06.06.2013 Views

CHAPTER 5 Impedance Matching and Smith Chart

CHAPTER 5 Impedance Matching and Smith Chart

CHAPTER 5 Impedance Matching and Smith Chart

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

5-1<br />

<strong>CHAPTER</strong> 5<br />

<strong>Impedance</strong> <strong>Matching</strong> <strong>and</strong> <strong>Smith</strong> <strong>Chart</strong><br />

* Pozar MW (Ch 5), “<strong>Impedance</strong> <strong>Matching</strong> <strong>and</strong> Tuning”<br />

* Pozar RF (Ch 2), “Itransmission Lines & Microwave Networks”<br />

*Ludwig, (Ch 3, Ch 8), “<strong>Matching</strong> <strong>and</strong> Biasing Networks”<br />

*Rogers, (Ch 4), “Radio Frequency Integrated Circuit Design”<br />

<strong>Matching</strong> with Lumped Elements<br />

- L Network<br />

- T & Networks<br />

- Lumped Elements for MIC : Chip R, L, C.<br />

Microstrp Single-Stub <strong>and</strong> Double-Stub Tuning<br />

Quarter-Wave Transformer<br />

* The Bode-Fano Criteria<br />

Appendix <strong>Smith</strong> <strong>Chart</strong><br />

Transmitter<br />

2011-12 H.-R. Chuang EE NCKU<br />

C<br />

ZT Z A<br />

L<br />

Z<br />

M


RF<br />

signal X<br />

RF<br />

signal X<br />

RF<br />

signal X<br />

5-2<br />

<strong>Impedance</strong> matching (or tuning) is important for the following reasons :<br />

incident<br />

(or input)<br />

reflection<br />

<br />

in<br />

Z0<br />

Zin<br />

Reflection<br />

<strong>Matching</strong><br />

Network<br />

coefficient<br />

Return<br />

( or S11) ( Zin<br />

Z0)<br />

/( Zin<br />

Z0)<br />

Loss) :<br />

2011-12 H.-R. Chuang EE NCKU<br />

(or<br />

Load<br />

minimum power loss in the feed line & maximum power delivery<br />

linearizing the frequency response of the circuit<br />

improving the S/N ratio of the system for sensitive receiver components (lownoise<br />

amplifier, etc.)<br />

reducing amplitude & phase errors in a power distribution network (such as<br />

antenna array-feed network)<br />

* Factors in the selection of matching networks<br />

- complexity -b<strong>and</strong>width requirement (such as broadb<strong>and</strong> design)<br />

- adjustability - implementation (transmission line, chip R/L/C elements ..)<br />

<br />

/4 microstrip RF Choke<br />

l<br />

Z0<br />

0.5 0.25<br />

Short-<br />

Cirucited<br />

(S.C.)<br />

* At high freq.,<br />

capacitance is like<br />

4 Short-cirucited<br />

2<br />

X sc / Z0<br />

-2<br />

-4<br />

ZL<br />

RF Choke<br />

扼流圈


5-3<br />

<strong>Matching</strong> Network Types: L-/T-/-section Networks<br />

L-section Networks (Two-component ): Lumped elements: L/C<br />

C<br />

Z S L Z L<br />

L2<br />

(a)<br />

L<br />

Z S<br />

1 Z L<br />

(e)<br />

Z S L Z L<br />

(b)<br />

L1<br />

Z S L Z<br />

2 L<br />

( f )<br />

C<br />

Z S C1 Z Z<br />

L S<br />

2 Z L<br />

5. Harmonic filtering can be done with a<br />

lowpass matching network (series L,<br />

parallel C ). This may be important, for<br />

example, for power amplifiers (PA).<br />

2011-12 H.-R. Chuang EE NCKU<br />

C2<br />

L<br />

(c)<br />

Z S<br />

Z L<br />

(g)<br />

C<br />

(d )<br />

C1<br />

C<br />

L<br />

Z S<br />

Z L<br />

(h)<br />

In any particular region on the <strong>Smith</strong> chart,<br />

several matching circuits will work <strong>and</strong> others<br />

will not.<br />

The figure shows what matching networks will<br />

work in which regions.<br />

How does one choose?<br />

There are a number of popular reasons for<br />

choosing one over another.<br />

1. Sometimes matching components can be<br />

used as dc blocks (capacitors) or to provide<br />

bias currents (inductors).<br />

2. Some circuits may result in more reasonable<br />

component values.<br />

3. Personal preference. Sometimes when all<br />

paths look equal, you just have to shoot<br />

from the hip <strong>and</strong> pick one.<br />

4. Stability. Since transistor gain is higher at<br />

lower frequencies, there may be a lowfrequency<br />

stability problem. In such a case,<br />

sometimes a highpass network (series<br />

capacitor, parallel inductor) at the input<br />

may be more stable.<br />

C


L-section Network<br />

(1) complex ZL to real Z0 matching<br />

Z0<br />

jX<br />

admittance<br />

(a)<br />

jB<br />

5-4<br />

Z L<br />

Z0<br />

jB<br />

jX<br />

admittance<br />

(b)<br />

How to determine jX & jB ? Let zL = ZL / Zo = (RL + jXL) / Zo = r + jx<br />

1. Analytic Solutions or 2. <strong>Smith</strong> <strong>Chart</strong> Solution<br />

(1) if RL Z0 ( z 1)<br />

[zL is inside the (1 + jx) circle ] => choose (a) why?<br />

1<br />

for impedance matching (to Z0) => jX <br />

Z0<br />

jB 1( RL jX L)<br />

<br />

2 2<br />

B(<br />

XRL XLZ ) R Z<br />

X<br />

0 L 0 L RL<br />

Z0<br />

RL<br />

X L Z0RL<br />

B <br />

<br />

=> <br />

2 2<br />

X(<br />

1 BXL) BZ0RL X<br />

RL<br />

X L<br />

L <br />

X<br />

( 1 B)<br />

( X LZ0<br />

RL<br />

) ( Z0<br />

B RL<br />

)<br />

(2) if RL Z0 ( z 1)<br />

[zL is outside the (1 + jx) circle ] => choose (b) why?<br />

1 1<br />

for impedance matching (to Z0) => jB <br />

<br />

RL j( X XL) Z0<br />

BZ0(<br />

X X L) Z0 RL<br />

<br />

X RL(<br />

Z0<br />

RL<br />

) X L<br />

<br />

=> <br />

(<br />

X XL) BZ0RL B ( Z R ) R Z<br />

r x<br />

r < 1<br />

r > 1<br />

0<br />

L<br />

L<br />

(1+jx) circle<br />

2011-12 H.-R. Chuang EE NCKU<br />

zL<br />

Z L / Zo<br />

r jx<br />

L<br />

( Z L Zo<br />

) /( Z L Zo<br />

) |<br />

L<br />

| <br />

0<br />

Z L


5-5<br />

EX (Pozar MW EX 5.1) (Pozar RF EX 2.5)<br />

Z0<br />

100<br />

jX<br />

jB<br />

2011-12 H.-R. Chuang EE NCKU<br />

Z L<br />

Z L RL<br />

jX L<br />

200 j100<br />

Since RL = 200 > Z0 = 100 (zL is inside the (1 + jx) circle)<br />

We choose (a) The solutions are<br />

RL 200 XL 100 Zo 100<br />

B1<br />

X1<br />

B2<br />

X2<br />

XL<br />

1<br />

B1<br />

XL<br />

1<br />

B2<br />

RL<br />

Zo<br />

RL 2 XL 2 <br />

ZoRL RL 2 XL 2<br />

Zo<br />

XL RL<br />

Zo<br />

B1RL RL<br />

Zo<br />

RL 2 XL 2 <br />

ZoRL RL 2 XL 2<br />

Zo<br />

XL RL<br />

Zo<br />

B2RL At f = 500 MHz<br />

Z0<br />

100<br />

Z0<br />

100<br />

38.8nH<br />

0.92pF<br />

Solution 1 (low pass)<br />

2.61pF<br />

46.1nH<br />

Solution 2 (high pass)<br />

Z L<br />

B1 2.899 10 3<br />

<br />

X1 122.474<br />

B2 6.899 10 3<br />

<br />

<br />

X2 122.474<br />

200 j100<br />

Z L<br />

200 j100<br />

0.<br />

33 ( &<br />

BW 0.<br />

3GHz<br />

<br />

2<br />

(high pass)<br />

<br />

<br />

0.<br />

1)<br />

Solution (1) b<strong>and</strong>width<br />

BW<br />

SWR 2<br />

0.<br />

3/<br />

0.<br />

5<br />

(low pass)<br />

60%<br />

RL <br />

9.<br />

5<br />

dB


Z0<br />

100<br />

5-6<br />

<strong>Smith</strong> <strong>Chart</strong> Representation of the <strong>Matching</strong> Process<br />

Z0<br />

100<br />

38.8nH<br />

0.92pF<br />

38.8nH<br />

0.92pF<br />

Solution 1 (low pass)<br />

Z L<br />

38.8nH<br />

200 j100<br />

Z L<br />

200 j100<br />

Z L<br />

200 j100<br />

z<br />

<br />

L<br />

L<br />

Z<br />

0.92pF<br />

2011-12 H.-R. Chuang EE NCKU<br />

L<br />

( Z<br />

/ Z<br />

L<br />

o<br />

Z<br />

o<br />

0.<br />

45<br />

<br />

2 <br />

) /( Z<br />

26.<br />

6<br />

j<br />

L<br />

o<br />

Z<br />

o<br />

)


5-7<br />

(2) Complex to complex conjugate matching (Ludwig, RF Circuit Design P401)<br />

(Conjugate <strong>Matching</strong> for maximum power transfer )<br />

ZT<br />

150<br />

j75<br />

<br />

<br />

Z<br />

A 75 j15<br />

<br />

f 2GHz<br />

*<br />

Z Z Z<br />

T<br />

M Z A A<br />

complex ZA to complex ZT<br />

conjugate matching<br />

RT<br />

( 150)<br />

RA(<br />

75)<br />

choose " "<br />

argument ( )<br />

of<br />

& vice versa<br />

2011-12 H.-R. Chuang EE NCKU<br />

Z0<br />

Transmitter<br />

jB<br />

jX<br />

admittance<br />

complex ZL to real Z0 matching<br />

( )<br />

0<br />

ZL


Transmitter<br />

ZT<br />

150 j75<br />

<br />

<br />

Z<br />

A 75 j15<br />

<br />

f 2GHz<br />

<br />

Let<br />

*<br />

Z Z Z<br />

T<br />

M Z A A<br />

complex ZT to complex ZA<br />

conjugate matching<br />

Z<br />

0<br />

75<br />

<br />

z<br />

<br />

z<br />

T<br />

A<br />

Z<br />

Z<br />

T<br />

A<br />

/ Z<br />

/ Z<br />

0<br />

0<br />

5-8<br />

<br />

<br />

( 150<br />

( 75<br />

j75)<br />

/ 75 2 j1<br />

j15)<br />

/ 75 1<br />

j0.<br />

2<br />

2011-12 H.-R. Chuang EE NCKU


A<br />

(3) General L-section matching network (complex to complex)<br />

Zs<br />

50 j25<br />

<br />

<br />

ZL<br />

25 j50<br />

<br />

f 2GHz<br />

z<br />

<br />

z<br />

<br />

z<br />

s<br />

L<br />

L<br />

Transmitter<br />

1<br />

j0.<br />

5<br />

0.<br />

5 j1<br />

* 0.<br />

5 j1<br />

zL<br />

*<br />

zL<br />

5-9<br />

complex Zs to complex ZL : conjugate matching<br />

s<br />

2011-12 H.-R. Chuang EE NCKU<br />

Zs<br />

A,<br />

B,<br />

C,<br />

D (four paths)<br />

z z<br />

B D<br />

*<br />

Zs ZL<br />

ZL<br />

C<br />

* L


5-10<br />

Ex: L-section Lumped-Elements & Microstrip <strong>Matching</strong> Networks<br />

Conjugately Matched Amplifier Design (Pozar MW EX11-3 or RF EX6-3 )<br />

Design an amplifier for maximum gain at 4.0 GHz using single-stub matching<br />

sections. Calculate <strong>and</strong> plot the input return loss & the gain from 3 to 5 GHz. The<br />

GaAs FET has the following S parameters (Z0=50 ):<br />

f (GHz) S11 S21 S12 S22<br />

30 . 080 . 89 2.86 99 003 . 56 076 . 41 4. 0 0. 72116 2.60 76 0. 0357 0. 7354 5. 0 0. 66142 2.39 54 0. 0362 0. 72 68<br />

FET S-parameters Touchstone file: Poz_11-3.s2p<br />

! poz_11-3.s2p : Pozar Ex. 11-3 transistor S parameters<br />

! Typical s-parameters at minimum attenuation setting, Ta=25°C<br />

# ghz s ma r 50<br />

3.00 0.800 -89.0 2.860 99.0 0.030 56.0 0.760 -41.0<br />

4.00 0.720 -116.0 2.600 76.0 0.030 57.0 0.730 -54.0<br />

5.00 0.660 -142.0 2.390 54.0 0.030 62.0 0.720 -68.0<br />

It cab be derived that (see chapter of RF Amplifier Design)<br />

<br />

<br />

<br />

s<br />

L<br />

0.<br />

872123<br />

0.<br />

87661<br />

&<br />

<br />

<br />

<br />

<br />

0.<br />

87<br />

61<br />

2011-12 H.-R. Chuang EE NCKU<br />

in<br />

out<br />

<br />

*<br />

S<br />

*<br />

L<br />

<br />

0.<br />

87<br />

123<br />

o<br />

o


Z<br />

<br />

Z<br />

Microstrip <strong>Matching</strong> Networks<br />

(f = 4 GHz)<br />

<br />

<br />

<br />

s<br />

L<br />

50<br />

0.<br />

872123<br />

0.<br />

87661<br />

in<br />

L<br />

4.<br />

43 j<br />

12.<br />

68 j<br />

26.<br />

97<br />

83.<br />

5<br />

&<br />

<br />

<br />

<br />

<br />

<br />

( Z<br />

0<br />

out<br />

5-11<br />

0120 . <br />

0206 . <br />

50<br />

50<br />

0206 . <br />

0206 . <br />

s in <br />

<br />

<br />

*<br />

S<br />

*<br />

L<br />

50)<br />

0.<br />

87<br />

123<br />

0.<br />

87<br />

61<br />

Lumped Elements <strong>Matching</strong> Networks<br />

50<br />

in<br />

3 1.63nH 1<br />

2.54pF<br />

0<br />

s in <br />

out<br />

<br />

50<br />

2011-12 H.-R. Chuang EE NCKU<br />

o<br />

o<br />

L<br />

2 4.19nH 4<br />

0<br />

<br />

out<br />

1.32pF<br />

L<br />

0<br />

50


* By <strong>Smith</strong>-<strong>Chart</strong> tool<br />

DP-Nr. 1(4.4 - j27.0)Ohm Q = 6.1 4.000 GHz<br />

DP-Nr. 2(4.4 + j14.1)Ohm Q = 3.2 4.000 GHz<br />

DP-Nr. 3(49.4 - j0.2)Ohm Q = 0.0 4.000 GHz<br />

DP-Nr. 1(4.4 - j27.0)Ohm Q = 6.1 4.000 GHz<br />

DP-Nr. 2(3.6 + j13.0)Ohm Q = 3.6 4.000 GHz<br />

DP-Nr. 3(50.4 + j1.4)Ohm Q = 0.0 4.000 GHz<br />

5-12<br />

rtransmission-line matching network<br />

(open-circuited stub)<br />

2011-12 H.-R. Chuang EE NCKU


DP-Nr. 1(4.4 - j27.0)Ohm Q = 6.1 4.000 GHz<br />

DP-Nr. 2(3.6 - j12.7)Ohm Q = 3.5 4.000 GHz<br />

DP-Nr. 3(48.0 - j0.0)Ohm Q = 0.0 4.000 GHz<br />

5-13<br />

Transmission-line matching network<br />

(shorted-circuited stub)<br />

2011-12 H.-R. Chuang EE NCKU


5-14<br />

Forbidden Regions for L-type <strong>Matching</strong> Networks with Z 50<br />

=> The shaded areas denote values of load impedance that cannot be matched to 50 Ω<br />

2011-12 H.-R. Chuang EE NCKU<br />

Z s<br />

0


R<br />

z<br />

L<br />

L<br />

( for Z<br />

f<br />

0<br />

5-15<br />

Design Example: Forbidden Regions for L-type <strong>Matching</strong> Networks<br />

<br />

80 <br />

<br />

1<br />

GHz<br />

Since z<br />

=> choose<br />

forbidden regions of<br />

L - network<br />

(with Z<br />

<br />

1.<br />

6<br />

0<br />

L<br />

S<br />

<br />

X<br />

j1.<br />

2<br />

= 1.6<br />

(c) or<br />

= 50)<br />

L<br />

50 )<br />

> 1<br />

60<br />

<br />

(d) from<br />

2011-12 H.-R. Chuang EE NCKU


5-16<br />

Quality factor & B<strong>and</strong>width (BW) (there are much more to be discussed!)<br />

Zs<br />

Rs<br />

jX s<br />

or<br />

YP<br />

GP<br />

jBP<br />

Qn<br />

fo<br />

f<br />

QL BW <br />

2 BW<br />

Q<br />

* T<strong>Matching</strong> Network (discussed next)<br />

o<br />

L<br />

<br />

| X s |<br />

Qn<br />

or<br />

Rs<br />

| BP<br />

|<br />

GP<br />

2011-12 H.-R. Chuang EE NCKU


5-17<br />

* T & <strong>Matching</strong> Network: The.addition of 3rd element into the two-element (L) matching<br />

network introduces an additional degree of freedom in the çi!çuit, <strong>and</strong> allows us to control<br />

the value of QL (to be discussed)by choosing an appropriate intermediate impedance. => wider<br />

(matching) b<strong>and</strong>width<br />

T <strong>Matching</strong> Network<br />

<strong>Matching</strong> Network<br />

<br />

Zin<br />

10<br />

j20<br />

<br />

<br />

Z<br />

L 60 j30<br />

<br />

f 1<br />

GHz<br />

Zin<br />

10<br />

j20<br />

<br />

<br />

ZL<br />

60 j30<br />

<br />

f 1<br />

GHz<br />

2011-12 H.-R. Chuang EE NCKU


5-18<br />

Comparison between L-, T - & - network<br />

Design a match circuit at the center frequency of 100 MHz<br />

* Prof. C.-F. Chang course note (NCCU)<br />

L<br />

<br />

T<br />

4-element ladder<br />

51<br />

0.1 H<br />

10 pF<br />

2011-12 H.-R. Chuang EE NCKU<br />

510


5-19<br />

Microstrip Line <strong>Matching</strong> Networks (Ludwig P431)<br />

<br />

In the mid-GHz <strong>and</strong> higher frequency range, the wavelength becomes<br />

sufficiently small <strong>and</strong> the distributed components are widely used. Also, the<br />

discrete R/L/C lumped elements will have more noticeable parasitic effects (see<br />

chapter 2) <strong>and</strong> let to complicating the circuit design process<br />

Distributed componenets (such as transmission line segments) can be used<br />

to mix with lumped elements<br />

From Discrete Components to Microstrip Lines<br />

<br />

Avoid using inductors (if possible) due to higher resistive loss (& higher price)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

In general, one shunt capacitor & two series transmission lines is<br />

sufficiently to transform any load to any input impedance.<br />

EX: transform load ZL to an input impedance Z in<br />

Z<br />

L 30 j10<br />

<br />

<br />

Zin<br />

60 j80<br />

<br />

f 1.<br />

5 GHz<br />

zL<br />

0.<br />

6 <br />

zin<br />

1.<br />

2 <br />

Identify input & load SWR circles<br />

j0.<br />

2 <br />

Choose A (yA= 1-j0.6) & transform zL to<br />

A by a series TL (l1)<br />

=>Transform A to B (on the input SWR circle)<br />

by a parallel C1<br />

=> Transform B to zin by a series TL (l2)<br />

zL + series-TL (l1)<br />

=> A + shunt C1<br />

=> B + series-TL (l2)<br />

=> zin<br />

j1.<br />

6 <br />

2011-12 H.-R. Chuang EE NCKU


z<br />

<br />

y<br />

<br />

z<br />

Single-Stub <strong>Matching</strong> Networks<br />

Z<br />

L 60 j45<br />

<br />

<br />

Zin<br />

75 j90<br />

<br />

Z 75 <br />

0<br />

L<br />

L<br />

in<br />

Z<br />

L<br />

/ Z<br />

0<br />

0<br />

<br />

0.<br />

8<br />

<br />

j0.<br />

6<br />

1/<br />

zL<br />

0.<br />

8 j0.<br />

6<br />

Z / Z 1<br />

j1.<br />

2 <br />

in<br />

5-20<br />

g = 0.8<br />

conductance circle<br />

zL to A (yA= 0.8 + j1.5) by adding a shunt open-circuited (O.C.)TL lSA<br />

4 adjustable parameters:<br />

l , Z l , Z )<br />

( s 0s, L 0L,<br />

Input SWR circle associated with zin<br />

has two intersected points (A & B) with<br />

g = 0.8 conductance circle<br />

yA= 0.8 + j1.05 yB= 0.8 - j1.05<br />

The corresponding susceptance for the stub : jbSA= yA- yL = (0.8 + j1.05)-( 0.8 + j0.6)=0.45<br />

O.C. point (g=0) to the point of ibSA = 0.45 is lSA = 0.067 <br />

2011-12 H.-R. Chuang EE NCKU<br />

A to zin is lLA = 0.266 <br />

g = 0<br />

(O.C.)<br />

ibSA<br />

= 0.45


2011-12 H.-R. Chuang EE NCKU<br />

5-21<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

s<br />

sB<br />

s<br />

sB<br />

sB<br />

sB<br />

s<br />

sB<br />

l<br />

l<br />

l<br />

l<br />

l<br />

l<br />

l<br />

l<br />

2<br />

tan<br />

2<br />

1<br />

tan<br />

2<br />

2<br />

tan<br />

2<br />

tan<br />

2<br />

//<br />

)<br />

1<br />

1<br />

:<br />

stub<br />

circuit<br />

-<br />

short<br />

:<br />

stub<br />

circuit<br />

-<br />

open<br />

(<br />

design<br />

stub<br />

Balanced


5-22<br />

Double-Stub <strong>Matching</strong> Networks<br />

Zin<br />

Z0<br />

50 <br />

<br />

Z<br />

L 50 j50<br />

<br />

l / 8 l l 3<br />

/ 8<br />

0.<br />

074<br />

0.<br />

051<br />

2011-12 H.-R. Chuang EE NCKU<br />

l<br />

1<br />

s1<br />

2<br />

<br />

l<br />

3<br />

s1


5-23<br />

Quarter-Wave Transformer 四分之一波長(傳輸線)阻抗轉換匹配<br />

( only useful for pure-resistance matching )<br />

transmission<br />

line 1<br />

V1 ( z)<br />

<br />

<br />

V1 ( z)<br />

0 X<br />

( Z 0)<br />

( Z 0)<br />

Z<br />

in<br />

quarter-wavelength<br />

transmission line 2<br />

l / 4<br />

ZL<br />

jZ0<br />

tanl<br />

( Z0<br />

) Z0<br />

Z<br />

jZ tanl<br />

l<br />

<br />

<br />

&<br />

2<br />

tan<br />

2011-12 H.-R. Chuang EE NCKU<br />

Z<br />

in<br />

Z<br />

0<br />

Z<br />

Z<br />

2<br />

0<br />

0<br />

0<br />

l <br />

<br />

4<br />

ZL<br />

jZ0<br />

( )<br />

Z0<br />

Z0<br />

Z0<br />

Z<br />

jZ ( )<br />

Z<br />

Ex: A microstrip quarter-wave trasformer that matches a 50 miscrostrip line to<br />

a 20 load at f = 4 GHz (substrate: r=2.5, thickness h = 0.75 mm)<br />

2.13[mm] 4.03[mm]<br />

50[ ]<br />

31. 62[<br />

]<br />

<br />

12.73[mm]<br />

L<br />

20[ ]<br />

* Double Quarter-Wave Transformer for wider (matching b<strong>and</strong>width)<br />

ZL<br />

L<br />

L<br />

L


5-24<br />

* (<strong>Matching</strong>) B<strong>and</strong>width (f ) of a Quarter-Wave Transformer<br />

Pozar, Mcrowave & RF Design of Wireless Systems<br />

Approximate behavior of the reflection coefficient magnitude of a quarter-wave<br />

transformer near the design frequency<br />

It can be proved that<br />

2<br />

Z Z<br />

<br />

Z<br />

f<br />

2(<br />

f <br />

( ) 0 f<br />

BW<br />

f<br />

f<br />

0<br />

1 0 L<br />

1<br />

sec<br />

2 <br />

m ZL<br />

0<br />

0<br />

m<br />

) 2 f<br />

2 <br />

f<br />

m<br />

0<br />

<br />

<br />

<br />

2<br />

4<br />

2 <br />

<br />

Increased BW for<br />

Smaller load mismatch (ZL/Z0)<br />

4<br />

2 cos<br />

<br />

2011-12 H.-R. Chuang EE NCKU<br />

m<br />

1<br />

<br />

<br />

<br />

<br />

1<br />

2<br />

Z0Z<br />

<br />

m<br />

2<br />

m ZL<br />

Z<br />

L<br />

0


5-25<br />

2011-12 H.-R. Chuang EE NCKU

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!