05.06.2013 Views

Possible reservoirs of radioactivity in the deep mantle

Possible reservoirs of radioactivity in the deep mantle

Possible reservoirs of radioactivity in the deep mantle

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Possible</strong> <strong>reservoirs</strong> <strong>of</strong> <strong>radioactivity</strong><br />

<strong>in</strong> <strong>the</strong> <strong>deep</strong> <strong>mantle</strong><br />

Ed Garnero<br />

School <strong>of</strong> Earth and Space Exploration<br />

Arizona State University


Outl<strong>in</strong>e<br />

Brief overview: motivation for <strong>in</strong>vestigat<strong>in</strong>g<br />

<strong>in</strong>teriors; how seismology helps<br />

Large Low Shear Velocity Prov<strong>in</strong>ces (LLSVPs) at<br />

base <strong>of</strong> <strong>mantle</strong>: large-to-small scales<br />

Dynamical framework: how to build and ma<strong>in</strong>ta<strong>in</strong><br />

an LLSVP, and chemically sample it via plumes<br />

LLSVPs as <strong>reservoirs</strong>


Mercury<br />

The ma<strong>in</strong> feature <strong>of</strong> planetary <strong>in</strong>teriors:<br />

stratification<br />

Europa<br />

Mars<br />

Earth<br />

Venus


Convergence DEATH <strong>of</strong> plates Divergence BIRTH<br />

<strong>of</strong> plates<br />

http://www.ngdc.noaa.gov/mgg/image/relief_slides1.html


To expla<strong>in</strong> surface observables: many possibilities<br />

[Alberede, Anderson, Davies, Hager, Jell<strong>in</strong>ek, Kellogg, Manga, Tackley, van der Hilst, Wysession, Geo101 books…]


Internal structure and circulation play a fundamental<br />

role <strong>in</strong> <strong>the</strong> nature and evolution <strong>of</strong> many phenomena<br />

Plate tectonic driv<strong>in</strong>g force<br />

Plumes & result<strong>in</strong>g volcanism<br />

Subduction and <strong>the</strong> fate <strong>of</strong> slabs<br />

Plate reorganization, super-cont<strong>in</strong>ents<br />

Planetary heat budget/transfer<br />

Core processes & magnetic field<br />

Earth’s chemical & water cycles<br />

Mantle outgass<strong>in</strong>g ocean & atmosphere chem.<br />

Mantle <strong>reservoirs</strong>


Tarbuck & Lutgens (Intro geology text)<br />

Study<strong>in</strong>g planetary <strong>in</strong>teriors<br />

Gravity / geoid<br />

Past / present magnetic field<br />

Chemistry <strong>of</strong> lavas, crust, etc.<br />

Current/past plate motions<br />

Seismic imag<strong>in</strong>g<br />

Geodynamic experiments<br />

High pressure m<strong>in</strong>eral physics<br />

Cosmochemistry / meteoritics<br />

Tectonics / geodesy<br />

Magnetotellurics<br />

Geoneutr<strong>in</strong>os


Earth <strong>in</strong> 1-D: The Prelim<strong>in</strong>ary Reference Earth Model (PREM)<br />

Nearly all seismic results are determ<strong>in</strong>ed & presented<br />

relative to an assumed reference structure<br />

Dziewonski and Anderson [PEPI, 1981]


Amplitude<br />

a o<br />

t o<br />

Time


Amplitude<br />

a’<br />

a o<br />

t o<br />

t’<br />

Time


Amplitude<br />

New arrival!<br />

Time


Amplitude<br />

New arrival!<br />

Time


Amplitude<br />

New arrival!<br />

Time


Mike Thorne (Univ. Utah)


Reference<br />

model<br />

ray paths<br />

syn<strong>the</strong>tic<br />

waveforms<br />

• Wave travel times<br />

• Path geometry<br />

• Wave shapes<br />

• Frequency<br />

Everyth<strong>in</strong>g we do depends on our reliance on <strong>the</strong> start<strong>in</strong>g model


Raw data


Distance-stacked data


earthquakes<br />

(sources <strong>of</strong> energy)<br />

sensors<br />

http://web.mst.edu/~sgao/g51/plots/0916_global_seismicity.jpg<br />

http://www.iris.edu


Earth <strong>in</strong> 3-D: Heterogeneity from seismic tomography<br />

DEPTH<br />

Z=50 km<br />

Z=1500 km<br />

Z=2880 km<br />

HETEROGENEITY<br />

stongest<br />

weakest<br />

strong aga<strong>in</strong><br />

[after Ritsema and van Heijst, 2001]


Base <strong>of</strong> Earth’s <strong>mantle</strong><br />

“Large Low Shear Velocity Prov<strong>in</strong>ces”: LLSVPs<br />

Model <strong>of</strong> Jeroen Ritsema


LLSVP marg<strong>in</strong>s<br />

Strongest<br />

lateral<br />

gradients are<br />

at LLSVP edges


Thorne, Garnero, Grand, PEPI., 2004<br />

red: lowest velocities for S20RTS<br />

green: strongest lateral V S gradients


LLSVP<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

770<br />

820<br />

780<br />

Seismic waves that<br />

propagate near LLSVP<br />

edges are broadened,<br />

sometimes multipulsed<br />

Raypath PREM-predicted<br />

bottom<strong>in</strong>g depth<br />

Zhao et al (2013 <strong>in</strong> prep)


Wave multi-path<strong>in</strong>g and broaden<strong>in</strong>g from<br />

refraction along heterogeneities<br />

Courtesy <strong>of</strong> Chunpeng Zhao


Zhao et al (2013 <strong>in</strong> prep)


Deep <strong>mantle</strong> heterogeneity<br />

Forward<br />

model<strong>in</strong>g<br />

studies f<strong>in</strong>d<br />

“edges” at<br />

LLSVP<br />

boundaries


Large low shear velocity prov<strong>in</strong>ces:<br />

DENSE<br />

Trampert, Deschaps, Resovsky, Yuen (2004)<br />

Also, Ishii & Tromp (2004)


Dense material (red) <strong>in</strong> <strong>the</strong>rmochemical convection calculation<br />

<strong>the</strong>rmochemical convection: <strong>in</strong>itially uniform dense layer at<br />

base <strong>of</strong> <strong>mantle</strong><br />

surface boundary condition: 119 My past plate motions<br />

downwell<strong>in</strong>gs “sweep” dense material <strong>in</strong>to piles<br />

McNamara & Zhong (2005, Nature)


Dense material (red) <strong>in</strong> <strong>the</strong>rmochemical convection calculation<br />

High (blue) and low (red) seismic shear velocity<br />

Strik<strong>in</strong>g agreement<br />

McNamara & Zhong (2005, Nature)<br />

Grand (2002, Phil. Trans. R. Soc. Lond.)


Numerical<br />

geodynamics<br />

Seismic<br />

tomography<br />

Plumes from pile ridges<br />

Garnero, Lay, McNamara (2007, GSA Monograph on Superplumes)


Prediction: plumes from <strong>the</strong>rmochemical pile marg<strong>in</strong>s<br />

Tan, Leng, Zhong, Gurnis (2011, G^3)


Observation: hotspots & reconstructed LIPs from LLSVP marg<strong>in</strong>s<br />

Hotspots<br />

Thorne, Garnero, Grand [2004, PEPI]<br />

dVs: Grand [Phil. Trans. R. Soc., 2002]<br />

Hotspots: Sleep [JGR, 1981]<br />

Also, Wen [2006, EPSL]<br />

Large Igneous Prov<strong>in</strong>ces<br />

Torsvik et al. [Nature 2010]<br />

Torsvik et al [EPSL 2008]<br />

Burke, Ste<strong>in</strong>bergerb, Torsvik, Smethurst [EPSL, 2007]<br />

Ste<strong>in</strong>berger & Torsvik (2012, G^3)


Seismic<br />

Tomography<br />

Geodynamics<br />

calculation<br />

D<br />

dVs<br />

(dVs)<br />

T


Thermochemical pile <strong>in</strong>ternal temperatures<br />

Garnero, Lay, and McNamara. [P4 Monograph, GSA, 2007]


Ultra-Low Velocity Zone (ULVZ)<br />

LARGE seismic velocity<br />

reductions<br />

(up to 10’s %)<br />

THIN layer<strong>in</strong>g<br />

(usually 5-20 km)<br />

AT <strong>the</strong> CMB


Composition<br />

Temperature<br />

BLACK<br />

(<strong>mantle</strong>)<br />

PINK<br />

(LLSVP)<br />

RED<br />

(ULVZ)<br />

BLUE<br />

(cold)<br />

RED<br />

(hot)<br />

BLACK<br />

(hottest)<br />

Whole <strong>mantle</strong> convection, 3 dist<strong>in</strong>ct compositions (<strong>mantle</strong>,<br />

LLSVP, ULVZ), 4 billion years<br />

McNamara et al (2010)


are chemically dist<strong>in</strong>ct<br />

are shaped by subduction downwell<strong>in</strong>gs<br />

may act as <strong>deep</strong> <strong>mantle</strong> chemical<br />

<strong>reservoirs</strong><br />

guide plumes<br />

Not “hidden”…<br />

Key po<strong>in</strong>ts:<br />

large-low shear velocity prov<strong>in</strong>ces<br />

Matt: Collision modelers tell me a dense basal layer can survive moon form<strong>in</strong>g impact<br />

Zhao, Garnero, McNamara (2013, <strong>in</strong> prep)


LLSVP orig<strong>in</strong><br />

• Primordial (early differentiation)<br />

• Basal magma ocean (BMO)<br />

• Build through time (MORB, CMB rxn products)<br />

Labrosse et al. (2007)<br />

Christensen and H<strong>of</strong>mann (1994)


Subduct<strong>in</strong>g MORB<br />

Li and McNamara (2013x)


Subduct<strong>in</strong>g MORB<br />

Key po<strong>in</strong>t:<br />

MORB does not likely form piles, but small amounts<br />

can go <strong>in</strong>, mix, & even come back out <strong>in</strong> plumes<br />

• Material can accumulate beneath plume roots, <strong>the</strong>n become entra<strong>in</strong>ed <strong>in</strong>to pile.<br />

• May be a source <strong>of</strong> observed LLSVP heterogeneity.<br />

• But most MORB is entra<strong>in</strong>ed <strong>in</strong> <strong>mantle</strong> circulation currents.<br />

Li and McNamara (2012, <strong>in</strong> prep)


Hotspots & 3 He/ 4 He ratios<br />

Is entra<strong>in</strong>ment <strong>of</strong> pile material by lower <strong>mantle</strong> plumes<br />

capable <strong>of</strong> produc<strong>in</strong>g both low (MORB-like) and high<br />

(Hotspot-like) 3He/ 4He ratios?<br />

Compilation from USGS Noble Gas database: http://pubs.usgs.gov/ds/2006/202/<br />

Hotspot 3 He/ 4 He ratios are variable <strong>in</strong> time and space<br />

Several Hotspots show MORB-like 3 He/ 4 He ratios<br />

Courtesy Curtis Williams / Allen McNamara


Background material<br />

Pile material<br />

Surface<br />

CMB<br />

Courtesy Curtis Williams / Allen McNamara


3 He/ 4 He (R/RA)<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Key po<strong>in</strong>t:<br />

Plumes can irregularly entra<strong>in</strong> pile material,<br />

from zero to maximum<br />

Predicted 3 He/ 4 He ratios <strong>of</strong> a s<strong>in</strong>gle plume<br />

0 100 200 300 400 500 600 700<br />

Time (Myrs)<br />

MORB-like<br />

Courtesy Curtis Williams / Allen McNamara


Some vocabulary review<br />

D” depth shell: lowest 200-300 km <strong>of</strong> <strong>mantle</strong><br />

LLSVP name for <strong>the</strong> distribution <strong>of</strong> ~deg 2 low shear<br />

velocity <strong>in</strong> lowest 100’s km <strong>of</strong> <strong>mantle</strong><br />

Pile geodynamically <strong>in</strong>spired <strong>in</strong>terpretation <strong>of</strong> LLSVP.<br />

Dense. Stable. Usually primordial <strong>in</strong> calculations.<br />

Sometimes “<strong>the</strong>rmochemical pile”<br />

Superplume An <strong>in</strong>terpretation <strong>of</strong> an LLSVP. Sort <strong>of</strong><br />

slang (term used without any <strong>in</strong>tention <strong>of</strong> <strong>the</strong><br />

consequences <strong>of</strong> such a model)


Note on “superplume”<br />

If <strong>the</strong>rmochemical piles leave <strong>the</strong> CMB <strong>in</strong> superplume events,<br />

geodynamic predictions suggest it will be mixed <strong>in</strong>to <strong>the</strong> <strong>mantle</strong><br />

over time (i.e., and not settle back at CMB)<br />

Implication: today’s large <strong>the</strong>rmochemical piles: not superplume<br />

Implication: today’s piles are long-lived (regardless <strong>of</strong> orig<strong>in</strong>)


• Primitive<br />

• Primordial<br />

• Recycled<br />

• BSE<br />

• Isotopic ratio key<br />

Geochemists:


surface<br />

CMB<br />

<strong>mantle</strong><br />

ULVZ ULVZ<br />

outer ? core<br />

LLSVP<br />

reservoir


Dye, S. T. (2012). "Geoneutr<strong>in</strong>os and <strong>the</strong> radioactive power <strong>of</strong> <strong>the</strong> Earth". Rev. Geophys. 50 (3).


surface<br />

CMB<br />

<strong>mantle</strong><br />

ULVZ n e<br />

ULVZ<br />

40 K<br />

232 Th<br />

235,238 U<br />

?<br />

outer ? core<br />

LLSVP<br />

reservoir


surface<br />

CMB<br />

Ocean island basalts should show more evidence<br />

for radiogenic isotopes than mid-ocean ridges<br />

<strong>mantle</strong><br />

ULVZ ULVZ<br />

40 K<br />

232 Th<br />

235,238U<br />

?<br />

outer ? core<br />

LLSVP<br />

reservoir


Tomographically derived LLSVPs (red)<br />

Caribbean<br />

anomaly<br />

Pacific<br />

anomaly<br />

Chemically dist<strong>in</strong>ct,<br />

dense, long-lived,<br />

shaped by<br />

subduction-related<br />

downwell<strong>in</strong>g, guide<br />

plumes.<br />

core<br />

South pole<br />

<strong>mantle</strong><br />

African<br />

anomaly<br />

Long-lived <strong>reservoirs</strong> <strong>of</strong><br />

radiogenic materials?


Acknowledgements:<br />

Chunpeng Zhao<br />

Allen McNamara<br />

M<strong>in</strong>gm<strong>in</strong>g Li


EXTRA


Thermochemical pile temporal evolution<br />

deg 2 deg 1 associated with super cont<strong>in</strong>ent construction/break up cycles?<br />

Li & Zhong (EPSL, 2009)


If S waves graze a low velocity <strong>the</strong>rmochemical pile,<br />

what do we expect?<br />

Temperature field for<br />

<strong>the</strong>rmochemical piles<br />

Shear velocity heterogeneity<br />

from seismic tomography<br />

McNamara & Zhong [Nature, 2005] Ritsema [Sci. Tech, 2000]


Garnero, Kennett, Loper [PEPI, 2005]


http://garnero.asu.edu

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!