USING MATHEMATICAL MODEL<br />

Rate and pattern <strong>of</strong> deposition <strong>in</strong> reservoir can be<br />

assessed us<strong>in</strong>g follow<strong>in</strong>g numerical models:<br />

HEC – RAS<br />

MIKE – 21<br />

CHARIMA<br />

At CWPRS, we use HEC - RAS which takes <strong>in</strong>to<br />

account both suspended <strong>sediment</strong>s and bedload


DATA REQUIRED FOR HEC-RAS<br />

(Topographic Data)<br />

L-section and plan <strong>of</strong> <strong>the</strong> <strong>river</strong><br />

Cross sections <strong>of</strong> <strong>river</strong><br />

Hydraulic details <strong>of</strong> bridges and weirs/ barrages<br />

Elevation-area-capacity curve <strong>of</strong> <strong>the</strong> reservoir


DATA REQUIRED FOR HEC-RAS<br />

(Hydraulic Data)<br />

Daily water level and discharge data<br />

Records <strong>of</strong> High Flood Level<br />

Rule curve for operation <strong>of</strong> reservoir


DATA REQUIRED FOR HEC-RAS<br />

(Sediment Data)<br />

Suspended <strong>sediment</strong> concentration along with<br />

gradation curve<br />

Bed load data with gradation curve


Elevation.(m)<br />

185<br />

180<br />

175<br />

170<br />

165<br />

160<br />

155<br />

150<br />

MDDL<br />

FRL<br />

SPILLWAY CREST 157 m<br />

1.25 m.cum<br />

SILTATION PROFILE<br />

L I V E S T O R A G E<br />

12.27 m.cum<br />

S I L T A T I O N<br />

145<br />

0 500 1000 1500 2000 2500 3000 3500<br />

Cha<strong>in</strong>age (m)<br />

ORIGINAL BED<br />

0.253 m.cum


PHYSICAL MODEL STUDIES - FLUSHING OF RESERVOIR<br />

Geometrical similar scale model based on Froudian<br />

criteria for simulation<br />

Model scale depends upon<br />

– fetch <strong>of</strong> reservoir<br />

– bed material/suspended load gradation curves<br />

Entire fetch <strong>of</strong> reservoir, <strong>in</strong>take, spillway, <strong>river</strong> bed with<br />

suitable graded material is modeled<br />

Selection <strong>of</strong> bed material depends upon<br />

Shield criteria<br />

Rouse criteria<br />

Young’s <strong>in</strong>cipient motion


RESERVOIR FLUSHING MODEL


SILTATION IN MODEL


FLUSHNG OPERATION


RIVER BED AFTER FLUSHING OPERATION (12 Hrs)<br />

-1.0<br />

m<br />

-8.0<br />

m<br />

-3.0<br />

m<br />

-3.0<br />

m


Elevation.(m)<br />

185<br />

180<br />

175<br />

170<br />

165<br />

160<br />

155<br />

150<br />

C.S.180<br />

C.S.30<br />

MDDL<br />

LONGITUDINAL PROFILE AFTER FLUSHING<br />

FOR 12, 24 & 36 Hrs<br />

FRL<br />

C.S.300<br />

C.S.900<br />

C.S.1500<br />

C.S.3000<br />

145<br />

0 500 1000 1500 2000 2500 3000 3500<br />

Cha<strong>in</strong>age (m)


CROSS SECTION AFTER FLUSHING FOR 12, 24 & 36 HRS<br />

Elevation(m)<br />

Elevation(m)<br />

170<br />

168<br />

166<br />

164<br />

162<br />

160<br />

158<br />

156<br />

154<br />

152<br />

150<br />

0 100 200 300 400<br />

180<br />

175<br />

170<br />

165<br />

160<br />

155<br />

150<br />

C.S. 30 m C.S. 180 m<br />

Cha<strong>in</strong>age (m)<br />

0 100 200 300 400<br />

Cha<strong>in</strong>age (m)<br />

Elevation(m)<br />

Elevation(m)<br />

180<br />

175<br />

170<br />

165<br />

160<br />

155<br />

150<br />

0 100 200 300 400<br />

180<br />

175<br />

170<br />

165<br />

160<br />

155<br />

Cha<strong>in</strong>age (m)<br />

C.S. 300 m C.S. 900 m<br />

150<br />

0 50 100 150 200 250<br />

Cha<strong>in</strong>age (m)


2.4<br />

2<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

0<br />

DIFFERENT DISCHARGES<br />

Quantity <strong>of</strong> <strong>sediment</strong> flushed ( m.cum ) TIME Vs QUANTITY OF SEDIMENT FLUSHED FOR<br />

0 12 24 36<br />

Flush<strong>in</strong>g duration (Hrs)


FLUSHING IN FRONT OF POWER INTAKE


IMPORTANT PROJECTS STUDIED<br />

1. Teesta Low Dam Project,Stage III and IV, West Bengal<br />

2. Kotlibhel IA, IB, II, Uttarakhand<br />

3. Chuzachen H.E. Project, Sikkim<br />

4. Sewa-II H.E. Project, Jammu and Kashmir<br />

5. Parbati-II H.E. Project, Himachal Pradesh<br />

6. Subansiri lower H.E. Project,Assam<br />

7. Baira Siul Project, Himachal Pradesh<br />

8. Teesta H.E. Project, Stage-V, Sikkim<br />

9. Chamera H.E. Project, Stage-II, Himachal Pradesh<br />

10.Tala H.E. Project, Bhutan.


SIGNIFICANCE OF RESERVOIR FLUSHING STUDIES<br />

Volume <strong>of</strong> <strong>sediment</strong>s flushed can be quantified for<br />

different spillway crest levels with vary<strong>in</strong>g discharges<br />

and flush<strong>in</strong>g time<br />

Studies are useful to assess <strong>the</strong> optimum discharge and<br />

duration for most efficient flush<strong>in</strong>g<br />

Optimiz<strong>in</strong>g <strong>the</strong> crest level <strong>of</strong> spillway for efficient<br />

flush<strong>in</strong>g<br />

Optimiz<strong>in</strong>g <strong>the</strong> layout <strong>of</strong> power <strong>in</strong>take with respect to<br />

spillway to have silt free area <strong>in</strong> front <strong>of</strong> <strong>the</strong> <strong>in</strong>take


HAZARDS OF SEDIMENTATION TO POWER HOUSE<br />

Damage <strong>of</strong> <strong>the</strong> turb<strong>in</strong>e <strong>run</strong>ner blades / buckets<br />

due to abrasion and subsequent cavitation.<br />

Shut down <strong>of</strong> units for considerable duration.<br />

To <strong>in</strong>duce settlement <strong>of</strong> suspended <strong>sediment</strong> by<br />

reduc<strong>in</strong>g <strong>the</strong> velocity / turbulence, desilt<strong>in</strong>g bas<strong>in</strong>s<br />

are provided


TYPICAL DAMAGE TO TURBINES<br />

Highly Abrasive Silt Causes Erosion/ Cavitation damages<br />

Projects affected: Salal, Baira Siul, Maneri Bhali, Chilla, Nathpa Jakhri, etc.


RESERVOIR<br />

TYPICAL LAYOUT OF POWER INTAKE AND<br />

DESILTING BASINS<br />

INLET TRANSITION<br />

DAM AXIS<br />

RIVER<br />

INTAKE<br />

DESILTING BASIN<br />

FLUSHING TUNNEL<br />

OUTLET TRANSITION<br />

RIVER<br />

HRT


COMPONENTS OF DESILTING BASIN<br />

1. Inlet transition<br />

2. Ma<strong>in</strong> bas<strong>in</strong><br />

3. Flush<strong>in</strong>g Tunnel<br />

4. Outlet transition<br />

5. Air Vent and Outlet Gate


FLOW<br />

MODEL OF DESILTING BASIN<br />

INLET TRANSITION<br />

FIRST OPENING<br />

HOPPER SLOPE<br />

SETTLING TRENCH<br />

MAIN BASIN


SHAPES OF DESILTING CHAMBER


DESIGN PARAMETERS AND CONSIDERATIONS<br />

PARAMETERS<br />

a) Length - depends on <strong>the</strong> width <strong>of</strong> desilt<strong>in</strong>g bas<strong>in</strong><br />

b) Width - depends on <strong>the</strong> rock condition<br />

c) Depth - as per cross sectional area required for<br />

settlement <strong>of</strong> <strong>the</strong> desired size <strong>of</strong> <strong>sediment</strong><br />

d) Flare angle - optimized by model studies<br />

CONSIDERATIONS<br />

a) Sufficiently high velocity <strong>in</strong> <strong>the</strong> transition to avoid<br />

settlement downstream<br />

b) No separation <strong>of</strong> flow<br />

c) Uniform velocity distribution<br />

d) Drop <strong>in</strong> forward velocity


INLET TRANSITION<br />

Due to gradual <strong>in</strong>crease <strong>in</strong> cross-sectional<br />

area, <strong>the</strong> velocity <strong>of</strong> flow enter<strong>in</strong>g <strong>the</strong><br />

desilt<strong>in</strong>g bas<strong>in</strong> is reduced to desired extent.


INLET TRANSITION – DESIGN CONSIDERATIONS<br />

1) Steeper Bed Slope - Return flow<br />

2) Flatter Bed Slope - Deposition<br />

3) Larger Flare Angle - Return flow<br />

CWPRS experience <strong>in</strong>dicates:<br />

• Bed slope - 1(v) : 2.00 to 2.3(h)<br />

• Flare angle - 6º to 9º


MAIN BASIN – DESIGN CONSIDERATIONS<br />

• Fall velocity -<br />

depends on size,<br />

shape, specific<br />

gravity <strong>of</strong> <strong>sediment</strong><br />

and viscosity <strong>of</strong><br />

water<br />

• Forward velocity –<br />

depends on shape<br />

and size <strong>of</strong> <strong>the</strong><br />

bas<strong>in</strong><br />

Fall velocity <strong>of</strong> quartz spheres


MAIN BASIN – HOPPER BOTTOM OPENINGS<br />

Open<strong>in</strong>gs are provided to connect <strong>the</strong> settl<strong>in</strong>g<br />

trench with <strong>the</strong> flush<strong>in</strong>g tunnel.<br />

First open<strong>in</strong>g is required to be larger to allow<br />

for higher rate <strong>of</strong> deposition <strong>of</strong> larger size<br />

particles at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g.<br />

The last open<strong>in</strong>g is kept a little larger than <strong>the</strong><br />

open<strong>in</strong>g just to its upstream to accommodate<br />

higher rate <strong>of</strong> deposition <strong>of</strong> f<strong>in</strong>er particles


FORMATION OF DUNES IN FLUSHING TUNNEL<br />

DUNES<br />

FLUSHING TUNNEL<br />

HOPPER SLOPE<br />

OPENINGS


FLUSHING TUNNEL<br />

Generally rectangular <strong>in</strong> shape, and size <strong>in</strong>creases<br />

gradually from upstream to downstream.<br />

The m<strong>in</strong>imum velocity <strong>of</strong> flow <strong>in</strong> <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong><br />

flush<strong>in</strong>g tunnel is 3.0 m/s, which <strong>in</strong>creases to 3.5 to<br />

4.0 m/s at <strong>the</strong> end <strong>of</strong> desilt<strong>in</strong>g bas<strong>in</strong>.<br />

Flush<strong>in</strong>g discharge is controlled by a gate at <strong>the</strong> end,<br />

which also isolates <strong>the</strong> desilt<strong>in</strong>g bas<strong>in</strong>.


Efficiency <strong>of</strong> <strong>the</strong><br />

desilt<strong>in</strong>g bas<strong>in</strong> also<br />

depends upon proper<br />

arrangement at <strong>the</strong><br />

outlet for skimm<strong>in</strong>g <strong>of</strong>f<br />

<strong>the</strong> relatively less<br />

<strong>sediment</strong> laden top<br />

layers <strong>of</strong> flow.<br />

Settl<strong>in</strong>g efficiency<br />

improves with<br />

provision <strong>of</strong> outlets<br />

hav<strong>in</strong>g higher sill level.<br />

OUTLET TRANSITION<br />

OUTLET TRANSITION<br />

END OF THE BASIN<br />

FLUSHING TUNNEL<br />

CONTROL GATE


Dur<strong>in</strong>g <strong>in</strong>itial fill<strong>in</strong>g <strong>of</strong> <strong>the</strong> bas<strong>in</strong>, <strong>the</strong> air with<strong>in</strong> <strong>the</strong><br />

bas<strong>in</strong> is required to be expelled out.<br />

Dur<strong>in</strong>g dewater<strong>in</strong>g <strong>of</strong> <strong>the</strong> bas<strong>in</strong>, <strong>the</strong> air is required to<br />

be supplied to avoid generation <strong>of</strong> negative<br />

pressures.<br />

Therefore air vent is provided after <strong>the</strong> outlet<br />

transition.<br />

AIR VENT AND OUTLET GATE<br />

Outlet gate is provided at <strong>the</strong> end <strong>of</strong> outlet transition<br />

<strong>of</strong> <strong>the</strong> desilt<strong>in</strong>g bas<strong>in</strong> for <strong>in</strong>itial fill<strong>in</strong>g and<br />

dewater<strong>in</strong>g, which also isolates <strong>the</strong> desilt<strong>in</strong>g bas<strong>in</strong>.


OPERATION OF MODEL OF DESILTING BASIN


PROTOTYPE DATA COLLECTION<br />

The bas<strong>in</strong> gives <strong>the</strong> designed settl<strong>in</strong>g efficiency only if<br />

<strong>the</strong> design discharge is drawn and <strong>the</strong> <strong>sediment</strong><br />

concentration is less than <strong>the</strong> design value.<br />

In case <strong>the</strong> discharge is less, reduction <strong>in</strong> forward<br />

velocity will result <strong>in</strong> more deposition <strong>of</strong> <strong>sediment</strong>.<br />

In case <strong>the</strong> <strong>sediment</strong> concentration is more, more<br />

<strong>sediment</strong> will enter <strong>in</strong>to <strong>the</strong> turb<strong>in</strong>es.<br />

Cont<strong>in</strong>uous data collection regard<strong>in</strong>g discharge and<br />

<strong>sediment</strong> concentration is thus useful to ensure proper<br />

performance <strong>of</strong> <strong>the</strong> desilt<strong>in</strong>g bas<strong>in</strong>.


IMPORTANT MODEL STUDIES CONDUCTED<br />

Chukha, Tala Project- -Bhutan<br />

Nathpa Jhakri<br />

Dhauli Ganga<br />

Chamera II<br />

Teesta V<br />

Parbati II & III<br />

Sewa<br />

Dul-hasti


OBSERVATIONS FROM MODEL STUDIES<br />

• Validity <strong>of</strong> Camp’s criteria is borne out<br />

• Turbulence prevails-15% to 20% <strong>of</strong> length<br />

• Hopper angle - 40º<br />

• Settl<strong>in</strong>g trench is useful to enhance performance<br />

• Pressure flow - flush<strong>in</strong>g tunnel<br />

• Flush<strong>in</strong>g discharge - 15% to 20%<br />

• Maximum forward velocity <strong>in</strong> bas<strong>in</strong><br />

Particle dia. Φ(mm) Max Forward Velocity (m/s)<br />

0.1 0.15<br />

0.2 0.3<br />

0.3 0.35<br />

• Sizes & spac<strong>in</strong>g <strong>of</strong> open<strong>in</strong>g are optimized


SIGNIFICANCE OF MODEL STUDIES<br />

These bas<strong>in</strong>s are substantially large <strong>in</strong> size, underground<br />

structure and are cost prohibitive.<br />

Once put <strong>in</strong>to operation, it is very difficult to ma<strong>in</strong>ta<strong>in</strong><br />

and repair <strong>the</strong> desilt<strong>in</strong>g bas<strong>in</strong><br />

Various <strong>the</strong>oretical approaches <strong>in</strong>volve assumptions<br />

which leaves <strong>the</strong> designer <strong>in</strong> doubt while choos<strong>in</strong>g any<br />

particular method<br />

Hence hydraulic model studies are essential, to optimize<br />

<strong>the</strong> size and shape for desired settlement <strong>of</strong> suspended<br />

<strong>sediment</strong> and smooth function<strong>in</strong>g under all operat<strong>in</strong>g<br />

conditions<br />

Consider<strong>in</strong>g experience <strong>of</strong> CWPRS and non-availability<br />

<strong>of</strong> standard procedure, two Technical Memoranda have<br />

been published


GOVERNMENT OF INDIA<br />

MINISTRY OF WATER RESOURCES<br />

GUIDELINES<br />

FOR<br />

DESIGN OF DESILTING BASINS<br />

(Pressure Flow)<br />

CENTRAL WATER & POWER RESEARCH STATION<br />

Khadakwasla, Pune-411 024

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!