09.06.2013 Views

Fourier Analysis - Redes de Computadores - UPV

Fourier Analysis - Redes de Computadores - UPV

Fourier Analysis - Redes de Computadores - UPV

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

total signal power. So, we have to <strong>de</strong>termine the minimum number of harmonics<br />

required by the received to recognize and reconstruct the signal.<br />

How to compute the <strong>Fourier</strong> series of an ASCII character.<br />

Suppose that we are going to continuously transmit one character (one byte). If T is the<br />

repetition period, we can formally <strong>de</strong>fine the transmitted signal s(t) as:<br />

⎧<br />

⎡ T ⎡<br />

⎪ bit( 0)<br />

when t ∈ ⎢0<br />

+ Tn,<br />

+ Tn⎢<br />

⎪<br />

⎣ 8 ⎣<br />

⎪<br />

⎡T<br />

2T<br />

⎡<br />

s(<br />

t)<br />

=<br />

bit( 1)<br />

when t ∈<br />

⎨<br />

⎢ + Tn,<br />

+ Tn⎢<br />

⎣8<br />

8 ⎣<br />

⎪<br />

M<br />

⎪<br />

⎪<br />

⎡7T<br />

⎡<br />

bit( 7)<br />

whent<br />

∈<br />

⎪<br />

⎢ + Tn,<br />

T + Tn⎢<br />

⎩<br />

⎣ 8<br />

⎣<br />

∀n∈<br />

?<br />

(7)<br />

Where bit(i) are constants that <strong>de</strong>fine the value of bit i (of transmitted character).<br />

If the signal is not periodic, we can not use <strong>Fourier</strong> Series, instead we are obliged to use<br />

the <strong>Fourier</strong> transform which is out of the course scope.<br />

Now, we are ready to calculate the terms a0, an and bn <strong>de</strong> (1) for the signal <strong>de</strong>fined in<br />

(7). So, we are going to use the equations (2), (3) and (4).<br />

Let start with the DC component a0,<br />

a<br />

0<br />

1<br />

=<br />

T<br />

∫<br />

T<br />

0<br />

s(<br />

t)<br />

dt<br />

As function s(t) is <strong>de</strong>fined as (7), we can perform the integral calculation by intervals:<br />

a<br />

0<br />

T<br />

2T<br />

1<br />

⎛<br />

⎜ 8<br />

8<br />

= bit ( 0)<br />

dt + bit ( 1)<br />

dt + K +<br />

⎜∫<br />

∫T<br />

T 0<br />

∫<br />

⎝<br />

8<br />

3<br />

T<br />

7T<br />

8<br />

⎞<br />

bit ( 7)<br />

dt⎟<br />

⎟<br />

⎠<br />

Remember that bit(i) are constants, so we can consi<strong>de</strong>r the following<br />

a<br />

0<br />

T<br />

2T<br />

1<br />

⎛<br />

⎜ 8<br />

8<br />

= bit ( 0)<br />

dt + bit ( 1)<br />

dt + K + bit ( 7)<br />

⎜ ∫ ∫T<br />

T<br />

0<br />

∫<br />

⎝<br />

8<br />

Solving the simple integral<br />

and<br />

a<br />

0<br />

1 ⎛<br />

= ⎜bit<br />

( 0)<br />

T ⎜<br />

⎝<br />

T<br />

2T<br />

[ t]<br />

8 + bit ( 1)<br />

[ t]<br />

8 + K + bit ( 7)<br />

[ t]<br />

0<br />

1 ⎛ T T<br />

T<br />

a0 = ⎜ bit ( 0)<br />

+ bit ( 1)<br />

+ K<br />

+ bit ( 7)<br />

T ⎝ 8 8<br />

8<br />

T<br />

8<br />

⎞<br />

⎟<br />

⎠<br />

T<br />

7T<br />

8<br />

T<br />

7T<br />

8<br />

⎞<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

dt⎟<br />

⎟<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!