05.06.2013 Views

The current status of laser applications in dentistry - Wiley Online ...

The current status of laser applications in dentistry - Wiley Online ...

The current status of laser applications in dentistry - Wiley Online ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

REVIEW<br />

<strong>The</strong> <strong>current</strong> <strong>status</strong> <strong>of</strong> <strong>laser</strong> <strong>applications</strong> <strong>in</strong> <strong>dentistry</strong><br />

LJ Walsh*<br />

Abstract<br />

A range <strong>of</strong> <strong>laser</strong>s is now available for use <strong>in</strong><br />

<strong>dentistry</strong>. This paper summarizes key <strong>current</strong> and<br />

emerg<strong>in</strong>g <strong>applications</strong> for <strong>laser</strong>s <strong>in</strong> cl<strong>in</strong>ical practice.<br />

A major diagnostic application <strong>of</strong> low power <strong>laser</strong>s<br />

is the detection <strong>of</strong> caries, us<strong>in</strong>g fluorescence elicited<br />

from hydroxyapatite or from bacterial by-products.<br />

Laser fluorescence is an effective method for<br />

detect<strong>in</strong>g and quantify<strong>in</strong>g <strong>in</strong>cipient occlusal and<br />

cervical carious lesions, and with further ref<strong>in</strong>ement<br />

could be used <strong>in</strong> the same manner for proximal<br />

lesions. Photoactivated dye techniques have been<br />

developed which use low power <strong>laser</strong>s to elicit a<br />

photochemical reaction. Photoactivated dye<br />

techniques can be used to dis<strong>in</strong>fect root canals,<br />

periodontal pockets, cavity preparations and sites <strong>of</strong><br />

peri-implantitis. Us<strong>in</strong>g similar pr<strong>in</strong>ciples, more<br />

powerful <strong>laser</strong>s can be used for photodynamic<br />

therapy <strong>in</strong> the treatment <strong>of</strong> malignancies <strong>of</strong> the oral<br />

mucosa. Laser-driven photochemical reactions can<br />

also be used for tooth whiten<strong>in</strong>g. In comb<strong>in</strong>ation<br />

with fluoride, <strong>laser</strong> irradiation can improve the<br />

resistance <strong>of</strong> tooth structure to dem<strong>in</strong>eralization,<br />

and this application is <strong>of</strong> particular benefit for<br />

susceptible sites <strong>in</strong> high caries risk patients. Laser<br />

technology for caries removal, cavity preparation<br />

and s<strong>of</strong>t tissue surgery is at a high state <strong>of</strong><br />

ref<strong>in</strong>ement, hav<strong>in</strong>g had several decades <strong>of</strong><br />

development up to the present time. Used <strong>in</strong><br />

conjunction with or as a replacement for traditional<br />

methods, it is expected that specific <strong>laser</strong><br />

technologies will become an essential component <strong>of</strong><br />

contemporary dental practice over the next decade.<br />

Key words: Lasers, dental <strong>applications</strong>, débridement,<br />

photosensitization, res<strong>in</strong> cur<strong>in</strong>g.<br />

(Accepted for publication 6 February 2003.)<br />

INTRODUCTION<br />

<strong>The</strong> past decade has seen a veritable explosion <strong>of</strong><br />

research <strong>in</strong>to the cl<strong>in</strong>ical <strong>applications</strong> <strong>of</strong> <strong>laser</strong>s <strong>in</strong> dental<br />

practice, and the parallel emergence <strong>of</strong> organizations to<br />

support <strong>laser</strong> <strong>dentistry</strong> with an <strong>in</strong>ternational focus.<br />

Once regarded as a complex technology with limited<br />

uses <strong>in</strong> cl<strong>in</strong>ical <strong>dentistry</strong>, there is a grow<strong>in</strong>g awareness<br />

*Pr<strong>of</strong>essor <strong>of</strong> Dental Science, School <strong>of</strong> Dentistry, <strong>The</strong> University <strong>of</strong><br />

Queensland.<br />

Australian Dental Journal 2003;48:(3):146-155<br />

<strong>of</strong> the usefulness <strong>of</strong> <strong>laser</strong>s <strong>in</strong> the armamentarium <strong>of</strong> the<br />

modern dental practice, where they can be used as an<br />

adjunct or alternative to traditional approaches.<br />

Traditionally, <strong>laser</strong>s have been classified accord<strong>in</strong>g to<br />

the physical construction <strong>of</strong> the <strong>laser</strong> (e.g., gas, liquid,<br />

solid state, or semiconductor diode), the type <strong>of</strong><br />

medium which undergoes las<strong>in</strong>g (e.g., Erbium: Yttrium<br />

Alum<strong>in</strong>ium Garnet (Er:YAG)) (Table 1), and the degree<br />

<strong>of</strong> hazard to the sk<strong>in</strong> or eyes follow<strong>in</strong>g <strong>in</strong>advertent<br />

exposure (Table 2). Lasers have been available<br />

commercially for use <strong>in</strong> dental practice <strong>in</strong> Australia<br />

s<strong>in</strong>ce 1990, and the <strong>current</strong>ly available systems<br />

represent a high state <strong>of</strong> technical ref<strong>in</strong>ement <strong>in</strong> terms<br />

<strong>of</strong> both performance and user features.<br />

<strong>The</strong> purpose <strong>of</strong> this paper is to provide an overview<br />

<strong>of</strong> various <strong>laser</strong> <strong>applications</strong> which have been<br />

developed for dental practice, and to discuss <strong>in</strong> more<br />

detail several key cl<strong>in</strong>ical <strong>applications</strong> which are<br />

attract<strong>in</strong>g a high level <strong>of</strong> <strong>in</strong>terest.<br />

Diagnostic <strong>laser</strong> <strong>applications</strong><br />

Low power <strong>laser</strong> energy has found numerous uses <strong>in</strong><br />

diagnosis, both <strong>in</strong> cl<strong>in</strong>ical sett<strong>in</strong>gs (Table 3) and <strong>in</strong><br />

dental research (Table 4). By way <strong>of</strong> background, low<br />

power <strong>laser</strong>s operate typically at powers <strong>of</strong> 100<br />

milliwatts or less, and may produce energy <strong>in</strong> the visible<br />

spectrum (400-700nm wavelength), or <strong>in</strong> the ultraviolet<br />

(200-400nm), or near <strong>in</strong>frared regions (700-1500nm).<br />

At the present time, there are few purpose built low<br />

power <strong>laser</strong>s for the middle <strong>in</strong>frared (1500-4000nm) or<br />

far <strong>in</strong>frared regions (4000-15000nm). Rather, <strong>laser</strong>s<br />

operat<strong>in</strong>g <strong>in</strong> the middle and far-<strong>in</strong>frared regions are<br />

used <strong>in</strong> health care primarily for hard and s<strong>of</strong>t tissue<br />

procedures.<br />

Laser fluorescence systems for detection <strong>of</strong> dental<br />

caries have been particularly popular <strong>in</strong> Australia. <strong>The</strong><br />

orig<strong>in</strong>al technique employed visible blue light from the<br />

argon <strong>laser</strong>, rely<strong>in</strong>g on the lack <strong>of</strong> fluorescence from<br />

carious enamel and dent<strong>in</strong>e to demonstrate the<br />

presence <strong>of</strong> the lesion. Subsequent development <strong>of</strong> the<br />

technique allowed visible red <strong>laser</strong> light from a<br />

semiconductor diode <strong>laser</strong> to be used to elicit<br />

fluorescence from bacterial deposits, and from calculus.<br />

Comb<strong>in</strong><strong>in</strong>g a detection system with a therapeutic <strong>laser</strong><br />

has allowed automated removal <strong>of</strong> subg<strong>in</strong>gival calculus<br />

146 Australian Dental Journal 2003;48:3.


Table 1. Common <strong>laser</strong> types used <strong>in</strong> <strong>dentistry</strong><br />

Laser type Construction Wavelength(s) Delivery system(s)<br />

Argon Gas <strong>laser</strong> 488, 515nm Optical fibre<br />

KTP Solid state 532nm Optical fibre<br />

Helium-neon Gas <strong>laser</strong> 633nm Optical fibre<br />

Diode Semiconductor 635, 670, 810,<br />

830, 980nm<br />

Optical fibre<br />

Nd:YAG Solid state 1064nm Optical fibre<br />

Er,Cr:YSGG Solid state 2780nm Optical fibre<br />

Er:YAG Solid state 2940nm Optical fibre,<br />

waveguide,<br />

articulated arm<br />

CO2 Gas <strong>laser</strong> 9600, 10600nm Waveguide,<br />

articulated arm<br />

from teeth and dental implants, a po<strong>in</strong>t discussed <strong>in</strong><br />

further detail below.<br />

For detection <strong>of</strong> dental caries <strong>in</strong> pits and fissures,<br />

<strong>laser</strong> fluorescence <strong>of</strong>fers greater sensitivity than<br />

conventional visual and tactile methods. 1,2 <strong>The</strong><br />

technique is also well suited to smooth surface lesions<br />

on cervical surfaces <strong>of</strong> teeth, 3,4 and to recognition <strong>of</strong><br />

caries beneath clear fissure sealants. 5 Detection <strong>of</strong><br />

proximal lesions is technically more difficult, and <strong>in</strong><br />

this sett<strong>in</strong>g, argon <strong>laser</strong>-<strong>in</strong>duced fluorescence <strong>of</strong>fers a<br />

valuable adjunct to conventional methods. 6-9 <strong>The</strong><br />

differential water content <strong>of</strong> early fissure caries and<br />

sound occlusal enamel has also led to the development<br />

<strong>of</strong> methods us<strong>in</strong>g the carbon dioxide <strong>laser</strong> to reveal<br />

such lesions, 10-12 and to modify the fissure system to<br />

<strong>in</strong>crease resistance to future carious attack. 11<br />

Two key advantages <strong>of</strong> <strong>laser</strong>-based systems are their<br />

high sensitivity, and the lack <strong>of</strong> attendant risks <strong>of</strong><br />

ioniz<strong>in</strong>g radiation. This has allowed their frequent use<br />

for monitor<strong>in</strong>g lesions <strong>of</strong> dental caries and dental<br />

erosion. 13-16 Extension <strong>of</strong> the pr<strong>in</strong>ciples <strong>of</strong> <strong>laser</strong><br />

fluorescence from the visible to the near <strong>in</strong>frared and<br />

terahertz portions <strong>of</strong> spectrum opens the possibility for<br />

more detailed analysis <strong>of</strong> the <strong>in</strong>ternal composition <strong>of</strong><br />

the tooth. 17 Moreover, the use <strong>of</strong> dyes <strong>in</strong> conjunction<br />

with <strong>laser</strong> fluorescence holds promise for us<strong>in</strong>g the<br />

method for del<strong>in</strong>eat<strong>in</strong>g cavitated from non-cavitated<br />

lesions <strong>in</strong> sites <strong>of</strong> poor cl<strong>in</strong>ical access, such as<br />

approximal surfaces. 18,19<br />

Bacterial porphyr<strong>in</strong>s <strong>in</strong> dental calculus give a strong<br />

fluorescence signal, 20 which can be used to control<br />

<strong>laser</strong>s used for scal<strong>in</strong>g. <strong>The</strong> same pr<strong>in</strong>ciple could be<br />

applied to lesions <strong>of</strong> dental caries, where a target<strong>in</strong>g<br />

<strong>laser</strong> could <strong>in</strong>duce fluorescence and provide feedback to<br />

Australian Dental Journal 2003;48:3.<br />

Table 2. Laser classification accord<strong>in</strong>g to potential<br />

hazards<br />

Class Risk Example<br />

I Fully enclosed system Nd:YAG <strong>laser</strong> weld<strong>in</strong>g system<br />

used <strong>in</strong> a dental laboratory<br />

II Visible low power <strong>laser</strong> Visible red aim<strong>in</strong>g beam <strong>of</strong> a<br />

protected by the bl<strong>in</strong>k reflex surgical <strong>laser</strong><br />

IIIa Visible <strong>laser</strong> above<br />

1 milliwatt<br />

No dental examples<br />

IIIb Higher power <strong>laser</strong> unit Low power (50 milliwatt)<br />

(up to 0.5 watts) which diode <strong>laser</strong> used for<br />

may or may not be visible.<br />

Direct view<strong>in</strong>g hazardous<br />

to the eyes<br />

biostimulation<br />

IV Damage to eyes and sk<strong>in</strong> All <strong>laser</strong>s used for oral surgery,<br />

possible. Direct or <strong>in</strong>direct whiten<strong>in</strong>g, and cavity<br />

view<strong>in</strong>g hazardous to<br />

the eyes<br />

preparation<br />

the user as to the presence <strong>of</strong> residual bacteria (i.e., the<br />

presence <strong>of</strong> <strong>in</strong>fected carious dent<strong>in</strong>e), and could also<br />

control the action <strong>of</strong> a pulsed <strong>laser</strong> to achieve<br />

automated caries removal. <strong>The</strong>re are already data on<br />

the spectral changes which occur dur<strong>in</strong>g <strong>in</strong>frared <strong>laser</strong><br />

treatment <strong>of</strong> enamel and dent<strong>in</strong>e 21,22 which could<br />

similarly be applied cl<strong>in</strong>ically when assess<strong>in</strong>g the<br />

presence or absence <strong>of</strong> carious tooth structure dur<strong>in</strong>g<br />

<strong>laser</strong>-based cavity preparation.<br />

Photoactivated dye dis<strong>in</strong>fection us<strong>in</strong>g <strong>laser</strong>s<br />

Low power <strong>laser</strong> energy <strong>in</strong> itself is not particularly<br />

lethal to bacteria, but is useful for photochemical<br />

activation <strong>of</strong> oxygen-releas<strong>in</strong>g dyes. S<strong>in</strong>glet oxygen<br />

released from the dyes causes membrane and DNA<br />

damage to micro-organisms. <strong>The</strong> photoactivated dye<br />

(PAD) technique can be undertaken with a range <strong>of</strong><br />

visible red and near <strong>in</strong>frared <strong>laser</strong>s, and systems us<strong>in</strong>g<br />

low power (100 milliwatt) visible red semiconductor<br />

diode <strong>laser</strong>s and tolonium chloride (toluid<strong>in</strong>e blue) dye<br />

are now available commercially (Fig 1). <strong>The</strong> <strong>in</strong>itial<br />

work which demonstrated the PAD technique used<br />

helium-neon <strong>laser</strong>s. 23 However, such units have been<br />

surpassed with high efficiency diode <strong>laser</strong>s which<br />

operate at the same wavelength.<br />

<strong>The</strong> PAD technique has been shown to be effective<br />

for kill<strong>in</strong>g bacteria <strong>in</strong> complex bi<strong>of</strong>ilms, such as<br />

subg<strong>in</strong>gival plaque, which are typically resistant to the<br />

action <strong>of</strong> antimicrobial agents. 24-26 It can be used<br />

effectively <strong>in</strong> carious lesions, s<strong>in</strong>ce visible red light<br />

transmits well across dent<strong>in</strong>e, 27 and can be made<br />

species-specific by tagg<strong>in</strong>g the dye with monoclonal<br />

Table 3. Diagnostic <strong>laser</strong> <strong>applications</strong> for cl<strong>in</strong>ical practice<br />

Argon<br />

488nm<br />

Helium-neon<br />

633nm<br />

Diode<br />

633nm<br />

Diode<br />

655nm<br />

CO2 10600nm<br />

Laser fluorescence detection <strong>of</strong> dental caries ✔ ✔<br />

Laser fluorescence detection <strong>of</strong> subg<strong>in</strong>gival calculus ✔<br />

Detection <strong>of</strong> fissure caries lesions by optical changes ✔<br />

Laser doppler flowmetry to assess pulpal blood flow ✔ ✔<br />

Scann<strong>in</strong>g <strong>of</strong> phosphor plate digital radiographs ✔<br />

Scann<strong>in</strong>g <strong>of</strong> conventional radiographs for teleradiology ✔<br />

147


Table 4. Diagnostic <strong>laser</strong> <strong>applications</strong> used as research tools<br />

Nd:YAG Er:YAG Argon Helium-neon Diode<br />

1064nm 2940nm 488 and 515nm 633nm 633 and 670nm<br />

Raman spectroscopic analysis <strong>of</strong> tooth structure ✔<br />

Terahertz imag<strong>in</strong>g <strong>of</strong> <strong>in</strong>ternal tooth structure ✔<br />

Breakdown spectroscopic analysis <strong>of</strong> tooth structure ✔ ✔<br />

Confocal microscopic imag<strong>in</strong>g <strong>of</strong> s<strong>of</strong>t and hard tissues ✔<br />

Flow cytometric analysis <strong>of</strong> cells and cell sort<strong>in</strong>g ✔<br />

Pr<strong>of</strong>il<strong>in</strong>g <strong>of</strong> tooth surfaces and dental restorations ✔ ✔<br />

antibodies. 28 Photoactivated dye can be applied<br />

effectively for kill<strong>in</strong>g Gram-positive bacteria (<strong>in</strong>clud<strong>in</strong>g<br />

MRSA), Gram-negative bacteria, fungi and viruses. 29,30<br />

Major cl<strong>in</strong>ical <strong>applications</strong> <strong>of</strong> PAD <strong>in</strong>clude<br />

dis<strong>in</strong>fection <strong>of</strong> root canals, periodontal pockets, deep<br />

carious lesions, and sites <strong>of</strong> peri-implantitis. 31,32 In such<br />

locations, PAD does not give rise to deleterious thermal<br />

effects, 33 and adjacent tissues are not subjected to<br />

bystander thermal <strong>in</strong>jury. Photoactivated dye treatment<br />

does not cause sensitization and kill<strong>in</strong>g <strong>of</strong> adjacent<br />

human cells such as fibroblasts and kerat<strong>in</strong>ocytes. 34<br />

Neither the dye nor the reactive oxygen species<br />

produced from it are toxic to the patient. Tolonium<br />

chloride is used <strong>in</strong> high concentrations for screen<strong>in</strong>g<br />

patients for malignancies <strong>of</strong> the oral mucosa and<br />

oropharynx, 35,36 and does not exert toxic effects at the<br />

low concentrations used <strong>in</strong> the PAD technique.<br />

Moreover, residual reactive oxygen species are rapidly<br />

dealt with by the enzyme catalase, which is present <strong>in</strong><br />

all tissues and <strong>in</strong> the peripheral circulation, 37 and by<br />

lactoperoxidase, which is a normal component <strong>of</strong><br />

saliva.<br />

Photodynamic therapy<br />

A more powerful <strong>laser</strong>-<strong>in</strong>itiated photochemical<br />

reaction is photodynamic therapy (PDT), which has<br />

been employed <strong>in</strong> the treatment <strong>of</strong> malignancies <strong>of</strong> the<br />

oral mucosa, particularly multi-focal squamous cell<br />

carc<strong>in</strong>oma. As <strong>in</strong> PAD, <strong>laser</strong>-activation <strong>of</strong> a sensitiz<strong>in</strong>g<br />

dye <strong>in</strong> PDT generates reactive oxygen species. <strong>The</strong>se <strong>in</strong><br />

Fig 1. Laser system for photo-activated dye therapy, which uses a<br />

diode <strong>laser</strong> (635nm) and tolonium chloride dye (SaveDent, Asclepion<br />

Meditec, Fife, UK).<br />

turn directly damage cells and the associated blood<br />

vascular network, trigger<strong>in</strong>g both necrosis and<br />

apoptosis. 38<br />

Of <strong>in</strong>terest, while direct effects <strong>of</strong> PDT destroy the<br />

bulk <strong>of</strong> tumour cells, there is accumulat<strong>in</strong>g evidence<br />

that PDT activates the host immune response, and<br />

promotes anti-tumour immunity through the activation<br />

<strong>of</strong> macrophages and T lymphocytes. 37 For example,<br />

there is direct experimental evidence for photodynamic<br />

activation <strong>of</strong> the production <strong>of</strong> tumour necrosis factoralpha,<br />

39 a key cytok<strong>in</strong>e <strong>in</strong> host anti-tumour immune<br />

responses.<br />

Cl<strong>in</strong>ical studies have reported positive results for<br />

PDT treatment <strong>of</strong> carc<strong>in</strong>oma-<strong>in</strong>-situ and squamous cell<br />

carc<strong>in</strong>oma <strong>in</strong> the oral cavity, with response rates<br />

approximat<strong>in</strong>g 90 per cent. 40,41 <strong>The</strong> treated sites<br />

characteristically show erythema and oedema, followed<br />

by necrosis and frank ulceration. <strong>The</strong> ulcerated lesions<br />

typically take up to eight weeks to heal fully, and<br />

supportive analgesia is required <strong>in</strong> the first few weeks.<br />

Other than short-term photosensitivity, the treatment is<br />

tolerated well. 39<br />

Other photochemical <strong>laser</strong> effects<br />

<strong>The</strong> argon <strong>laser</strong> produces high <strong>in</strong>tensity visible blue<br />

light (488nm) which is able to <strong>in</strong>itiate photopolymerization<br />

<strong>of</strong> light-cured dental restorative<br />

materials which use camphoroqu<strong>in</strong>one as the<br />

photo<strong>in</strong>itiator. 42-44 <strong>The</strong> temperature <strong>in</strong>crease at the level<br />

<strong>of</strong> the dental pulp is much less with argon <strong>laser</strong> cur<strong>in</strong>g<br />

than when conventional quartz tungsten halogen lamp<br />

units are used. 45,46 Argon <strong>laser</strong> radiation is also able to<br />

alter the surface chemistry <strong>of</strong> both enamel and root<br />

surface dent<strong>in</strong>e, 47,48 which reduces the probability <strong>of</strong><br />

re<strong>current</strong> caries. This cl<strong>in</strong>ical benefit is arguably more<br />

important than the reduced cur<strong>in</strong>g time and improved<br />

depth <strong>of</strong> cure achieved with the argon <strong>laser</strong>.<br />

A further photochemical effect produced by high<br />

<strong>in</strong>tensity green <strong>laser</strong> light is photochemical bleach<strong>in</strong>g<br />

(Table 5). This effect relies upon specific absorption <strong>of</strong><br />

a narrow spectral range <strong>of</strong> green light (510-540nm)<br />

<strong>in</strong>to chelate compounds formed between apatites,<br />

Table 5. Laser-enhanced tooth whiten<strong>in</strong>g<br />

Argon KTP Diode CO 2<br />

515nm 532nm 810-980nm 10600nm<br />

Photochemical bleach<strong>in</strong>g ✔ ✔<br />

Photothermal bleach<strong>in</strong>g ✔ ✔<br />

148 Australian Dental Journal 2003;48:3.


Fig 2. KTP <strong>laser</strong> photochemical bleach<strong>in</strong>g. A. Initial cl<strong>in</strong>ical<br />

appearance <strong>of</strong> the dentition <strong>in</strong> a 9-year-old patient with <strong>in</strong>tense<br />

discolouration <strong>of</strong> the <strong>in</strong>cisor teeth caused by prolonged childhood<br />

illnesses and associated medications. B. <strong>The</strong> situation immediately<br />

after three 60-m<strong>in</strong>ute appo<strong>in</strong>tments <strong>of</strong> power bleach<strong>in</strong>g us<strong>in</strong>g a<br />

conventional quartz tungsten halogen cur<strong>in</strong>g lamp and 35 per cent<br />

hydrogen peroxide gel. <strong>The</strong> <strong>in</strong>cisal enamel shade has improved<br />

somewhat, but the areas <strong>of</strong> discolouration at the g<strong>in</strong>gival third are<br />

unchanged. <strong>The</strong> arrow <strong>in</strong>dicates a residue <strong>of</strong> the protective g<strong>in</strong>gival<br />

dam. C. Cl<strong>in</strong>ical appearance immediately after one session <strong>of</strong><br />

photochemical bleach<strong>in</strong>g us<strong>in</strong>g the KTP <strong>laser</strong> and proprietary<br />

alkal<strong>in</strong>e hydrogen peroxide (Smartbleach ®) gel. <strong>The</strong> <strong>laser</strong> treatment<br />

was targeted to the g<strong>in</strong>gival third. <strong>The</strong> patient and her parents were<br />

pleased with the immediate post-operative result and did not request<br />

any additional treatment.<br />

porphyr<strong>in</strong>s, and tetracycl<strong>in</strong>e compounds. 49 <strong>The</strong> argon<br />

<strong>laser</strong> (515nm) and potassium titanyl phosphate (KTP)<br />

<strong>laser</strong> (532nm) can both be used for photochemical<br />

bleach<strong>in</strong>g, s<strong>in</strong>ce their wavelengths approximate the<br />

absorption maxima <strong>of</strong> these chelate compounds (525-<br />

530nm). 50 Argon and KTP <strong>laser</strong>s can achieve a positive<br />

result <strong>in</strong> cases which are completely unresponsive to<br />

conventional photothermal ‘power’ bleach<strong>in</strong>g (Fig 2).<br />

Laser <strong>applications</strong> <strong>in</strong> the dental laboratory<br />

<strong>The</strong>re is a range <strong>of</strong> laboratory-based <strong>laser</strong><br />

<strong>applications</strong> (Table 6). Laser holographic imag<strong>in</strong>g is a<br />

well established method for stor<strong>in</strong>g topographic<br />

<strong>in</strong>formation, such as crown preparations, occlusal<br />

tables, and facial forms. <strong>The</strong> use <strong>of</strong> two <strong>laser</strong> beams<br />

allows more complex surface detail to be mapped us<strong>in</strong>g<br />

<strong>in</strong>terferometry, 51,52 while conventional diffraction<br />

grat<strong>in</strong>gs and <strong>in</strong>terference patterns are used to generate<br />

holograms and contour pr<strong>of</strong>iles. 53-56<br />

Laser scann<strong>in</strong>g <strong>of</strong> casts can be l<strong>in</strong>ked to<br />

computerized mill<strong>in</strong>g equipment for fabrication <strong>of</strong><br />

restorations from porcela<strong>in</strong> and other materials. An<br />

alternative fabrication strategy is to s<strong>in</strong>ter ceramic<br />

materials, to create a solid restoration from a powder<br />

<strong>of</strong> alum<strong>in</strong>a or hydroxyapatite. 57 <strong>The</strong> same approach can<br />

be used to form complex shapes from dental wax and<br />

other materials which can be s<strong>in</strong>tered, such that these<br />

can then be used <strong>in</strong> conventional ‘lost wax’ cast<strong>in</strong>g. A<br />

variation on this theme is ultraviolet (helium-cadmium)<br />

<strong>laser</strong>-<strong>in</strong>itiated polymerization <strong>of</strong> liquid res<strong>in</strong> <strong>in</strong> a<br />

chamber, to create surgical templates for implant<br />

surgery and major reconstructive oral surgery. <strong>The</strong>se<br />

templates can be coupled with <strong>laser</strong>-based position<strong>in</strong>g<br />

systems for complex reconstructive and orthognathic<br />

surgical procedures.<br />

Laser procedures on dental hard tissues<br />

Cavity preparation us<strong>in</strong>g <strong>laser</strong>s has been an area <strong>of</strong><br />

major research <strong>in</strong>terest s<strong>in</strong>ce <strong>laser</strong>s were <strong>in</strong>itially<br />

developed <strong>in</strong> the early 1960s. At the present time,<br />

several <strong>laser</strong> types with similar wavelengths <strong>in</strong> the<br />

middle <strong>in</strong>frared region <strong>of</strong> the electromagnetic spectrum<br />

are used commonly for cavity preparation and caries<br />

removal. <strong>The</strong> Er:YAG, Er:YSGG and Er,Cr:YSGG <strong>laser</strong>s<br />

operate at wavelengths <strong>of</strong> 2940, 2790, and 2780nm,<br />

respectively. <strong>The</strong>se wavelengths correspond to the peak<br />

absorption range <strong>of</strong> water <strong>in</strong> the <strong>in</strong>frared spectrum<br />

(Fig 3), although the absorption <strong>of</strong> the Er:YAG <strong>laser</strong><br />

(13,000cm -1 ) is much higher than that <strong>of</strong> the Er:YSGG<br />

(7000cm -1 ) and Er,Cr:YSGG (4000cm -1 ) 58-60 S<strong>in</strong>ce all<br />

three <strong>laser</strong>s rely on water-based absorption for cutt<strong>in</strong>g<br />

enamel and dent<strong>in</strong>e, the efficiency <strong>of</strong> ablation<br />

(measured <strong>in</strong> terms <strong>of</strong> volume and mass loss <strong>of</strong> tooth<br />

structure for identical energy parameters) is greatest for<br />

the Er:YAG <strong>laser</strong>. 58,60<br />

<strong>The</strong>se <strong>laser</strong> systems can be used for effective caries<br />

removal and cavity preparation without significant<br />

thermal effects, collateral damage to tooth structure, or<br />

patient discomfort. 61-64 Normal dental enamel conta<strong>in</strong>s<br />

sufficient water (approximately 12 per cent by volume)<br />

that a water mist spray coupled to an Er-based <strong>laser</strong><br />

Australian Dental Journal 2003;48:3. 149


Table 6. Laser <strong>applications</strong> <strong>in</strong> the dental laboratory<br />

Helium neon<br />

633nm<br />

Diode<br />

635nm<br />

Nd:YAG<br />

1064nm<br />

CO2 10600nm<br />

Helium-Cadmium<br />

300nm<br />

Scann<strong>in</strong>g <strong>of</strong> models for orthodontics or holographic storage ✔ ✔<br />

Scann<strong>in</strong>g <strong>of</strong> crown preparations for CAD-CAM ✔ ✔<br />

Weld<strong>in</strong>g <strong>of</strong> metals (Co:Cr, titanium) ✔<br />

S<strong>in</strong>ter<strong>in</strong>g <strong>of</strong> ceramics ✔<br />

CAD-s<strong>in</strong>ter<strong>in</strong>g fabrication ✔<br />

CAD-polymer fabrication <strong>of</strong> spl<strong>in</strong>ts or surgical models ✔<br />

Cutt<strong>in</strong>g <strong>of</strong> ceramics ✔<br />

system can achieve effective ablation at temperatures<br />

well below the melt<strong>in</strong>g and vapourization temperatures<br />

<strong>of</strong> enamel. 61 Er-based dental <strong>laser</strong>s can also be used to<br />

remove res<strong>in</strong> composite res<strong>in</strong> and glass-ionomer cement<br />

restorations, and to etch tooth structure (Fig 4).<br />

A characteristic operat<strong>in</strong>g feature <strong>of</strong> Er-based <strong>laser</strong><br />

systems is a popp<strong>in</strong>g sound when the <strong>laser</strong> is operat<strong>in</strong>g<br />

on dental hard tissues. Both the pitch and resonance <strong>of</strong><br />

this sound relate to the propagation <strong>of</strong> an acoustic<br />

shock wave with<strong>in</strong> the tooth, and vary accord<strong>in</strong>g to the<br />

presence or absence <strong>of</strong> caries. This feature assists the<br />

user <strong>in</strong> determ<strong>in</strong><strong>in</strong>g that caries removal is complete. 66 In<br />

contrast to the popp<strong>in</strong>g sound dur<strong>in</strong>g caries removal,<br />

one <strong>current</strong> generation Er,Cr:YSGG <strong>laser</strong> system creates<br />

a loud snapp<strong>in</strong>g sound even when not <strong>in</strong> contact with<br />

any structure <strong>in</strong> the mouth. This seem<strong>in</strong>g paradox can<br />

be expla<strong>in</strong>ed by an effect termed ‘plasma de-coupl<strong>in</strong>g’<br />

<strong>of</strong> the beam, <strong>in</strong> which <strong>in</strong>cident <strong>laser</strong> energy heats the air<br />

and water directly <strong>in</strong> front <strong>of</strong> the <strong>laser</strong> handpiece. In the<br />

Er,Cr:YSGG <strong>laser</strong>, this is done <strong>in</strong>tentionally <strong>in</strong> order to<br />

deliver energy onto the rear surface <strong>of</strong> atomized water<br />

molecules, with the aim <strong>of</strong> accelerat<strong>in</strong>g them to a higher<br />

speed (so-called ‘HydroK<strong>in</strong>etic cutt<strong>in</strong>g’). 67 Detailed<br />

studies <strong>of</strong> the cutt<strong>in</strong>g mechanisms <strong>of</strong> Er:YAG and<br />

Er,Cr:YSGG <strong>laser</strong>s have revealed that the mechanism<br />

by which enamel is removed is basically the same for<br />

both <strong>laser</strong> systems, namely explosive subsurface<br />

expansion <strong>of</strong> <strong>in</strong>terstitially trapped water. 65 <strong>The</strong> same<br />

<strong>in</strong>vestigations also failed to show Er,Cr:YSGG <strong>laser</strong><br />

cutt<strong>in</strong>g <strong>of</strong> a variety <strong>of</strong> materials which were free <strong>of</strong><br />

water, which the authors stated was ‘contradictory to<br />

the existence <strong>of</strong> the hydrok<strong>in</strong>etic phenomenon’. 65<br />

14000<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

Er,Cr:YSGG<br />

Er:YAG<br />

0<br />

2.6 2.65 2.7 2.75 2.8 2.85 2.9 2.95 3 3.05 3.1 3.15 3.2 3.25 3.3<br />

Fig 3. <strong>The</strong> absorption curve <strong>of</strong> water <strong>in</strong> the middle <strong>in</strong>frared region.<br />

Data on the vertical axis are units <strong>of</strong> absorption, while the horizontal<br />

axis shows wavelength <strong>in</strong> micrometers. <strong>The</strong> plot shows the position<br />

<strong>of</strong> two <strong>laser</strong> wavelengths used for cavity preparation: Er,Cr:YSGG<br />

2.78 micrometers, and Er:YAG 2.94 micrometers. <strong>The</strong> figure is based<br />

on data from reference 59.<br />

An important theoretical extension to the pr<strong>in</strong>ciple<br />

<strong>of</strong> water-based <strong>laser</strong> ablation <strong>of</strong> tooth structure is the<br />

recently described effect <strong>of</strong> ‘<strong>laser</strong> abrasion’, <strong>in</strong> which<br />

Er:YAG <strong>laser</strong> energy is used to accelerate the movement<br />

<strong>of</strong> particles <strong>of</strong> sapphire 30-50 micrometers <strong>in</strong> diameter<br />

<strong>in</strong> aqueous suspension. As <strong>in</strong> air abrasion, the impact <strong>of</strong><br />

these particles causes brittle splitt<strong>in</strong>g, result<strong>in</strong>g <strong>in</strong> tooth<br />

substance removal. In the <strong>laser</strong> abrasion method, high<br />

speed photography has documented particle velocities<br />

<strong>in</strong> the range <strong>of</strong> 50-100 metres per second, which enable<br />

a rate <strong>of</strong> enamel removal ‘higher than that <strong>of</strong> high speed<br />

turb<strong>in</strong>es’ with a very low volume <strong>of</strong> abrasive particles. 68<br />

This technique could be employed with <strong>current</strong><br />

generation <strong>laser</strong>s once a suitable dispens<strong>in</strong>g system for<br />

the suspension <strong>of</strong> particles has been developed. As well<br />

as the potential <strong>of</strong> even more rapid cutt<strong>in</strong>g rates than<br />

conventional rotary <strong>in</strong>strumentation, <strong>laser</strong> abrasion<br />

<strong>of</strong>fers the promise <strong>of</strong> <strong>laser</strong>-based cutt<strong>in</strong>g <strong>of</strong> structures<br />

which are not otherwise amenable to this, such as<br />

ceramic restorations.<br />

Intensive research over the past three decades on<br />

other non-Erbium <strong>laser</strong>-based cavity preparation<br />

systems has yet to be translated to direct cl<strong>in</strong>ical<br />

application. To date, alternative <strong>laser</strong> systems,<br />

<strong>in</strong>clud<strong>in</strong>g super-pulsed CO2, Ho:YAG, Ho:YSGG,<br />

Nd:YAG, Nd:NLF, diode <strong>laser</strong>s and excimers, have not<br />

proven feasible for use for cavity preparation <strong>in</strong> general<br />

practice sett<strong>in</strong>gs.<br />

Other than caries removal, this is a range <strong>of</strong> other<br />

well established <strong>laser</strong> hard tissue procedures <strong>in</strong>clude<br />

desensitization <strong>of</strong> cervical dent<strong>in</strong>e (us<strong>in</strong>g Nd:YAG,<br />

Er:YAG, Er,Cr:YSGG CO2, KTP, and diode <strong>laser</strong>s),<br />

<strong>laser</strong> analgesia (us<strong>in</strong>g Nd:YAG, Er:YAG, and<br />

Er,Cr:YSGG <strong>laser</strong>s), <strong>laser</strong>-enhanced fluoride uptake<br />

(us<strong>in</strong>g Er:YAG, Er,Cr:YSGG, CO2, argon, and KTP<br />

<strong>laser</strong>s). Furthermore, there is a considerable range <strong>of</strong><br />

periodontal procedures (Table 7), and endodontic<br />

procedures (Table 8) which can be undertaken with<br />

<strong>laser</strong>s as an alternative to conventional approaches.<br />

S<strong>of</strong>t tissue <strong>laser</strong> procedures<br />

<strong>The</strong>re are numerous s<strong>of</strong>t tissue procedures which can<br />

be performed with <strong>laser</strong>s. 69-71 Two key features <strong>of</strong> these<br />

are reduced bleed<strong>in</strong>g <strong>in</strong>tra-operatively and less pa<strong>in</strong><br />

post-operatively compared to conventional techniques<br />

such as electrosurgery. <strong>The</strong> degree <strong>of</strong> absorption <strong>in</strong> key<br />

tissue components dictates the type <strong>of</strong> effect ga<strong>in</strong>ed by<br />

the <strong>laser</strong> on s<strong>of</strong>t tissues, and <strong>in</strong> this regard the content<br />

<strong>of</strong> water and haemoglob<strong>in</strong> <strong>in</strong> oral tissues is important<br />

150 Australian Dental Journal 2003;48:3.


Fig 4. Restorative procedures us<strong>in</strong>g the Er:YAG <strong>laser</strong>, <strong>in</strong> anxious dental patients, without local anesthesia. <strong>The</strong> Er:YAG <strong>laser</strong> was used with a<br />

non-contact handpiece. A. Pre-operative appearance <strong>of</strong> a 22-year-old male with salivary dysfunction, and associated cervical and approximal<br />

caries. B. Areas <strong>of</strong> caries and defective res<strong>in</strong> composite have been removed. <strong>The</strong> <strong>in</strong>tense white appearance <strong>of</strong> the marg<strong>in</strong>s is typical <strong>of</strong> <strong>laser</strong> etch<strong>in</strong>g.<br />

C. <strong>The</strong> restored teeth immediately post-operatively. <strong>The</strong> etched appearance <strong>of</strong> the marg<strong>in</strong>s disappears once bond<strong>in</strong>g res<strong>in</strong> has been placed.<br />

D. 30-year-old female patient with areas <strong>of</strong> hypoplastic enamel. E. <strong>The</strong> enamel surface has been ‘peeled’ us<strong>in</strong>g a series <strong>of</strong> pulses from the <strong>laser</strong>.<br />

F. <strong>The</strong> two areas have been restored with res<strong>in</strong> composite. G. 65-year-old female patient undergo<strong>in</strong>g anti-cancer chemotherapy, with re<strong>current</strong><br />

caries at the marg<strong>in</strong>s <strong>of</strong> several restorations. H. Areas <strong>of</strong> caries and underm<strong>in</strong>ed res<strong>in</strong> composite have been removed. I. <strong>The</strong> cavity preparations<br />

have been restored.<br />

for the efficient absorption <strong>of</strong> many commonly used<br />

dental <strong>laser</strong>s. 72 Certa<strong>in</strong> procedures <strong>in</strong> patients with<br />

bleed<strong>in</strong>g disorders are better suited to <strong>laser</strong>s with<br />

greater haemostatic capabilities (Table 9). Examples <strong>of</strong><br />

simple s<strong>of</strong>t tissue procedures are presented <strong>in</strong> Fig 5.<br />

CONCLUSIONS<br />

Laser technology for caries detection, res<strong>in</strong> cur<strong>in</strong>g,<br />

cavity preparation and s<strong>of</strong>t tissue surgery is at a high<br />

state <strong>of</strong> ref<strong>in</strong>ement, hav<strong>in</strong>g had several decades <strong>of</strong><br />

development up to the present time. This is not to say<br />

that further major improvements cannot occur. Indeed,<br />

as is <strong>in</strong> the case with <strong>laser</strong> abrasion, the fusion <strong>of</strong><br />

concepts from differ<strong>in</strong>g technologies may open the<br />

door to novel techniques and treatments. <strong>The</strong> field <strong>of</strong><br />

<strong>laser</strong>-based photochemical reactions holds great<br />

promise for additional <strong>applications</strong>, particularly for<br />

target<strong>in</strong>g specific cells, pathogens or molecules. A<br />

further area <strong>of</strong> future growth is expected to be the<br />

comb<strong>in</strong>ation <strong>of</strong> diagnostic and therapeutic <strong>laser</strong><br />

techniques <strong>in</strong> the one device, for example the detection<br />

and removal <strong>of</strong> dental caries or dental calculus. For<br />

Australian Dental Journal 2003;48:3. 151


Table 7. Periodontal <strong>laser</strong> procedures<br />

Er:YAG<br />

2940nm<br />

Er,Cr:YSGG<br />

2780nm<br />

KTP<br />

532nm<br />

Argon 488<br />

and 515nm<br />

Diode<br />

810-980nm<br />

Nd:YAG<br />

1064nm<br />

Helium-neon<br />

633nm<br />

Diode 635,<br />

670 or 830nm<br />

CO2 10600nm<br />

Calculus removal<br />

Periodontal pocket<br />

✔<br />

dis<strong>in</strong>fection<br />

Photoactivated dye<br />

dis<strong>in</strong>fection <strong>of</strong><br />

✔ ✔ ✔ ✔ ✔ ✔<br />

pockets<br />

De-epithelialization to<br />

✔ ✔<br />

assist regeneration ✔ ✔ ✔<br />

Table 8. Endodontic <strong>laser</strong> procedures<br />

CO2 Erbium:YAG Er,Cr:YSGG KTP Argon 488 Diode Nd:YAG Helium-neon Diode 635,<br />

10600nm 2940nm 2780nm 532nm and 515nm 810-980nm 1064nm 633nm 670, or 830nm<br />

Direct pulp capp<strong>in</strong>g<br />

Dry<strong>in</strong>g <strong>of</strong> the<br />

✔ ✔<br />

root canal<br />

Removal <strong>of</strong><br />

✔ ✔ ✔<br />

smear layer<br />

Root canal<br />

✔ ✔<br />

dis<strong>in</strong>fection<br />

Photoactivated dye<br />

✔ ✔ ✔ ✔ ✔ ✔<br />

dis<strong>in</strong>fection <strong>of</strong> pockets ✔ ✔<br />

example, an ‘autopilot’ system for subg<strong>in</strong>gival<br />

débridement has been developed (for detailed review,<br />

see ref 73), and the potential exists to extend this<br />

concept further.<br />

<strong>The</strong>re is a large research effort <strong>in</strong>ternationally<br />

focused on develop<strong>in</strong>g new <strong>laser</strong> <strong>applications</strong> for dental<br />

practice, and each year several large meet<strong>in</strong>gs are held<br />

which br<strong>in</strong>g together this research. Examples <strong>in</strong>clude<br />

the International Society for Lasers <strong>in</strong> Dentistry (ISLD),<br />

the European Society for Oral Laser Applications<br />

(ESOLA), and the Academy <strong>of</strong> Laser Dentistry (ALD).<br />

With the further development <strong>of</strong> <strong>laser</strong> <strong>dentistry</strong> as an<br />

area <strong>of</strong> cl<strong>in</strong>ical pursuit, there will be considerable<br />

opportunity for cl<strong>in</strong>icians to become <strong>in</strong>volved <strong>in</strong> these<br />

research meet<strong>in</strong>gs and <strong>in</strong> specific research projects. <strong>The</strong><br />

Australasian region has played a substantial role <strong>in</strong> the<br />

development <strong>of</strong> hard tissue <strong>laser</strong> <strong>applications</strong>, 74,75 and<br />

this level <strong>of</strong> <strong>in</strong>volvement is expected to cont<strong>in</strong>ue <strong>in</strong> the<br />

future, as various research groups exam<strong>in</strong>e uses for<br />

<strong>laser</strong>s <strong>in</strong> conjunction with or as a replacement for<br />

traditional methods.<br />

<strong>The</strong>re is little argument that over recent years the use<br />

<strong>of</strong> <strong>laser</strong>s <strong>in</strong> <strong>dentistry</strong> <strong>in</strong> Australia has moved beyond<br />

Table 9. Surgical <strong>laser</strong> <strong>applications</strong><br />

academic centres and specialist units <strong>in</strong>to the<br />

ma<strong>in</strong>stream <strong>of</strong> general practice. Look<strong>in</strong>g to the future,<br />

it is expected that specific <strong>laser</strong> technologies will<br />

become an essential component <strong>of</strong> contemporary dental<br />

practice over the next decade.<br />

ACKNOWLEDGMENTS<br />

I thank the dental practitioners who have referred<br />

patients to the Laser Cl<strong>in</strong>ic over the past 12 years, and<br />

the numerous staff and students who have contributed<br />

to the dental <strong>laser</strong> research programme at the<br />

University <strong>of</strong> Queensland.<br />

REFERENCES<br />

1. Shi XQ, Welander U, Angmar-Månsson B. Occlusal caries<br />

detection with KaVo DIAGNOdent and radiography: an <strong>in</strong> vitro<br />

comparison. Caries Res 2000;34:151-158.<br />

2. Lussi A, Megert B, Longbottom C, Reich E, Francescut P. Cl<strong>in</strong>ical<br />

performance <strong>of</strong> a <strong>laser</strong> fluorescence device for detection <strong>of</strong><br />

occlusal caries lesions. Eur J Oral Sci 2001;109:14-19.<br />

3. Shi XQ, Tranaeus S, Angmar-Månsson B. Validation <strong>of</strong><br />

DIAGNOdent for quantification <strong>of</strong> smooth-surface caries: an <strong>in</strong><br />

vitro study. Acta Odontol Scand 2001;59:74-78.<br />

4. Shi XQ, Tranaeus S, Angmar-Månsson B. Comparison <strong>of</strong> QLF<br />

and DIAGNOdent for quantification <strong>of</strong> smooth surface caries.<br />

Caries Res 2001;35:21-26.<br />

Er:YAG 2940nm<br />

(least haemostasis)<br />

Er,Cr:YSGG<br />

2780nm<br />

CO2 10600nm<br />

KTP<br />

532nm<br />

Diode<br />

810-980nm<br />

Argon 488<br />

and 515nm<br />

Nd:YAG 1064nm<br />

(most haemostatis)<br />

M<strong>in</strong>or s<strong>of</strong>t<br />

tissue surgery<br />

Major s<strong>of</strong>t<br />

✔ ✔ ✔ ✔ ✔ ✔<br />

tissue surgery<br />

Surgical treatment<br />

<strong>of</strong> large<br />

✔<br />

vascular lesions ✔<br />

Bone cutt<strong>in</strong>g<br />

Implant exposure<br />

✔ ✔<br />

with bone removal ✔ ✔ ✔<br />

152 Australian Dental Journal 2003;48:3.


Fig 5. S<strong>of</strong>t tissue procedures us<strong>in</strong>g middle and far <strong>in</strong>frared <strong>laser</strong>s. A. Pre-operative cl<strong>in</strong>ical appearance <strong>of</strong> a 22-year-old female with marked g<strong>in</strong>gival<br />

overgrowth from nifedip<strong>in</strong>e and cyclospor<strong>in</strong>. <strong>The</strong> patient has received a kidney transplant, is immuno-suppressed, and has a bleed<strong>in</strong>g tendency.<br />

B. the immediate post-operative appearance follow<strong>in</strong>g g<strong>in</strong>givoplasty with the carbon dioxide <strong>laser</strong>. Complete haemostasis is ma<strong>in</strong>ta<strong>in</strong>ed dur<strong>in</strong>g the<br />

procedure. C. Initial cl<strong>in</strong>ical appearance <strong>of</strong> a 16-year-old female patient with marked g<strong>in</strong>gival overgrowth, which has obscured the orthodontic<br />

brackets and caused the cessation <strong>of</strong> fixed orthodontic treatment. D. Immediate post-operative view <strong>of</strong> quadrant 1 follow<strong>in</strong>g g<strong>in</strong>gival recontour<strong>in</strong>g<br />

with the carbon dioxide <strong>laser</strong>. E. Immediate post-operative view <strong>of</strong> quadrant 2 follow<strong>in</strong>g recontour<strong>in</strong>g with the Er:YAG <strong>laser</strong> <strong>in</strong> contact mode.<br />

Note the different appearance <strong>of</strong> the tissues compared to quadrant 1. Both segments were treated at the same appo<strong>in</strong>tment. F and G. Cl<strong>in</strong>ical<br />

appearance <strong>of</strong> the two sites two weeks follow<strong>in</strong>g surgery. <strong>The</strong> tissue contours are identical to those determ<strong>in</strong>ed at the time <strong>of</strong> surgery.<br />

5. Takamori K, Hokari N, Okumura Y, Watanabe S. Detection <strong>of</strong><br />

occlusal caries under sealants by use <strong>of</strong> a <strong>laser</strong> fluorescence<br />

system. J Cl<strong>in</strong> Laser Med Surg 2001;19:267-271.<br />

6. Bjelkhagen H, Sundström F, Angmar-Månsson B, Ryden H. Early<br />

detection <strong>of</strong> enamel caries by the lum<strong>in</strong>escence excited by visible<br />

<strong>laser</strong> light. Swed Dent J 1982;6:1-7.<br />

7. Angmar-Månsson B, ten Bosch JJ. Optical methods for the<br />

detection and quantification <strong>of</strong> caries. Adv Dent Res 1987;1:14-<br />

20.<br />

8. Hafström-Bjorkman U, Sundström F, Angmar-Månsson B. Initial<br />

caries diagnosis <strong>in</strong> rat molars, us<strong>in</strong>g <strong>laser</strong> fluorescence. Acta<br />

Odontol Scand 1991;49:27-33.<br />

9. Hafström-Bjorkman U, Sundström F, de Jossel<strong>in</strong> de Jong E,<br />

Oliveby A, Angmar-Månsson B. Comparison <strong>of</strong> <strong>laser</strong> fluorescence<br />

and longitud<strong>in</strong>al microradiography for quantitative assessment <strong>of</strong><br />

<strong>in</strong> vitro enamel caries. Caries Res 1992;26:241-247.<br />

10. Longbottom C, Pitts NB. CO2 <strong>laser</strong> and the diagnosis <strong>of</strong> occlusal<br />

caries: <strong>in</strong> vitro study. J Dent 1993;21:234-239.<br />

Australian Dental Journal 2003;48:3. 153


11. Walsh LJ, Perham S. Enamel fusion us<strong>in</strong>g a carbon dioxide <strong>laser</strong>:<br />

a technique for seal<strong>in</strong>g pits and fissures. Cl<strong>in</strong> Prev Dent<br />

1991;13:16-20.<br />

12. Benedetto MD, Antonson DE. Use <strong>of</strong> CO2 <strong>laser</strong> for visible<br />

detection <strong>of</strong> enamel fissure caries. Qu<strong>in</strong>tessence Int 1988;19:187-<br />

190.<br />

13. Angmar-Månsson B, al-Khateeb S, Tranaeus S. Monitor<strong>in</strong>g the<br />

caries process. Optical methods for cl<strong>in</strong>ical diagnosis and<br />

quantification <strong>of</strong> enamel caries. Eur J Oral Sci 1996;104<br />

(4(Pt 2)):480-485.<br />

14. Ando M, Hall AF, Eckert GJ, Schemehorn BR, Analoui M,<br />

Stookey GK. Relative ability <strong>of</strong> <strong>laser</strong> fluorescence techniques to<br />

quantitate early m<strong>in</strong>eral loss <strong>in</strong> vitro. Caries Res 1997;31:125-<br />

131.<br />

15. al-Khateeb S, ten Cate JM, Angmar-Månsson B, et al.<br />

Quantification <strong>of</strong> formation and rem<strong>in</strong>eralization <strong>of</strong> artificial<br />

enamel lesions with a new portable fluorescence device. Adv<br />

Dent Res 1997;11:502-506.<br />

16. al-Khateeb S, Forsberg CM, de Jossel<strong>in</strong> de Jong E, Angmar-<br />

Månsson B. A longitud<strong>in</strong>al <strong>laser</strong> fluorescence study <strong>of</strong> white spot<br />

lesions <strong>in</strong> orthodontic patients. Am J Orthod Dent<strong>of</strong>acial Orthop<br />

1998;113:595-602.<br />

17. Konig K, Flemm<strong>in</strong>g G, Hibst R. Laser-<strong>in</strong>duced aut<strong>of</strong>luorescence<br />

spectroscopy <strong>of</strong> dental caries. Cell Mol Biol (Noisy-le-grand)<br />

1998;44:1293-1300.<br />

18. Eggertsson H, Analoui M, van der Veen M, Gonzalez-Cabezas C,<br />

Eckert G, Stookey G. Detection <strong>of</strong> early <strong>in</strong>terproximal caries <strong>in</strong><br />

vitro us<strong>in</strong>g <strong>laser</strong> fluorescence, dye-enhanced <strong>laser</strong> fluorescence<br />

and direct visual exam<strong>in</strong>ation. Caries Res 1999;33:227-233.<br />

19. Featherstone JD. Caries detection and prevention with <strong>laser</strong><br />

energy. Dent Cl<strong>in</strong> North Am 2000;44:955-969.<br />

20. Folwaczny M, Heym R, Mehl A, Hickel R. Subg<strong>in</strong>gival calculus<br />

detection with fluorescence <strong>in</strong>duced by 655 nm InGaAsP diode<br />

<strong>laser</strong> radiation. J Periodontol 2002;73:597-601.<br />

21. Am<strong>in</strong>zadeh A, Shahabi S, Walsh LJ. Raman spectroscopic studies<br />

<strong>of</strong> CO2 <strong>laser</strong>-irradiated human dental enamel. Spectrochim Acta<br />

A Mol Biomol Spectrosc 1999;55:1303-1308.<br />

22. Sasaki KM, Aoki A, Masuno H, Ich<strong>in</strong>ose S, Yamada S, Ishikawa<br />

I. Compositional analysis <strong>of</strong> root cementum and dent<strong>in</strong> after<br />

Er:YAG <strong>laser</strong> irradiation compared with CO2 lased and <strong>in</strong>tact<br />

roots us<strong>in</strong>g Fourier transformed <strong>in</strong>frared spectroscopy. J<br />

Periodontal Res 2002;37:50-59.<br />

23. Wilson M, Dobson J, Harvey W. Sensitization <strong>of</strong> oral bacteria to<br />

kill<strong>in</strong>g by low-power <strong>laser</strong> radiation. Curr Microbiol<br />

1992;25:77-81.<br />

24. Dobson J, Wilson M. Sensitization <strong>of</strong> oral bacteria <strong>in</strong> bi<strong>of</strong>ilms to<br />

kill<strong>in</strong>g by light from a low-power <strong>laser</strong>. Arch Oral Biol<br />

1992;37:883-887.<br />

25. Sarker S, Wilson M. Lethal photosensitization <strong>of</strong> bacteria <strong>in</strong><br />

subg<strong>in</strong>gival plaque from patients with chronic periodontitis. J<br />

Periodontal Res 1993;28:204-210.<br />

26. Wilson M. Bacterial effect <strong>of</strong> <strong>laser</strong> light and its potential use <strong>in</strong><br />

the treatment <strong>of</strong> plaque-related diseases. Int Dent J 1994;44:181-<br />

189.<br />

27. Burns T, Wilson M, Pearson GJ. Effect <strong>of</strong> dent<strong>in</strong>e and collagen on<br />

the lethal photosensitization <strong>of</strong> Streptococcus mutans. Caries Res<br />

1995;29:192-197.<br />

28. Bhatti M, MacRobert A, Henderson B, Shepherd P, Cridland J,<br />

Wilson M. Antibody-targeted lethal photosensitization <strong>of</strong><br />

Porphyromonas g<strong>in</strong>givalis. Antimicrob Agents Chemother<br />

2000;44:2615-2618.<br />

29. O’Neill JF, Hope CK, Wilson M. Oral bacteria <strong>in</strong> multi-species<br />

bi<strong>of</strong>ilms can be killed by red light <strong>in</strong> the presence <strong>of</strong> toluid<strong>in</strong>e<br />

blue. Lasers Surg Med 2002;31:86-90.<br />

30. Seal GJ, Ng YL, Spratt D, Bhatti M, Gulabivala K. An <strong>in</strong> vitro<br />

comparison <strong>of</strong> the bactericidal efficacy <strong>of</strong> lethal<br />

photosensitization or sodium hyphochlorite irrigation on<br />

Streptococcus <strong>in</strong>termedius bi<strong>of</strong>ilm <strong>in</strong> root canals. Int Endodont J<br />

2002;35:268-274.<br />

31. Walsh LJ. <strong>The</strong> <strong>current</strong> <strong>status</strong> <strong>of</strong> low level <strong>laser</strong> therapy <strong>in</strong><br />

<strong>dentistry</strong>. Part 2. Hard tissue <strong>applications</strong>. Aust Dent J<br />

1997;42:302-306.<br />

32. Dortbudak O, Haas R, Bernhart T, Mailath-Pokorny G. Lethal<br />

photosensitization for decontam<strong>in</strong>ation <strong>of</strong> implant surfaces <strong>in</strong> the<br />

treatment <strong>of</strong> peri-implantitis. Cl<strong>in</strong> Oral Implants Res<br />

2001;12:104-108.<br />

33. Str<strong>in</strong>ger GJ, Bird PS, Walsh LJ. Lethal <strong>laser</strong> photosensitization <strong>of</strong><br />

Streptococcus mutans with a visible red diode <strong>laser</strong>. Aust Dent J<br />

2000;45(Suppl):S22.<br />

34. Soukos N, Wilson M, Burns T, Speight PM. Photodynamic effects<br />

<strong>of</strong> toluid<strong>in</strong>e blue on human oral kerat<strong>in</strong>ocytes and fibroblasts<br />

and Streptococcus sanguis evaluated <strong>in</strong> vitro. Lasers Surg Med<br />

1996;18:253-259.<br />

35. Epste<strong>in</strong> JB, Oakley C, Millner A, Emerton S, van der Meij E, Le<br />

N. <strong>The</strong> utility <strong>of</strong> toluid<strong>in</strong>e blue application as a diagnostic aid <strong>in</strong><br />

patients previously treated for upper oropharyngeal carc<strong>in</strong>oma.<br />

Oral Surg Oral Med Oral Pathol Oral Radiol Endod<br />

1997;83:537-547.<br />

36. Feaver GP, Morrison T, Humphris G. A study to determ<strong>in</strong>e the<br />

acceptability <strong>in</strong> patients and dentists <strong>of</strong> toluid<strong>in</strong>e blue <strong>in</strong><br />

screen<strong>in</strong>g for oral cancer. Prim Dent Care 1999;6:45-50.<br />

37. Walsh LJ. Safety issues relat<strong>in</strong>g to the use <strong>of</strong> hydrogen peroxide<br />

<strong>in</strong> <strong>dentistry</strong>. Aust Dent J 2000;45:257-269.<br />

38. Dougherty TJ. An update on photodynamic therapy <strong>applications</strong>.<br />

J Cl<strong>in</strong> Laser Med Surg 2002;20:3-7.<br />

39. Vowels BR, Cass<strong>in</strong> M, Boufal MH, Walsh LJ, Rook AH.<br />

Extracorporeal photophoresis <strong>in</strong>duces the production <strong>of</strong> tumor<br />

necrosis factor-alpha by monocytes: implications for the<br />

treatment <strong>of</strong> cutaneous T-cell lymphoma and systemic sclerosis. J<br />

Invest Dermatol 1992;98:686-692.<br />

40. Fan KFM, Hopper C, Speight PM, Buonaccorsi GA, Bown SG.<br />

Photodynamic therapy us<strong>in</strong>g mTHPC for malignant disease <strong>in</strong><br />

the oral cavity. Int J Cancer 1997;73:25-32.<br />

41. Biel MA. Photodynamic therapy and the treatment <strong>of</strong> head and<br />

neck neoplasia. Laryngoscope 1998;108:1259-1268.<br />

42. Tarle Z, Meniga A, Ristic M, Sutalo J, Pichler G. Polymerization<br />

<strong>of</strong> composites us<strong>in</strong>g pulsed <strong>laser</strong>. Eur J Oral Sci 1995;103:394-<br />

398.<br />

43. Bouschlicher MR, Vargas MA, Boyer DB. Effect <strong>of</strong> composite<br />

type, light <strong>in</strong>tensity, configuration factor and <strong>laser</strong><br />

polymerization on polymerization contraction forces. Am J Dent<br />

1997;10:88-96.<br />

44. Flem<strong>in</strong>g MG, Maillet WA. Photopolymerization <strong>of</strong> composite<br />

res<strong>in</strong> us<strong>in</strong>g the argon <strong>laser</strong>. J Can Dent Assoc 1999;65:447-450.<br />

45. Anic I, Pavelic B, Peric B, Matsumoto K. In vitro pulp chamber<br />

temperature rises associated with the argon <strong>laser</strong> polymerization<br />

<strong>of</strong> composite res<strong>in</strong>. Lasers Surg Med 1996;19:438-444.<br />

46. Cobb DS, Dederich DN, Gardner TV. In vitro temperature<br />

change at the dent<strong>in</strong>/pulpal <strong>in</strong>terface by us<strong>in</strong>g conventional<br />

visible light versus argon <strong>laser</strong>. Lasers Surg Med 2000;26:386-<br />

397.<br />

47. Hicks MJ, Flaitz CM, Westerman GH, Blankenau RJ, Powell GL,<br />

Berg JH. Caries-like lesion <strong>in</strong>itiation and progression around<br />

<strong>laser</strong>-cured sealants. Am J Dent 1993;6:176-180.<br />

48. Westerman G, Hicks J, Flaitz C. Argon <strong>laser</strong> cur<strong>in</strong>g <strong>of</strong> fluoridereleas<strong>in</strong>g<br />

pit and fissure sealant: <strong>in</strong> vitro caries development.<br />

ASDC J Dent Child 2000;67:385-390.<br />

49. L<strong>in</strong> LC, Pitts DL, Burgess LW. An <strong>in</strong>vestigation <strong>in</strong>to the feasibility<br />

<strong>of</strong> photobleach<strong>in</strong>g tetracycl<strong>in</strong>e-sta<strong>in</strong>ed teeth. J Endodont<br />

1988;14:293-299.<br />

50. Davies AK, Cundall RB, Dandiker Y, Sifk<strong>in</strong> MA. Photooxidation<br />

<strong>of</strong> tetracycl<strong>in</strong>e adsorbed onto hydroxyapatite <strong>in</strong><br />

relation to the light-<strong>in</strong>duced sta<strong>in</strong><strong>in</strong>g <strong>of</strong> teeth. J Dent Res<br />

1985;64:936-939.<br />

51. Fogleman EA, Kelly MT, Grubbs WT. Laser <strong>in</strong>terferometric<br />

method for measur<strong>in</strong>g l<strong>in</strong>ear polymerization shr<strong>in</strong>kage <strong>in</strong> light<br />

cured dental restoratives. Dent Mater 2002;18:324-330.<br />

52. Ros<strong>in</strong> M, Splieth CH, Hessler M, Gartner CH, Kordass B,<br />

Kocher T. Quantification <strong>of</strong> g<strong>in</strong>gival edema us<strong>in</strong>g a new 3-D <strong>laser</strong><br />

scann<strong>in</strong>g method. J Cl<strong>in</strong> Periodontol 2002;29:240-246.<br />

53. Wakabayashi K, Sohmura T, Takahashi J, et al. Development <strong>of</strong><br />

the computerized dental cast form analyz<strong>in</strong>g system – three<br />

dimensional diagnosis <strong>of</strong> dental arch form and the <strong>in</strong>vestigation<br />

<strong>of</strong> measur<strong>in</strong>g condition. Dent Mater J 1997;16:180-190.<br />

154 Australian Dental Journal 2003;48:3.


54. Ayoub AF, Wray D, Moos KF, et al. Three-dimensional model<strong>in</strong>g<br />

for modern diagnosis and plann<strong>in</strong>g <strong>in</strong> maxill<strong>of</strong>acial surgery. Int J<br />

Adult Orthodon Orthognath Surg 1996;11:225-233.<br />

55. Motohashi N, Kuroda T. A 3D computer-aided design system<br />

applied to diagnosis and treatment plann<strong>in</strong>g <strong>in</strong> orthodontics and<br />

orthognathic surgery. Eur J Orthod 1999;21:263-274.<br />

56. Ryden H, Bjelkhagen H, Soder PO. <strong>The</strong> use <strong>of</strong> <strong>laser</strong> beams for<br />

measur<strong>in</strong>g tooth mobility and tooth movements. J Periodontol<br />

1975;46:421-425.<br />

57. Walsh LJ. Burgeon<strong>in</strong>g technology: future directions <strong>in</strong> oral<br />

health. In: Dental Perspectives. An overview <strong>of</strong> cl<strong>in</strong>ical issues<br />

fac<strong>in</strong>g community <strong>dentistry</strong>. <strong>The</strong> Rowland Company: Issue 2,<br />

1998;6-8.<br />

58. Stock K, Hibst R, Keller U. Comparison <strong>of</strong> Er:YAG and<br />

Er:YSGG <strong>laser</strong> ablation <strong>of</strong> dental hard tissues. SPIE<br />

2000;3192:88-95.<br />

59. Weber MJ. Handbook <strong>of</strong> optical materials. Boca Taon, Florida:<br />

CRC Press, 2002;375-377.<br />

60. Belikov AV, Er<strong>of</strong>eev AV, Shumil<strong>in</strong> VV, Tkachuk AM.<br />

Comparative study <strong>of</strong> the 3 micron <strong>laser</strong> action on different hard<br />

tissue samples us<strong>in</strong>g free runn<strong>in</strong>g pulsed Er-doped YAG, YSGG,<br />

YAP and YLF <strong>laser</strong>s. SPIE 1993;2080:60-67.<br />

61. Hibst R, Keller U. Experimental studies <strong>of</strong> the application <strong>of</strong> the<br />

Er:YAG <strong>laser</strong> on dental hard substances: I. Measurement <strong>of</strong> the<br />

ablation rate. Lasers Surg Med 1989;9:338-344.<br />

62. Hibst R, Keller U. Experimental studies <strong>of</strong> the application <strong>of</strong> the<br />

Er:YAG <strong>laser</strong> on dental hard substances: II. Light microscopic<br />

and SEM <strong>in</strong>vestigations. Lasers Surg Med 1989;9:345-351.<br />

63. Walsh JT, Flotte TJ, Deutsch TF. Er:YAG <strong>laser</strong> ablation <strong>of</strong> tissue:<br />

effect <strong>of</strong> pulse duration and tissue type on thermal damage.<br />

Lasers Surg Med 1989;9:314-326.<br />

64. Walsh JT, Deutsch TF. Er: YAG <strong>laser</strong> ablation <strong>of</strong> tissue:<br />

measurement <strong>of</strong> ablation rates. Lasers Surg Med 1989;9:327-<br />

337.<br />

65. Freiberg RJ, Cozean C. Pulse erbium <strong>laser</strong> ablation <strong>of</strong> hard dental<br />

tissue: the effects <strong>of</strong> atomised water spray vs water surface film.<br />

SPIE 2002;4610:74-84.<br />

66. Clark J, Symons AL, Diklic S, Walsh LJ. Effectiveness <strong>of</strong><br />

diagnos<strong>in</strong>g residual caries with various methods dur<strong>in</strong>g cavity<br />

preparation us<strong>in</strong>g conventional methods, chemo-mechanical<br />

caries removal, and Er:YAG <strong>laser</strong>. Aust Dent J 2001;46<br />

(Suppl):S20.<br />

67. Riziou I, Kimmel A. Atomized fluid particles for<br />

electromagnetically <strong>in</strong>duced cutt<strong>in</strong>g. US Patent 5,741,247. 1998.<br />

68. Altschuler GB, Belikov AV, S<strong>in</strong>elnik YA. A <strong>laser</strong>-abrasive method<br />

for the cutt<strong>in</strong>g <strong>of</strong> neamle and dent<strong>in</strong>e. Lasers Surg Med<br />

2001;28:435-444.<br />

69. Walsh LJ. S<strong>of</strong>t tissue management <strong>in</strong> periodontics us<strong>in</strong>g a carbon<br />

dioxide surgical <strong>laser</strong>. Periodontol 1992;13:13-19.<br />

70. Walsh LJ. <strong>The</strong> use <strong>of</strong> <strong>laser</strong>s <strong>in</strong> implantology: an overview. J Oral<br />

Implantol 1992;18:335-340.<br />

71. Walsh LJ. <strong>The</strong> cl<strong>in</strong>ical challenge <strong>of</strong> <strong>laser</strong> use <strong>in</strong> periodontics.<br />

Periodontol 1996;17:66-72.<br />

72. Walsh LJ. Dental <strong>laser</strong>s: Some basic pr<strong>in</strong>ciples. Postgrad Dent<br />

1994;4:26-29.<br />

73. Walsh LJ. Emerg<strong>in</strong>g <strong>applications</strong> for <strong>in</strong>frared <strong>laser</strong>s <strong>in</strong><br />

implantology. Periodontol 2002;23:8-15.<br />

74. Cernav<strong>in</strong> I. Laser <strong>dentistry</strong> – revolution <strong>of</strong> dental treatment <strong>in</strong> the<br />

new millennium. ADA News Bullet<strong>in</strong> 2002;304:8-9.<br />

75. Walsh LJ. Laser <strong>dentistry</strong>: 14 years <strong>of</strong> laboratory and cl<strong>in</strong>ical<br />

research at <strong>The</strong> University <strong>of</strong> Queensland. ADAQ News<br />

2002;477:12-13.<br />

Address for correspondence/repr<strong>in</strong>ts:<br />

Pr<strong>of</strong>essor Laurence J Walsh<br />

School <strong>of</strong> Dentistry<br />

<strong>The</strong> University <strong>of</strong> Queensland<br />

200 Turbot Street<br />

Brisbane, Queensland 4000<br />

Email: l.walsh@uq.edu.au<br />

Australian Dental Journal 2003;48:3. 155

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!