10.06.2013 Views

Program - ESA Science & Technology

Program - ESA Science & Technology

Program - ESA Science & Technology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Precision<br />

Landing<br />

& Hazard<br />

Avoidance<br />

<strong>Technology</strong> <strong>Program</strong> Background and Overview<br />

<strong>Program</strong><br />

Exploration Clipper<br />

Boeing, MDR, Optech, USL, Irvin Aerospace, JPL, NASA-LaRC, Alabama A&M Univ., Cal Poly Pomona, Ohio Univ., Vanderbilt Univ., EAFB, Army Ft. Rucker, DoE<br />

11/30/200<br />

5<br />

Precision Landing and Hazard Avoidance<br />

<strong>Technology</strong> Demonstration <strong>Program</strong><br />

International Lunar Conference<br />

Robert V Frampton, James M Ball, Karl Oittinen, Boeing.<br />

Mata Bishun, MDA<br />

Bob Richards, Arkady Ulitsky, Eric Martin, Optech<br />

20 September 2005<br />

Toronto<br />

1.


Precision<br />

Landing<br />

& Hazard<br />

Avoidance<br />

<strong>Technology</strong><br />

Purpose<br />

<strong>Program</strong><br />

Exploration Clipper<br />

Boeing, MDR, Optech, USL, Irvin Aerospace, JPL, NASA-LaRC, Alabama A&M Univ., Cal Poly Pomona, Ohio Univ., Vanderbilt Univ., EAFB, Army Ft. Rucker, DoE<br />

11/30/200<br />

5<br />

• Demonstrate advanced technology for precision landing<br />

and hazard avoidance<br />

• <strong>Technology</strong> includes a LIDAR sensor, site selection<br />

algorithms, guidance navigation and control in an<br />

integrated, fault tolerant implementation<br />

• Achieve a <strong>Technology</strong> Readiness Level of 6 by flight<br />

testing this system in relevant environments<br />

• Demonstrate Adaptive Software Architecture that is<br />

applicable to different Lunar and Mars lander concepts.<br />

.<br />

2<br />

.


Precision<br />

Landing<br />

& Hazard<br />

Avoidance<br />

<strong>Technology</strong><br />

<strong>Program</strong><br />

Exploration Clipper<br />

Boeing, MDR, Optech, USL, Irvin Aerospace, JPL, NASA-LaRC, Alabama A&M Univ., Cal Poly Pomona, Ohio Univ., Vanderbilt Univ., EAFB, Army Ft. Rucker, DoE<br />

11/30/200<br />

5<br />

Example Need: Hazardous Lunar Terrain<br />

• Explored lunar surface has a high % of level, smooth surfaces<br />

• Some difficult lunar landing conditions do exist (see below)<br />

• Apollo used smart (piloted) landers - LEM<br />

• Apollo 11 almost depleted fuel avoiding a boulder field<br />

• Landers smaller than LEM may require even more<br />

maneuvering to avoid boulder fields or steep slopes<br />

• Support landing in dark conditions, 14 of every 28 days<br />

Apollo 15<br />

boulder field<br />

Apollo 16<br />

large boulder<br />

Apollo 17<br />

boulder field<br />

.<br />

Apollo 17<br />

large boulder<br />

Apollo 17<br />

steep crater slope<br />

3<br />

Apollo 12<br />

Surveyor lander<br />

slope > 10 degrees<br />

Apollo 17<br />

boulder field<br />

Images courtesy of NASA<br />

.


Precision<br />

Landing<br />

& Hazard<br />

Avoidance<br />

<strong>Technology</strong><br />

<strong>Program</strong><br />

Exploration Clipper<br />

Boeing, MDR, Optech, USL, Irvin Aerospace, JPL, NASA-LaRC, Alabama A&M Univ., Cal Poly Pomona, Ohio Univ., Vanderbilt Univ., EAFB, Army Ft. Rucker, DoE<br />

11/30/200<br />

5<br />

Example Need: Hazardous Mars Terrain<br />

• Many scientifically interesting<br />

sites are located in very<br />

challenging terrain<br />

• Autonomous landing site<br />

selection enhances mission<br />

planning<br />

Steep slopes<br />

Cliffs<br />

.<br />

Outflow gullies on cliff faces<br />

Curious surface features<br />

4<br />

Images courtesy of NASA<br />

.


Precision<br />

Landing<br />

& Hazard<br />

Avoidance<br />

<strong>Technology</strong><br />

<strong>Program</strong><br />

Exploration Clipper<br />

Boeing, MDR, Optech, USL, Irvin Aerospace, JPL, NASA-LaRC, Alabama A&M Univ., Cal Poly Pomona, Ohio Univ., Vanderbilt Univ., EAFB, Army Ft. Rucker, DoE<br />

11/30/200<br />

5<br />

Leveraged Delta Clipper (DC-X) <strong>Program</strong><br />

• Precision vertical<br />

propulsive landing GN&C<br />

system was developed and<br />

flown<br />

• Reuse of DC-X GN&C<br />

algorithms is planned for<br />

this prototype planetary<br />

lander<br />

• G&N approach will be<br />

extended to accommodate<br />

advanced landing sensors<br />

Powered vertical landing<br />

.<br />

5<br />

.


Precision<br />

Landing<br />

& Hazard<br />

Avoidance RaPIDS Development of Flight SW<br />

<strong>Technology</strong><br />

<strong>Program</strong><br />

Exploration Clipper<br />

Boeing, MDR, Optech, USL, Irvin Aerospace, JPL, NASA-LaRC, Alabama A&M Univ., Cal Poly Pomona, Ohio Univ., Vanderbilt Univ., EAFB, Army Ft. Rucker, DoE<br />

11/30/200<br />

5<br />

This method was applied to DC-X and other programs.<br />

.<br />

6<br />

.


Precision<br />

Landing<br />

& Hazard<br />

Avoidance<br />

<strong>Technology</strong> H&RT Team Structure and Roles<br />

<strong>Program</strong><br />

Exploration Clipper<br />

Boeing, MDR, Optech, USL, Irvin Aerospace, JPL, NASA-LaRC, Alabama A&M Univ., Cal Poly Pomona, Ohio Univ., Vanderbilt Univ., EAFB, Army Ft. Rucker, DoE<br />

Industry<br />

NASA<br />

DoD, DoE Universities<br />

11/30/200<br />

5<br />

1. Boeing Huntington Beach: Team Lead<br />

2. MacDonald Dettwiler and Optech: LIDAR; cost map software<br />

3. Universal Spacelines LLC: Software and Simulations<br />

4. Irvin Aerospace: Parachutes<br />

5. Jet Propulsion Lab: Lander concepts. Test planning<br />

6. Langley Research Center: CFD, Test support<br />

7. Alabama A&M University: Aerodynamics/CFD<br />

8. California State Polytechnic University, Pomona: Landing gear<br />

9. Ohio University: Fault Adaptive Control<br />

10. Vanderbilt University: Supply software and consulting for IVHM software<br />

11. US Air Force Research Lab (AFRL), Edwards AFB: Hover, plume tests<br />

12. US Army, Ft Rucker: Supply Chinook helicopter for drop test<br />

13. US Dept. of Energy: Test site operations<br />

.<br />

7<br />

.


Precision<br />

Landing<br />

& Hazard<br />

Avoidance<br />

<strong>Technology</strong> PL&HA <strong>Technology</strong> <strong>Program</strong> Goals<br />

<strong>Program</strong><br />

Exploration Clipper<br />

Boeing, MDR, Optech, USL, Irvin Aerospace, JPL, NASA-LaRC, Alabama A&M Univ., Cal Poly Pomona, Ohio Univ., Vanderbilt Univ., EAFB, Army Ft. Rucker, DoE<br />

• Demonstrate precision landing<br />

guidance and control, and<br />

autonomous navigation for a<br />

variety of lunar and Mars<br />

landers, showing adaptability.<br />

• Demonstrate terrain cost maps,<br />

landing site selection, and<br />

hazard avoidance for the moon<br />

and Mars<br />

• Demonstrate IVHM and fault<br />

adaptive control for the lander<br />

• Conduct drop test of a prototype<br />

lander from ~3 km altitude, by a<br />

Chinook helicopter, over drop<br />

test site (to achieve TRL 6)<br />

11/30/200<br />

5<br />

Thruster/ACS<br />

Spring-<br />

Loaded<br />

Lander Legs<br />

.<br />

LIDAR<br />

8<br />

Integrated/Impact-<br />

Absorbing<br />

Honeycomb<br />

Structure<br />

Fuel Tanks<br />

Notional Mars Lander<br />

PS_ID1702-011<br />

.


Precision<br />

Landing<br />

& Hazard<br />

Avoidance<br />

<strong>Technology</strong> H&RT PL&HA <strong>Program</strong> Schedule<br />

<strong>Program</strong><br />

Exploration Clipper<br />

Boeing, MDR, Optech, USL, Irvin Aerospace, JPL, NASA-LaRC, Alabama A&M Univ., Cal Poly Pomona, Ohio Univ., Vanderbilt Univ., EAFB, Army Ft. Rucker, DoE<br />

11/30/200<br />

5<br />

2005 2006 2007 2008<br />

Phase 1<br />

• Develop detailed plans<br />

• Develop CAD files<br />

• Preliminary design<br />

• Detailed simulation<br />

• Concept validation<br />

• Develop test plan<br />

Phase 2, Option 1<br />

• Complete CAD files<br />

• Propulsion design<br />

• LIDAR plume test<br />

• LIDAR flight tests<br />

• 6-DOF integration<br />

• RT simulation<br />

.<br />

Phase 2, Option 2<br />

• Lander CDR<br />

• Build lander<br />

• Conduct ground tests<br />

- systems tests<br />

- crane tests<br />

• Develop drogue chute<br />

• Test ops reviews<br />

• Conduct flight tests<br />

9<br />

.


Precision<br />

Landing<br />

& Hazard<br />

Avoidance<br />

<strong>Technology</strong> Lander Preliminary Design Process<br />

<strong>Program</strong><br />

Exploration Clipper<br />

Boeing, MDR, Optech, USL, Irvin Aerospace, JPL, NASA-LaRC, Alabama A&M Univ., Cal Poly Pomona, Ohio Univ., Vanderbilt Univ., EAFB, Army Ft. Rucker, DoE<br />

11/30/200<br />

5<br />

Derive<br />

vehicle<br />

requirements<br />

Candidate<br />

HW and SW<br />

Size vehicle<br />

and generate<br />

layouts<br />

.<br />

Develop mission<br />

requirements<br />

Generate<br />

HQ&ULs<br />

Vehicle preliminary design process<br />

Modify<br />

vehicle<br />

design<br />

.<br />

no<br />

Systems engineering process<br />

Develop<br />

baseline<br />

GN&C<br />

Determine initial<br />

mass properties,<br />

propulsion, aero<br />

meet<br />

req’ts<br />

?<br />

yes<br />

Baseline<br />

lander design<br />

Build 6-DOF<br />

simulation<br />

Simulate<br />

performance<br />

10<br />

Derive test<br />

requirements<br />

.


Precision<br />

Landing<br />

& Hazard<br />

Avoidance<br />

<strong>Technology</strong> “Exploration Clipper” Lander Concept<br />

<strong>Program</strong><br />

Exploration Clipper<br />

Boeing, MDR, Optech, USL, Irvin Aerospace, JPL, NASA-LaRC, Alabama A&M Univ., Cal Poly Pomona, Ohio Univ., Vanderbilt Univ., EAFB, Army Ft. Rucker, DoE<br />

Notional Testbed Lander<br />

Parachute (primary, backup)<br />

Propellant tanks (2)<br />

11/30/200<br />

5<br />

Pressurant tank<br />

Shock absorbers (4)<br />

Landing gear pads (4)<br />

LIDAR & avionics<br />

.<br />

Purpose: to provide an<br />

environment to test a<br />

lander with integrated<br />

LIDAR to a TRL of 6<br />

Parachute attach/release point<br />

Landing engines (4)<br />

11<br />

3 ACS thrusters<br />

(4 pods)<br />

.


Precision<br />

Landing<br />

& Hazard<br />

Avoidance<br />

<strong>Technology</strong> LIDAR Measurements and Cost Maps<br />

<strong>Program</strong><br />

Exploration Clipper<br />

Boeing, MDR, Optech, USL, Irvin Aerospace, JPL, NASA-LaRC, Alabama A&M Univ., Cal Poly Pomona, Ohio Univ., Vanderbilt Univ., EAFB, Army Ft. Rucker, DoE<br />

LIDAR measured topography<br />

11/30/200<br />

5<br />

.<br />

Horizontal<br />

velocity<br />

Examples of Cost Maps<br />

Selected landing site<br />

Inputs to lander guidance system<br />

12<br />

.


Precision<br />

Landing<br />

& Hazard<br />

Avoidance<br />

<strong>Technology</strong> Use NASA-LaRC Gantry for Drop Tests<br />

<strong>Program</strong><br />

Exploration Clipper<br />

Boeing, MDR, Optech, USL, Irvin Aerospace, JPL, NASA-LaRC, Alabama A&M Univ., Cal Poly Pomona, Ohio Univ., Vanderbilt Univ., EAFB, Army Ft. Rucker, DoE<br />

11/30/200<br />

5<br />

Langley Impact Dynamics Test Facility<br />

.<br />

LEMS Descent at LaRC Gantry<br />

The Impact Dynamics Research Facility (IDRF) is a 80-meter high gantry structure located<br />

at NASA Langley Research Center in Hampton, Virginia. The facility was originally built in<br />

1963 as a lunar landing simulator, allowing the Apollo astronauts to practice lunar landings<br />

under realistic conditions. The Lunar Excursion Module Simulator (LEMS) was suspended<br />

from gantry with a control system designed to produce an upward force equal to 5/6 th of the<br />

total weight of the LEMS.<br />

13<br />

.


Precision<br />

Landing<br />

& Hazard<br />

Avoidance<br />

<strong>Technology</strong><br />

<strong>Program</strong><br />

Exploration Clipper<br />

Boeing, MDR, Optech, USL, Irvin Aerospace, JPL, NASA-LaRC, Alabama A&M Univ., Cal Poly Pomona, Ohio Univ., Vanderbilt Univ., EAFB, Army Ft. Rucker, DoE<br />

11/30/200<br />

5<br />

Flight Test Will Use Helicopter to Drop Lander<br />

Lander<br />

CH-47 Helicopter<br />

Tow Strap<br />

.<br />

Drogue<br />

chute<br />

Chinook helicopter was used in previous Boeing drop tests<br />

14<br />

.


Precision<br />

Landing<br />

& Hazard<br />

Avoidance<br />

<strong>Technology</strong> Preliminary Drop Test Sequence<br />

<strong>Program</strong><br />

Exploration Clipper<br />

Boeing, MDR, Optech, USL, Irvin Aerospace, JPL, NASA-LaRC, Alabama A&M Univ., Cal Poly Pomona, Ohio Univ., Vanderbilt Univ., EAFB, Army Ft. Rucker, DoE<br />

Drop point<br />

FOCC<br />

11/30/200<br />

5<br />

Earliest<br />

parachute<br />

release<br />

Latest<br />

parachute<br />

release<br />

Helicopter flight path<br />

Free fall under parachute (stabilize)<br />

Free fall under parachute<br />

or propulsive steering.<br />

Propellant margin driven.<br />

(LIDAR selecting coarse<br />

landing site options)<br />

Propulsive steering<br />

(select final site)<br />

Propulsive steering<br />

(to selected site)<br />

.<br />

15<br />

.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!