06.06.2013 Views

CHAPTER 5 Impedance Matching and Smith Chart

CHAPTER 5 Impedance Matching and Smith Chart

CHAPTER 5 Impedance Matching and Smith Chart

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

5-1<br />

<strong>CHAPTER</strong> 5<br />

<strong>Impedance</strong> <strong>Matching</strong> <strong>and</strong> <strong>Smith</strong> <strong>Chart</strong><br />

* Pozar MW (Ch 5), “<strong>Impedance</strong> <strong>Matching</strong> <strong>and</strong> Tuning”<br />

* Pozar RF (Ch 2), “Itransmission Lines & Microwave Networks”<br />

*Ludwig, (Ch 3, Ch 8), “<strong>Matching</strong> <strong>and</strong> Biasing Networks”<br />

*Rogers, (Ch 4), “Radio Frequency Integrated Circuit Design”<br />

<strong>Matching</strong> with Lumped Elements<br />

- L Network<br />

- T & Networks<br />

- Lumped Elements for MIC : Chip R, L, C.<br />

Microstrp Single-Stub <strong>and</strong> Double-Stub Tuning<br />

Quarter-Wave Transformer<br />

* The Bode-Fano Criteria<br />

Appendix <strong>Smith</strong> <strong>Chart</strong><br />

Transmitter<br />

2011-12 H.-R. Chuang EE NCKU<br />

C<br />

ZT Z A<br />

L<br />

Z<br />

M


RF<br />

signal X<br />

RF<br />

signal X<br />

RF<br />

signal X<br />

5-2<br />

<strong>Impedance</strong> matching (or tuning) is important for the following reasons :<br />

incident<br />

(or input)<br />

reflection<br />

<br />

in<br />

Z0<br />

Zin<br />

Reflection<br />

<strong>Matching</strong><br />

Network<br />

coefficient<br />

Return<br />

( or S11) ( Zin<br />

Z0)<br />

/( Zin<br />

Z0)<br />

Loss) :<br />

2011-12 H.-R. Chuang EE NCKU<br />

(or<br />

Load<br />

minimum power loss in the feed line & maximum power delivery<br />

linearizing the frequency response of the circuit<br />

improving the S/N ratio of the system for sensitive receiver components (lownoise<br />

amplifier, etc.)<br />

reducing amplitude & phase errors in a power distribution network (such as<br />

antenna array-feed network)<br />

* Factors in the selection of matching networks<br />

- complexity -b<strong>and</strong>width requirement (such as broadb<strong>and</strong> design)<br />

- adjustability - implementation (transmission line, chip R/L/C elements ..)<br />

<br />

/4 microstrip RF Choke<br />

l<br />

Z0<br />

0.5 0.25<br />

Short-<br />

Cirucited<br />

(S.C.)<br />

* At high freq.,<br />

capacitance is like<br />

4 Short-cirucited<br />

2<br />

X sc / Z0<br />

-2<br />

-4<br />

ZL<br />

RF Choke<br />

扼流圈


5-3<br />

<strong>Matching</strong> Network Types: L-/T-/-section Networks<br />

L-section Networks (Two-component ): Lumped elements: L/C<br />

C<br />

Z S L Z L<br />

L2<br />

(a)<br />

L<br />

Z S<br />

1 Z L<br />

(e)<br />

Z S L Z L<br />

(b)<br />

L1<br />

Z S L Z<br />

2 L<br />

( f )<br />

C<br />

Z S C1 Z Z<br />

L S<br />

2 Z L<br />

5. Harmonic filtering can be done with a<br />

lowpass matching network (series L,<br />

parallel C ). This may be important, for<br />

example, for power amplifiers (PA).<br />

2011-12 H.-R. Chuang EE NCKU<br />

C2<br />

L<br />

(c)<br />

Z S<br />

Z L<br />

(g)<br />

C<br />

(d )<br />

C1<br />

C<br />

L<br />

Z S<br />

Z L<br />

(h)<br />

In any particular region on the <strong>Smith</strong> chart,<br />

several matching circuits will work <strong>and</strong> others<br />

will not.<br />

The figure shows what matching networks will<br />

work in which regions.<br />

How does one choose?<br />

There are a number of popular reasons for<br />

choosing one over another.<br />

1. Sometimes matching components can be<br />

used as dc blocks (capacitors) or to provide<br />

bias currents (inductors).<br />

2. Some circuits may result in more reasonable<br />

component values.<br />

3. Personal preference. Sometimes when all<br />

paths look equal, you just have to shoot<br />

from the hip <strong>and</strong> pick one.<br />

4. Stability. Since transistor gain is higher at<br />

lower frequencies, there may be a lowfrequency<br />

stability problem. In such a case,<br />

sometimes a highpass network (series<br />

capacitor, parallel inductor) at the input<br />

may be more stable.<br />

C


L-section Network<br />

(1) complex ZL to real Z0 matching<br />

Z0<br />

jX<br />

admittance<br />

(a)<br />

jB<br />

5-4<br />

Z L<br />

Z0<br />

jB<br />

jX<br />

admittance<br />

(b)<br />

How to determine jX & jB ? Let zL = ZL / Zo = (RL + jXL) / Zo = r + jx<br />

1. Analytic Solutions or 2. <strong>Smith</strong> <strong>Chart</strong> Solution<br />

(1) if RL Z0 ( z 1)<br />

[zL is inside the (1 + jx) circle ] => choose (a) why?<br />

1<br />

for impedance matching (to Z0) => jX <br />

Z0<br />

jB 1( RL jX L)<br />

<br />

2 2<br />

B(<br />

XRL XLZ ) R Z<br />

X<br />

0 L 0 L RL<br />

Z0<br />

RL<br />

X L Z0RL<br />

B <br />

<br />

=> <br />

2 2<br />

X(<br />

1 BXL) BZ0RL X<br />

RL<br />

X L<br />

L <br />

X<br />

( 1 B)<br />

( X LZ0<br />

RL<br />

) ( Z0<br />

B RL<br />

)<br />

(2) if RL Z0 ( z 1)<br />

[zL is outside the (1 + jx) circle ] => choose (b) why?<br />

1 1<br />

for impedance matching (to Z0) => jB <br />

<br />

RL j( X XL) Z0<br />

BZ0(<br />

X X L) Z0 RL<br />

<br />

X RL(<br />

Z0<br />

RL<br />

) X L<br />

<br />

=> <br />

(<br />

X XL) BZ0RL B ( Z R ) R Z<br />

r x<br />

r < 1<br />

r > 1<br />

0<br />

L<br />

L<br />

(1+jx) circle<br />

2011-12 H.-R. Chuang EE NCKU<br />

zL<br />

Z L / Zo<br />

r jx<br />

L<br />

( Z L Zo<br />

) /( Z L Zo<br />

) |<br />

L<br />

| <br />

0<br />

Z L


5-5<br />

EX (Pozar MW EX 5.1) (Pozar RF EX 2.5)<br />

Z0<br />

100<br />

jX<br />

jB<br />

2011-12 H.-R. Chuang EE NCKU<br />

Z L<br />

Z L RL<br />

jX L<br />

200 j100<br />

Since RL = 200 > Z0 = 100 (zL is inside the (1 + jx) circle)<br />

We choose (a) The solutions are<br />

RL 200 XL 100 Zo 100<br />

B1<br />

X1<br />

B2<br />

X2<br />

XL<br />

1<br />

B1<br />

XL<br />

1<br />

B2<br />

RL<br />

Zo<br />

RL 2 XL 2 <br />

ZoRL RL 2 XL 2<br />

Zo<br />

XL RL<br />

Zo<br />

B1RL RL<br />

Zo<br />

RL 2 XL 2 <br />

ZoRL RL 2 XL 2<br />

Zo<br />

XL RL<br />

Zo<br />

B2RL At f = 500 MHz<br />

Z0<br />

100<br />

Z0<br />

100<br />

38.8nH<br />

0.92pF<br />

Solution 1 (low pass)<br />

2.61pF<br />

46.1nH<br />

Solution 2 (high pass)<br />

Z L<br />

B1 2.899 10 3<br />

<br />

X1 122.474<br />

B2 6.899 10 3<br />

<br />

<br />

X2 122.474<br />

200 j100<br />

Z L<br />

200 j100<br />

0.<br />

33 ( &<br />

BW 0.<br />

3GHz<br />

<br />

2<br />

(high pass)<br />

<br />

<br />

0.<br />

1)<br />

Solution (1) b<strong>and</strong>width<br />

BW<br />

SWR 2<br />

0.<br />

3/<br />

0.<br />

5<br />

(low pass)<br />

60%<br />

RL <br />

9.<br />

5<br />

dB


Z0<br />

100<br />

5-6<br />

<strong>Smith</strong> <strong>Chart</strong> Representation of the <strong>Matching</strong> Process<br />

Z0<br />

100<br />

38.8nH<br />

0.92pF<br />

38.8nH<br />

0.92pF<br />

Solution 1 (low pass)<br />

Z L<br />

38.8nH<br />

200 j100<br />

Z L<br />

200 j100<br />

Z L<br />

200 j100<br />

z<br />

<br />

L<br />

L<br />

Z<br />

0.92pF<br />

2011-12 H.-R. Chuang EE NCKU<br />

L<br />

( Z<br />

/ Z<br />

L<br />

o<br />

Z<br />

o<br />

0.<br />

45<br />

<br />

2 <br />

) /( Z<br />

26.<br />

6<br />

j<br />

L<br />

o<br />

Z<br />

o<br />

)


5-7<br />

(2) Complex to complex conjugate matching (Ludwig, RF Circuit Design P401)<br />

(Conjugate <strong>Matching</strong> for maximum power transfer )<br />

ZT<br />

150<br />

j75<br />

<br />

<br />

Z<br />

A 75 j15<br />

<br />

f 2GHz<br />

*<br />

Z Z Z<br />

T<br />

M Z A A<br />

complex ZA to complex ZT<br />

conjugate matching<br />

RT<br />

( 150)<br />

RA(<br />

75)<br />

choose " "<br />

argument ( )<br />

of<br />

& vice versa<br />

2011-12 H.-R. Chuang EE NCKU<br />

Z0<br />

Transmitter<br />

jB<br />

jX<br />

admittance<br />

complex ZL to real Z0 matching<br />

( )<br />

0<br />

ZL


Transmitter<br />

ZT<br />

150 j75<br />

<br />

<br />

Z<br />

A 75 j15<br />

<br />

f 2GHz<br />

<br />

Let<br />

*<br />

Z Z Z<br />

T<br />

M Z A A<br />

complex ZT to complex ZA<br />

conjugate matching<br />

Z<br />

0<br />

75<br />

<br />

z<br />

<br />

z<br />

T<br />

A<br />

Z<br />

Z<br />

T<br />

A<br />

/ Z<br />

/ Z<br />

0<br />

0<br />

5-8<br />

<br />

<br />

( 150<br />

( 75<br />

j75)<br />

/ 75 2 j1<br />

j15)<br />

/ 75 1<br />

j0.<br />

2<br />

2011-12 H.-R. Chuang EE NCKU


A<br />

(3) General L-section matching network (complex to complex)<br />

Zs<br />

50 j25<br />

<br />

<br />

ZL<br />

25 j50<br />

<br />

f 2GHz<br />

z<br />

<br />

z<br />

<br />

z<br />

s<br />

L<br />

L<br />

Transmitter<br />

1<br />

j0.<br />

5<br />

0.<br />

5 j1<br />

* 0.<br />

5 j1<br />

zL<br />

*<br />

zL<br />

5-9<br />

complex Zs to complex ZL : conjugate matching<br />

s<br />

2011-12 H.-R. Chuang EE NCKU<br />

Zs<br />

A,<br />

B,<br />

C,<br />

D (four paths)<br />

z z<br />

B D<br />

*<br />

Zs ZL<br />

ZL<br />

C<br />

* L


5-10<br />

Ex: L-section Lumped-Elements & Microstrip <strong>Matching</strong> Networks<br />

Conjugately Matched Amplifier Design (Pozar MW EX11-3 or RF EX6-3 )<br />

Design an amplifier for maximum gain at 4.0 GHz using single-stub matching<br />

sections. Calculate <strong>and</strong> plot the input return loss & the gain from 3 to 5 GHz. The<br />

GaAs FET has the following S parameters (Z0=50 ):<br />

f (GHz) S11 S21 S12 S22<br />

30 . 080 . 89 2.86 99 003 . 56 076 . 41 4. 0 0. 72116 2.60 76 0. 0357 0. 7354 5. 0 0. 66142 2.39 54 0. 0362 0. 72 68<br />

FET S-parameters Touchstone file: Poz_11-3.s2p<br />

! poz_11-3.s2p : Pozar Ex. 11-3 transistor S parameters<br />

! Typical s-parameters at minimum attenuation setting, Ta=25°C<br />

# ghz s ma r 50<br />

3.00 0.800 -89.0 2.860 99.0 0.030 56.0 0.760 -41.0<br />

4.00 0.720 -116.0 2.600 76.0 0.030 57.0 0.730 -54.0<br />

5.00 0.660 -142.0 2.390 54.0 0.030 62.0 0.720 -68.0<br />

It cab be derived that (see chapter of RF Amplifier Design)<br />

<br />

<br />

<br />

s<br />

L<br />

0.<br />

872123<br />

0.<br />

87661<br />

&<br />

<br />

<br />

<br />

<br />

0.<br />

87<br />

61<br />

2011-12 H.-R. Chuang EE NCKU<br />

in<br />

out<br />

<br />

*<br />

S<br />

*<br />

L<br />

<br />

0.<br />

87<br />

123<br />

o<br />

o


Z<br />

<br />

Z<br />

Microstrip <strong>Matching</strong> Networks<br />

(f = 4 GHz)<br />

<br />

<br />

<br />

s<br />

L<br />

50<br />

0.<br />

872123<br />

0.<br />

87661<br />

in<br />

L<br />

4.<br />

43 j<br />

12.<br />

68 j<br />

26.<br />

97<br />

83.<br />

5<br />

&<br />

<br />

<br />

<br />

<br />

<br />

( Z<br />

0<br />

out<br />

5-11<br />

0120 . <br />

0206 . <br />

50<br />

50<br />

0206 . <br />

0206 . <br />

s in <br />

<br />

<br />

*<br />

S<br />

*<br />

L<br />

50)<br />

0.<br />

87<br />

123<br />

0.<br />

87<br />

61<br />

Lumped Elements <strong>Matching</strong> Networks<br />

50<br />

in<br />

3 1.63nH 1<br />

2.54pF<br />

0<br />

s in <br />

out<br />

<br />

50<br />

2011-12 H.-R. Chuang EE NCKU<br />

o<br />

o<br />

L<br />

2 4.19nH 4<br />

0<br />

<br />

out<br />

1.32pF<br />

L<br />

0<br />

50


* By <strong>Smith</strong>-<strong>Chart</strong> tool<br />

DP-Nr. 1(4.4 - j27.0)Ohm Q = 6.1 4.000 GHz<br />

DP-Nr. 2(4.4 + j14.1)Ohm Q = 3.2 4.000 GHz<br />

DP-Nr. 3(49.4 - j0.2)Ohm Q = 0.0 4.000 GHz<br />

DP-Nr. 1(4.4 - j27.0)Ohm Q = 6.1 4.000 GHz<br />

DP-Nr. 2(3.6 + j13.0)Ohm Q = 3.6 4.000 GHz<br />

DP-Nr. 3(50.4 + j1.4)Ohm Q = 0.0 4.000 GHz<br />

5-12<br />

rtransmission-line matching network<br />

(open-circuited stub)<br />

2011-12 H.-R. Chuang EE NCKU


DP-Nr. 1(4.4 - j27.0)Ohm Q = 6.1 4.000 GHz<br />

DP-Nr. 2(3.6 - j12.7)Ohm Q = 3.5 4.000 GHz<br />

DP-Nr. 3(48.0 - j0.0)Ohm Q = 0.0 4.000 GHz<br />

5-13<br />

Transmission-line matching network<br />

(shorted-circuited stub)<br />

2011-12 H.-R. Chuang EE NCKU


5-14<br />

Forbidden Regions for L-type <strong>Matching</strong> Networks with Z 50<br />

=> The shaded areas denote values of load impedance that cannot be matched to 50 Ω<br />

2011-12 H.-R. Chuang EE NCKU<br />

Z s<br />

0


R<br />

z<br />

L<br />

L<br />

( for Z<br />

f<br />

0<br />

5-15<br />

Design Example: Forbidden Regions for L-type <strong>Matching</strong> Networks<br />

<br />

80 <br />

<br />

1<br />

GHz<br />

Since z<br />

=> choose<br />

forbidden regions of<br />

L - network<br />

(with Z<br />

<br />

1.<br />

6<br />

0<br />

L<br />

S<br />

<br />

X<br />

j1.<br />

2<br />

= 1.6<br />

(c) or<br />

= 50)<br />

L<br />

50 )<br />

> 1<br />

60<br />

<br />

(d) from<br />

2011-12 H.-R. Chuang EE NCKU


5-16<br />

Quality factor & B<strong>and</strong>width (BW) (there are much more to be discussed!)<br />

Zs<br />

Rs<br />

jX s<br />

or<br />

YP<br />

GP<br />

jBP<br />

Qn<br />

fo<br />

f<br />

QL BW <br />

2 BW<br />

Q<br />

* T<strong>Matching</strong> Network (discussed next)<br />

o<br />

L<br />

<br />

| X s |<br />

Qn<br />

or<br />

Rs<br />

| BP<br />

|<br />

GP<br />

2011-12 H.-R. Chuang EE NCKU


5-17<br />

* T & <strong>Matching</strong> Network: The.addition of 3rd element into the two-element (L) matching<br />

network introduces an additional degree of freedom in the çi!çuit, <strong>and</strong> allows us to control<br />

the value of QL (to be discussed)by choosing an appropriate intermediate impedance. => wider<br />

(matching) b<strong>and</strong>width<br />

T <strong>Matching</strong> Network<br />

<strong>Matching</strong> Network<br />

<br />

Zin<br />

10<br />

j20<br />

<br />

<br />

Z<br />

L 60 j30<br />

<br />

f 1<br />

GHz<br />

Zin<br />

10<br />

j20<br />

<br />

<br />

ZL<br />

60 j30<br />

<br />

f 1<br />

GHz<br />

2011-12 H.-R. Chuang EE NCKU


5-18<br />

Comparison between L-, T - & - network<br />

Design a match circuit at the center frequency of 100 MHz<br />

* Prof. C.-F. Chang course note (NCCU)<br />

L<br />

<br />

T<br />

4-element ladder<br />

51<br />

0.1 H<br />

10 pF<br />

2011-12 H.-R. Chuang EE NCKU<br />

510


5-19<br />

Microstrip Line <strong>Matching</strong> Networks (Ludwig P431)<br />

<br />

In the mid-GHz <strong>and</strong> higher frequency range, the wavelength becomes<br />

sufficiently small <strong>and</strong> the distributed components are widely used. Also, the<br />

discrete R/L/C lumped elements will have more noticeable parasitic effects (see<br />

chapter 2) <strong>and</strong> let to complicating the circuit design process<br />

Distributed componenets (such as transmission line segments) can be used<br />

to mix with lumped elements<br />

From Discrete Components to Microstrip Lines<br />

<br />

Avoid using inductors (if possible) due to higher resistive loss (& higher price)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

In general, one shunt capacitor & two series transmission lines is<br />

sufficiently to transform any load to any input impedance.<br />

EX: transform load ZL to an input impedance Z in<br />

Z<br />

L 30 j10<br />

<br />

<br />

Zin<br />

60 j80<br />

<br />

f 1.<br />

5 GHz<br />

zL<br />

0.<br />

6 <br />

zin<br />

1.<br />

2 <br />

Identify input & load SWR circles<br />

j0.<br />

2 <br />

Choose A (yA= 1-j0.6) & transform zL to<br />

A by a series TL (l1)<br />

=>Transform A to B (on the input SWR circle)<br />

by a parallel C1<br />

=> Transform B to zin by a series TL (l2)<br />

zL + series-TL (l1)<br />

=> A + shunt C1<br />

=> B + series-TL (l2)<br />

=> zin<br />

j1.<br />

6 <br />

2011-12 H.-R. Chuang EE NCKU


z<br />

<br />

y<br />

<br />

z<br />

Single-Stub <strong>Matching</strong> Networks<br />

Z<br />

L 60 j45<br />

<br />

<br />

Zin<br />

75 j90<br />

<br />

Z 75 <br />

0<br />

L<br />

L<br />

in<br />

Z<br />

L<br />

/ Z<br />

0<br />

0<br />

<br />

0.<br />

8<br />

<br />

j0.<br />

6<br />

1/<br />

zL<br />

0.<br />

8 j0.<br />

6<br />

Z / Z 1<br />

j1.<br />

2 <br />

in<br />

5-20<br />

g = 0.8<br />

conductance circle<br />

zL to A (yA= 0.8 + j1.5) by adding a shunt open-circuited (O.C.)TL lSA<br />

4 adjustable parameters:<br />

l , Z l , Z )<br />

( s 0s, L 0L,<br />

Input SWR circle associated with zin<br />

has two intersected points (A & B) with<br />

g = 0.8 conductance circle<br />

yA= 0.8 + j1.05 yB= 0.8 - j1.05<br />

The corresponding susceptance for the stub : jbSA= yA- yL = (0.8 + j1.05)-( 0.8 + j0.6)=0.45<br />

O.C. point (g=0) to the point of ibSA = 0.45 is lSA = 0.067 <br />

2011-12 H.-R. Chuang EE NCKU<br />

A to zin is lLA = 0.266 <br />

g = 0<br />

(O.C.)<br />

ibSA<br />

= 0.45


2011-12 H.-R. Chuang EE NCKU<br />

5-21<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

s<br />

sB<br />

s<br />

sB<br />

sB<br />

sB<br />

s<br />

sB<br />

l<br />

l<br />

l<br />

l<br />

l<br />

l<br />

l<br />

l<br />

2<br />

tan<br />

2<br />

1<br />

tan<br />

2<br />

2<br />

tan<br />

2<br />

tan<br />

2<br />

//<br />

)<br />

1<br />

1<br />

:<br />

stub<br />

circuit<br />

-<br />

short<br />

:<br />

stub<br />

circuit<br />

-<br />

open<br />

(<br />

design<br />

stub<br />

Balanced


5-22<br />

Double-Stub <strong>Matching</strong> Networks<br />

Zin<br />

Z0<br />

50 <br />

<br />

Z<br />

L 50 j50<br />

<br />

l / 8 l l 3<br />

/ 8<br />

0.<br />

074<br />

0.<br />

051<br />

2011-12 H.-R. Chuang EE NCKU<br />

l<br />

1<br />

s1<br />

2<br />

<br />

l<br />

3<br />

s1


5-23<br />

Quarter-Wave Transformer 四分之一波長(傳輸線)阻抗轉換匹配<br />

( only useful for pure-resistance matching )<br />

transmission<br />

line 1<br />

V1 ( z)<br />

<br />

<br />

V1 ( z)<br />

0 X<br />

( Z 0)<br />

( Z 0)<br />

Z<br />

in<br />

quarter-wavelength<br />

transmission line 2<br />

l / 4<br />

ZL<br />

jZ0<br />

tanl<br />

( Z0<br />

) Z0<br />

Z<br />

jZ tanl<br />

l<br />

<br />

<br />

&<br />

2<br />

tan<br />

2011-12 H.-R. Chuang EE NCKU<br />

Z<br />

in<br />

Z<br />

0<br />

Z<br />

Z<br />

2<br />

0<br />

0<br />

0<br />

l <br />

<br />

4<br />

ZL<br />

jZ0<br />

( )<br />

Z0<br />

Z0<br />

Z0<br />

Z<br />

jZ ( )<br />

Z<br />

Ex: A microstrip quarter-wave trasformer that matches a 50 miscrostrip line to<br />

a 20 load at f = 4 GHz (substrate: r=2.5, thickness h = 0.75 mm)<br />

2.13[mm] 4.03[mm]<br />

50[ ]<br />

31. 62[<br />

]<br />

<br />

12.73[mm]<br />

L<br />

20[ ]<br />

* Double Quarter-Wave Transformer for wider (matching b<strong>and</strong>width)<br />

ZL<br />

L<br />

L<br />

L


5-24<br />

* (<strong>Matching</strong>) B<strong>and</strong>width (f ) of a Quarter-Wave Transformer<br />

Pozar, Mcrowave & RF Design of Wireless Systems<br />

Approximate behavior of the reflection coefficient magnitude of a quarter-wave<br />

transformer near the design frequency<br />

It can be proved that<br />

2<br />

Z Z<br />

<br />

Z<br />

f<br />

2(<br />

f <br />

( ) 0 f<br />

BW<br />

f<br />

f<br />

0<br />

1 0 L<br />

1<br />

sec<br />

2 <br />

m ZL<br />

0<br />

0<br />

m<br />

) 2 f<br />

2 <br />

f<br />

m<br />

0<br />

<br />

<br />

<br />

2<br />

4<br />

2 <br />

<br />

Increased BW for<br />

Smaller load mismatch (ZL/Z0)<br />

4<br />

2 cos<br />

<br />

2011-12 H.-R. Chuang EE NCKU<br />

m<br />

1<br />

<br />

<br />

<br />

<br />

1<br />

2<br />

Z0Z<br />

<br />

m<br />

2<br />

m ZL<br />

Z<br />

L<br />

0


5-25<br />

2011-12 H.-R. Chuang EE NCKU

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!