07.06.2013 Views

lecture890708 - Workspace

lecture890708 - Workspace

lecture890708 - Workspace

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Biosynthesis – Inspiration for Drug Discovery<br />

Biosynthesis of Isoprenoids:<br />

Terpenes (Including Steroids & Carotenoids)<br />

Alan C. Spivey<br />

a.c.spivey@imperial.ac.uk<br />

Nov/Dec 2007


• What are isoprenoids?<br />

Format & Scope of Lectures<br />

– n × C 5 diversity: terpenes, steroids, carotenoids & natural rubber<br />

– ‘the isoprene rule’<br />

– mevalonate & 1-deoxyxylulose pathways to IPP & DMAPP<br />

• Monoterpnes (C 10)<br />

– regular (‘head-to-tail’) via geranyl pyrophosphate<br />

– apparently irregular ‘iridoids’ (e.g. seco-loganin)<br />

• Sesquiterpenes (C 15)<br />

– farnesyl pyrophosphate derived metabolites<br />

– sesquiterpene cyclases: pentalenene, aristolochene & 5-epi-aristolochene<br />

• Diterpenes (C 20)<br />

– gibberellins & taxol<br />

• Triterpenes (C 30)<br />

– steroids (2,3-oxidosqualene → lanosterol → cholesterol → estrone)<br />

– ring-opened ‘steroids’: vitamin D 2 & azadirachtin<br />

• Carotenoids (C 40)<br />

– β-carotene, retinal & vitamin A


Isoprenoids<br />

• isoprenoids are widely distributed in the natural world<br />

– particularly prevalent in plants and least common in insects; >30,000 known<br />

– composed of integral numbers of C 5 ‘isoprene’ units:<br />

• monoterpenes (C 10); sesquiterpenes (C 15); diterpenes (C 20); sesterpenes (C 25, rare); triterpenes (C 30); carotenoids (C 40)<br />

HO<br />

H<br />

H<br />

OH<br />

n<br />

natural rubber (~10 5 x C 5)<br />

β-carotene (C 40)<br />

H<br />

OH<br />

cholesterol<br />

(C 27 but C 30-derived)<br />

O<br />

O OH<br />

HO<br />

humulone (2x C5) H<br />

O<br />

BzHN<br />

H H<br />

thujone<br />

(C 10)<br />

OH<br />

borneol<br />

(C 10)<br />

ISOPRENOIDS<br />

OPP<br />

dimethylallyl<br />

pyrophosphate<br />

(DMAPP)<br />

Ph<br />

O<br />

AcO<br />

HO O HO<br />

BzOAcO<br />

taxol (C20) isopentenyl<br />

pyrophosphate<br />

(IPP)<br />

O<br />

H<br />

OH<br />

O<br />

HO<br />

HO<br />

lavandulol<br />

(C 10) (Z)-α-bisabolene<br />

OPP<br />

H<br />

O<br />

H<br />

O<br />

CO 2H<br />

OH<br />

HO<br />

(C 15)<br />

O<br />

H<br />

O<br />

OH<br />

OH<br />

O<br />

H<br />

O O H<br />

O<br />

OH<br />

OH<br />

OH<br />

OH OH<br />

gibberellic acid (C 20)<br />

(gibberellin A 3)<br />

artemisinin (C 15)<br />

euonyminol (C 15)


Historical Perspective – ‘The Isoprenoid Rule’<br />

• Early 1900s:<br />

– common structural feature of terpenes – integral # of C 5 units<br />

– pyrolysis of many monoterpenes produced two moles of isoprene:<br />

• 1940s:<br />

• 1953:<br />

• 1964:<br />

• 1993:<br />

α-pinene (C 10)<br />

200°C<br />

– biogenesis of terpenes attributed to oligomers of isoprene – ‘the isoprene rule’<br />

– Ruzicka proposes ‘the biogenetic isoprene rule’ to accomodate ‘irregular’ terpenoids:<br />

• i.e. that terpenes were derived from a number of biological equivalents of isoprene initially joined in a ‘head-to-tail’<br />

manner & sometimes subsequently modified enzymatically to provide greater diversity of structure<br />

– Nobel prize awarded to Bloch, Cornforth & Popjak for elucidation of biosynthetic pathway to cholesterol<br />

including the first steps:<br />

• acetate → mevalonate (MVA) → isopentenylpyrophosphate (IPP) & dimethylallyl pyrophosphate (DMAPP)<br />

– Rohmer, Sahm & Arigoni elucidate an additional pathway to IPP & DMAPP:<br />

• pyruvate + glyceraldehyde-3-phosphate → 1-deoxyxylulose-5-phosphate → IPP & DMAPP<br />

Δ<br />

2x<br />

isoprene (C 5)


PO<br />

glycolysis<br />

CO 2<br />

phosphoenol pyruvate<br />

CO 2<br />

O<br />

pyruvate<br />

SCoA<br />

O<br />

acetyl coenzyme A<br />

CoAS<br />

O<br />

O<br />

acetoacetyl coenzyme A<br />

Primary Metabolism - Overview<br />

PHOTOSYNTHESIS<br />

Primary metabolism<br />

CO 2 + H 2O<br />

HO<br />

HO<br />

O<br />

HO<br />

HO<br />

OH<br />

glucose<br />

& other 4,5,6 & 7 carbon sugars<br />

+<br />

PO<br />

HO O<br />

OH<br />

erythrose-4-phosphate<br />

Citric acid<br />

cycle<br />

(Krebs cycle)<br />

1) 'light reactions': hv -> ATP and NADH<br />

2) 'dark reactions': CO 2 -> sugars (Calvin cycle)<br />

SCoA<br />

O<br />

malonyl coenzyme A<br />

HO<br />

CO 2<br />

HO OH<br />

OH<br />

shikimate<br />

aromatic amino acids<br />

aliphatic amino acids<br />

CO 2<br />

HO<br />

mevalonate<br />

CO 2<br />

Primary metabolites<br />

oligosaccharides<br />

polysaccharides<br />

nucleic acids (RNA, DNA)<br />

peptides<br />

proteins<br />

tetrapyrroles (porphyrins)<br />

saturated fatty acids<br />

unsaturated fatty acids<br />

lipids<br />

Secondary metabolites<br />

SHIKIMATE METABOLITES<br />

cinnamic acid derivatives<br />

aromatic compounds<br />

lignans, flavinoids<br />

ALKALOIDS<br />

penicillins<br />

cephalosporins<br />

cyclic peptides<br />

FATTY ACIDS & POLYKETIDES<br />

prostaglandins<br />

polyacetylenes<br />

aromatic compounds, polyphenols<br />

macrolides<br />

ISOPRENOIDS<br />

terpenoids<br />

steroids<br />

carotenoids


Biosynthesis of Mevalonate<br />

• Mevalonate (MVA) is the first committed step of isoprenoid biosynthesis<br />

– this key 6-carbon metabolite is formed from three molecules of acetyl CoA via acetoacetyl CoA:<br />

Claisen<br />

condensation<br />

aldol<br />

reaction<br />

then [R]<br />

2x NADPH<br />

O<br />

O<br />

SCoA<br />

SCoA<br />

CoAS<br />

O<br />

O<br />

acetoacetyl CoA<br />

HO<br />

O<br />

Primary metabolism<br />

O<br />

CoASH<br />

NAD<br />

CoASH<br />

SCoA<br />

CO 2<br />

HO<br />

mevalonate (MVA)<br />

CO 2<br />

2x CoASH<br />

2x NADP<br />

pyruvate GLYCOLYSIS<br />

CO 2<br />

NADH<br />

acetyl CoA<br />

O<br />

oxidative decarboxylation<br />

SCoA<br />

CO 2<br />

malonyl CoA<br />

CITRIC ACID CYCLE<br />

CO 2<br />

acetyl CoA carboxylase<br />

(biotin-dependent)<br />

carboxylation<br />

saturated fatty acids<br />

unsaturated fatty acids<br />

lipids<br />

Secondary metabolism<br />

FATTY ACIDS & POLYKETIDES<br />

prostaglandins<br />

polyacetylenes<br />

aromatic compounds, polyphenols<br />

macrolides<br />

ISOPRENOIDS<br />

terpenoids<br />

steroids<br />

carotenoids


Biosynthesis of IPP & DMAPP - via Mevalonate<br />

• IPP & DMAPP are the key C 5 precursors to all isoprenoids<br />

– the main pathway is via: acetyl CoA → acetoacetyl CoA → HMG CoA → mevalonate → IPP → DMAPP:<br />

DMAPP<br />

IPP<br />

O<br />

IPP isomerase<br />

(overall anti<br />

stereochemistry)<br />

Glu 207<br />

O<br />

O<br />

B-Enz<br />

SCoA<br />

SCoA<br />

CoAS<br />

H<br />

acetyl CoA<br />

OPP<br />

OPP<br />

H R<br />

Cys 139<br />

H s<br />

T<br />

H<br />

D<br />

T<br />

D2O S<br />

D<br />

H<br />

decarboxylative<br />

elimination<br />

P i + CO 2<br />

O<br />

Claisen condensation<br />

CoAS<br />

O<br />

PPO<br />

PO<br />

O<br />

Me<br />

O<br />

O<br />

O SCoA<br />

3x ATP<br />

3x ADP<br />

CoASH<br />

sequential addition<br />

H 2O<br />

CoAS<br />

O<br />

O<br />

CoASH<br />

2x NADPH 2x NADP<br />

HO<br />

O<br />

CoAS<br />

O<br />

CoAS HO<br />

HO<br />

CoASH<br />

acetoacetyl CoA<br />

aldol reaction<br />

CO 2<br />

CO 2<br />

hydroxymethylglutaryl CoA<br />

(HMG CoA)<br />

HMG CoA reductase<br />

RDS in cholesterol<br />

biosynthesis<br />

mevalonate (MVA)


HMG CoA reductase inhibitors - Statins<br />

• HMG CoA → MVA is the rate determining step in the biosynthetic pathway to cholesterol<br />

– 33 enzyme mediated steps are required to biosynthesise cholesterol from acetyl CoA & in principle the<br />

inhibition of any one of these will serve to break the chain. In practice, control rests with HMG-CoA reductase<br />

as the result of a variety of biochemical feedback mechanisms<br />

• ‘Statins’ inhibit HMG CoA reductase and are used clinically to treat hypercholesteraemia -a<br />

causative factor in heart disease<br />

R<br />

NADPH<br />

– e.g. mevinolin (=lovastatin ® , Merck) from Aspergillus terreus is a competitive inhibitior of HMG-CoA reductase<br />

N<br />

H 2N<br />

H<br />

H<br />

O<br />

O<br />

mevinolin (=lovastatin ® )<br />

PRO-DRUG<br />

NB. type I (iterative) PKS natural product<br />

O<br />

CoAS HO<br />

O<br />

OH<br />

HMG CoA<br />

O O<br />

CO 2<br />

OH 2<br />

in vivo<br />

NADP<br />

O<br />

HO<br />

O<br />

HO<br />

CoAS O<br />

H<br />

OH<br />

CO 2<br />

ACTIVE DRUG<br />

mimic of tetrahedral intermediate<br />

in HMG reduction by NADPH<br />

H<br />

CO 2<br />

Zn 2<br />

NADPH<br />

NADP<br />

CoASH<br />

HO<br />

HO<br />

mevalonate (MVA)<br />

H<br />

H<br />

HO<br />

H<br />

cholesterol<br />

CO 2<br />

PhHN<br />

O<br />

Ph<br />

i Pr<br />

N<br />

OH<br />

OH<br />

F<br />

CO 2<br />

LIPITOR


Biosynthesis of IPP & DMAPP – via 1-Deoxyxylulose<br />

• the mevalonate route to IPP & DMAPP has been proven in yeast & animals & in some plants & for<br />

a long while was believed to be the only pathway to these key intermediates<br />

– However, in some bacterial labelling studies:<br />

• no incorporation of mevalonolactone was observed<br />

• the pattern of label from glucose was inconsistent with derivation via catabolism to acetate<br />

• in 1993 an additional pathway to IPP & DMAPP was discovered:<br />

O<br />

– Rohmer et al. Biochem. J. 1993, 295, 517 (DOI)<br />

CO 2<br />

pyruvate<br />

DMAPP<br />

IPP<br />

+<br />

OPP<br />

OPP<br />

H<br />

O<br />

OH<br />

OP<br />

glyceraldehyde<br />

3-phosphate<br />

NADP<br />

NADPH<br />

DXP<br />

synthase<br />

HO<br />

CO 2<br />

O<br />

OH<br />

OH<br />

OP<br />

1-deoxyxylulose<br />

5-phosphate (DXP)<br />

OPP<br />

4-hydroxy-DMAPP<br />

NADP<br />

NADPH<br />

• The pathway is prevalent in many pathogenic bacteria and so its inhibition represents an exciting<br />

opportunity for antiinfective therapeutic development: Rohdich J. Org. Chem. 2006, 71, 8824 (DOI)<br />

HO<br />

H<br />

OH<br />

O<br />

OH<br />

OH<br />

DXP<br />

reductoisomerase<br />

O<br />

O<br />

P<br />

O<br />

P O<br />

O<br />

O O<br />

OP<br />

NADPH<br />

NADP<br />

CMP<br />

NB. CMP = cytidine monophosphate<br />

CTP = cytidine triphosphate<br />

HO<br />

HO<br />

ATP + CTP<br />

OH<br />

OH<br />

OP<br />

2-methyerythritol<br />

4-phosphate<br />

OP<br />

OH<br />

ADP + PP i<br />

O<br />

P<br />

O<br />

P<br />

O O<br />

O<br />

O<br />

O<br />

OH<br />

O<br />

N<br />

OH<br />

cytosine<br />

NH 2<br />

N<br />

O


Hemi-Terpenes – ‘Prenylated Alkaloids’<br />

• DMAPP is an excellent alkylating agent<br />

• C 5 units are frequently encountered as part of alkaloids (& shikimate metabolites) due to ‘latestage’<br />

alkylation by DMAPP<br />

– the transferred dimethyl allyl unit is often referred to as a ‘prenyl group’<br />

– ‘normal prenylation’ – ‘S N2’-like alkylation; ‘reverse prenylation’ – ‘S N2’-like alkylation<br />

4<br />

OPP<br />

• e.g. lysergic acid (recall the ergot alkaloids) – a ‘normal prenylated’ alkaloid (with significant subsequent processing)<br />

• e.g. roquefortine (recall diketopiperazine alkaloids) – a ‘reverse prenylated’ alkaloid<br />

N<br />

H<br />

'normal'<br />

prenylation<br />

cf. S N2<br />

HO<br />

tyrosine<br />

O H<br />

DMAPP<br />

N<br />

Me<br />

H<br />

N<br />

H<br />

lysergic acid<br />

(halucinogen)<br />

roquefortine<br />

(blue cheese mould)<br />

– review: R.M. Williams et al. ‘Biosynthesis of prenylated alkaloids derived from tryptophan’ Top. Curr. Chem.<br />

2000, 209, 97-173 (DOI)<br />

OPP<br />

3<br />

N<br />

H<br />

'reverse'<br />

prenylation<br />

cf. S N2'<br />

DMAPP<br />

tyrosine<br />

N<br />

H H<br />

N<br />

O<br />

O<br />

NH<br />

histidine<br />

H<br />

N<br />

N


Linear C 5n ‘head-to-tail’ Pyrophosphates<br />

• head-to-tail C 5 oligomers are the key precursors to isoprenoids<br />

– geranyl pyrophosphate (C 10) is formed by S N1 alkylation of DMAPP by IPP → monoterpenes<br />

– farnesyl (C 15) & geranylgeranyl (C 20) pyrophosphates are formed by further S N1 alkylations with IPP:<br />

evidence for S N1:<br />

F 3C<br />

OPP<br />

H*<br />

DMAPP<br />

H<br />

F 3C<br />

OPP<br />

S N1<br />

OPP<br />

ionisation is 1,000,000 times slower<br />

OPP<br />

OPP<br />

intimate ion pair<br />

H S H R<br />

IPP<br />

via<br />

OPP<br />

OPP inversion<br />

H R<br />

H S<br />

OPP<br />

*H<br />

OPP<br />

gerenyl pyrophosphate (C 10)<br />

farnesyl pyrophosphate (C 15)<br />

gerenylgeranyl pyrophosphate (C 20)<br />

H<br />

IPP<br />

IPP<br />

OPP<br />

OPP<br />

MONOTERPENES (C 10)<br />

SESQUITERPENES (C 15)<br />

TRITERPENES (C 30)<br />

DITERPENES (C 20)<br />

CAROTENOIDS (C 40)


Monoterpenes from Parsley & Sage<br />

Parsley (Petroselinum sativum)<br />

Sage (Salvia officinalis)<br />

apiol<br />

thujone<br />

α-pinene<br />

camphene


Monoterpenes from Rosemary & Thyme<br />

Rosemary (Rosmarinus officinalis)<br />

Thyme (Thymus vulgaris)<br />

camphor borneol cineol<br />

thymol carvacrol


1. S-(-)-limonene (lemon)<br />

2. R-(+)-limonene (orange)<br />

3. RS-(±)-limonene (pleasant)<br />

Limonene & Carvone<br />

Chiroscience plc. (now Dow Inc.)<br />

4. R-(-)-carvone (spearmint)<br />

5. S-(+)-carvone (caraway)<br />

6. RS-(±)-carvone (disgusting)


Monoterpenes – α-Terpinyl Cation Formation<br />

• geranyl pyrophosphate isomerises readily via an allylic cation to linalyl & neryl pyrophosphates<br />

– the leaving group abilty of pyrophosphate is enhanced by coordination to 3 × Mg 2+<br />

– all three pyrophosphates are substrates for cyclases via an α-terpinyl cation:<br />

OPP<br />

(E)<br />

OPP<br />

(Z)<br />

gerenyl<br />

pyrophosphate<br />

linalyl<br />

pyrophosphate<br />

OPP<br />

neryl<br />

pyrophosphate<br />

allylic cation<br />

intimate ion pair<br />

O<br />

O<br />

P O O<br />

Mg<br />

P O<br />

O<br />

O<br />

cyclase<br />

Mg<br />

initial<br />

chiral centre<br />

OPP<br />

=<br />

α-terpinyl cation<br />

OPP<br />

MONOTERPENES (C 10)


Monoterpenes – Fate of the α-Terpinyl Cation<br />

• The α-terpinyl cation undergoes a rich variety of further chemistry to give a diverse array of<br />

monoterpenes<br />

• Some important enzyme catalysed pathways are shown below<br />

– NB. intervention of Wagner-Meerwein 1,2-hydride- & 1,2-alkyl shifts<br />

E 1 elimination<br />

H 2O<br />

O<br />

b<br />

c<br />

H a<br />

H e<br />

thujone<br />

a<br />

limonene α-terpineol<br />

trapping with<br />

water<br />

OPP OPP<br />

d<br />

=<br />

c<br />

d<br />

α-terpinyl cation<br />

1,2-hydride shift<br />

H H<br />

e<br />

H<br />

b<br />

OH<br />

d<br />

c<br />

=<br />

trapping by alkene<br />

at 'red' carbon<br />

(anti-Markovnikov)<br />

trapping by alkene<br />

at 'blue' carbon<br />

(Markovnikov)<br />

H<br />

=<br />

H<br />

trapping by PPO -<br />

OPP<br />

1,2-alkyl shift<br />

E 1 elimination<br />

E 1 elimination<br />

H<br />

OPP<br />

bornyl<br />

pyrophosphate<br />

H<br />

hydrolysis [O]<br />

H<br />

E 1 elimination<br />

=<br />

OH<br />

O<br />

borneol camphor<br />

= =<br />

=<br />

=<br />

camphene<br />

β-pinene<br />

α-pinene


Apparently Irregular Monoterpenes<br />

• Apparently irregular monoterpenes can also occur by non-cationic cyclisation of geranyl PP<br />

derivatives followed by extensive rearrangement<br />

– e.g. iridoids – named after Iridomyrmex ants but generally of plant origin and invariably glucosidated<br />

• e.g. seco-loganin (recall indole alkaloids) is a key component of strictosidine - precorsor to numerous complex<br />

medicinally important alkaloids:<br />

tryptophan<br />

isoprene<br />

geranyl PP<br />

N<br />

H H<br />

H<br />

MeO 2C<br />

NH<br />

OPP OPP<br />

O<br />

strictosidine<br />

[O]<br />

P 450<br />

H<br />

OGlu<br />

10<br />

NH 2<br />

N<br />

H<br />

tryptamine<br />

H 2O<br />

enzymatic<br />

Pictet-Spengler<br />

reaction<br />

OH<br />

H<br />

MeO2C H 2O<br />

2x NADP<br />

2x NADPH<br />

O<br />

PP i<br />

secologanin<br />

H<br />

O<br />

OGlu<br />

H<br />

O<br />

O<br />

10<br />

10-oxo geranal<br />

NADPH<br />

NADP<br />

O<br />

OH<br />

unusual reductive ring-closure -> cyclopentane<br />

(NB. Non-cationic)<br />

unusual fragmentation<br />

[O] P 450<br />

=<br />

OH<br />

O<br />

HO 2C<br />

H2O HO<br />

MeO2C O<br />

OP<br />

OGlu<br />

ATP<br />

ADP<br />

HO<br />

H<br />

MeO2C H<br />

[O] P450 H<br />

OGlu<br />

methylation<br />

O<br />

SAM<br />

HO2C loganin<br />

O<br />

[O]<br />

P 450<br />

O<br />

OH<br />

OH<br />

glycoside<br />

formation<br />

O<br />

OGlu


Strictosidine → Vinca, Strychnos, Quinine etc.<br />

• The diversity of alkaloids derived from strictosidine is stunning and many pathways remain to be fully<br />

elucidated:<br />

MeO<br />

N<br />

N<br />

camptothecin<br />

MeO<br />

N<br />

H<br />

MeO2C O<br />

OH<br />

O<br />

O<br />

H<br />

HO<br />

MeO<br />

N<br />

quinine<br />

H<br />

N<br />

N<br />

H<br />

vinblastine<br />

(vinca)<br />

H<br />

OH<br />

N<br />

H<br />

Me<br />

N<br />

H<br />

OH<br />

CO2Me OAc<br />

N<br />

H H<br />

N<br />

H<br />

H<br />

MeO 2C<br />

H<br />

H<br />

MeO2C NH<br />

N<br />

ajmalicine<br />

(vinca)<br />

3<br />

H<br />

O<br />

strictosidine<br />

(isovincoside)<br />

Me<br />

N<br />

O<br />

N O<br />

H<br />

gelsemine<br />

(oxindole)<br />

H<br />

O<br />

OGlu<br />

N<br />

H<br />

H<br />

H<br />

MeO 2C<br />

N<br />

OH<br />

yohimbine<br />

O<br />

N<br />

H<br />

H<br />

N<br />

H<br />

H O<br />

strychnine<br />

(strychnos)<br />

H<br />

N<br />

H<br />

N H<br />

H<br />

aspidospermine<br />

(vinca)


Sesquiterpenes – Farnesyl Pyrophosphate (FPP)<br />

• ‘S N2’-like alkylation of geranyl PP by IPP gives farnesyl PP:<br />

geranyl PP<br />

OPP<br />

pro-R hydrogen is lost<br />

• just as geranyl PP readily isomerises to neryl & linaly PPs so farnesyl PP readily isomerises to<br />

equivalent compounds – allowing many modes of cyclisation & bicyclisation<br />

E,Z-FPP<br />

nerolidyl PP<br />

(E) (E) OPP<br />

E,E-FPP<br />

(E)<br />

(Z)<br />

OPP<br />

OPP<br />

OPP<br />

allylic cation<br />

intimate ion pair<br />

H S<br />

H R<br />

IPP<br />

OPP<br />

O<br />

O<br />

P O O<br />

Mg<br />

P<br />

O<br />

O<br />

cyclases<br />

O<br />

Mg<br />

6-memb<br />

10-memb<br />

11-memb<br />

ring cyclised<br />

'CATIONS'<br />

(E)<br />

E,E-farnesyl PP (FPP)<br />

OPP<br />

(E)<br />

- further cyclisation<br />

- 1,2-hydride & alkyl shifts<br />

- trapping with H 2O<br />

- elimination to alkenes<br />

vast array of<br />

mono- & bicyclic<br />

SESQUITERPENES<br />

NB. control by:<br />

1) enzyme to enforce conformation & sequestration of reactive intermediates<br />

2) intrinsic stereoelectronics of participating orbitals


Sesquiterpene Cyclases<br />

Christianson et al. Curr. Opin. Struct. Biol. 1998, 695 (DOI)


Terpene Cyclases – Control of Cyclisation<br />

• Functional aspects of terpenoid cyclases:<br />

– Templating: Active site provides a template for a specific conformation of the flexible linear isoprenoid starting<br />

material.<br />

– Triggering: Cyclase initiates carbocation formation.<br />

• Metal-assisted leaving group departure (e.g. pyrophosphate ionization aided by Mg 2+ )<br />

• C=C bond protonation (e.g. squalene-hopene cyclase, see later).<br />

• Epoxide protonation (e.g. oxidosqualene cyclase, see later).<br />

– Chaperoning: Chaperones conformations of carbocationic intermediates through the reaction sequence,<br />

ordinarily leading to one specific product.<br />

– Sequestering: Sequesters the carbocation intermediates by burying the substrate in a hydrophobic cavity that is<br />

generally solvent-inaccessible. Carbocations are concomitantly stabilized by the presence of aromatic residues in<br />

the active site that exert their effects via cation-π interactions<br />

RECALL:<br />

δ<br />

= δ<br />

δ<br />

δ on edges<br />

δ on faces<br />

– Adapted from: Christianson et al. Curr. Opin. Struct. Biol. 1998, 695 (DOI)<br />

• BUT:<br />

– individual terpene cyclases can give multiple products, see: Matsuda J. Am. Chem. Soc. 2007, 129, 11213 (DOI)<br />

R<br />

R<br />

R<br />

Enz<br />

cation - π<br />

stabilisation<br />

(~40-80 kJmol -1 )


Sesquiterpene Cyclase Crystal structures<br />

pentalenene synthase 5-epi-aristolochene synthase aristolochene synthase<br />

→ pentalenolactone (antibiotic) → fungal (myco)toxins (e.g. bipolaroxin, PR-toxin)


Aristolochene & 5-Epi-Aristolochene Synthases<br />

• molecular modelling studies indicate that the shape of the active sites determines the conformation<br />

of FPP and thus the stereochemistry of the final product<br />

– Penicillium roqueforti aristolochene synthase – Felicetti & Cane J. Am. Chem. Soc. 2004, 126, 7212 (DOI)<br />

PPO<br />

10-exo<br />

Phe-112<br />

E,E-FPP<br />

PPO H<br />

Phe-112<br />

germacrene A<br />

(+)-aristolochene<br />

H<br />

H<br />

– tobacco 5-epi-aristolochene synthase – Starks, Back, Chappell & Noel Science 1997, 277, 1815 (DOI)<br />

PPO<br />

cyclisation<br />

elimination<br />

H<br />

E,E-FPP<br />

Tyr–O<br />

cyclisation<br />

10-exo<br />

elimination<br />

1,2-alkyl<br />

shift<br />

TyrOH<br />

held by enzyme active site in different conformations from above<br />

(R)<br />

H<br />

H<br />

(S)<br />

H<br />

cation<br />

formation<br />

1,2-hydride<br />

shift<br />

H<br />

H<br />

transannular<br />

cyclisation<br />

eudesmane cation<br />

germacrene 5-epi-aristolochene


effects of gibberellin A 1 and<br />

brassinolide on rice seedlings<br />

Diterpenes - Gibberellins<br />

Dwarf rice<br />

seedlings (on the<br />

left) have a defect<br />

in the gibberellindependent<br />

signalling<br />

mechanism<br />

gibberellin A 20


H<br />

Diterpenes – Geranylgeranyl Pyrophosphate<br />

• S N2 alkylation of farnesyl PP by IPP gives geranylgeranyl PP:<br />

FPP<br />

OPP bicyclisation OPP cyclisation cyclisation<br />

H<br />

6-endo<br />

H<br />

6-exo<br />

H<br />

geranylgeranyl PP<br />

6-endo H<br />

labdadienyl PP<br />

H<br />

HO<br />

OPP<br />

• geranylgeranyl PP readily cyclises to give numerous multicyclic diterpenes<br />

– e.g. gibberellins – plant growth hormones<br />

H<br />

H<br />

O<br />

CO<br />

O 2H<br />

gibberellic acid<br />

(gibberellin A3) OH<br />

OPP<br />

• NB. cyclisation initiated by alkene protonation NOT loss of PPO -<br />

H<br />

HO 2C H CHO<br />

pinacol<br />

rearrangement (?)<br />

HO 2C<br />

H<br />

H<br />

H<br />

H<br />

OP<br />

• review: L.N. Mander ‘Twenty years of gibberellin research’ Nat. Prod. Rep. 2003, 20, 49-69 (DOI)<br />

H<br />

H<br />

IPP<br />

OPP<br />

gerenylgeranyl PP (C 20)<br />

OH<br />

1,2-alkyl<br />

shift<br />

4x [O]<br />

H<br />

H<br />

OPP<br />

H<br />

H<br />

kaurene<br />

elimination<br />

H


Diterpenes - Taxol


Diterpenes – Geranylgeranyl PP → Taxol<br />

• Taxol is a potent anti-cancer agent used in the treatment of breast & ovarian cancers<br />

– comes from the bark of the pacific yew (Taxus brevifolia)<br />

– binds to tubulin and intereferes with the assembly of microtubules<br />

• biosynthesis is from geranylgeranyl PP:<br />

OPP<br />

geranylgeranyl PP<br />

cyclisation<br />

14-exo<br />

– for details see: http://www.chem.qmul.ac.uk/iubmb/enzyme/reaction/terp/taxadiene.html<br />

– home page is: http://www.chem.qmul.ac.uk/iubmb/enzyme/<br />

OPP<br />

b<br />

H<br />

a<br />

H<br />

a<br />

b<br />

• recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the<br />

Nomenclature and Classification of Enzyme-Catalysed Reactions<br />

• based at Department of Chemistry, Queen Mary University of London<br />

BzNH<br />

HO<br />

Ph<br />

β-amino acid<br />

(shikimate)<br />

O<br />

O<br />

AcO<br />

HO<br />

BzO AcO<br />

cembrene<br />

O<br />

H<br />

OH<br />

O<br />

taxol<br />

sesquiterpene<br />

(isoprenoid)


Triterpenes – FPP → Squalene<br />

• triterpenes (C 30) arise from the ‘head to head’<br />

coupling of two fanesyl PP units to give<br />

squalene catalysed by squalene synthase:<br />

– squalene was first identified as a steroid precursor<br />

from shark liver oil<br />

– the dimerisation proceeds via an unusual mechanism<br />

involving electrophilic cyclopropane formation -<br />

rearrangement to a tertiary cyclopropylmethyl cation<br />

and reductive cyclopropane ring-opening by NADPH<br />

(NB. exact mechanism disputed)<br />

– Zaragozic acids (squalestatins) mimic a<br />

rearrangement intermediate and inhibit squalene<br />

synthase. They constitute interesting leads for<br />

development of new treatments for<br />

hypercholesteraemia & heart disease (cf. statins)<br />

O<br />

O<br />

HO2C zaragozic acid A<br />

(squalestatin S1) HO2C OH<br />

O<br />

O<br />

OH CO2H OAc<br />

FPP (acceptor)<br />

EnzB:<br />

squalene synthase<br />

H<br />

NADPH<br />

H<br />

H H<br />

H H<br />

H<br />

OPP<br />

OPP<br />

OPP<br />

OPP<br />

OPP<br />

OPP<br />

NADP<br />

FPP (donor)<br />

blocked by squalestatins<br />

+ PP i<br />

presqualene PP<br />

squalene


Triterpenes – Squalene → 2,3-Oxidosqualene<br />

• squalene is oxidised to 2,3-oxidosqualene by squalene oxidase – which is an O 2/FADH 2dependent<br />

enzyme:<br />

• the key oxidant is a peroxyflavin:<br />

O<br />

O O<br />

HN<br />

FADH 2<br />

squalene<br />

H<br />

N O<br />

NR<br />

NH<br />

O<br />

O<br />

O<br />

HN<br />

H<br />

N O<br />

NR<br />

peroxyflavin<br />

NH<br />

squalene<br />

oxidase<br />

O 2 + FADH 2<br />

H 2O + FAD<br />

reductive recycling<br />

O<br />

O<br />

HO<br />

H N<br />

O<br />

H<br />

N O<br />

NR<br />

N<br />

hydroxyflavin<br />

H 2O<br />

2,3-oxidosqualene<br />

O<br />

N<br />

FAD<br />

H<br />

N O<br />

NR<br />

N


Modes of Cyclisation of Squalene<br />

• all triterpenes (steroids, hopanoids etc.) are formed by the action of cyclase enzymes on either<br />

squalene or 2,3-oxidosqualene<br />

squalene oxidase<br />

O<br />

– i.e. different methods of ‘triggering’ cyclisation<br />

squalene<br />

2,3-oxidosqualene<br />

squalene<br />

cyclases<br />

triggering by<br />

ALKENE protonation<br />

oxidosqualene<br />

cyclases<br />

triggering by<br />

EPOXIDE protonation<br />

OH<br />

diplopterol H tetrahymanol<br />

HO HO HO<br />

H β-amyrin H cycloartenol<br />

STEROID/TRITERPENE NOMENCLATURE: β-face = top face (as drawn here)<br />

α-face = bottom face (as drawn here)<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

OH<br />

H<br />

H<br />

H<br />

hopene<br />

H H<br />

= hydrogen up<br />

(on β-face)<br />

H<br />

H<br />

lanosterol<br />

= hydrogen down<br />

(on α-face)<br />

HOPANOIDS<br />

STEROIDS


Oxidosqualene-Lanosterol Cyclase (OSC)<br />

• oxidosqualene-lanosterol cyclase catalyses the formation of lanosterol from 2,3-oxidosqualene:<br />

– this cascade establishes the characteristic ring system of ALL steroids<br />

– until recently, as for SHC, the enzyme was believed to enforce a chair-boat-chair conformation to allow a<br />

concerted cationic ring-closure cascade followed by a series of suprafacial 1,2-shifts (shown below)<br />

– however, this requires anti-Markovnikov regioselectivity for the C ring-closure...<br />

HO<br />

O<br />

2,3-oxidosqualene<br />

H<br />

C<br />

lanosterol<br />

H<br />

OSC<br />

4x ring-closures<br />

2x 1,2-hydride shifts<br />

2x 1,2-Me shifts<br />

elimination<br />

O<br />

EnzB-H<br />

HO<br />

C ring-closure by<br />

anti-Markovnikov addition?<br />

H<br />

H<br />

H<br />

6-endo, 6-endo, 6-endo, 5-endo ?<br />

chair-boat-chair conformation ?<br />

prosterol cation<br />

NB all bolded bonds are anti-peri planar


Oxidosqualene-Lanosterol Cyclase – Mechanism<br />

• In fact, this process has also been shown to involve a Markovnikov ring-closure/1,2-alkyl-shift<br />

ring-expansion sequence to establish the C ring<br />

EnzB-H<br />

– again, the conformation enforced by the enzyme is NOT strictly a chair-boat-chair one (although probably<br />

very close), the process is NOT concerted, discrete cationic intermediates are involved &<br />

stereoelectronics dictate the regio- & stereoselectivity<br />

O<br />

2,3-oxidosqualene<br />

1) epoxide opening<br />

2) 2x Markovnikov<br />

ring-closures<br />

(6-memb rings)<br />

6-endo, 6-endo<br />

HO<br />

HO<br />

H<br />

H<br />

lanosterol<br />

H<br />

E 1 elimination<br />

Markovnikov<br />

ring-closure<br />

(5-memb ring)<br />

HO HO<br />

– “The enzyme’s role is most likely to shield intermediate carbocations… thereby allowing the hydride and<br />

methyl group migrations to proceed down a thermodynamically favorable and kinetically facile cascade”<br />

• Wendt et al. Angew. Chem. Int. Ed. 2000, 39, 2812 (DOI) & Wendt ibid 2005, 44, 3966 (DOI)<br />

5-endo<br />

HO<br />

H<br />

H<br />

H<br />

:BEnz<br />

H<br />

ring<br />

expansion<br />

(5 -> 6)<br />

1,2-alkyl shift<br />

1) 1,2-hydride shift<br />

2) 1,2-hydride shift<br />

3) 1,2-Me shift<br />

4) 1,2-Me shift<br />

(ALL suprafacial)<br />

5-endo<br />

H<br />

Markovnikov<br />

ring-closure<br />

(5-memb ring)<br />

H<br />

H<br />

HO<br />

H<br />

protosterol cation<br />

H


Lanosterol → Cholesterol – Oxidative Demethylation<br />

• Several steps are required for conversion of lanosterol to cholesterol:<br />

HO<br />

1<br />

4<br />

H<br />

5<br />

24<br />

8<br />

H<br />

5<br />

14<br />

H<br />

lanosterol<br />

8<br />

1) Δ 24 hydrogenation<br />

2) 14α DEMETHYLATION<br />

3) 4α & 4β DEMETHYLATION<br />

4) Δ 8 to Δ 5 rearrangement<br />

1) Δ 24 hydrogenation 2) 14α DEMETHYLATION<br />

NADPH<br />

24<br />

NADP<br />

3) 4α & 4β DEMETHYLATION<br />

HO<br />

4) Δ 8 to Δ 5 rearrangement<br />

4<br />

H<br />

4x O 2<br />

4x H 2O<br />

P 450<br />

O<br />

H<br />

O O<br />

isomerase<br />

CO 2<br />

H<br />

14<br />

H<br />

O<br />

H<br />

H<br />

NAD<br />

NADH<br />

HO<br />

H<br />

H<br />

H<br />

H<br />

[-> vitamin D]<br />

H<br />

4x O 2<br />

4x H 2O<br />

cholesterol<br />

2x O2 P450 H O2 P450 H<br />

H<br />

2x H 2O<br />

O<br />

O<br />

H<br />

HO<br />

=<br />

P 450<br />

NADH<br />

NAD<br />

O<br />

HO<br />

H :BEnz<br />

O<br />

O III<br />

Fe<br />

H<br />

O O<br />

HCO 2H<br />

H<br />

CO 2<br />

O<br />

flat, rigid structure<br />

H<br />

NADPH<br />

NADP<br />

NADPH<br />

H<br />

HO<br />

H<br />

NADP<br />

H<br />

H


Cholesterol → Human Sex Hormones<br />

• cholesterol is the precursor to the human sex hormones – progesterone, testosterone & estrone<br />

– the pathway is characterised by extensive oxidative processing by P 450 enzymes<br />

– estrone is produced from androstendione by oxidative demethylation with concomitant aromatisation:<br />

HO<br />

HO<br />

H<br />

H<br />

H<br />

cholesterol<br />

H<br />

H<br />

estrone<br />

(œstrone)<br />

H<br />

O<br />

H<br />

2x O 2<br />

2x H 2O<br />

HCO 2H<br />

P 450<br />

HO<br />

EnzB:<br />

Fe III<br />

O<br />

H<br />

H<br />

OH<br />

OH<br />

H<br />

H<br />

O<br />

O OH<br />

H<br />

H<br />

O 2<br />

O 2<br />

P 450<br />

O<br />

P 450<br />

HO<br />

DEMETHYLATIVE aromatisation by 'aromatase' enzyme<br />

O<br />

O<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

O<br />

O<br />

H<br />

2x O 2<br />

NAD<br />

2x H 2O<br />

NADH<br />

P 450<br />

O<br />

O<br />

H<br />

H<br />

progesterone<br />

H<br />

H<br />

[O]<br />

H<br />

H<br />

X<br />

O<br />

H<br />

androstendione (X = O)<br />

testosterone (X = H, β−OH)


Steroid Ring Cleavage - Vitamin D & Azadirachtin<br />

• vitamin D 2 is biosynthesised by the photolytic cleavage of Δ 7 -dehydrocholesterol by UV light:<br />

HO<br />

– a classic example of photo-allowed, conrotatory electrocyclic ring-opening:<br />

H<br />

H<br />

H<br />

cholesterol<br />

H<br />

NADP<br />

NADPH<br />

HO<br />

H<br />

– D vitamins are involved in calcium absorption; defficiency leads to rickets (brittle/deformed bones)<br />

• Azadirachtin is a potent insect anti-feedant from the Indian neem tree:<br />

– exact biogenesis unknown but certainly via steroid modification:<br />

HO<br />

H<br />

7<br />

C<br />

OH<br />

tirucallol<br />

(cf. lanosterol)<br />

H<br />

Me<br />

7<br />

H<br />

H<br />

H<br />

O<br />

OH<br />

O<br />

AcO<br />

H<br />

AcO H<br />

H<br />

UV light (hv)<br />

electrocyclic<br />

ring-opening<br />

[6π]<br />

conrotatory<br />

OAc<br />

11 12<br />

OH<br />

azadirachtanin A<br />

(a limanoid =<br />

tetra-nor-triterpenoid)<br />

O<br />

H<br />

HO<br />

oxidative<br />

cleavage<br />

of C ring<br />

Me H<br />

H<br />

H<br />

ψ 4<br />

SOMO<br />

1,5-hydride<br />

shift<br />

O<br />

MeO2C O<br />

O<br />

OH<br />

O<br />

AcO OH<br />

MeO H<br />

2C O<br />

8<br />

azadirachtin<br />

14<br />

HO<br />

H<br />

vitamin D 2<br />

H<br />

O<br />

O<br />

OH<br />

highly hindered C-C bond<br />

for synthesis!<br />

[O]<br />

HO<br />

OH OH<br />

H<br />

OH<br />

H<br />

calcium ion chelator


Carotenoids – β-Carotene & vitamin A 1<br />

• Carotenoids (C 40) are coloured pigments made by photosynthetic plants & certain algae, bacteria &<br />

fungi. Dietary ingestion by birds and further processing gives rise to bright feather pigments etc.<br />

– biosynthesised by head-to-head coupling of two geranylgeranyl PP units to give lycopersene:<br />

GGPP (acceptor)<br />

prephytoene synthase<br />

PPO<br />

NADPH<br />

H<br />

OPP<br />

OPP<br />

[O]<br />

NADP + PP i<br />

GGPP (donor)<br />

prephytoene PP<br />

(cf. presqualene PP)<br />

lycopersene<br />

β-carotene<br />

– subsequent oxidative degradation (cf. ozonolysis!) gives retinal (mediator of vision) & vitamin A 1:<br />

11<br />

(E)<br />

retinal<br />

O<br />

vitamin A 1<br />

OH


PO<br />

glycolysis<br />

CO 2<br />

phosphoenol pyruvate<br />

CO 2<br />

O<br />

pyruvate<br />

SCoA<br />

O<br />

acetyl coenzyme A<br />

CoAS<br />

O<br />

O<br />

acetoacetyl coenzyme A<br />

PHOTOSYNTHESIS<br />

Primary Metabolism - Overview<br />

Primary metabolism<br />

CO 2 + H 2O<br />

HO<br />

HO<br />

O<br />

HO<br />

HO<br />

OH<br />

glucose<br />

& other 4,5,6 & 7 carbon sugars<br />

+<br />

PO<br />

HO O<br />

OH<br />

erythrose-4-phosphate<br />

Citric acid<br />

cycle<br />

(Krebs cycle)<br />

1) 'light reactions': hv -> ATP and NADH<br />

2) 'dark reactions': CO 2 -> sugars (Calvin cycle)<br />

SCoA<br />

O<br />

malonyl coenzyme A<br />

HO<br />

CO 2<br />

HO OH<br />

OH<br />

shikimate<br />

aromatic amino acids<br />

aliphatic amino acids<br />

CO 2<br />

HO<br />

mevalonate<br />

CO 2<br />

Primary metabolites<br />

oligosaccharides<br />

polysaccharides<br />

nucleic acids (RNA, DNA)<br />

peptides<br />

proteins<br />

tetrapyrroles (porphyrins)<br />

saturated fatty acids<br />

unsaturated fatty acids<br />

lipids<br />

Secondary metabolites<br />

SHIKIMATE METABOLITES<br />

cinnamic acid derivatives<br />

aromatic compounds<br />

lignans, flavinoids<br />

ALKALOIDS<br />

penicillins<br />

cephalosporins<br />

cyclic peptides<br />

FATTY ACIDS & POLYKETIDES<br />

prostaglandins<br />

polyacetylenes<br />

aromatic compounds, polyphenols<br />

macrolides<br />

ISOPRENOIDS<br />

terpenoids<br />

steroids<br />

carotenoids

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!