10.06.2013 Views

Issue 4 - August 2010 - Pacini Editore

Issue 4 - August 2010 - Pacini Editore

Issue 4 - August 2010 - Pacini Editore

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

150<br />

16 Kipp BR, Tyner HL, Campion MB, et al. Chromosomal alterations<br />

detected by fluorescence in situ hybridization in urothelial carcinoma<br />

and rarer histologic variants of bladder cancer. Am J Clin Pathol<br />

2008;130:552-9.<br />

17 Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TM-<br />

PRSS2 and ETS transcription factor genes in prostate cancer. Science<br />

2005;310:644-8.<br />

18 Demichelis F, Fall K, Perner S, et al. TMPRSS2:ERG gene fusion<br />

associated with lethal prostate cancer in a watchful waiting cohort.<br />

Oncogene 2007;26:4596-9.<br />

19 Saramaki OR, Harjula AE, Martikainen PM, et al. TMPRSS2:ERG<br />

fusion identifies a subgroup of prostate cancers with a favorable prognosis.<br />

Clin Cancer Res 2008;14:3395-400.<br />

20 Stapleton AM, Zbell P, Kattan MW, et al. Assessment of the biologic<br />

markers p53, Ki-67, and apoptotic index as predictive indicators of<br />

prostate carcinoma recurrence after surgery. Cancer 1998;82:168-75.<br />

21 Brewster SF, Oxley JD, Trivella M, et al. Preoperative p53, bcl-2,<br />

CD44 and E-cadherin immunohistochemistry as predictors of biochemical<br />

relapse after radical prostatectomy. J Urol 1999;161:1238-<br />

43.<br />

22 Stackhouse GB, Sesterhenn IA, Bauer JJ, et al. p53 and bcl-2 immunohistochemistry<br />

in pretreatment prostate needle biopsies to predict<br />

recurrence of prostate cancer after radical prostatectomy. J Urol<br />

1999;162:2040-5.<br />

23 Vis AN, van Rhijn BW, Noordzij MA, et al. Value of tissue markers<br />

p27(kip1), MIB-1, and CD44s for the pre-operative prediction<br />

of tumour features in screen-detected prostate cancer. J Pathol<br />

2002;197:148-54.<br />

24 Attard G, Swennenhuis JF, Olmos D, et al. Characterization of ERG,<br />

AR and PTEN gene status in circulating tumor cells from patients with<br />

castration-resistant prostate cancer. Cancer Res 2009;69:2912-8.<br />

25 Carver BS, Tran J, Gopalan A, et al. Aberrant ERG expression cooperates<br />

with loss of PTEN to promote cancer progression in the prostate.<br />

Nat Genet 2009;41:619-24.<br />

26 Gravina GL, Biordi L, Martella F, et al. Epigenetic modulation of<br />

PTEN expression during antiandrogenic therapies in human prostate<br />

cancer. Int J Oncol 2009;35:1133-9.<br />

27 King JC, Xu J, Wongvipat J, et al. Cooperativity of TMPRSS2-ERG<br />

with PI3-kinase pathway activation in prostate oncogenesis. Nat<br />

Genet 2009;41:524-6.<br />

28 Yoshimoto M, Cutz JC, Nuin PA, et al. Interphase FISH analysis of<br />

PTEN in histologic sections shows genomic deletions in 68% of primary<br />

prostate cancer and 23% of high-grade prostatic intra-epithelial<br />

neoplasias. Cancer Genet Cytogenet 2006;169:128-37.<br />

29 Schmitz M, Grignard G, Margue C, et al. Complete loss of PTEN<br />

expression as a possible early prognostic marker for prostate cancer<br />

metastasis. Int J Cancer 2007;120:1284-92.<br />

30 Diaz JI, Mora LB, Austin PF, et al. Predictability of PSA failure in<br />

prostate cancer by computerized cytometric assessment of tumoral cell<br />

proliferation. Urology 1999;53:931-8.<br />

31 Bostwick DG, Wheeler TM, Blute M, et al. Optimized microvessel<br />

density analysis improves prediction of cancer stage from prostate<br />

needle biopsies. Urology 1996;48:47-57.<br />

32 Khan MA, Walsh PC, Miller MC, et al. Quantitative alterations in<br />

nuclear structure predict prostate carcinoma distant metastasis and<br />

death in men with biochemical recurrence after radical prostatectomy.<br />

Cancer 2003;98:2583-91.<br />

33 Gettman MT, Bergstralh EJ, Blute M, et al. Prediction of patient<br />

outcome in pathologic stage T2 adenocarcinoma of the prostate: lack<br />

of significance for microvessel density analysis. Urology 1998;51:79-<br />

85.<br />

34 Zhang YH, Kanamaru H, Oyama N, et al. Prognostic value of nuclear<br />

morphometry on needle biopsy from patients with prostate cancer: is<br />

volume-weighted mean nuclear volume superior to other morphometric<br />

parameters? Urology 2000;55:377-81.<br />

35 Lapointe J, Li C, Higgins JP, van de Rijn M, et al. Gene expression<br />

profiling identifies clinically relevant subtypes of prostate cancer.<br />

Proc Natl Acad Sci USA 2004;101:811-6.<br />

36 Lapointe J, Li C, Giacomini CP, et al. Genomic profiling reveals<br />

alternative genetic pathways of prostate tumorigenesis. Cancer Res<br />

2007;67:8504-10.<br />

37 Jones TD, Ulbright TM, Eble JN, et al. OCT4 staining in testicular<br />

tumors: a sensitive and specific marker for seminoma and embryonal<br />

carcinoma. Am J Surg Pathol 2004;28:935-40.<br />

38 Looijenga LH, Stoop H, de Leeuw HP, et al. POU5F1 (OCT3/4)<br />

5 th triennial congress of the italian society of anatomic Pathology and diagnostic cytoPathology<br />

identifies cells with pluripotent potential in human germ cell tumors.<br />

Cancer Res 2003;63:2244-50.<br />

39 Manivel JC, Jessurun J, Wick MR, et al. Placental alkaline phosphatase<br />

immunoreactivity in testicular germ-cell neoplasms. Am J Surg<br />

Pathol 1987;11:21-9.<br />

40 Suster S, Moran CA, Dominguez-Malagon H, et al. Germ cell tumors<br />

of the mediastinum and testis: a comparative immunohistochemical<br />

study of 120 cases. Hum Pathol 1998;29:737-42.<br />

41 Leroy X, <strong>August</strong>o D, Leteurtre E, et al. CD30 and CD117 (c-kit) used<br />

in combination are useful for distinguishing embryonal carcinoma<br />

from seminoma. J Histochem Cytochem 2002;50:283-5.<br />

42 Cheville JC, Rao S, Iczkowski KA, et al. Cytokeratin expression in<br />

seminoma of the human testis. Am J Clin Pathol 2000;113:583-8.<br />

43 de Jong J, Stoop H, Gillis AJ, et al. Differential expression of SOX17<br />

and SOX2 in germ cells and stem cells has biological and clinical<br />

implications. J Pathol 2008;215:21-30.<br />

44 Eglen DE, Ulbright TM. The differential diagnosis of yolk sac tumor<br />

and seminoma. Usefulness of cytokeratin, alpha-fetoprotein, and<br />

alpha-1-antitrypsin immunoperoxidase reactions. Am J Clin Pathol<br />

1987;88:328-32.<br />

45 Hersmus R, de Leeuw BH, Wolffenbuttel KP, et al. New insights into<br />

type II germ cell tumor pathogenesis based on studies of patients with<br />

various forms of disorders of sex development (DSD). Mol Cell Endocrinol<br />

2008;291:1-10.<br />

46 Cools M, Drop SL, Wolffenbuttel KP, et al. Germ cell tumors in the<br />

intersex gonad: old paths, new directions, moving frontiers. Endocr<br />

Rev 2006;27:468-84.<br />

47 Krausz C, Degl’Innocenti S. Y chromosome and male infertility: update,<br />

2006. Front Biosci 2006;11:3049-61.<br />

48 Krausz C, Giachini C. Genetic risk factors in male infertility. Arch<br />

Androl 2007;53:125-33.<br />

49 Meng FJ, Zhou Y, Giwercman A, et al. Fluorescence in situ hybridization<br />

analysis of chromosome 12 anomalies in semen cells from patients<br />

with carcinoma in situ of the testis. J Pathol 1998;186:235-9.<br />

50 Oosterhuis JW, Looijenga LH. Testicular germ-cell tumours in a<br />

broader perspective. Nat Rev Cancer 2005;5:210-22.<br />

51 Cheng L, Zhang S, MacLennan GT, et al. Interphase fluorescence in<br />

situ hybridization analysis of chromosome 12p abnormalities is useful<br />

for distinguishing epidermoid cysts of the testis from pure mature<br />

teratoma. Clin Cancer Res 2006;12:5668-72.<br />

52 Kernek KM, Brunelli M, Ulbright TM, et al. Fluorescence in situ hybridization<br />

analysis of chromosome 12p in paraffin-embedded tissue<br />

is useful for establishing germ cell origin of metastatic tumors. Mod<br />

Pathol 2004;17:1309-13.<br />

53 Yamaguchi S, Yoshihiro S, Matsuyama H, et al. The allelic loss of<br />

chromosome 3p25 with c-myc gain is related to the development of<br />

clear-cell renal cell carcinoma. Clin Genet 2003;63:184-91.<br />

54 Brunelli M, Eble JN, Zhang S, et al. Gains of chromosomes 7, 17, 12,<br />

16, and 20 and loss of Y occur early in the evolution of papillary renal<br />

cell neoplasia: a fluorescent in situ hybridization study. Mod Pathol<br />

2003;16:1053-9.<br />

55 Tickoo SK, dePeralta-Venturina MN, Harik LR, et al. Spectrum of<br />

epithelial neoplasms in end-stage renal disease: an experience from<br />

66 tumor-bearing kidneys with emphasis on histologic patterns distinct<br />

from those in sporadic adult renal neoplasia. Am J Surg Pathol<br />

2006;30:141-53.<br />

56 Gobbo S, Eble JN, Grignon DJ, et al. Clear Cell Papillary Renal Cell<br />

Carcinoma: A Distinct Histopathologic and Molecular Genetic Entity.<br />

Am J Surg Pathol 2008 in press.<br />

57 Cossu-Rocca P, Eble JN, Delahunt B, et al. Renal mucinous tubular<br />

and spindle carcinoma lacks the gains of chromosomes 7 and 17 and<br />

losses of chromosome Y that are prevalent in papillary renal cell carcinoma.<br />

Mod Pathol 2006;19:488-93.<br />

58 Srigley J. Mucinous tubular and spindle cell carcinoma. In: Eble JN,<br />

Sauter G, Epstein JI, Sesterhenn IA (eds). World Health Organization<br />

Classification of Tumours: Pathology and Genetics of Tumours of the<br />

Urinary System and Male Genital Organs. Lyon: IARC Press 2004,<br />

p. 40.<br />

59 Renshaw AA, Maurici D, Fletcher JA. Cytologic and fluorescence<br />

in situ hybridization (FISH) examination of metanephric adenoma.<br />

Diagn Cytopathol 1997;16:107-11.<br />

60 Brunelli M, Eble JN, Zhang S, et al. Metanephric adenoma lacks<br />

the gains of chromosomes 7 and 17 and loss of Y that are typical of<br />

papillary renal cell carcinoma and papillary adenoma. Mod Pathol<br />

2003;16:1060-3.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!