07.06.2013 Views

Introduction to Sphalerons - High Energy Physics at The University ...

Introduction to Sphalerons - High Energy Physics at The University ...

Introduction to Sphalerons - High Energy Physics at The University ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Introduction</strong> <strong>to</strong> <strong>Sphalerons</strong><br />

Hridesh S. Kedia<br />

Department of <strong>Physics</strong><br />

<strong>University</strong> of Chicago<br />

Abstract<br />

<strong>Sphalerons</strong> are defined <strong>to</strong> be st<strong>at</strong>ic but unstable finite-energy solutions of the classical<br />

field equ<strong>at</strong>ions. This is a brief review of sphalerons and their significance in the Standard<br />

Model. <strong>The</strong> sphaleron solution for the SU(2) Yang–Mills–Higgs theory as derived in [2] is<br />

presented. <strong>The</strong> sphaleron is shown <strong>to</strong> have fractional charge and its role in baryon number<br />

nonconserv<strong>at</strong>ion is discussed. This work borrows heavily from [2].<br />

1


I. INTRODUCTION<br />

<strong>The</strong> word ‘sphaleron’ is of Greek origin and means “ready <strong>to</strong> fall”. <strong>Sphalerons</strong><br />

are st<strong>at</strong>ic unstable solutions of the classical field equ<strong>at</strong>ions with finite <strong>to</strong>tal energy<br />

of the fields. A sphaleron, being st<strong>at</strong>ic and localized in space, is particlelike but<br />

is unstable. <strong>The</strong> term ‘sphaleron’ was coined in [2] and used <strong>to</strong> describe st<strong>at</strong>ic,<br />

unstable solutions <strong>to</strong> the SU(2) Yang–Mills–Higgs theory.<br />

Unlike soli<strong>to</strong>ns, sphalerons do not correspond <strong>to</strong> particle excit<strong>at</strong>ions in the<br />

quantum theory since they are unstable solutions <strong>to</strong> the classical field equ<strong>at</strong>ions.<br />

<strong>Sphalerons</strong> separ<strong>at</strong>e <strong>to</strong>pologically distinct vacuum st<strong>at</strong>es, ie vacuum st<strong>at</strong>e in one<br />

gauge and vacuum st<strong>at</strong>e in another <strong>to</strong>pologically inequivalent gauge.<br />

Unfortun<strong>at</strong>ely all sphaleron solutions th<strong>at</strong> I have managed <strong>to</strong> find in the liter<strong>at</strong>ure<br />

are complic<strong>at</strong>ed and so I will present only one of the many sphaleron solutions, which<br />

is the sphaleron in the Yang–Mills–Higgs theory.<br />

II. SPHALERONS IN THE YANG–MILLS–HIGGS THEORY<br />

<strong>The</strong> sphaleron solution for the Yang–Mills–Higgs theory is a st<strong>at</strong>ic solution <strong>to</strong><br />

the classical field equ<strong>at</strong>ions, which is a saddle point of the energy functional and<br />

therefore unstable.<br />

Morse theory [8] tells us th<strong>at</strong> there is a connection between the <strong>to</strong>pology of a<br />

smooth manifold and the st<strong>at</strong>ionary points of an arbitrary smooth function defined<br />

on it. A standard example is a two-<strong>to</strong>rus standing on end, with the height above<br />

some reference plane the function defined on it (see Fig.. 1). <strong>The</strong> <strong>to</strong>pology of the<br />

<strong>to</strong>rus requires th<strong>at</strong> there must be <strong>at</strong>least two saddle points (only one of which is<br />

shown in the figure as the sphaleron S).<br />

Sphaleron S<br />

Vacuum<br />

FIG. 1: Sphaleron S on <strong>to</strong>p of a noncontractible loop in configur<strong>at</strong>ion space. <strong>The</strong> field<br />

energy is zero for the vacuum and positive for the sphaleron S.<br />

2


[1] shows th<strong>at</strong> in function space of all st<strong>at</strong>ic fields which are solutions <strong>to</strong> the clas-<br />

sical field equ<strong>at</strong>ions for the Yang–Mills–Higgs theory, there exists a noncontractible<br />

loop which begins and ends <strong>at</strong> the vacuum field configur<strong>at</strong>ion. <strong>The</strong>y go on <strong>to</strong> sug-<br />

gest th<strong>at</strong> a saddle-point solution exists for the Yang–Mills–Higgs theory, by a bold<br />

extension of the minimax idea by [6].<br />

In this article, we consider a simplified version of the electroweak Standard Model<br />

[7] without the hypercharge U(1) gauge field. This means, basically, th<strong>at</strong> we set the<br />

weak mixing angle θw ≡ arctan(g ′ /g) <strong>to</strong> zero, where g ′ and g are the coupling<br />

constants of the U(1) and SU(2) gauge groups, respectively. Also, we take only one<br />

family of quarks and lep<strong>to</strong>ns instead of the three known experimentally.<br />

<strong>The</strong> SU(2) Yang–Mills gauge field is denoted by Aµ(x) ≡ A a µ(x) τ a /(2i), where<br />

the τ a are the three Pauli m<strong>at</strong>rices acting on weak isospin space and the component<br />

fields A a µ(x) are real. (Repe<strong>at</strong>ed indices are summed over, unless st<strong>at</strong>ed otherwise.)<br />

<strong>The</strong> complex Higgs field transforms as an isodoublet under the SU(2) gauge group<br />

and is given by Φ(x) = (Φ1(x), Φ2(x)) t , where the suffix t stands for transpose.<br />

<strong>The</strong> classical action of the gauge and Higgs fields reads<br />

∫<br />

ΓYMH = d 4 x<br />

{<br />

1<br />

2 tr FµνF µν + (DµΦ) † (D µ (<br />

Φ) − λ Φ † Φ − 1<br />

2 v2<br />

) }<br />

2<br />

, (2.1)<br />

R 4<br />

where Fµν ≡ ∂µAν − ∂νAµ + g[Aµ, Aν] is the SU(2) Yang–Mills field strength<br />

and DµΦ ≡ (∂µ + gAµ)Φ the covariant deriv<strong>at</strong>ive of the Higgs field. <strong>The</strong> theory<br />

has Yang–Mills coupling constant g and quartic Higgs coupling constant λ, but<br />

the classical dynamics depends only on the r<strong>at</strong>io λ/g 2 . <strong>The</strong> parameter v has the<br />

dimension of mass and sets the scale of the Higgs expect<strong>at</strong>ion value. <strong>The</strong> three W<br />

vec<strong>to</strong>r bosons then have equal mass, MW = g v. <strong>The</strong> single Higgs scalar boson has<br />

a mass MH = 2 √ 2λ v .<br />

<strong>The</strong> action (2.1) is invariant under a local gauge transform<strong>at</strong>ion<br />

Φ ′ (x) = Λ(x) Φ(x) , gA ′ µ(x) = Λ(x) ( ) −1<br />

gAµ(x) + ∂µ Λ(x) , (2.2)<br />

for an arbitrary gauge function Λ(x) ∈ SU(2). In addition, there are certain global<br />

SU(2) and U(1) symmetry transform<strong>at</strong>ions which oper<strong>at</strong>e solely on the Higgs field.<br />

<strong>The</strong> field equ<strong>at</strong>ions are as follows:<br />

where<br />

( ) a 1<br />

DjFij = −<br />

2 ig<br />

[<br />

Φ † σ a DiΦ − (DiΦ) † σ a ]<br />

Φ<br />

( ) a<br />

DjFij = ∂jF a<br />

ij + gϵ abc W b j F c<br />

ij<br />

3<br />

(2.3)


and<br />

DiDiΦ = 2λ ( Φ † Φ − 1<br />

2 v2) Φ (2.4)<br />

In order <strong>to</strong> find a sphaleron, we look for a solution th<strong>at</strong> resembles the vacuum<br />

configur<strong>at</strong>ion as r → ∞ and use a rot<strong>at</strong>ed version of the ans<strong>at</strong>z used in [5]. Doing<br />

as st<strong>at</strong>ed above, we find th<strong>at</strong> a solution <strong>to</strong> these SU(2) equ<strong>at</strong>ions is possible with<br />

fields of the form<br />

and<br />

W a<br />

i σ a dx i = − 2ι<br />

g f(gvr)dU ∞ (U ∞ ) −1<br />

Φ = v √ h(gvr)U<br />

2 ∞<br />

( )<br />

0<br />

1<br />

where<br />

U ∞ = 1<br />

r<br />

(<br />

)<br />

z x + iy<br />

−x + iy z<br />

(2.5)<br />

(2.6)<br />

(2.7)<br />

It is convenient now <strong>to</strong> introduce the dimensionless radial distance ξ = gvr. <strong>The</strong><br />

radial functions f and h which appear in the solutions <strong>to</strong> the field equ<strong>at</strong>ions, are<br />

functions of ξ.<br />

For the fields 2.5, 2.6, the energy functional becomes<br />

E = 4πv<br />

g<br />

∫ ∞<br />

0<br />

[<br />

(<br />

df<br />

4<br />

dξ<br />

) 2<br />

<strong>The</strong> field equ<strong>at</strong>ions reduce <strong>to</strong><br />

+ 8<br />

ξ2 [f(1 − f)]2 + 1<br />

2 ξ2<br />

(<br />

dh<br />

dξ<br />

) 2<br />

+ [h(1 − f)] 2 + 1<br />

(<br />

λ<br />

4 g2 )<br />

ξ 2 (h 2 − 1) 2<br />

]<br />

dξ (2.8)<br />

ξ 2 d2f ξ2<br />

= 2f(1 − f)(1 − 2f) −<br />

dξ2 4 h2 (1 − f) (2.9)<br />

d<br />

(<br />

2 dh<br />

)<br />

ξ = 2h(1 − f)<br />

dξ dξ<br />

2 + λ<br />

g2 ξ2 (h 2 − 1)h (2.10)<br />

<strong>The</strong> boundary conditions on the functions f and h are the following. Near<br />

ξ = 0, f = αξ2 and h = βξ. As ξ → ∞, f = 1 − γexp(− 1ξ)<br />

and h =<br />

2<br />

1 − (δ/ξ)exp(− √ 2λ/g2ξ). α, β, γ, and δ are constants of order unity which can<br />

4


only be determined by finding the complete solutions which are given as Ans<strong>at</strong>z in<br />

[2].<br />

<strong>The</strong> solution of 2.9 and 2.10 minimizes the energy functional 2.8, but the solution<br />

is unstable with respect <strong>to</strong> fluctu<strong>at</strong>ions outside the class allowed by 2.5 and 2.6, which<br />

is why it is a saddle-point.<br />

III. FRACTIONAL CHARGE OF THE SPHALERON<br />

For each family of quarks and lep<strong>to</strong>ns, which we assume <strong>to</strong> be massless, there is<br />

a contribution <strong>to</strong> the divergence of the baryon current of the form<br />

∂µj µ 1<br />

B =<br />

32π2 ϵµνρσ ( 1<br />

2 g2F a µνF a ρσ + 1<br />

2 g′2fµνfρσ) (3.1)<br />

and equally for the divergence of the lep<strong>to</strong>n current. For simplicity, we will only<br />

consider the lightest family which consists of the u and d quarks, the electron and<br />

the electron-type neutrino.<br />

A consequence of 3.1 is th<strong>at</strong> if the gauge and Higgs fields are time dependent, then<br />

the baryonic charge is time dependent <strong>to</strong>o. If the fields traverse a noncontractible<br />

loop in configur<strong>at</strong>ion space, starting and finishing <strong>at</strong> the vacuum, with time as<br />

the parameter, then the baryonic charge changes by an integer. This integer is<br />

the Pontryagin index of the time-dependent gauge field, which equals the winding<br />

number of the loop in configur<strong>at</strong>ion space.<br />

Since the sphaleron represents a field configur<strong>at</strong>ion <strong>at</strong> the <strong>to</strong>p of the energy barrier<br />

between the vacuum in one gauge and the vacuum in a <strong>to</strong>pologically inequivalent<br />

gauge, one expects, if things are symmetrical, th<strong>at</strong> the sphaleron has baryonic charge<br />

1.<br />

This is the case as the calcul<strong>at</strong>ion in [2] shows.<br />

2<br />

<strong>The</strong> fact th<strong>at</strong> the sphaleron has baryonic charge 1<br />

2<br />

ties in nicely with the physical<br />

interpret<strong>at</strong>ion th<strong>at</strong> the sphaleron separ<strong>at</strong>es <strong>to</strong>pologically distinct vacua. Going by<br />

the two-<strong>to</strong>rus analogy, in configur<strong>at</strong>ion space, of all the homo<strong>to</strong>pically equivalent<br />

noncontractible loops th<strong>at</strong> connect two <strong>to</strong>pologically distinct vacua, the infimum of<br />

the maximal energy configur<strong>at</strong>ions on all such loops corresponds <strong>to</strong> the sphaleron.<br />

And the two <strong>to</strong>pologically distinct vacua have baryon charges 0 and 1, with the<br />

sphaleron having baryon charge 1.<br />

<strong>The</strong> energy of the sphaleron is the barrier energy<br />

2<br />

separ<strong>at</strong>ing the two vacua.<br />

5


IV. FINAL REMARKS<br />

Sphaleron configur<strong>at</strong>ions arise because of the non-trivial <strong>to</strong>pology of the config-<br />

ur<strong>at</strong>ion space of the classical field theory under consider<strong>at</strong>ion.<br />

Sphaleron configur<strong>at</strong>ions might play an important role in explaining baryon num-<br />

ber nonconserv<strong>at</strong>ion in systems <strong>at</strong> high temper<strong>at</strong>ure such as the early universe.<br />

<strong>Sphalerons</strong> can be used <strong>to</strong> explain baryon-number viol<strong>at</strong>ing processes even when a<br />

perturb<strong>at</strong>ive tre<strong>at</strong>ment may not be valid.<br />

Thus the study of sphalerons is extremely important <strong>to</strong> electroweak baryogenesis.<br />

[1] N.S. Man<strong>to</strong>n, “Topology in the Weinberg–Salam theory,” Phys. Rev. D 28 (1983)<br />

2019.<br />

[2] F.R. Klinkhamer and N.S. Man<strong>to</strong>n, “A saddle point solution in the Weinberg–Salam<br />

theory,” Phys. Rev. D 30 (1984) 2212.<br />

[3] F.R. Klinkhamer and C. Rupp, “<strong>Sphalerons</strong>, spectral flow, and anomalies,” J. M<strong>at</strong>h.<br />

Phys. 44 (2003) 8.<br />

[4] C.H. Taubes, “<strong>The</strong> existence of a non-minimal solution <strong>to</strong> the SU(2) Yang–Mills–Higgs<br />

equ<strong>at</strong>ions on R 3 ,” Commun. M<strong>at</strong>h. Phys. 86 (1982) 257; 86 (1982) 299;<br />

C.H. Taubes, “Min-max theory for the Yang–Mills–Higgs equ<strong>at</strong>ions,” Commun. M<strong>at</strong>h.<br />

Phys. 97 (1985) 473.<br />

[5] R. Dashen, B. Hasslacher and A. Neveu, “Nonperturb<strong>at</strong>ive methods and extended<br />

hadron models in field theory. III. Four-dimensional nonabelian models,” Phys. Rev.<br />

D 10 (1974) 4138.<br />

[6] L.A. Ljusternik, “<strong>The</strong> Topology of the Calculus of Vari<strong>at</strong>ions in the Large,” American<br />

M<strong>at</strong>h. Soc. (1966)<br />

[7] S.L. Glashow, “Partial symmetries of weak interactions,” Nucl. Phys. 22 (1961) 579;<br />

S. Weinberg, “A model of lep<strong>to</strong>ns,” Phys. Rev. Lett. 19 (1967) 1264;<br />

A. Salam, “Weak and electromagnetic interactions,” in: Elementary Particle <strong>The</strong>ory,<br />

edited by N. Svartholm (Almqvist, S<strong>to</strong>ckholm, 1968), p. 367;<br />

S.L. Glashow, J. Iliopoulos and L. Maiani, “Weak interactions with lep<strong>to</strong>n–hadron<br />

symmetry,” Phys. Rev. D 2 (1970) 1285.<br />

[8] J. Milnor, Morse <strong>The</strong>ory, Prince<strong>to</strong>n <strong>University</strong> Press, Prince<strong>to</strong>n, 1963.<br />

6

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!