06.06.2013 Views

pdf version - Department of Earth and Space Sciences - UCLA

pdf version - Department of Earth and Space Sciences - UCLA

pdf version - Department of Earth and Space Sciences - UCLA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Our reference: GCA 7175 P-authorquery-v8<br />

Dear Author,<br />

Journal: GCA<br />

Article Number: 7175<br />

AUTHOR QUERY FORM<br />

Please e-mail or fax your responses <strong>and</strong> any corrections to:<br />

E-mail: corrections.essd@elsevier.sps.co.in<br />

Fax: +31 2048 52799<br />

Please check your pro<strong>of</strong> carefully <strong>and</strong> mark all corrections at the appropriate place in the pro<strong>of</strong> (e.g., by using on-screen annotation in the PDF file) or<br />

compile them in a separate list. To ensure fast publication <strong>of</strong> your paper please return your corrections within 48 hours.<br />

For correction or revision <strong>of</strong> any artwork, please consult http://www.elsevier.com/artworkinstructions.<br />

Any queries or remarks that have arisen during the processing <strong>of</strong> your manuscript are listed below <strong>and</strong> highlighted by flags in the pro<strong>of</strong>. Click on the ‘Q’<br />

link to go to the location in the pro<strong>of</strong>.<br />

Location in<br />

article<br />

Query / Remark: click on the Q link to go<br />

Please insert your reply or correction at the corresponding line in the pro<strong>of</strong><br />

Q1 Please check <strong>and</strong> approve the edit <strong>of</strong> authors’ affiliations.<br />

Thank you for your assistance.


1<br />

2<br />

3<br />

Shock effects in “EH6” enstatite chondrites <strong>and</strong> implications<br />

for collisional heating <strong>of</strong> the EH <strong>and</strong> EL parent asteroids<br />

4 Alan E. Rubin a, *, John T. Wasson a,b,c<br />

5 Q1<br />

6<br />

7<br />

a<br />

Institute <strong>of</strong> Geophysics <strong>and</strong> Planetary Physics, University <strong>of</strong> California, Los Angeles, CA 90095-1567, USA<br />

b<br />

<strong>Department</strong> <strong>of</strong> <strong>Earth</strong> <strong>and</strong> <strong>Space</strong> <strong>Sciences</strong>, University <strong>of</strong> California, Los Angeles, CA 90095, USA<br />

c<br />

<strong>Department</strong> <strong>of</strong> Chemistry <strong>and</strong> Biochemistry, University <strong>of</strong> California, Los Angeles, CA 90095, USA<br />

89 Received 10 January 2011; accepted in revised form 5 April 2011<br />

10 Abstract<br />

GCA 7175 No. <strong>of</strong> Pages 25<br />

26 April 2011 Disk Used<br />

11 Of the six chondrites that were listed as EH6 or EH6-an during the course <strong>of</strong> this study, we confirm the EH classification <strong>of</strong><br />

12 Y-8404, Y-980211 <strong>and</strong> Y-980223 <strong>and</strong> the EH-an classification <strong>of</strong> Y-793225; two chondrites (A-882039 <strong>and</strong> Y-980524) are<br />

13 reclassified as EL (the former contains ferroan alab<strong>and</strong>ite <strong>and</strong> both contain kamacite with 1 wt% Si). All <strong>of</strong> the meteorites<br />

14 contain euhedral enstatite grains surrounded by metal ± sulfide (although this texture is rare in Y-793225), consistent with<br />

15 enstatite crystallizing from a mixed melt. All contain enstatite with 0.5,Mg


GCA 7175 No. <strong>of</strong> Pages 25<br />

26 April 2011 Disk Used<br />

2 A.E. Rubin, J.T. Wasson / Geochimica et Cosmochimica Acta xxx (2011) xxx–xxx<br />

48 The current classification scheme for petrologic types is<br />

49 based on criteria developed by Van Schmus <strong>and</strong> Wood<br />

50 (1967) <strong>and</strong> modified by later workers. It can be applied to<br />

51 ordinary, carbonaceous, enstatite <strong>and</strong> R chondrites. In all<br />

52 <strong>of</strong> these groups, type-3 chondrites contain very sharply de-<br />

53 fined chondrules (some with primary igneous glass), fine-<br />

54 grained silicate-rich matrix material, polysynthetically<br />

55 twinned low-Ca clinopyroxene, <strong>and</strong> compositionally<br />

56 unequilibrated olivine <strong>and</strong> low-Ca pyroxene. Type-4 chon-<br />

57 drites contain well-defined chondrules (with little or no<br />

58 glass), matrix material that is either absent or recrystallized,<br />

59 relatively few grains <strong>of</strong> polysynthetically twinned low-Ca<br />

60 clinopyroxene, equilibrated olivine <strong>and</strong> largely equilibrated<br />

61 low-Ca pyroxene. Type-5 chondrites have readily delin-<br />

62 eated chondrules with no primary glass, no fine-grained<br />

63 matrix material, no polysynthetically twinned low-Ca clino-<br />

64 pyroxene, <strong>and</strong> compositionally uniform olivine <strong>and</strong> low-Ca<br />

65 pyroxene. Type-6 chondrites contain poorly defined chond-<br />

66 rules with no glass, no fine-grained matrix material, no<br />

67 polysynthetically twinned low-Ca clinopyroxene, uniform<br />

68 olivine <strong>and</strong> low-Ca pyroxene compositions, <strong>and</strong> many pla-<br />

69 gioclase grains that exceed 50 lm. (Olivine is absent in<br />

70 many type-4 <strong>and</strong> all type-5 <strong>and</strong> -6 enstatite chondrites.)<br />

71 Although some chondrites have been designated type 7<br />

72 because they are highly recrystallized or contain melt (or<br />

73 contain orthopyroxene with >1 wt% CaO; Dodd, 1974),<br />

74 many <strong>of</strong> these rocks (e.g., L7 PAT 91501; EL7 Ilafegh<br />

75 009) have been impact melted (e.g., McCoy et al., 1995;<br />

76 Mittlefehldt <strong>and</strong> Lindstrom, 2001) <strong>and</strong> should be classified<br />

77 as impact-melt rocks or impact-melt breccias. There are<br />

78 also many ordinary chondrites (OC) listed in the on-line<br />

79 Meteoritical Bulletin Database (MBDB) as type 6 that<br />

80 have been shown to be impact-melt breccias: e.g., H6 Yan-<br />

81 zhuang (Xie et al., 1991), L6 Chico (Bogard et al., 1990)<br />

82 <strong>and</strong> LL6 Bison (Dominik <strong>and</strong> Bussy, 1994). Even a few<br />

83 OC listed as type 5 are impact-melt breccias: e.g., H5 Rose<br />

84 City (Mason <strong>and</strong> Wiik, 1966; Frul<strong>and</strong>, 1975; Rubin,<br />

85 1995a) <strong>and</strong> L5 Cat Mountain (Kring et al., 1996). If the<br />

86 principal mechanism responsible for chondrite metamor-<br />

87 phism is collisional heating (e.g., Rubin, 1995b, 2004,<br />

88 2005) <strong>and</strong> not the decay <strong>of</strong> short-lived radionuclides<br />

89 (e.g., Lee et al., 1976; Miyamoto et al., 1981; Grimm<br />

90 <strong>and</strong> McSween, 1993; McSween et al., 2002), then the dis-<br />

91 tinction between impact-melt breccias <strong>and</strong> type-5, -6 <strong>and</strong> -<br />

92 7 chondrites becomes blurred.<br />

93 In the present study, we examined all six enstatite<br />

94 chondrites that had been classified by others (<strong>and</strong> listed<br />

95 in the MBDB during the course <strong>of</strong> this study) as EH6<br />

96 or EH6-an to determine whether or not they have<br />

97 petrologic features consistent with having been heated by<br />

98 impacts. These rocks include five EH6 chondrites<br />

99 (A-882039, 384 g; Y-8404, 10.7 g; Y-980211, 36.9 g;<br />

100 Y-980223, 116.2 g; Y-980524, 24.3 g) <strong>and</strong> one EH6-an<br />

101 chondrite (Y-793225, 75.6 g). Other than the study by<br />

102 Lin <strong>and</strong> Kimura (1998) that described Y-8404 as an im-<br />

103 pact-melt rock <strong>and</strong> Y-793225 as a new kind <strong>of</strong> enstatite<br />

104 chondrite (intermediate between EH <strong>and</strong> EL), the meteor-<br />

105 ites classified as EH6 chondrites have received scant atten-<br />

106 tion. As shown below, our new data have led us to accept<br />

107 the EH classifications <strong>of</strong> Y-8404, Y-980211 <strong>and</strong> Y-980223,<br />

to accept the EH-an classification <strong>of</strong> Y-793225, <strong>and</strong> to<br />

reclassify A-882039 <strong>and</strong> Y-980524 as EL chondrites. We<br />

also show that all six chondrites in this study exhibit textural<br />

<strong>and</strong> mineralogical characteristics indicative <strong>of</strong> impact<br />

melting (Appendix A) <strong>and</strong> are considered impact-melt<br />

rocks or impact-melt breccias.<br />

2. ANALYTICAL PROCEDURES<br />

The following thin sections were borrowed from the National<br />

Institute <strong>of</strong> Polar Research, Japan: A-882039,72-1;<br />

Y-793225,51-2; Y-8404,51-2; Y-980211,51-1; Y-980223,61-<br />

2 <strong>and</strong> Y-980524,51-1. These sections were examined in<br />

transmitted <strong>and</strong> reflected light with an Olympus BX60 petrographic<br />

microscope. Mineral compositions were determined<br />

with the JEOL electron microprobe at <strong>UCLA</strong><br />

using natural <strong>and</strong> synthetic st<strong>and</strong>ards, a sample current <strong>of</strong><br />

15 nA, an accelerating voltage <strong>of</strong> 15 keV, 20-s counting<br />

times per element, ZAF corrections, <strong>and</strong> a focused beam.<br />

Cobalt values were corrected for the interference <strong>of</strong> the<br />

Fe-Kb peak with the Co-Ka peak. It is possible that the<br />

enstatite FeO values in Table 1 are too high because <strong>of</strong> electron-beam<br />

overlap on tiny metal blebs included within the<br />

enstatite grains or because <strong>of</strong> excitation <strong>of</strong> Fe atoms in<br />

neighboring kamacite grains by bremsstrahlung or doubly<br />

backscattered electrons (Wasson et al., 1994).<br />

The modal abundance <strong>of</strong> silica was estimated in some<br />

samples by point counting on the electron microprobe<br />

(n = 50), moving the stage a fixed distance, <strong>and</strong> identifying<br />

the phase under the crosshairs by EDS.<br />

We used instrumental neutron activation analysis<br />

(INAA) to determine the bulk compositions <strong>of</strong> adjacent<br />

chips <strong>of</strong> Y-793225 (290.2 mg), A-882039 (273.8 mg), Y-<br />

980223 (299.9 mg) <strong>and</strong> EH4 Indarch (237.9 mg). Meteorites<br />

belonging to other chondrite groups (CM, CK, CR <strong>and</strong> R)<br />

were included in the runs, affording more control <strong>of</strong> the<br />

quality <strong>of</strong> the data set. Samples were generally analyzed<br />

as 3-mm-thick rectangular prisms. The sawn surfaces were<br />

cleaned with SiC paper; rusty patches on other surfaces<br />

were flaked <strong>of</strong>f with stainless-steel dental tools.<br />

The samples have experienced only mild terrestrial<br />

weathering that should have minor to negligible effects on<br />

their bulk compositions: A-882039 is listed as weathering<br />

category A (Meteorite Newsletter 15), Y-980223 is listed<br />

as category A/B (Meteorite Newsletter 16), <strong>and</strong> although<br />

no weathering category is given for Y-793225, our examination<br />

<strong>of</strong> a thin section shows it to be weathering group W2<br />

on the scale developed by Wlotzka (1993).<br />

Samples were irradiated for 3hat the TRIGA Mark I<br />

reactor <strong>of</strong> the University <strong>of</strong> California, Irvine with a rotating-tray<br />

(lazy-susan) flux <strong>of</strong> 1.8 10 12 neutrons cm 2 s 1<br />

for the determination <strong>of</strong> isotopes with half-lives <strong>of</strong> several<br />

hours <strong>and</strong> more. For counting, the samples were mounted<br />

on cardboard slides. For st<strong>and</strong>ards we used the Allende<br />

meteorite (Jarosewich et al., 1987), the USGS international<br />

reference materials GSP-1 <strong>and</strong> BHVO-1 (Govindaraju,<br />

1994), <strong>and</strong> the North Chile (Filomena) IIAB iron meteorite.<br />

Analyses were carried out following a protocol similar to<br />

that described in Kallemeyn et al. (1989) <strong>and</strong> Choe et al.<br />

(2010).<br />

Please cite this article in press as: Rubin A. E. <strong>and</strong> Wasson J. T. Shock effects in “EH6” enstatite chondrites <strong>and</strong> implications for collisional<br />

heating <strong>of</strong> the EH <strong>and</strong> EL parent asteroids. Geochim. Cosmochim. Acta (2011), doi:10.1016/j.gca.2011.04.002<br />

108<br />

109<br />

110<br />

111<br />

112<br />

113<br />

114<br />

115<br />

116<br />

117<br />

118<br />

119<br />

120<br />

121<br />

122<br />

123<br />

124<br />

125<br />

126<br />

127<br />

128<br />

129<br />

130<br />

131<br />

132<br />

133<br />

134<br />

135<br />

136<br />

137<br />

138<br />

139<br />

140<br />

141<br />

142<br />

143<br />

144<br />

145<br />

146<br />

147<br />

148<br />

149<br />

150<br />

151<br />

152<br />

153<br />

154<br />

155<br />

156<br />

157<br />

158<br />

159<br />

160<br />

161<br />

162<br />

163<br />

164<br />

165


Please cite this article in press as: Rubin A. E. <strong>and</strong> Wasson J. T. Shock effects in “EH6” enstatite chondrites <strong>and</strong> implications for collisional<br />

heating <strong>of</strong> the EH <strong>and</strong> EL parent asteroids. Geochim. Cosmochim. Acta (2011), doi:10.1016/j.gca.2011.04.002<br />

Table 1<br />

Mean compositions (wt%) <strong>of</strong> silicate phases.<br />

Enstatite Plagioclase Silica a<br />

Y-793225 Y-793225 Y-8404 Y-8404 Y-980211 Y-980223 A-882039 Y-980524 Y-793225 Y-793225 Y-8404 A-882039 Y-980524 Y-8404<br />

Source 1 2 1 2 1 1 1 1 1 2 2 1 1 1<br />

No. <strong>of</strong> grains 7 14 1 11 3 2 22 30 4 17 10 4 8 2<br />

SiO2 59.2 60.0 59.0 60.5 59.2 59.7 60.0 59.3 65.3 66.0 70.2 66.5 66.8 98.6<br />

TiO2


GCA 7175 No. <strong>of</strong> Pages 25<br />

26 April 2011 Disk Used<br />

4 A.E. Rubin, J.T. Wasson / Geochimica et Cosmochimica Acta xxx (2011) xxx–xxx<br />

166 3. RESULTS<br />

167 3.1. Petrography<br />

168 Detailed petrographic descriptions <strong>of</strong> Y-8404, Y-980211,<br />

169 Y-980223, Y-980524, Y-793225 <strong>and</strong> A-882039 are in<br />

170 Appendix B; corresponding images are in Figs. 1–8. A sum-<br />

171 mary <strong>of</strong> the main petrographic features <strong>of</strong> these meteorites<br />

172 appears below.<br />

173 All <strong>of</strong> the rocks have major orthoenstatite; in all samples<br />

174 except Y-793225, euhedral enstatite grains are abundant<br />

175 (Figs. 1, 3, 4 <strong>and</strong> 6). Plagioclase is present in all <strong>of</strong> the sam-<br />

176 ples <strong>and</strong> abundant silica occurs in Y-8404 <strong>and</strong> Y-980223.<br />

177 All <strong>of</strong> the rocks contain kamacite <strong>and</strong> troilite; other opaque<br />

178 phases present in several samples include schreibersite,<br />

179 graphite <strong>and</strong> daubréelite (e.g., Fig. 7). Keilite occurs in Y-<br />

180 8404, Y-980211 <strong>and</strong> Y-980223; ferroan alab<strong>and</strong>ite is pres-<br />

181 ent in Y-793225 <strong>and</strong> A-880239.<br />

182 Enstatite in each <strong>of</strong> these meteorites has sharp to mod-<br />

183 erately undulose extinction, corresponding to shock stages<br />

184 S1–S2 (Stöffler et al., 1991; Rubin et al., 1997).<br />

Fig. 1. Euhedral enstatite grains displaying prominent cleavage in<br />

Y-8404. (a) Black areas are opaque grains. Plane-polarized<br />

transmitted light. (b) The same region as in (a). White areas are<br />

kamacite; medium-gray areas are troilite. Reflected light.<br />

In all <strong>of</strong> the samples, enstatite is intergrown with other<br />

silicates. In Y-980211 <strong>and</strong> Y-980223, an opaque groundmass<br />

surrounds the silicate assemblages (Fig. 3). Y-<br />

793225 has a hypidiomorphic-granular texture (Fig. 5). Relict<br />

chondrules (e.g., Figs. 2, 4 <strong>and</strong> 8) are present in all <strong>of</strong> the<br />

rocks except Y-793225. In some cases, enstatite grains appear<br />

to have nucleated on the relict chondrules.<br />

3.2. Mineral chemistry<br />

In order to determine the proper classification <strong>of</strong> the<br />

meteorites in this study, it is necessary to compare their<br />

mineral chemistry to the established ranges for enstatite<br />

chondrites. EH3, EH4 <strong>and</strong> EH5 chondrites typically contain<br />

enstatite with 0.13–0.20 wt% MnO (e.g., Keil, 1968;<br />

Grossman et al., 1985); the MnO content <strong>of</strong> enstatite in<br />

each <strong>of</strong> the chondrites studied here is below the detection<br />

limit, i.e.,


GCA 7175 No. <strong>of</strong> Pages 25<br />

26 April 2011 Disk Used<br />

Fig. 3. Kamacite–troilite nodule with euhedral enstatite grains in<br />

Y-980211. The troilite-rich side <strong>of</strong> the nodule at right grades into<br />

the groundmass. kam = kamacite; troi = troilite. Reflected light.<br />

201 MnO also occurs in EL6 chondrites (Keil, 1968) <strong>and</strong> in the<br />

202 Abee EH impact-melt breccia (Rubin <strong>and</strong> Keil, 1983; Ru-<br />

203 bin <strong>and</strong> Scott, 1997; Rubin, 2008).<br />

204 Plagioclase in Y-793225 (Ab81 Or5; Table 1) is less sodic<br />

205 <strong>and</strong> much more potassic than that in EH4 Indarch (Ab97.6<br />

Collisional heating <strong>of</strong> enstatite chondrites 5<br />

Or0.8; Keil, 1968). The published plagioclase composition <strong>of</strong><br />

Y-8404 (Ab94 Or6) (Lin <strong>and</strong> Kimura, 1998; Table 1) appears<br />

to be non-stoichiometric; it is moderately enriched<br />

in SiO2 <strong>and</strong> Na2O <strong>and</strong> moderately depleted in Al2O3. Plagioclase<br />

in A-882039 (Ab79.5 Or4.7) <strong>and</strong> Y-980524 (Ab80.9<br />

Or4.4) (Table 1) are within the range <strong>of</strong> typical EL6 chondrites<br />

(Ab79.4–82.9 Or2.9–4.6; Keil, 1968) (although A-<br />

880239 plagioclase is slightly more potassic than the extreme<br />

value reported by Keil, 1968).<br />

Silica in Y-8404 contains 1.5 wt% minor oxides (Table<br />

1), consistent with the phase having an open crystal structure<br />

(i.e., cristobalite <strong>and</strong>/or tridymite) rather than quartz.<br />

(Quartz occurs in several EH3, EH4, EH5, EL3 <strong>and</strong> EL6<br />

chondrites as well as in the Y-82189 EH impact-melt rock<br />

(Mason, 1966; Kimura et al., 2005).)<br />

Whereas most EH3–5 chondrites have troilite with 0.05–<br />

0.11 wt% Mn (e.g., Keil, 1968), Y-8404, Y-980211 <strong>and</strong> Y-<br />

980223 contain troilite with much higher Mn (i.e., 0.19–<br />

0.30 wt%; Table 2). In contrast, the low Mn contents <strong>of</strong><br />

troilite in Y-793225 (0.5,Fe


GCA 7175 No. <strong>of</strong> Pages 25<br />

26 April 2011 Disk Used<br />

6 A.E. Rubin, J.T. Wasson / Geochimica et Cosmochimica Acta xxx (2011) xxx–xxx<br />

Fig. 5. Texture <strong>of</strong> EH6-an Y-793225. (a) Abundant enstatite grains<br />

form a hypidiomorphic-granular texture. Grains display prominent<br />

cleavage. Crossed nicols. (b) Different region than in (a). The rock<br />

has a high silicate/opaque modal abundance ratio. Opaques include<br />

kamacite (white) at bottom left <strong>and</strong> top left, troilite (medium gray)<br />

<strong>and</strong> terrestrial weathering products (light gray). Reflected light.<br />

kam = kamacite; sil = silicate; troi = troilite.<br />

231 [(Fe>0.5,Mg


GCA 7175 No. <strong>of</strong> Pages 25<br />

26 April 2011 Disk Used<br />

Fig. 6. Euhedral enstatite grains in A-882039. (a) Several euhedral enstatite grains (medium gray) occur adjacent to troilite (light gray) at the<br />

side <strong>of</strong> a large kamacite grain (white). (b) Euhedral enstatite grain <strong>and</strong> a cluster <strong>of</strong> more-equant enstatite grains (dark gray) in a sulfide<br />

assemblage consisting <strong>of</strong> troilite (light gray), ferroan alab<strong>and</strong>ite (medium gray) <strong>and</strong> tabular daubréelite (smooth texture, very light gray; top <strong>of</strong><br />

assemblage). (c) Euhedral enstatite grains (medium gray) within kamacite (white) <strong>and</strong> adjacent to massive schreibersite (light gray; distinctly<br />

darker than kamacite). Also present within the metal are several intergrowths <strong>of</strong> graphite (dark gray). (d) Massive silicate assemblage (medium<br />

gray) protruding into kamacite grain (white) that contains graphite clusters <strong>and</strong> tabs (dark gray). en = enstatite; daub = daubréelite;<br />

troi = troilite; sil = silicate; alab = ferroan alab<strong>and</strong>ite; kam = kamacite; sch = schreibersite; gr = graphite. All images in reflected light.<br />

311 In Fig. 9b the patterns for EH4 Indarch <strong>and</strong> EH6 Y-<br />

312 980223 are quite similar, implying that the EH group is lar-<br />

313 gely isochemical. All data plot within 10% <strong>of</strong> the EH line<br />

314 with the exception <strong>of</strong> Zn, for which abundance ratios are<br />

315 1.5–2 times higher than mean EH. Kallemeyn <strong>and</strong> Wasson<br />

316 (1986) also reported that Indarch had the highest Zn value<br />

317 among the EH falls that they studied, <strong>and</strong> was 1.4 times<br />

318 higher than their reported EH mean. The Indarch fall is<br />

319 one <strong>of</strong> the best-preserved EH4 chondrites, one that has lar-<br />

320 gely avoided impact alteration.<br />

321 At the other extreme is the pattern for Y-793225. All <strong>of</strong><br />

322 the elements plot low; nevertheless, the replicates agree to<br />

323 within a factor <strong>of</strong> 1.2 with the exception <strong>of</strong> Zn (where<br />

324 the values vary by a factor <strong>of</strong> 1.5). It is possible that the sys-<br />

325 tematically low abundance ratios result from Cr values that<br />

326 are unrepresentatively high. (The data are normalized to<br />

327 Cr.) In fact, the Cr concentrations <strong>of</strong> 4.4 mg/g in Y-<br />

328 793225 are 33% higher than in any <strong>of</strong> the Kallemeyn <strong>and</strong><br />

329 Wasson (1986) data for EH or EL chondrites. On the other<br />

330 h<strong>and</strong>, there is no petrographic evidence that either <strong>of</strong> the<br />

331 two values (which are essentially identical) is unrepresenta-<br />

Collisional heating <strong>of</strong> enstatite chondrites 7<br />

tive for Y-793225. One test is provided by the lithophile<br />

plot (Fig. 9a) in which some well-determined elements<br />

(Sc, Sm) plot near the EH line. As discussed in this study,<br />

the bulk composition <strong>of</strong> Y-793225 seems to have been affected<br />

by impact processes, <strong>and</strong> it is possible that our INAA<br />

samples were enriched in a high-Cr component, perhaps<br />

daubréelite. (Lin <strong>and</strong> Kimura (1998) reported 1 vol%<br />

daubréelite in Y-793225.)<br />

In Fig. 9b the pattern <strong>of</strong> A-882039 is more similar to the<br />

mean EL pattern than to the mean EH line. The agreement<br />

with mean EL chondrites for Sb <strong>and</strong> the eight more-refractory<br />

elements would be excellent if the Cr values were 1.2<br />

times higher; in fact, the Cr concentrations are lower in<br />

A-882039 than those in all <strong>of</strong> the EH chondrites <strong>and</strong> all except<br />

two <strong>of</strong> the EL chondrites studied by Kallemeyn <strong>and</strong><br />

Wasson (1986). The two more-volatile elements, Se <strong>and</strong><br />

Zn, are slightly lower than EL, but are within the range observed<br />

for EL chondrites by Kallemeyn <strong>and</strong> Wasson (1986),<br />

even if one were to increase the Cr value by a factor <strong>of</strong> 1.2.<br />

The patterns appear less regular on the “lithophile” plot<br />

(Fig. 9a), but this is partly because the plotted range in<br />

Please cite this article in press as: Rubin A. E. <strong>and</strong> Wasson J. T. Shock effects in “EH6” enstatite chondrites <strong>and</strong> implications for collisional<br />

heating <strong>of</strong> the EH <strong>and</strong> EL parent asteroids. Geochim. Cosmochim. Acta (2011), doi:10.1016/j.gca.2011.04.002<br />

332<br />

333<br />

334<br />

335<br />

336<br />

337<br />

338<br />

339<br />

340<br />

341<br />

342<br />

343<br />

344<br />

345<br />

346<br />

347<br />

348<br />

349<br />

350<br />

351<br />

352


GCA 7175 No. <strong>of</strong> Pages 25<br />

26 April 2011 Disk Used<br />

8 A.E. Rubin, J.T. Wasson / Geochimica et Cosmochimica Acta xxx (2011) xxx–xxx<br />

Fig. 7. Graphite books in A-882039. (a) Elongated graphite book<br />

(medium gray) occurring mainly inside silicate (dark gray) but with<br />

opposite termini touching troilite (light gray) <strong>and</strong> keilite (lightmedium<br />

gray). (b) Isolated graphite book (medium gray) completely<br />

enclosed within silicate (dark gray). gr = graphite;<br />

keil = keilite; sil = silicate; troi = troilite; kam = kamacite. Both<br />

images in reflected light.<br />

353 abundance ratios is only a factor <strong>of</strong> 5, much smaller than<br />

354 the factor <strong>of</strong> 120 plotted in Fig. 9b. In fact, all the replicate<br />

355 ratios agree to within a factor <strong>of</strong> 1.25 with the exception <strong>of</strong><br />

356 Eu in Y-793225 <strong>and</strong> Ca, La, Sm <strong>and</strong> Eu in Y-980223; in all<br />

357 the latter cases, the abundance ratio in the second replicate<br />

358 is much lower than in the first.<br />

359 Even though Eu is a moderately well-determined ele-<br />

360 ment by our INAA technique, the overall range in Eu for<br />

361 the analyzed enstatite chondrites is a factor <strong>of</strong> 4. The dif-<br />

362 ferences between replicates for individual meteorites are<br />

363 much smaller; the factors range from 1.3 to 1.7.<br />

364 The bulk composition <strong>of</strong> siderophiles <strong>and</strong> chalcophiles<br />

365 in Y-980223 is very similar to that <strong>of</strong> EH4 Indarch in<br />

366 Fig. 9b, but the two meteorites show very different patterns<br />

367 for “lithophiles” (Fig. 9a). The two replicates <strong>of</strong> Y-980223<br />

368 show large differences that are almost certainly the result<br />

369 <strong>of</strong> sampling variations.<br />

370 Because <strong>of</strong> the scatter in the Y-980223 “lithophile” data<br />

371 (Fig. 9a), it is difficult to use these data to determine<br />

372 whether this meteorite is more closely related to EH or<br />

373 EL chondrites. In contrast, the siderophile <strong>and</strong> Zn data<br />

374 (Fig. 9b) indicate that Y-980223 is an EH chondrite.<br />

In Fig. 9a the abundance ratios for A-882039 agree to<br />

within a factor <strong>of</strong> 1.2 for all elements. The pattern is reasonably<br />

close to the EL curve, <strong>and</strong> would be even closer if<br />

Cr were increased by a factor <strong>of</strong> 1.1.<br />

4. DISCUSSION<br />

4.1. Group classification <strong>of</strong> impact-melted enstatite<br />

chondrites<br />

The principal petrographic, mineralogical <strong>and</strong> bulk<br />

compositional distinctions between EH <strong>and</strong> EL chondrites<br />

include mean chondrule size (ca. 220 lm in EH vs.<br />

550 lm in EL; Rubin, 2000), the Si content <strong>of</strong> kamacite<br />

(2.3–3.8 vs. 1.0–2.1 wt%, respectively; Keil, 1968), the identity<br />

<strong>of</strong> the cubic (Mg,Fe,Mn)S sulfide (niningerite or keilite<br />

in EH, ferroan alab<strong>and</strong>ite in EL; Keil, 1968, 2007) <strong>and</strong> the<br />

bulk abundances <strong>of</strong> siderophile <strong>and</strong> chalcophile elements<br />

(high in EH, low in EL; Se <strong>and</strong> Zn are particularly good<br />

discriminators; e.g., Kallemeyn <strong>and</strong> Wasson, 1986). Because<br />

the chondrites studied here are recrystallized <strong>and</strong> evidently<br />

melted (Section 4.2), average chondrule size cannot<br />

be used as a distinguishing characteristic; most chondrules<br />

(particularly the small ones) have been recrystallized <strong>and</strong><br />

rendered unrecognizable in these rocks.<br />

Y-8404, Y-980211 <strong>and</strong> Y-980223 are confirmed to be<br />

EH chondrites. Consistent with being members <strong>of</strong> the EH<br />

group, they contain P2.6 wt% Si in kamacite (Table 3);<br />

they also contain keilite <strong>and</strong> lack ferroan alab<strong>and</strong>ite (Table<br />

2). Y-980223 has relatively high abundances <strong>of</strong> Se <strong>and</strong> Zn<br />

(Table 4). (Bulk compositions were not determined for Y-<br />

8404 or Y-980211.) These meteorites have all experienced<br />

high temperatures: they contain orthoenstatite to the exclusion<br />

<strong>of</strong> clinoenstatite; they have recrystallized textures <strong>and</strong><br />

relict chondrules that are texturally partially integrated with<br />

the matrix.<br />

A-882039 <strong>and</strong> Y-980524 are reclassified as EL<br />

chondrites. They average 1.0 <strong>and</strong> 1.1 wt% Si in kamacite,<br />

respectively (Table 3). They both lack niningerite <strong>and</strong> keilite.<br />

A-882039 contains ferroan alab<strong>and</strong>ite, but only troilite<br />

<strong>and</strong> daubréelite were identified in Y-980524 (Table 2). The<br />

low bulk abundances <strong>of</strong> siderophiles, Se <strong>and</strong> Zn in A-<br />

882039 (Table 4) are consistent with an EL classification.<br />

(A bulk composition was not determined for Y-980524.)<br />

A-882039 <strong>and</strong> Y-980524 exhibit high degrees <strong>of</strong> recrystallization<br />

<strong>and</strong> share a paucity <strong>of</strong> recognizable chondrules, consistent<br />

with annealing at high temperatures.<br />

We confirm the classification <strong>of</strong> Y-793225 as EH-an,<br />

although Lin <strong>and</strong> Kimura (1998) classified it as being intermediate<br />

between the EH <strong>and</strong> EL groups, mainly on the basis<br />

<strong>of</strong> its distinctive mineral chemistry. The property that is<br />

most consistent with an EH classification is the Si content<br />

<strong>of</strong> kamacite ( 3 wt%; Table 3) which is near the middle<br />

<strong>of</strong> the EH range (2.7–3.8 wt%) <strong>and</strong> is appreciably higher<br />

than that <strong>of</strong> EL chondrites (1.0–2.1 wt%) (Table 5 <strong>of</strong> Keil,<br />

1968). This is an important classificatory parameter <strong>and</strong><br />

one we find persuasive. Nevertheless, the low Zn <strong>and</strong> low<br />

siderophile contents <strong>of</strong> bulk Y-793225 are more characteristic<br />

<strong>of</strong> EL than EH chondrites, supporting the classification<br />

<strong>of</strong> the rock as anomalous.<br />

Please cite this article in press as: Rubin A. E. <strong>and</strong> Wasson J. T. Shock effects in “EH6” enstatite chondrites <strong>and</strong> implications for collisional<br />

heating <strong>of</strong> the EH <strong>and</strong> EL parent asteroids. Geochim. Cosmochim. Acta (2011), doi:10.1016/j.gca.2011.04.002<br />

375<br />

376<br />

377<br />

378<br />

379<br />

380<br />

381<br />

382<br />

383<br />

384<br />

385<br />

386<br />

387<br />

388<br />

389<br />

390<br />

391<br />

392<br />

393<br />

394<br />

395<br />

396<br />

397<br />

398<br />

399<br />

400<br />

401<br />

402<br />

403<br />

404<br />

405<br />

406<br />

407<br />

408<br />

409<br />

410<br />

411<br />

412<br />

413<br />

414<br />

415<br />

416<br />

417<br />

418<br />

419<br />

420<br />

421<br />

422<br />

423<br />

424<br />

425<br />

426<br />

427<br />

428<br />

429<br />

430<br />

431


GCA 7175 No. <strong>of</strong> Pages 25<br />

26 April 2011 Disk Used<br />

Fig. 8. Relict chondrules in A-882039. (a) Relict radial pyroxene chondrule fragment displaying radiating bars <strong>of</strong> enstatite. The border<br />

between the chondrule <strong>and</strong> the surrounding matrix is difficult to discern, but lies approximately at the ends <strong>of</strong> the elongated pyroxene laths.<br />

Transmitted light. (b) Same image as in (a) showing the radiating bars <strong>of</strong> enstatite (medium gray) intergrown with kamacite (white) <strong>and</strong> troilite<br />

(light gray). A thin fusion crust layer is visible at lower left at the interface with the glass slide. Reflected light. (c) Relict porphyritic pyroxene<br />

chondrule with quasi-equant grains <strong>of</strong> enstatite <strong>and</strong> plagioclase. The chondrule is bordered by opaque phases on all sides except bottom left;<br />

there is no sharp boundary between the chondrule <strong>and</strong> the surrounding host. Transmitted light. (d) Same image as in (c) showing the<br />

intergrowth <strong>of</strong> enstatite (medium gray) <strong>and</strong> plagioclase (dark gray). Adjacent to the chondrule are grains <strong>of</strong> kamacite (white) <strong>and</strong> troilite (light<br />

gray). Reflected light. en = enstatite; plag = plagioclase; troi = troilite; sil = silicate; kam = kamacite.<br />

432 4.2. Impact-melting in the EH6 chondrites<br />

433 Impacts can produce extreme heterogeneities in the de-<br />

434 gree <strong>of</strong> shock damage <strong>of</strong> target rocks. Shock waves can be-<br />

435 come chaotic as they interact with inhomogeneities in the<br />

436 rock (e.g., voids, cracks <strong>and</strong> solid components <strong>of</strong> different<br />

437 densities). The initial (nanosecond-scale) peak pressure in<br />

438 the shock front <strong>and</strong> the resulting shock temperature can<br />

439 have grain-to-grain variations <strong>of</strong> an order <strong>of</strong> magnitude<br />

440 (Sharp <strong>and</strong> DeCarli, 2006).<br />

441 Because many EH <strong>and</strong> EL chondrites have been altered<br />

442 by impacts (e.g., Rubin <strong>and</strong> Scott, 1997; Rubin et al., 1997;<br />

443 Kimura <strong>and</strong> Lin, 1999; Burbine et al., 2000; Fagan et al.,<br />

444 2000; Patzer et al., 2004; Keil, 2007) <strong>and</strong> because impact<br />

445 processes can produce changes in bulk composition (e.g.,<br />

446 Rubin et al., 2009) <strong>and</strong> mineralogy (e.g., Rubin, 1983b; Ru-<br />

447 bin <strong>and</strong> Scott, 1997) on a scale <strong>of</strong> 10 mm (e.g., Rubin,<br />

448 1984; Rubin et al., 2009), the st<strong>and</strong>ard taxonomic parame-<br />

449 ters may yield different results for different samples. Cau-<br />

450 tion must therefore be taken in weighting these parameters.<br />

Collisional heating <strong>of</strong> enstatite chondrites 9<br />

The three confirmed EH chondrites in this study (Y-<br />

8404, Y-980211 <strong>and</strong> Y-980223) are discussed here; EH-an<br />

Y-793225, EL A-882039 <strong>and</strong> EL Y-980524 are discussed<br />

in the following sections.<br />

Y-8404, Y-980211 <strong>and</strong> Y-980223 each exhibits some<br />

unusual mineralogical <strong>and</strong> textural characteristics that appear<br />

to have resulted from impact melting as discussed in<br />

Appendix A. Y-8404, Y-980211 <strong>and</strong> Y-980223 contain<br />

euhedral enstatite grains surrounded by metal ± sulfide,<br />

indicating growth <strong>of</strong> the enstatite from a mixed melt.<br />

Y-980211 contains a millimeter-size kamacite globule<br />

(Fig. 3), similar to some in Abee (Dawson et al., 1960; Rubin<br />

<strong>and</strong> Keil, 1983), that most likely formed during melting.<br />

All three contain enstatite with


GCA 7175 No. <strong>of</strong> Pages 25<br />

26 April 2011 Disk Used<br />

10 A.E. Rubin, J.T. Wasson / Geochimica et Cosmochimica Acta xxx (2011) xxx–xxx<br />

Table 2<br />

Mean compositions (wt%) <strong>of</strong> sulfide minerals.<br />

Daubréelite Troilite Keilite Ferroan<br />

alab<strong>and</strong>ite<br />

Y-793225 Y-793225 A-882039 Y-980524 Y-793225 Y-793225 Y-8404 Y-980211 Y-980223 A-882039 Y-980524 Y-8404 Y-980211 Y-980223 A-882039<br />

Source 1 2 1 1 1 2 2 1 1 1 1 3 1 1 1<br />

No. <strong>of</strong> grains 3 29 11 7 3 23 18 2 6 25 15 27 1 2 11<br />

Fe 17.4 17.1 18.3 16.8 61.0 59.9 59.3 61.2 60.6 62.3 62.6 36.9 39.4 37.3 14.4<br />

Mg


GCA 7175 No. <strong>of</strong> Pages 25<br />

26 April 2011 Disk Used<br />

Table 3<br />

Mean compositions (wt%) <strong>of</strong> kamacite <strong>and</strong> schreibersite.<br />

Kamacite Schreibersite<br />

Y-793225 Y-793225 Y-8404 Y-8404 Y-980211 Y-980223 A-882039 Y-980524 A-882039<br />

Source 1 2 1 2 1 1 1 1 1<br />

No. <strong>of</strong> grains 18 75 1 30 13 15 23 26 4<br />

P


Please cite this article in press as: Rubin A. E. <strong>and</strong> Wasson J. T. Shock effects in “EH6” enstatite chondrites <strong>and</strong> implications for collisional<br />

heating <strong>of</strong> the EH <strong>and</strong> EL parent asteroids. Geochim. Cosmochim. Acta (2011), doi:10.1016/j.gca.2011.04.002<br />

Table 4<br />

Duplicate neutron activation analyses <strong>of</strong> 23 elements in some enstatite chondrites.<br />

Na (mg/g) K (mg/g) Ca (mg/g) Sc (mg/g) Cr (mg/g) Mn (mg/g) Fe (mg/g) Co (lg/g) Ni (mg/g) Zn (lg/g) Ga (lg/g)<br />

Y-793225 EH-an 5.54 644 7.0 7.57 4.43 3.67 234 646 12.6 7.10 6.9<br />

6.23 597 7.9 7.82 4.42 1.93 229 644 12.4 5.00 7.5<br />

Mean 5.89 620 7.4 7.70 4.42 2.80 232 645 12.5 6.05 7.2<br />

A-882039 EL 5.48 615 5.5 6.92 2.65 1.64 256 774 16.0 8.40 11.4<br />

5.21 563 6.9 7.15 2.73 0.83 284 919 17.0 10.6 12.7<br />

Mean 5.35 589 6.2 7.04 2.69 1.23 270 846 16.5 9.50 12.0<br />

Y-980223 EH 6.77 737 5.3 6.32 2.89 2.90 318 890 19.8 381 14.5<br />

8.31 820 8.2 7.68 3.24 1.82 301 842 18.6 513 14.2<br />

Mean 7.54 779 6.8 7.00 3.07 2.36 310 866 19.2 447 14.4<br />

Indarch EH 6.76 662 7.50 5.80 3.06 2.16 311 874 17.7 342 14.7<br />

As (lg/g) Se (lg/g) Br (lg/g) Ru (ng/g) Sb (ng/g) La (ng/g) Sm (ng/g) Eu (ng/g) Lu (ng/g) Os (ng/g) Ir (ng/g) Au (ng/g)<br />

Y-793225 EH-an 2.06 15.6 4.79 840 70.0 284 196 51 39.8 747 516 211<br />

2.48 14.7 3.97 537 58.5 313 235 69 38.0 536 481 216<br />

Mean 2.27 15.2 4.38 689 63.8 298 216 60 38.9 642 499 214<br />

A-882039 EL 2.69 13.0 5.81 840 72.0 212 133 68 19.3 738 615 269<br />

3.43 12.4 8.51 860 136 201 153 88 22.5 859 716 317<br />

Mean 3.06 12.7 7.16 850 104 206 143 78 20.9 799 666 293<br />

Y-980223 EH 3.94 28.9 5.56 1050 174 136 54.0 42 11.5 625 510 354<br />

3.63 29.4 5.89 995 201 90 17.0 28 12.7 551 502 328<br />

Mean 3.78 29.2 5.72 1023 188 113 35.5 35 12.1 588 506 341<br />

Indarch EH 3.58 23.5 21.1 890 172 180 124 66 23 685 557 357<br />

12 A.E. Rubin, J.T. Wasson / Geochimica et Cosmochimica Acta xxx (2011) xxx–xxx<br />

26 April 2011 Disk Used<br />

GCA 7175 No. <strong>of</strong> Pages 25


GCA 7175 No. <strong>of</strong> Pages 25<br />

26 April 2011 Disk Used<br />

605 Because these samples have been impact melted, we<br />

606 can infer that the mechanism mainly responsible for<br />

607 EH-chondrite metamorphism is collisional heating.<br />

608 (2) These meteorites have been misclassified; they are<br />

609 impact-melted rocks <strong>and</strong> are not type-6 chondrites.<br />

610 In this case, “real” EH6 chondrites are unknown<br />

611 <strong>and</strong> the source <strong>of</strong> heating <strong>of</strong> “normal” EH-chondrites<br />

612<br />

613<br />

is unidentified.<br />

614 One way to choose between these alternatives is to<br />

615 examine other metamorphosed EH chondrites, i.e., those<br />

616 listed in the MBDB as EH4, EH4/5, EH5 <strong>and</strong> EH7. If many<br />

a<br />

abundance ratio (EH, Cr norm)<br />

b<br />

abundance ratio (EH, Cr norm)<br />

2.0<br />

1.5<br />

1.2<br />

1.0<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

2.0<br />

1.5<br />

1.0<br />

0.8<br />

0.5<br />

0.3<br />

0.2<br />

0.1<br />

0.05<br />

0.03<br />

0.02<br />

Y 793225<br />

A 882039<br />

Y 980223<br />

Indarch<br />

EL<br />

<strong>of</strong> them appear to have been impact melted, then impact<br />

heating is probably the dominant mechanism responsible<br />

for EH-chondrite metamorphism. If few show evidence <strong>of</strong><br />

shock heating, then other heat sources (e.g., the decay <strong>of</strong><br />

short-lived radionuclides) may be more likely.<br />

At the time <strong>of</strong> this writing, the MBDB lists 24 EH4 <strong>and</strong><br />

EH4/5 chondrites including two probable pairing groups:<br />

{EET 96135, 96202, 96217, 96223, 96299, 96309, 96341}<br />

<strong>and</strong> {MET 00636 <strong>and</strong> 00783}. In addition, Kimura <strong>and</strong><br />

Lin (1999) thought it likely that Y-791810 <strong>and</strong> Y-791811<br />

are paired due to their similarities in texture, mineral modal<br />

abundance <strong>and</strong> noble-gas composition (Patzer <strong>and</strong> Schultz,<br />

Sc Ca La Sm Eu Yb Lu Cr Mn Na K<br />

Y 793225<br />

A 882039<br />

Y 980223<br />

Indarch<br />

EL<br />

S i 10<br />

Collisional heating <strong>of</strong> enstatite chondrites 13<br />

Os Ir Ni Co Fe Au As Ga Sb Se Zn<br />

Fig. 9. Elemental abundance ratios <strong>of</strong> the enstatite chondrites in this study; duplicate analyses are plotted. Data are normalized to mean EH<br />

chondrites <strong>and</strong> to Cr <strong>and</strong> are arranged from left to right in order <strong>of</strong> increasing volatility (except for REE which are listed in order <strong>of</strong> increasing<br />

atomic number). For most elements in each meteorite, the duplicate analyses are in good agreement. EH4 Indarch, which was included in one<br />

analytical run, plots near mean EH chondrites. Mean EL chondrites are shown for comparison. (a) “Lithophile” elements. There is a fair<br />

amount <strong>of</strong> spread among replicates, particularly for Ca, Sm, Eu <strong>and</strong> Lu (elements that partition into oldhamite). (b) Siderophile <strong>and</strong><br />

chalcophile elements. Both A-88039 <strong>and</strong> Y-793225 have very low Zn abundances.<br />

Please cite this article in press as: Rubin A. E. <strong>and</strong> Wasson J. T. Shock effects in “EH6” enstatite chondrites <strong>and</strong> implications for collisional<br />

heating <strong>of</strong> the EH <strong>and</strong> EL parent asteroids. Geochim. Cosmochim. Acta (2011), doi:10.1016/j.gca.2011.04.002<br />

617<br />

618<br />

619<br />

620<br />

621<br />

622<br />

623<br />

624<br />

625<br />

626<br />

627<br />

628


GCA 7175 No. <strong>of</strong> Pages 25<br />

26 April 2011 Disk Used<br />

14 A.E. Rubin, J.T. Wasson / Geochimica et Cosmochimica Acta xxx (2011) xxx–xxx<br />

629 1998). Little published information is available for Y-<br />

630 791812, but its EH4 classification <strong>and</strong> sequential catalog<br />

631 number render it plausible that it is paired with Y-791810<br />

632 <strong>and</strong> Y-791811. For the purposes <strong>of</strong> the present manuscript<br />

633 we assume that Y-791812 is indeed paired with Y-791810<br />

634 <strong>and</strong> Y-791811, but our arguments are not dependent on this<br />

635 assumption. We conclude that, at present, there are 15 inde-<br />

636 pendent EH4 <strong>and</strong> EH4/5 chondrites in our collections.<br />

637 At least four <strong>of</strong> these rocks (Abee, Adhi Kot, ALH 82132,<br />

638 Y-791811) have been described as impact-melt breccias (Ru-<br />

639 bin, 1983a, 1997a; Rubin <strong>and</strong> Keil, 1983; Rubin <strong>and</strong> Scott,<br />

640 1997; Keil, 2007). Keil (2007) reported keilite in Abee, Adhi<br />

641 Kot <strong>and</strong> Y-791811. According to Keil (2007), “keilite occurs<br />

642 only in enstatite chondrite impact-melt rocks <strong>and</strong> impact-<br />

643 melt breccias;” it mainly formed from niningerite <strong>and</strong> troi-<br />

644 lite. In addition, euhedral graphite blades occur in Abee,<br />

645 Adhi Kot <strong>and</strong> Y-791810 (Rubin, 1983a, 1997a; Rubin <strong>and</strong><br />

646 Keil, 1983). ALH 82132 is also an impact-melt breccia; it<br />

647 resembles Abee in containing euhedral enstatite grains en-<br />

648 closed within kamacite globules (Rubin <strong>and</strong> Scott, 1997).<br />

649 The wide-spread occurrence <strong>of</strong> euhedral enstatite <strong>and</strong>/or<br />

650 graphite in these rocks indicates that melting was extensive.<br />

651 The MBDB lists six EH5 chondrites: A-881475, LEW<br />

652 88180, QUE 93372, RKP A80259, St. Mark’s <strong>and</strong> Saint-<br />

653 Sauveur. At least three <strong>of</strong> these are probably impact-melt<br />

654 breccias: LEW 88180 contains keilite (Keil, 2007), RKP<br />

655 A80259 displays an igneous texture <strong>and</strong> contains impact-<br />

656 melted feldspar <strong>and</strong> keilite (Zhang et al., 1995; Fagan<br />

657 et al., 2000; Keil, 2007), <strong>and</strong> Saint-Sauveur contains keilite,<br />

658 low-MnO enstatite, euhedral enstatite grains surrounded by<br />

659 metallic Fe–Ni, cristobalite, <strong>and</strong> subhedral grains <strong>of</strong> fluor-<br />

660 richterite (Keil, 1968, 2007; Rubin, 1983a, 2008; Kimura<br />

661 et al., 2005).<br />

662 One meteorite, QUE 94204 (2.43 kg), is listed in the MDB<br />

663 as EH7. This is a chondrule-free rock that contains abundant<br />

664 euhedral enstatite grains with


GCA 7175 No. <strong>of</strong> Pages 25<br />

26 April 2011 Disk Used<br />

747 MBDB, some <strong>of</strong> which have not been described in detail. If<br />

748 we omit the seven poorly described unpaired samples with<br />

749 masses


GCA 7175 No. <strong>of</strong> Pages 25<br />

26 April 2011 Disk Used<br />

16 A.E. Rubin, J.T. Wasson / Geochimica et Cosmochimica Acta xxx (2011) xxx–xxx<br />

865 EH <strong>and</strong> EL chondrites include euhedral enstatite grains,<br />

866 nucleation <strong>of</strong> enstatite on relict chondrules, low-MnO<br />

867 enstatite, high-Mn troilite, high-Mn oldhamite, keilite, rel-<br />

868 atively abundant silica, euhedral graphite, euhedral sinoite,<br />

869 fluor-richterite <strong>and</strong> fluorphlogopite. Y-8404 (EH), Y-<br />

870 980211 (EH), Y-980223 (EH), Y-980524 (EL) <strong>and</strong> A-<br />

871 882039 (EL) contain rare relict chondrules <strong>and</strong> are im-<br />

872 pact-melt breccias; Y-793225 (EH-an) is a chondrule-free<br />

873 impact-melt rock. The conclusion that these chondrites<br />

874 have an impact-melt origin is based on their unusual tex-<br />

875 tural <strong>and</strong> mineralogical characteristics including the occur-<br />

876 rence <strong>of</strong> euhedral enstatite grains with low MnO that<br />

877 crystallized from the melt. The high abundance <strong>of</strong> these<br />

878 grains indicates that melting was extensive. These EH chon-<br />

879 drites also contain high-Mn troilite (due to partitioning <strong>of</strong><br />

880 Mn into sulfide during crystallization) <strong>and</strong> keilite<br />

881 [(Fe >0.5,Mg


GCA 7175 No. <strong>of</strong> Pages 25<br />

26 April 2011 Disk Used<br />

939 Atlanta, in which a sulfide-rich, metal-poor clast is present<br />

940 (Rubin, 1983c) <strong>and</strong> Blithfield, an impact-melt rock that has<br />

941 centimeter-size sulfide-rich, metal-poor clasts (Rubin,<br />

942 1984).<br />

943 (2) Diamonds. Abee contains 100 lg/g diamonds (Rus-<br />

944 sell et al., 1992) twinned on {111}; they were interpreted as a<br />

945 shock feature by Rubin <strong>and</strong> Scott (1997). This twinning fea-<br />

946 ture is shared with shocked synthetic diamonds (Daulton<br />

947 et al., 1994). Abee diamonds contain low N (


GCA 7175 No. <strong>of</strong> Pages 25<br />

26 April 2011 Disk Used<br />

18 A.E. Rubin, J.T. Wasson / Geochimica et Cosmochimica Acta xxx (2011) xxx–xxx<br />

1061 SiO2-rich melts. Mobilization <strong>of</strong> Si-bearing phases <strong>and</strong> the<br />

1062 heterogeneous production <strong>of</strong> melt are probably responsible<br />

1063 for variations in the abundance <strong>of</strong> silica among impact<br />

1064 products.<br />

1065 (8) Euhedral graphite. Whereas graphite in unmelted<br />

1066 enstatite chondrites typically occurs as irregular or com-<br />

1067 pacted aggregates within kamacite (e.g., Fig. A37 <strong>of</strong> Ram-<br />

1068 dohr, 1973), some or all <strong>of</strong> the graphite in euhedral-<br />

1069 enstatite-bearing enstatite chondrites (e.g., Abee, Adhi<br />

1070 Kot) is present as euhedral grains (“books” in the terminol-<br />

1071 ogy <strong>of</strong> El Goresy et al., 2001) with pyramidal terminations<br />

1072 (Rubin, 1983a, 1997a; Rubin <strong>and</strong> Keil, 1983). These grains<br />

1073 texturally resemble those that crystallized from melts in the<br />

1074 ALHA 78019 <strong>and</strong> Nova 001 ureilites (Berkley <strong>and</strong> Jones,<br />

1075 1982; Treiman <strong>and</strong> Berkley, 1994) <strong>and</strong> in terrestrial ultra-<br />

1076 mafic xenoliths in alkali basalts (Figs. 5–7 <strong>of</strong> Kornprobst<br />

1077 et al., 1987). Euhedral graphite grains in enstatite chon-<br />

1078 drites probably crystallized from melts. Their precursors<br />

1079 probably occurred as aggregates within kamacite.<br />

1080 (9) Euhedral sinoite (Si2N2O). Euhedral grains <strong>of</strong> sinoite<br />

1081 occur in many EL6 chondrites (e.g., Forrest 033, Hvittis,<br />

1082 Jajh deh Kot Lalu, Neuschwanstein, Pillistfer, Ufana, Yil-<br />

1083 mia, ALHA81021, EET90102 <strong>and</strong> LEW88714; Rubin,<br />

1084 2006), leading to the suggestion (Petaev <strong>and</strong> Khodakovsky,<br />

1085 1986; Fogel et al., 1989; Meunow et al., 1992) that sinoite<br />

1086 formed at EL6 metamorphic temperatures (i.e., 950 °C;<br />

1087 Meunow et al., 1992; Wasson et al., 1994) over geologic<br />

1088 timescales. However, sinoite has been reported in portions<br />

1089 <strong>of</strong> the EL4 chondrites QUE 94368 (Rubin, 1997b) <strong>and</strong><br />

1090 Grein 002 (Patzer et al., 2004) that also contain euhedral<br />

1091 grains <strong>of</strong> enstatite <strong>and</strong> graphite <strong>and</strong> are thus inferred to<br />

1092 have been formed by impact melting. Kimura et al. (2005)<br />

1093 reported sinoite in EH6-an Y-793225, a meteorite described<br />

1094 in this study as an impact-melt rock.<br />

1095 Sinoite may have formed at temperatures <strong>of</strong> 1400–<br />

1096 1500 °C (Brosset <strong>and</strong> Idrestedt, 1964) by a reaction such<br />

1097<br />

1098<br />

as that proposed by Ryall <strong>and</strong> Muan (1969):<br />

1100 SiO2 þ 3Si þ 2N2ðgÞ ¼2Si2N2O<br />

1101 (with the N2 possibly being derived from nitride conden-<br />

1102 sates; e.g., Rubin <strong>and</strong> Choi, 2009). Such high temperatures<br />

1103 are far beyond those envisioned for thermal metamorphism<br />

1104 in EL4 or even EL6 chondrites ( 700–950 °C) <strong>and</strong> would<br />

1105 have caused wide-spread melting <strong>of</strong> metal <strong>and</strong> sulfide. How-<br />

1106 ever, high temperatures are briefly present in portions <strong>of</strong><br />

1107 impact melts <strong>and</strong> it seems likely that sinoite in EL4 chon-<br />

1108 drites crystallized from such melts. Euhedral sinoite in<br />

1109 EL6 chondrites may have crystallized directly from impact<br />

1110 melts (Rubin, 1997a; Bisch<strong>of</strong>f et al., 2005a) or grown coar-<br />

1111 ser via post-impact annealing. A single grain <strong>of</strong> sinoite was<br />

1112 also reported in a perchloric-acid-resistant residue <strong>of</strong> Abee<br />

1113 (Lee et al., 1995).<br />

1114 (10) Fluor-richterite [Na2Ca(Mg,Fe)5Si8O22F2] <strong>and</strong> flu-<br />

1115 orphlogopite [KMg3(Si3Al)O10F2]. Fluor-richterite occurs<br />

1116 in Abee as rare 3.5-mm-long radiating acicular grains bun-<br />

1117 dled in clusters associated with enstatite, troilite <strong>and</strong> keilite<br />

1118 (Douglas <strong>and</strong> Plant, 1969; Olsen et al., 1973). In St. Sauv-<br />

1119 eur, fluor-richterite occurs as 40 100-lm-size subhedral<br />

1120 grains (Rubin, 1983a). The fluor-richterite grains probably<br />

1121 crystallized from the melt.<br />

Fluor-richterite has also been reported in the Mayo Belwa<br />

aubrite (Bevan et al., 1977; Graham et al., 1977) where it<br />

occurs as bundles <strong>of</strong> acicular grains in vugs; some bundles<br />

are up to 3 mm long <strong>and</strong> individual fluor-richterite blades<br />

are up to 1 mm long. Rubin (2010) interpreted Mayo Belwa<br />

as an impact-melt breccia on the basis <strong>of</strong> its possession <strong>of</strong><br />

an intergranular melt matrix containing euhedral silicate<br />

grains, small opaque grains <strong>and</strong> numerous vugs. He proposed<br />

that volatiles in Mayo Belwa were vaporized during<br />

the impact event, forming cavities in the melt; fluor-richterite<br />

may have condensed in some <strong>of</strong> the cavities from the<br />

cooling vapor.<br />

Fluorphlogopite occurs in the EH impact-melt rock Y-<br />

82189 as rare subhedral, 10–30-lm-size grains in association<br />

with enstatite, silica <strong>and</strong> albite (Lin <strong>and</strong> Kimura,<br />

1998). This phase most likely crystallized from the melt.<br />

It is important to note that the only enstatite meteorites<br />

in which fluor-richterite <strong>and</strong> fluorphlogopite have been reported<br />

were interpreted as having been impact melted on<br />

the basis <strong>of</strong> other features. This correspondence is suggestive<br />

that these F-rich phases are themselves petrographic<br />

indicators <strong>of</strong> impact processing.<br />

A.1.2. Geochemical shock indicators<br />

Bogard et al. (2010) reviewed literature data <strong>and</strong> determined<br />

Ar–Ar ages for a suite <strong>of</strong> enstatite meteorites. They<br />

concluded that several EH <strong>and</strong> EL chondrites had experienced<br />

collisional heating early in solar system history that<br />

was sufficiently intense to have disturbed both the Ar–Ar<br />

<strong>and</strong> Rb–Sr chronometers.<br />

Argon–argon data (corrected for errors in the 40 K decay<br />

constant) show that the Abee <strong>and</strong> RKP 80259 EH impactmelt<br />

breccias have Ar–Ar ages <strong>of</strong> 4.52 <strong>and</strong> 4.24 Ga,<br />

respectively (Bogard et al., 2010 <strong>and</strong> references therein).<br />

The Blithfield brecciated EL impact-melt rock has a corrected<br />

Ar–Ar plateau age <strong>of</strong> 4.534 Ga (Bogard et al.,<br />

2010). These dates range from 31 to 135 Ma after accretion<br />

occurred 4.565 Ga ago (Carlson <strong>and</strong> Lugmair, 2000;<br />

Wadhwa et al., 2008; Kleine et al., 2009) <strong>and</strong> are long after<br />

any 26 Al (t ½ = 730,000 years) that was initially present had<br />

decayed away. Impacts are the only plausible heat source at<br />

these late dates.<br />

A.2. Formation <strong>of</strong> Abee <strong>and</strong> other enstatite chondrites by<br />

impact melting<br />

Abee, a large, extensively studied observed fall, is the<br />

classic enstatite–chondrite impact-melt breccia. It is useful<br />

to review the numerous indicators for impact melting<br />

(<strong>and</strong> contra internal heating) in Abee <strong>and</strong> to compare these<br />

features to the properties <strong>of</strong> the enstatite chondrites in the<br />

present study.<br />

The brecciated texture <strong>of</strong> Abee <strong>and</strong> the occurrence <strong>of</strong><br />

diamonds that were probably produced by shock (see<br />

above) suggest that other melt features in Abee (e.g., euhedral<br />

enstatite <strong>and</strong> euhedral graphite) could have resulted<br />

from impact melting.<br />

Several petrologic characteristics <strong>of</strong> Abee are inconsistent<br />

with long-term melting <strong>and</strong> slow cooling as expected<br />

from heating via the decay <strong>of</strong> short-lived radionuclides:<br />

Please cite this article in press as: Rubin A. E. <strong>and</strong> Wasson J. T. Shock effects in “EH6” enstatite chondrites <strong>and</strong> implications for collisional<br />

heating <strong>of</strong> the EH <strong>and</strong> EL parent asteroids. Geochim. Cosmochim. Acta (2011), doi:10.1016/j.gca.2011.04.002<br />

1122<br />

1123<br />

1124<br />

1125<br />

1126<br />

1127<br />

1128<br />

1129<br />

1130<br />

1131<br />

1132<br />

1133<br />

1134<br />

1135<br />

1136<br />

1137<br />

1138<br />

1139<br />

1140<br />

1141<br />

1142<br />

1143<br />

1144<br />

1145<br />

1146<br />

1147<br />

1148<br />

1149<br />

1150<br />

1151<br />

1152<br />

1153<br />

1154<br />

1155<br />

1156<br />

1157<br />

1158<br />

1159<br />

1160<br />

1161<br />

1162<br />

1163<br />

1164<br />

1165<br />

1166<br />

1167<br />

1168<br />

1169<br />

1170<br />

1171<br />

1172<br />

1173<br />

1174<br />

1175<br />

1176<br />

1177<br />

1178


GCA 7175 No. <strong>of</strong> Pages 25<br />

26 April 2011 Disk Used<br />

1179 (1) Many type-3 enstatite chondrites contain two varie-<br />

1180 ties <strong>of</strong> enstatite grains: low-MnO grains that exhibit<br />

1181 blue luminescence under electron bombardment <strong>and</strong><br />

1182 MnO-bearing grains that exhibit red luminescence<br />

1183 (e.g., Keil, 1968; Leitch <strong>and</strong> Smith, 1982; Weisberg<br />

1184 et al., 1994). Although dominated by low-MnO<br />

1185 enstatite (Keil, 1968), Abee contains both varieties<br />

1186 (Fig. 7 <strong>of</strong> Leitch <strong>and</strong> Smith, 1982), indicating that<br />

1187 it was incompletely melted <strong>and</strong> incompletely<br />

1188 homogenized.<br />

1189 (2) The presence <strong>of</strong> readily recognizable chondrules also<br />

1190 indicates incomplete melting.<br />

1191 (3) SiC is abundant in EH3 chondrites. The presence <strong>of</strong><br />

1192 SiC in Abee is inferred from the identification <strong>of</strong><br />

1193 trace amounts <strong>of</strong> Ne–E (H) in an acid-etched residue<br />

1194 (Huss <strong>and</strong> Lewis, 1995); SiC is the host phase <strong>of</strong> Ne–<br />

1195 E (H) (e.g., Amari et al., 1994).<br />

1196 (4) Igneous textures in Abee occur both within the clasts<br />

1197 <strong>and</strong> in matrix regions between clasts; this indicates<br />

1198 that Abee experienced two separate melting episodes<br />

1199 (Rubin <strong>and</strong> Scott, 1997; Rubin, 2008).<br />

1200 (5) Different clast <strong>and</strong> matrix regions in Abee contain<br />

1201 appreciably different modal abundances <strong>of</strong> major<br />

1202 phases (Rubin <strong>and</strong> Keil, 1983): enstatite (22–<br />

1203 52 wt%), silica (0.9–16 wt%), plagioclase (4–<br />

1204 14 wt%), keilite (3–13 wt%), troilite (5–13 wt%) <strong>and</strong><br />

1205 kamacite (20–65 wt%). Igneous rocks that formed<br />

1206 by slow melting processes would likely be much more<br />

1207 homogeneous unless post-crystallization brecciation<br />

1208 mixed diverse lithologies.<br />

1209 (6) The occurrence <strong>of</strong> keilite in Abee indicates that the<br />

1210 melt was quenched; if Abee had cooled slowly (or<br />

1211 had been subsequently annealed), keilite would have<br />

1212 exsolved into troilite <strong>and</strong> niningerite (Keil, 2007).<br />

1213 Quenching <strong>of</strong> Abee with little or no subsequent<br />

1214 annealing is consistent with the occurrence <strong>of</strong> tridy-<br />

1215 mite <strong>and</strong> cristobalite <strong>and</strong> the absence <strong>of</strong> quartz (Kim-<br />

1216 ura et al., 2005). The presence <strong>of</strong> cohenite exsolution<br />

1217 lamellae in Abee kamacite also indicates rapid cool-<br />

1218 ing (Herndon <strong>and</strong> Rudee, 1978; Rudee <strong>and</strong> Herndon,<br />

1219 1980).<br />

1220 (7) The acicular morphologies <strong>of</strong> fluor-richterite grains<br />

1221 in Abee <strong>and</strong> St. Sauveur <strong>and</strong> their occurrence in these<br />

1222 two rocks which have been interpreted as impact-<br />

1223 melt breccias suggest that fluor-richterite crystallized<br />

1224<br />

1225<br />

from the impact melt (Rubin, 2008).<br />

1226 Ins<strong>of</strong>ar as the other enstatite chondrites in this study<br />

1227 resemble Abee in containing euhedral enstatite <strong>and</strong> graphite<br />

1228 <strong>and</strong> having relict chondrules on which enstatite nucleated<br />

1229 from the melt, it is likely that these rocks formed by similar,<br />

1230 impact-related processes.<br />

1231 The occurrence <strong>of</strong> euhedral sinoite grains in regions <strong>of</strong><br />

1232 QUE 94368 that also contain euhedral enstatite <strong>and</strong> euhe-<br />

1233 dral graphite (Rubin, 1997b) suggests that the sinoite<br />

1234 formed from an impact melt. Regions <strong>of</strong> QUE 94368 that<br />

1235 do not contain sinoite have normal chondritic textures<br />

1236 <strong>and</strong> do not contain euhedral enstatite or euhedral graphite.<br />

1237 By extrapolation, other enstatite chondrites that contain<br />

Collisional heating <strong>of</strong> enstatite chondrites 19<br />

euhedral sinoite are likely to have experienced impact<br />

melting.<br />

APPENDIX B. PETROGRAPHIC CHARACTERISTICS<br />

OF EH6 CHONDRITES<br />

B.1. Y-8404<br />

The dominant phase is orthoenstatite, occurring mainly<br />

as euhedral grains, typically 10 50 lm in size, but ranging<br />

up to 25 120 lm (Fig. 1a <strong>and</strong> b). Many grains show welldeveloped<br />

{210} cleavage; most grains exhibit sharp optical<br />

extinction consistent with a whole-rock shock stage <strong>of</strong> S1.<br />

The majority <strong>of</strong> the euhedral enstatite grains are intergrown<br />

with other r<strong>and</strong>omly oriented grains <strong>of</strong> euhedral enstatite<br />

<strong>and</strong> smaller (15–60-lm size) more-equant grains <strong>of</strong> enstatite,<br />

plagioclase <strong>and</strong> silica. Some <strong>of</strong> the euhedral enstatite<br />

grains are surrounded by 20–150-lm-diameter opaque<br />

patches consisting <strong>of</strong> troilite ± kamacite (Fig. 1b). Some<br />

opaque patches range up to 1500 lm in size <strong>and</strong> are nearly<br />

free <strong>of</strong> kamacite; they consist almost entirely <strong>of</strong> troilite surrounding<br />

silicate assemblages containing euhedral enstatite<br />

grains.<br />

Silica is abundant; Lin <strong>and</strong> Kimura (1998) reported a<br />

modal abundance <strong>of</strong> 17.7 vol%. Other opaque phases include<br />

minor keilite <strong>and</strong> accessory schreibersite. According<br />

to Lin <strong>and</strong> Kimura (1998), the silicate/opaque modal abundance<br />

ratio is 3.7.<br />

Although Lin <strong>and</strong> Kimura (1998) did not find chondrules<br />

or chondrule fragments in Y-8404, we found recognizable<br />

remnants <strong>of</strong> two radial pyroxene (RP) chondrules in<br />

the available thin section. The larger is 2 mm in diameter<br />

(Fig. 2a <strong>and</strong> b). It consists <strong>of</strong> radiating enstatite laths separated<br />

by 20-lm-thick b<strong>and</strong>s <strong>of</strong> troilite; troilite constitutes<br />

50 vol% <strong>of</strong> this chondrule (Fig. 2b). The smaller RP chondrule<br />

is 400 lm in diameter <strong>and</strong> contains 5–10 vol% troilite<br />

occurring between radiating bars <strong>of</strong> enstatite.<br />

B.2. Y-980211<br />

The dominant phase is orthoenstatite, occurring mainly<br />

as euhedral grains ranging in size from 10 40 to<br />

60 300 lm. Many grains show well-developed {210}<br />

cleavage. Although most euhedral enstatite grains exhibit<br />

sharp optical extinction, about 25% exhibit undulose<br />

extinction, consistent with a whole-rock shock stage <strong>of</strong><br />

S2. The majority <strong>of</strong> the euhedral enstatite grains are intergrown<br />

with more-equant, 10–40-lm-size grains <strong>of</strong> enstatite<br />

<strong>and</strong> plagioclase. Plagioclase grains range from 30 to 80 lm<br />

in maximum dimension. Silica was not identified; point<br />

counting (n = 50) on the electron microprobe gives an<br />

upper limit <strong>of</strong>


GCA 7175 No. <strong>of</strong> Pages 25<br />

26 April 2011 Disk Used<br />

20 A.E. Rubin, J.T. Wasson / Geochimica et Cosmochimica Acta xxx (2011) xxx–xxx<br />

1292 (Fig. 3). Similarly sized kamacite globules occur in Abee<br />

1293 (Dawson et al., 1960; Rubin <strong>and</strong> Keil, 1983).<br />

1294 One relict RP chondrule fragment was identified in Y-<br />

1295 980211. It is 80 110 lm in size <strong>and</strong> is composed <strong>of</strong> a sheaf<br />

1296 <strong>of</strong> radiating enstatite laths with no interleaved troilite.<br />

1297 B.3. Y-980223<br />

1298 The meteorite is dominated by an opaque groundmass<br />

1299 consisting mainly <strong>of</strong> kamacite <strong>and</strong> troilite. Although the<br />

1300 groundmass is fairly uniformly distributed, different regions<br />

1301 consist mainly <strong>of</strong> either kamacite or troilite. Keilite is a<br />

1302 minor phase. Also present are 150–700-lm-diameter<br />

1303 rounded kamacite globules. Throughout the groundmass<br />

1304 <strong>and</strong> inside the globules are euhedral grains <strong>of</strong> orthoenstatite<br />

1305 ranging in size from 4 18 to 30 320 lm (Fig. 4a). Many<br />

1306 grains show well-developed {210} cleavage. Most enstatite<br />

1307 grains exhibit significant undulose extinction, consistent<br />

1308 with a whole-rock shock stage <strong>of</strong> S2. Plagioclase grains<br />

1309 range from 20 to 70 lm in size. Silica is abundant, consti-<br />

1310 tuting 15 vol% <strong>of</strong> the whole rock.<br />

1311 Relict chondrules include RP <strong>and</strong> porphyritic pyroxene<br />

1312 (PP) types. One relict RP chondrule fragment is 250 lm<br />

1313 across <strong>and</strong> contains 10-lm-size patches <strong>of</strong> troilite located<br />

1314 between bars <strong>of</strong> enstatite (Fig. 4b <strong>and</strong> c). It has been partly<br />

1315 resorbed but still contains much <strong>of</strong> its original radial tex-<br />

1316 ture. A few surrounding euhedral enstatite grains appear<br />

1317 to have nucleated at the chondrule surface (Fig. 4c). Also<br />

1318 present in the meteorite groundmass are a few quasi-<br />

1319 rounded, 200–250-lm-diameter, silicate clumps consisting<br />

1320 <strong>of</strong> 40-lm-size grains <strong>of</strong> enstatite <strong>and</strong> plagioclase; these ob-<br />

1321 jects are probably relict PP chondrules.<br />

1322 B.4. Y-980524<br />

1323 The meteorite consists <strong>of</strong> intergrown euhedral <strong>and</strong> anhe-<br />

1324 dral orthoenstatite (12 30 to 100 270 lm in size), pla-<br />

1325 gioclase grains with very fine ( 0.5 lm) polysynthetic<br />

1326 twin lamellae (<strong>and</strong> one grain with a Carlsbad twin), troilite<br />

1327 (some grains with patches <strong>of</strong> daubréelite or daubréelite<br />

1328 exsolution lamellae), kamacite, graphite (occurring as qua-<br />

1329 si-equant <strong>and</strong> irregular 10–100-lm-size patches within<br />

1330 kamacite, silicate <strong>and</strong> schreibersite, <strong>and</strong> as elongated<br />

1331 ( 5 55 lm) grains within kamacite), <strong>and</strong> patches <strong>of</strong><br />

1332 schreibersite (8–1000 lm) adjacent to kamacite. The thin<br />

1333 section also contains a boomerang-shaped metal vein that<br />

1334 is 8 mm in length. A few small (2–8 lm) kamacite <strong>and</strong><br />

1335 troilite grains are enclosed within silicate grains.<br />

1336 Most silicate grains exhibit sharp optical extinction indi-<br />

1337 cating that the rock is <strong>of</strong> shock-stage S1.<br />

1338 Two relict chondrules were identified in the thin section.<br />

1339 An RP chondrule is 1000 1060 lm in size; a PP chondrule<br />

1340 (500 550 lm) contains 30–70-lm-size enstatite<br />

1341 phenocrysts.<br />

1342 B.5. Y-793225<br />

1343 This rock is composed mainly <strong>of</strong> quasi-equant enstatite<br />

1344 grains 40–70 lm wide <strong>and</strong> 150–420 lm long (Fig. 5a <strong>and</strong><br />

1345 b). Most grains show well-developed {210} cleavage <strong>and</strong><br />

exhibit sharp optical extinction consistent with a wholerock<br />

shock stage <strong>of</strong> S1. Although most enstatite grains<br />

are anhedral or subhedral, some rare euhedral grains also<br />

occur. The enstatite grains are r<strong>and</strong>omly oriented <strong>and</strong> are<br />

intergrown with plagioclase <strong>and</strong> minor silica, forming a<br />

hypidiomorphic-granular texture. We observed one<br />

10 60 lm euhedral enstatite grain attached to a more<br />

rounded silicate assemblage protruding into surrounding<br />

kamacite. Plagioclase grains range in size from 40 to<br />

160 lm.<br />

The rock is coarser grained than Y-8404, Y-980211 <strong>and</strong><br />

Y-980223 <strong>and</strong> has a higher silicate/opaque-phase ratio<br />

(Fig. 5b). According to Lin <strong>and</strong> Kimura (1998), the silicate/opaque<br />

modal abundance ratio in Y-793225 is 7.6.<br />

There are scattered opaque patches 30–350 lm in size.<br />

They consist mainly <strong>of</strong> kamacite <strong>and</strong> troilite. Some <strong>of</strong> the<br />

troilite grains are associated with coarse grains <strong>of</strong> daubréelite,<br />

ranging in size from 20 30 to 50 100 lm; in addition,<br />

a few troilite grains contain relatively thin ( 8-lm<br />

wide) lamellae <strong>of</strong> daubréelite. Other opaque phases include<br />

accessory schreibersite <strong>and</strong> trace amounts <strong>of</strong> graphite,<br />

perryite <strong>and</strong> a Mn-rich, (Mg,Mn,Fe)S solid solution (probably<br />

ferroan alab<strong>and</strong>ite) (Lin <strong>and</strong> Kimura, 1998). Kimura<br />

et al. (2005) also reported two 10-lm-size grains <strong>of</strong> sinoite.<br />

No keilite was observed.<br />

No chondrules or chondrule fragments were found.<br />

B.6. A-882039<br />

This rock is composed <strong>of</strong> major orthoenstatite intergrown<br />

with plagioclase. Both equant <strong>and</strong> euhedral enstatite<br />

grains occur; the euhedral grains range from 10 50 to<br />

120 450 lm (Fig. 6a–c). Very few <strong>of</strong> the grains show pronounced<br />

cleavage. Most enstatite grains exhibit undulose<br />

extinction but lack polysynthetic twins, indicating shock<br />

stage S2. Plagioclase grains are generally irregular in shape<br />

<strong>and</strong> range up to 70 lm in size.<br />

Many silicate intergrowths are surrounded by 30–1100lm-size<br />

opaque assemblages. Opaque phases include kamacite,<br />

schreibersite, troilite, daubréelite, ferroan alab<strong>and</strong>ite<br />

[(Mn,Fe)S], <strong>and</strong> graphite. Daubréelite typically occurs<br />

within troilite, either as exsolution lamellae (typically 4–<br />

6 lm wide) or as tabular grains up to 70 lm thick<br />

(Fig. 6b). Ferroan alab<strong>and</strong>ite occurs as massive grains adjacent<br />

to kamacite <strong>and</strong>/or troilite (Fig. 6b) <strong>and</strong> as rare 8–20lm-thick<br />

exsolution lamellae within troilite. Schreibersite<br />

occurs within kamacite near the border with surrounding<br />

silicate; in some opaque assemblages, the schreibersite is<br />

massive, ranging up to 250 lm in thickness (Fig. 6c).<br />

Graphite occurs within kamacite grains as 2–20-lm-size<br />

clusters <strong>and</strong> as large tabular grains up to 50 210 lm in<br />

size (Fig. 6c <strong>and</strong> d). Graphite is also present as isolated<br />

books (using the terminology <strong>of</strong> El Goresy et al., 2001)<br />

ranging from 6 100 to 30 250 lm. Some graphite books<br />

are adjacent to kamacite <strong>and</strong>/or troilite (Fig. 7a); others are<br />

completely enclosed within silicate (Fig. 7b).<br />

Rare relict chondrules <strong>and</strong> chondrule fragments are<br />

present. One 650 700-lm-size relict radial pyroxene<br />

(RP) chondrule fragment consists <strong>of</strong> a radiating sheaf <strong>of</strong><br />

enstatite bars <strong>and</strong> minor sulfide (Fig. 8a <strong>and</strong> b). One<br />

Please cite this article in press as: Rubin A. E. <strong>and</strong> Wasson J. T. Shock effects in “EH6” enstatite chondrites <strong>and</strong> implications for collisional<br />

heating <strong>of</strong> the EH <strong>and</strong> EL parent asteroids. Geochim. Cosmochim. Acta (2011), doi:10.1016/j.gca.2011.04.002<br />

1346<br />

1347<br />

1348<br />

1349<br />

1350<br />

1351<br />

1352<br />

1353<br />

1354<br />

1355<br />

1356<br />

1357<br />

1358<br />

1359<br />

1360<br />

1361<br />

1362<br />

1363<br />

1364<br />

1365<br />

1366<br />

1367<br />

1368<br />

1369<br />

1370<br />

1371<br />

1372<br />

1373<br />

1374<br />

1375<br />

1376<br />

1377<br />

1378<br />

1379<br />

1380<br />

1381<br />

1382<br />

1383<br />

1384<br />

1385<br />

1386<br />

1387<br />

1388<br />

1389<br />

1390<br />

1391<br />

1392<br />

1393<br />

1394<br />

1395<br />

1396<br />

1397<br />

1398<br />

1399<br />

1400<br />

1401<br />

1402<br />

1403


GCA 7175 No. <strong>of</strong> Pages 25<br />

26 April 2011 Disk Used<br />

1404 750 820 lm relict PP chondrule is composed mainly <strong>of</strong><br />

1405 100–200-lm-size quasi-equant enstatite <strong>and</strong> plagioclase<br />

1406 phenocrysts (Fig. 8c <strong>and</strong> d).<br />

1407 REFERENCES<br />

1408 Amari S., Lewis R. S. <strong>and</strong> Anders E. (1994) Interstellar grains in<br />

1409 meteorites: I. Isolation <strong>of</strong> SiC, graphite, <strong>and</strong> diamond; size<br />

1410 distribution <strong>of</strong> SiC <strong>and</strong> graphite. Geochim. Cosmochim. Acta 58,<br />

1411 459–470.<br />

1412 Berkley J. L. <strong>and</strong> Jones J. H. (1982) Primary igneous carbon in<br />

1413 ureilites: petrological implications. Proc. Lunar Planet. Sci.<br />

1414 Conf. 13, A353–A364.<br />

1415 Berkley J. L., Brown H. G., Keil K., Carter N. L., Mercie J.-C. C.<br />

1416 <strong>and</strong> Huss G. (1976) The Kenna ureilite: an ultramafic rock with<br />

1417 evidence for igneous, metamorphic, <strong>and</strong> shock origin. Geochim.<br />

1418 Cosmochim. Acta 40, 1429–1437.<br />

1419 Bevan A. W. R., Bevan J. C. <strong>and</strong> Francis J. G. (1977) Amphibole in<br />

1420 the Mayo Belwa meteorite: first occurrence in an enstatite<br />

1421 achondrite. Mineral. Mag. 41, 531–534.<br />

1422 Bh<strong>and</strong>ari N., Shah V. G. <strong>and</strong> Wasson J. T. (1980) The Parsa<br />

1423 enstatite chondrite. Meteoritics 15, 225–234.<br />

1424 Binns R. A. (1967) Olivine in enstatite chondrites. Am. Mineral. 52,<br />

1425 1549–1554.<br />

1426 Binns R. A. (1970) (Mg,Fe) 2SiO 4 spinel in a meteorite. Phys. <strong>Earth</strong><br />

1427 Planet. Inter. 3, 156–160.<br />

1428 Binns R. A., Davis R. J. <strong>and</strong> Reed S. B. J. (1969) Ringwoodite,<br />

1429 natural (Mg,Fe)2SiO4 in the Tenham meteorite. Nature 221,<br />

1430 943–944.<br />

1431 Birck J.-L. <strong>and</strong> Allègre C. J. (1988) Manganese–chromium isotope<br />

1432 systematics <strong>and</strong> the development <strong>of</strong> the early Solar System.<br />

1433 Nature 331, 579–584.<br />

1434 Bisch<strong>of</strong>f A., Palme H., Geiger T. <strong>and</strong> Spettel B. (1992) Mineralogy<br />

1435 <strong>and</strong> chemistry <strong>of</strong> the EL-chondritic melt rock Ilafegh 009<br />

1436 (abstract). Lunar Planet. Sci. 23, 105–106.<br />

1437 Bisch<strong>of</strong>f A., Grund T., Jording T., Heying B., H<strong>of</strong>fmann R.-D.,<br />

1438 Rodewald U. C. <strong>and</strong> Pöttgen R. (2005a) Occurrence, structure,<br />

1439 <strong>and</strong> formation <strong>of</strong> sinoite in enstatite chondrites (abstract).<br />

1440 Meteorit. Planet. Sci. 40, A20.<br />

1441 Bisch<strong>of</strong>f A., Grund T., Jording T., Heying B., H<strong>of</strong>fmann R.-D.,<br />

1442 Rodewald U. C. <strong>and</strong> Pöttgen R. (2005b) First refinement <strong>of</strong> the<br />

1443 sinoite structure <strong>of</strong> a natural crystal from the Neuschwanstein<br />

1444 (EL6) meteorite. Z. Naturforsch. 60b, 1231–1234.<br />

1445 Bogard D. D., Garrison D. H., Scott E. R. D., Keil K., Taylor G.<br />

1446 J., Vogt S., Herzog G. F. <strong>and</strong> Klein J. (1990) The Chico, NM,<br />

1447 L-6 chondrite: a large, 500 My-old impact melt with a long<br />

1448 cosmic ray exposure (abstract). Lunar Planet. Sci. 21, 103–104.<br />

1449 Bogard D. D., Dixon E. T. <strong>and</strong> Garrison D. H. (2010) Ar–Ar ages<br />

1450 <strong>and</strong> thermal histories <strong>of</strong> enstatite meteorites. Meteorit. Planet.<br />

1451 Sci. 45, 723–742.<br />

1452 Brosset C. <strong>and</strong> Idrestedt I. (1964) Crystal structure <strong>of</strong> silicon<br />

1453 oxynitride, Si 2N 2O. Nature 201, 1211.<br />

1454 Burbine T. H., McCoy T. J. <strong>and</strong> Dickinson T. L. (2000) Origin <strong>of</strong><br />

1455 plagioclase-“enriched”, igneous, enstatite meteorites (abstract).<br />

1456 Meteorit. Planet. Sci. 35, A36.<br />

1457 Carlson R. W. <strong>and</strong> Lugmair G. W. (2000) Timescales <strong>of</strong> planetes-<br />

1458 imal formation <strong>and</strong> differentiation based on extinct <strong>and</strong> extant<br />

1459 radioisotopes. In Origin <strong>of</strong> the <strong>Earth</strong> <strong>and</strong> Moon (eds. R. Canup<br />

1460 <strong>and</strong> K. Righter). University <strong>of</strong> Arizona Press, Tucson, pp. 25–<br />

1461 44.<br />

1462 Chen M., Sharp T. G., El Goresy A., Wopenka B. <strong>and</strong> Xie X.<br />

1463 (1996) The majorite-pyrope + magnesiowüstite assemblage:<br />

1464 constraints on the history <strong>of</strong> shock veins in chondrites. Science<br />

1465 271, 1570–1573.<br />

1466 Chen M., Shu J. F., Xie X. D. <strong>and</strong> Mao H. K. (2003) Natural<br />

1467 CaTi 2O 4-structured FeCr 2O 4 polymorph in the Suizhou mete-<br />

Collisional heating <strong>of</strong> enstatite chondrites 21<br />

orite <strong>and</strong> its significance in mantle mineralogy. Geochim.<br />

Cosmochim. Acta 67, 3937–3942.<br />

Choe W. H., Huber H., Rubin A. E., Kallemeyn G. W. <strong>and</strong><br />

Wasson J. T. (2010) Compositions <strong>and</strong> taxonomy <strong>of</strong> 15 unusual<br />

carbonaceous chondrites. Meteorit. Planet. Sci. 45, 531–554.<br />

Clarke R. S., Appleman D. E. <strong>and</strong> Ross D. R. (1981) An Antarctic<br />

iron meteorite contains preterrestrial impact-produced diamond<br />

<strong>and</strong> lonsdaleite. Nature 291, 396–398.<br />

Crabb J. <strong>and</strong> Anders E. (1981) Noble gases in E-chondrites.<br />

Geochim. Cosmochim. Acta 45, 2443–2464.<br />

Daulton T. L., Eisenhour D. D., Buseck P. R., Lewis R. S. <strong>and</strong><br />

Bernatowicz T. J. (1994) High-resolution transmission electron<br />

microscopy <strong>of</strong> meteoritic <strong>and</strong> terrestrial nano-diamonds<br />

(abstract). Lunar Planet. Sci. 25, 313–314.<br />

Dawson K. R., Maxwell J. A. <strong>and</strong> Parsons D. E. (1960) A<br />

description <strong>of</strong> the meteorite which fell near Abee, Alberta,<br />

Canada. Geochim. Cosmochim. Acta 21, 127–144.<br />

Dodd R. T. (1974) Petrology <strong>of</strong> the St. Mesmin chondrite. Contrib.<br />

Mineral. Petrol. 46, 129–145.<br />

Dominik B. <strong>and</strong> Bussy F. (1994) The Bison LL6 breccia.<br />

Meteoritics 29, 235–237.<br />

Douglas J. A. V. <strong>and</strong> Plant A. G. (1969) Amphibole: first<br />

occurrence in an enstatite chondrite (abstract). Meteoritics 4,<br />

166.<br />

Easton A. J. (1983) Grain-size distribution <strong>and</strong> morphology <strong>of</strong><br />

metal in E-chondrites. Meteoritics 18, 19–27.<br />

El Goresy A. <strong>and</strong> Kullerud G. (1969) Phase relations in the system<br />

Cr–Fe–S. In Meteorite Research (ed. P. M. Millman). D.<br />

Reidel, Dordrecht, pp. 638–656.<br />

El Goresy A., Wadwha M., Nagel H.-J., Zinner E. K., Janicke J.<br />

<strong>and</strong> Crozaz G. (1992) 53 Cr– 53 Mn systematics <strong>of</strong> Mn-bearing<br />

sulfides in four enstatite chondrites (abstract). Lunar Planet.<br />

Sci. 23, 331–332.<br />

El Goresy A., Gillet P., Chen M., Künstler F., Graup G. <strong>and</strong><br />

Stähle V. (2001) In situ discovery <strong>of</strong> shock-induced graphite–<br />

diamond phase transition in gneisses from the Ries Crater,<br />

Germany. Am. Mineral. 86, 611–621.<br />

Fagan T. J., Scott E. R. D., Keil K., Cooney T. F. <strong>and</strong> Sharma S.<br />

K. (2000) Formation <strong>of</strong> feldspathic <strong>and</strong> metallic melts by shock<br />

in enstatite chondrite Reckling Peak A80259. Meteorit. Planet.<br />

Sci. 35, 319–329.<br />

Floss C. <strong>and</strong> Crozaz G. (1993) Heterogeneous REE patterns in<br />

oldhamite from aubrites: their nature <strong>and</strong> origin. Geochim.<br />

Cosmochim. Acta 57, 4039–4057.<br />

Fogel R. A., Hess P. C. <strong>and</strong> Rutherford M. J. (1989) Intensive<br />

parameters <strong>of</strong> enstatite chondrite metamorphism. Geochim.<br />

Cosmochim. Acta 53, 2735–2746.<br />

Frondel C. <strong>and</strong> Marvin U. (1967) Lonsdaleite, a hexagonal<br />

polymorph <strong>of</strong> diamond. Nature 214, 587–589.<br />

Frul<strong>and</strong> R. M. (1975) Volatile movement in the Rose City<br />

meteorite, <strong>and</strong> implications concerning the impact <strong>and</strong> late<br />

thermal history <strong>of</strong> ordinary chondrites (abstract). Meteoritics<br />

10, 403–404.<br />

Gillet P., Chen M., Dubrovinsky L. <strong>and</strong> El Goresy A. (2000)<br />

Natural NaAlSi3O8-holl<strong>and</strong>ite in the shocked Sixiangkou<br />

meteorite. Science 287, 1633–1636.<br />

Govindaraju K. (1994) Compilation <strong>of</strong> working values <strong>and</strong><br />

descriptions for 383 geost<strong>and</strong>ards. Geost<strong>and</strong>. Newslett. 118, 1–<br />

158.<br />

Grady M. M., Wright I. P., Carr L. P. <strong>and</strong> Pillinger C. T. (1986)<br />

Compositional differences in enstatite chondrites based on<br />

carbon <strong>and</strong> nitrogen stable isotope measurements. Geochim.<br />

Cosmochim. Acta 50, 2799–2813.<br />

Graham A. L., Easton A. J. <strong>and</strong> Hutchison R. (1977) The Mayo<br />

Belwa meteorite: a new enstatite achondrite fall. Mineral. Mag.<br />

41, 487–492.<br />

Please cite this article in press as: Rubin A. E. <strong>and</strong> Wasson J. T. Shock effects in “EH6” enstatite chondrites <strong>and</strong> implications for collisional<br />

heating <strong>of</strong> the EH <strong>and</strong> EL parent asteroids. Geochim. Cosmochim. Acta (2011), doi:10.1016/j.gca.2011.04.002<br />

1468<br />

1469<br />

1470<br />

1471<br />

1472<br />

1473<br />

1474<br />

1475<br />

1476<br />

1477<br />

1478<br />

1479<br />

1480<br />

1481<br />

1482<br />

1483<br />

1484<br />

1485<br />

1486<br />

1487<br />

1488<br />

1489<br />

1490<br />

1491<br />

1492<br />

1493<br />

1494<br />

1495<br />

1496<br />

1497<br />

1498<br />

1499<br />

1500<br />

1501<br />

1502<br />

1503<br />

1504<br />

1505<br />

1506<br />

1507<br />

1508<br />

1509<br />

1510<br />

1511<br />

1512<br />

1513<br />

1514<br />

1515<br />

1516<br />

1517<br />

1518<br />

1519<br />

1520<br />

1521<br />

1522<br />

1523<br />

1524<br />

1525<br />

1526<br />

1527<br />

1528<br />

1529<br />

1530<br />

1531<br />

1532<br />

1533


GCA 7175 No. <strong>of</strong> Pages 25<br />

26 April 2011 Disk Used<br />

22 A.E. Rubin, J.T. Wasson / Geochimica et Cosmochimica Acta xxx (2011) xxx–xxx<br />

1534 Grimm R. E. <strong>and</strong> McSween H. (1993) Heliocentric zoning <strong>of</strong> the<br />

1535 asteroid belt by 26-Al heating. Science 259, 653–655.<br />

1536 Grossman J. N., Rubin A. E., Rambaldi E. R., Rajan R. S. <strong>and</strong><br />

1537 Wasson J. T. (1985) Chondrules in the Qingzhen type-3<br />

1538 enstatite chondrite: possible precursor components <strong>and</strong> com-<br />

1539 parison to ordinary chondrite chondrules. Geochim. Cosmo-<br />

1540 chim. Acta 49, 1781–1795.<br />

1541 Guan Y., Huss G. R. <strong>and</strong> Leshin L. A. (2007) 60 Fe– 60 Ni <strong>and</strong><br />

1542 53 53<br />

Mn– Cr isotope systems in sulfides from unequilibrated<br />

1543 enstatite chondrites. Geochim. Cosmochim. Acta 71, 4082–4091.<br />

1544 Herndon J. M. <strong>and</strong> Rudee M. L. (1978) Thermal history <strong>of</strong> the<br />

1545 Abee enstatite chondrite. <strong>Earth</strong> Planet. Sci. Lett. 41, 101–106.<br />

1546 Huss G. R. <strong>and</strong> Lewis R. S. (1995) Presolar diamond, SiC, <strong>and</strong><br />

1547 graphite in primitive chondrites: abundances as a function <strong>of</strong><br />

1548 meteorite class <strong>and</strong> petrologic type. Geochim. Cosmochim. Acta<br />

1549 59, 115–160.<br />

1550 Irving A. J., Bunch T. E., Rubin A. E. <strong>and</strong> Wasson J. T. (2010)<br />

1551 Northwest Africa 2828/Al Haggounia 001 is a weathered<br />

1552 unequilibrated EL chondrite: trace element <strong>and</strong> petrologic<br />

1553 evidence. Meteorit. Planet. Sci. 45, A90.<br />

1554 Jarosewich E., Clarke R. S. <strong>and</strong> Barrows J. N. (1987) The Allende<br />

1555 meteorite reference sample. Smithson. Contrib. <strong>Earth</strong> Sci. 27, 1–<br />

1556 49.<br />

1557 Kallemeyn G. W. <strong>and</strong> Wasson J. T. (1986) Compositions <strong>of</strong><br />

1558 enstatite (EH3, EH4, 5 <strong>and</strong> EL6) chondrites: implications<br />

1559 regarding their formation. Geochim. Cosmochim. Acta 50, 2153–<br />

1560 2164.<br />

1561 Kallemeyn G. W., Rubin A. E., Wang D. <strong>and</strong> Wasson J. T.<br />

1562 (1989) Ordinary chondrites: bulk compositions, classification,<br />

1563 lithophile-element fractionations, <strong>and</strong> composition–petro-<br />

1564 graphic type relationships. Geochim. Cosmochim. Acta 53,<br />

1565 2747–2767.<br />

1566 Karwowski L., Kryza R. <strong>and</strong> Przylibski T. (2007) New chemical<br />

1567 <strong>and</strong> physical data on keilite from the Zakłodzie enstatite<br />

1568 achondrite. Am. Mineral. 92, 204–209.<br />

1569 Keil K. (1968) Mineralogical <strong>and</strong> chemical relationships among<br />

1570 enstatite chondrites. J. Geophys. Res. 73, 6945–6976.<br />

1571 Keil K. (2007) Occurrence <strong>and</strong> origin <strong>of</strong> keilite, (Fe >0.5, Mg


GCA 7175 No. <strong>of</strong> Pages 25<br />

26 April 2011 Disk Used<br />

1666 isotopic compositions <strong>of</strong> in situ diamonds <strong>and</strong> other carbon<br />

1667 phases in the Bencubbin meteorite. <strong>Earth</strong> Planet. Sci. Lett. 204,<br />

1668 89–100.<br />

1669 Nehru C. E., Prinz M., Weisberg M. K. <strong>and</strong> Delaney J. S. (1984)<br />

1670 Parsa: an unequilibrated enstatite chondrite (UEC) with an<br />

1671 aubrite-like impact melt clast (abstract). Lunar Planet. Sci. 15,<br />

1672 597–598.<br />

1673 Okada A., Keil K., Taylor G. J. <strong>and</strong> Newsom H. (1988) Igneous<br />

1674 history <strong>of</strong> the aubrite parent asteroid: evidence from the Norton<br />

1675 County enstatite achondrite. Meteoritics 23, 59–74.<br />

1676 Olsen E., Huebner J. S., Douglas J. A. V. <strong>and</strong> Plant A. G. (1973)<br />

1677 Meteoritic amphiboles. Am. Mineral. 58, 869–872.<br />

1678 Olsen E. J., Bunch T. E., Jarosewich E., Noonan A. F. <strong>and</strong> Huss G.<br />

1679 I. (1977) Happy Canyon: a new type <strong>of</strong> enstatite achondrite.<br />

1680 Meteoritics 12, 109–123.<br />

1681 Olsen E. J., Huss G. I. <strong>and</strong> Jarosewich E. (1988) The Eagle,<br />

1682 Nebraska, enstatite chondrite. Meteoritics 23, 379–380.<br />

1683 Petaev M. I. <strong>and</strong> Khodakovsky I. L. (1986) Thermodynamic<br />

1684 properties <strong>and</strong> conditions <strong>of</strong> formation <strong>of</strong> minerals in enstatite<br />

1685 meteorites. In Chemistry <strong>and</strong> Physics <strong>of</strong> Terrestrial Planets (ed.<br />

1686 S. K. Saxena). Springer-Verlag, New York, pp. 106–135.<br />

1687 Patzer A. <strong>and</strong> Schultz L. (1998) The exposure age distribution <strong>of</strong><br />

1688 enstatite chondrites (abstract). Meteorit. Planet. Sci. 33, A120–<br />

1689 A121.<br />

1690 Patzer A. <strong>and</strong> Schultz L. (2001) Noble gases in enstatite chondrites:<br />

1691 I. Exposure ages, pairing, <strong>and</strong> weathering effects. Meteorit.<br />

1692 Planet. Sci. 36, 947–961.<br />

1693 Patzer A., Schlüter J., Schultz L., Tarkian M., Hill D. H. <strong>and</strong><br />

1694 Boynton W. V. (2004) New findings for the equilibrated<br />

1695 enstatite chondrite Grein 002. Meteorit. Planet. Sci. 39, 1555–<br />

1696 1575.<br />

1697 Price G. D., Putnis A., Agrell S. O. <strong>and</strong> Smith D. G. W. (1983)<br />

1698 Wadsleyite, natural beta-(Mg,Fe)2SiO4 from the Peace River<br />

1699 meteorite. Can. Mineral. 21, 29–35.<br />

1700 Pryzlibski T. A., Zago_zd_zon P. P., Kryza R. <strong>and</strong> Pilski A. S. (2005)<br />

1701 The Zakłodzie enstatite meteorite: mineralogy, petrology,<br />

1702 origin <strong>and</strong> classification. Meteorit. Planet. Sci. 40, A185–A200.<br />

1703 Ramdohr P. (1973) The Opaque Minerals in Stony Meteorites.<br />

1704 Elsevier, Amsterdam, 245p.<br />

1705 Rubin A. E. (1983a) The Adhi Kot breccia <strong>and</strong> implications for the<br />

1706 origin <strong>of</strong> chondrules <strong>and</strong> silica-rich clasts in enstatite chon-<br />

1707 drites. <strong>Earth</strong> Planet. Sci. Lett. 64, 201–212.<br />

1708 Rubin A. E. (1983b) Impact melt-rock clasts in the Hvittis enstatite<br />

1709 chondrite breccia: implications for a genetic relationship<br />

1710 between EL chondrites <strong>and</strong> aubrites. Proc. Lunar Planet. Sci.<br />

1711 Conf. 14, B293–B300.<br />

1712 Rubin A. E. (1983c) The Atlanta enstatite chondrite breccia.<br />

1713 Meteoritics 18, 113–121.<br />

1714 Rubin A. E. (1984) The Blithfield meteorite <strong>and</strong> the origin <strong>of</strong><br />

1715 sulfide-rich, metal-poor clasts <strong>and</strong> inclusions in brecciated<br />

1716 enstatite chondrites. <strong>Earth</strong> Planet. Sci. Lett. 67, 273–283.<br />

1717 Rubin A. E. (1985) Impact melt products <strong>of</strong> chondritic material.<br />

1718 Rev. Geophys. 23, 277–300.<br />

1719 Rubin A. E. (1997a) Igneous graphite in enstatite chondrites.<br />

1720 Mineral. Mag. 61, 699–703.<br />

1721 Rubin A. E. (1997b) Sinoite (Si 2N 2O): crystallization from EL<br />

1722 chondrite impact melts. Am. Mineral. 82, 1001–1006.<br />

1723 Rubin A. E. (2000) Petrologic, geochemical <strong>and</strong> experimental<br />

1724 constraints on models <strong>of</strong> chondrule formation. <strong>Earth</strong>-Sci. Rev.<br />

1725 50, 3–27.<br />

1726 Rubin A. E. (2004) Post-shock annealing <strong>and</strong> post-annealing shock<br />

1727 in equilibrated ordinary chondrites: implications for the ther-<br />

1728 mal <strong>and</strong> shock histories <strong>of</strong> chondritic asteroids. Geochim.<br />

1729 Cosmochim. Acta 68, 673–689.<br />

1730 Rubin A. E. (2006) Shock <strong>and</strong> annealing in EL chondrites.<br />

1731 Meteorit. Planet. Sci. 43, A154.<br />

Collisional heating <strong>of</strong> enstatite chondrites 23<br />

Rubin A. E. (2008) Explicating the behavior <strong>of</strong> Mn-bearing phases<br />

during shock melting <strong>and</strong> crystallization <strong>of</strong> the Abee EHchondrite<br />

impact-melt breccia. Meteorit. Planet. Sci. 43, 1481–<br />

1486.<br />

Rubin A. E. (2010) Impact melting in the Cumberl<strong>and</strong><br />

Falls <strong>and</strong> Mayo Belwa aubrites. Meteorit. Planet. Sci. 45,<br />

265–275.<br />

Rubin A. E. (1995a) Fractionation <strong>of</strong> refractory siderophile<br />

elements in metal from the Rose City meteorite. Meteoritics<br />

30, 412–417.<br />

Rubin A. E. (1995b) Petrologic evidence for collisional heating <strong>of</strong><br />

chondritic asteroids. Icarus 113, 156–167.<br />

Rubin A. E. (2005) What heated the asteroids? Sci. Am. 292,<br />

80–87.<br />

Rubin A. E. <strong>and</strong> Choi B.-G. (2009) Origin <strong>of</strong> halogens <strong>and</strong> nitrogen<br />

in enstatite chondrites. <strong>Earth</strong> Moon Planets 105, 41–53.<br />

Rubin A. E. <strong>and</strong> Keil K. (1983) Mineralogy <strong>and</strong> petrology <strong>of</strong> the<br />

Abee enstatite chondrite breccia <strong>and</strong> its dark inclusions. <strong>Earth</strong><br />

Planet. Sci. Lett. 62, 118–131.<br />

Rubin A. E. <strong>and</strong> Read W. F. (1984) The Brownell <strong>and</strong> Ness County<br />

(1894) L6 chondrites: further sorting-out <strong>of</strong> Ness County<br />

meteorites. Meteoritics 19, 153–160.<br />

Rubin A. E. <strong>and</strong> Scott E. R. D. (1997) Abee <strong>and</strong> related EH<br />

chondrite impact-melt breccias. Geochim. Cosmochim. Acta 61,<br />

425–435.<br />

Rubin A. E., Scott E. R. D. <strong>and</strong> Keil K. (1997) Shock metamorphism<br />

<strong>of</strong> enstatite chondrites. Geochim. Cosmochim. Acta 61,<br />

847–858.<br />

Rubin A. E., Huber H. <strong>and</strong> Wasson J. T. (2009) Possible impactinduced<br />

refractory-lithophile fractionations in EL chondrites.<br />

Geochim. Cosmochim. Acta 73, 1523–1537.<br />

Rudee M. L. <strong>and</strong> Herndon J. M. (1980) The thermal history <strong>of</strong><br />

Abee (abstract). Meteoritics 15, 361.<br />

Russell S. S., Pillinger C. T., Arden J. W., Lee M. R. <strong>and</strong> Ott U.<br />

(1992) A new type <strong>of</strong> meteoritic diamond in the enstatite<br />

chondrite Abee. Science 256, 206–209.<br />

Russell S. S., Zipfel J., Folco L., Jones R., Grady M. M., McCoy<br />

T. <strong>and</strong> Grossman J. N. (2003) The Meteoritical Bulletin, No.<br />

87, 2003 July. Meteorit. Planet. Sci. 38, A189–A248.<br />

Ryall W. R. <strong>and</strong> Muan A. (1969) Silicon oxynitride stability.<br />

Science 165, 1363–1364.<br />

Sears D. W., Kallemeyn G. W. <strong>and</strong> Wasson J. T. (1982)<br />

The compositional classification <strong>of</strong> chondrites: II. The<br />

enstatite chondrite groups. Geochim. Cosmochim. Acta 46,<br />

597–608.<br />

Sharp T. G. <strong>and</strong> DeCarli P. S. (2006) Shock effects in meteorites. In<br />

Meteorites <strong>and</strong> the Early Solar System II (eds. D. S. Lauretta<br />

<strong>and</strong> H. Y. McSween). University <strong>of</strong> Arizona Press, Tucson, pp.<br />

653–677.<br />

Sharp T. G., Lingemann C. M., Dupas C. <strong>and</strong> Stöffler D. (1997)<br />

Natural occurrence <strong>of</strong> MgSiO3-ilmenite <strong>and</strong> evidence for<br />

MgSiO3-perovskite in a shocked L chondrite. Science 277,<br />

352–355.<br />

Shelkov D., Milledge H. J., Verchovsky A. B., Kaminsky F. <strong>and</strong><br />

Pillinger C. T. (1996) Preliminary C, N, He <strong>and</strong> Ar study <strong>of</strong><br />

shock produced diamonds from the Popigai Crater <strong>and</strong><br />

Ebeliakh Placer, Siberia (abstract). Lunar Planet. Sci. 27,<br />

1187–1188.<br />

Smith J. V. <strong>and</strong> Mason B. (1970) Pyroxene–garnet transformation<br />

in Coorara meteorite. Science 168, 832.<br />

Stöffler D., Keil K. <strong>and</strong> Scott E. R. D. (1991) Shock metamorphism<br />

<strong>of</strong> ordinary chondrites. Geochim. Cosmochim. Acta 55, 3845–<br />

3867.<br />

Tomioka N. <strong>and</strong> Fujino K. (1997) Natural (Mg,Fe)SiO3-ilmenite <strong>and</strong> -perovskite in the Tenham meteorite. Science 277, 1084–<br />

1086.<br />

Please cite this article in press as: Rubin A. E. <strong>and</strong> Wasson J. T. Shock effects in “EH6” enstatite chondrites <strong>and</strong> implications for collisional<br />

heating <strong>of</strong> the EH <strong>and</strong> EL parent asteroids. Geochim. Cosmochim. Acta (2011), doi:10.1016/j.gca.2011.04.002<br />

1732<br />

1733<br />

1734<br />

1735<br />

1736<br />

1737<br />

1738<br />

1739<br />

1740<br />

1741<br />

1742<br />

1743<br />

1744<br />

1745<br />

1746<br />

1747<br />

1748<br />

1749<br />

1750<br />

1751<br />

1752<br />

1753<br />

1754<br />

1755<br />

1756<br />

1757<br />

1758<br />

1759<br />

1760<br />

1761<br />

1762<br />

1763<br />

1764<br />

1765<br />

1766<br />

1767<br />

1768<br />

1769<br />

1770<br />

1771<br />

1772<br />

1773<br />

1774<br />

1775<br />

1776<br />

1777<br />

1778<br />

1779<br />

1780<br />

1781<br />

1782<br />

1783<br />

1784<br />

1785<br />

1786<br />

1787<br />

1788<br />

1789<br />

1790<br />

1791<br />

1792<br />

1793<br />

1794<br />

1795<br />

1796<br />

1797


GCA 7175 No. <strong>of</strong> Pages 25<br />

26 April 2011 Disk Used<br />

24 A.E. Rubin, J.T. Wasson / Geochimica et Cosmochimica Acta xxx (2011) xxx–xxx<br />

1798 Treiman A. H. <strong>and</strong> Berkley J. L. (1994) Igneous petrology <strong>of</strong> the<br />

1799 new ureilites Nova 001 <strong>and</strong> Nullarbor 010. Meteoritics 29, 843–<br />

1800 848.<br />

1801 Van Schmus W. R. <strong>and</strong> Wood J. A. (1967) A chemical–petrologic<br />

1802 classification for the chondritic meteorites. Geochim. Cosmo-<br />

1803 chim. Acta 31, 747–765.<br />

1804 Vdovykin G. P. (1972) Forms <strong>of</strong> carbon in the new Haverö ureilite<br />

1805 <strong>of</strong> Finl<strong>and</strong>. Meteoritics 7, 547–552.<br />

1806 Wadhwa M., Srinivasan G. <strong>and</strong> Carlson R. W. (2008) Timescales<br />

1807 <strong>of</strong> planetesimal differentiation in the early solar system. In<br />

1808 Meteorites <strong>and</strong> the Early Solar System II (eds. D. S. Lauretta<br />

1809 <strong>and</strong> H. Y. McSween). University <strong>of</strong> Arizona Press, Tucson, pp.<br />

1810 715–732.<br />

1811 Wasson J. T., Kallemeyn G. W. <strong>and</strong> Rubin A. E. (1994)<br />

1812 Equilibration temperatures <strong>of</strong> EL chondrules: a major down-<br />

1813 ward revision in the ferrosilite contents <strong>of</strong> enstatite. Meteoritics<br />

1814 29, 658–662.<br />

1815 Weisberg M. K. <strong>and</strong> Kimura M. (2004) Petrology <strong>and</strong> Raman<br />

1816 spectroscopy <strong>of</strong> shock phases in the Gujba CB chondrite <strong>and</strong><br />

1817 the shock history <strong>of</strong> the CB parent body. Lunar Planet. Sci. 35.<br />

1818 Lunar Planet. Inst., Houston. #1599 (abstr.).<br />

1819 Weisberg M. K., Kimura M., Suzuki A., Ohtani E. <strong>and</strong> Sugiura N.<br />

1820 (2006) Discovery <strong>of</strong> coesite <strong>and</strong> significance <strong>of</strong> high pressure<br />

phases in the Gujba CB chondrite. Lunar Planet. Sci. 37. Lunar<br />

Planet. Inst., Houston. #1788 (abstr.).<br />

Weisberg M. K., Prinz M. <strong>and</strong> Fogel R. A. (1994) The<br />

evolution <strong>of</strong> enstatite <strong>and</strong> chondrules in unequilibrated<br />

enstatite chondrites: evidence from iron-rich pyroxene.<br />

Meteoritics 29, 362–373.<br />

Weisberg M. K., Prinz M. <strong>and</strong> Nehru C. E. (1997) QUE 94204: an<br />

EH-chondritic melt rock. Lunar Planet. Sci. 28, #1358 (abstr.).<br />

Wlotzka F. (1993) A weathering scale for the ordinary chondrites<br />

(abstract). Meteoritics 28, 460.<br />

Xie X., Li Z., Wang D., Liu J., Hu R. <strong>and</strong> Chen M. (1991) The new<br />

meteorite fall <strong>of</strong> Yanzhuang, a severely shocked H6 chondrite<br />

with black molten materials (abstract). Meteoritics 26, 411.<br />

Yang C. W., Williams D. B. <strong>and</strong> Goldstein J. I. (1996) A revision <strong>of</strong><br />

the Fe–Ni phase diagram at low temperatures (

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!