11.06.2013 Views

Triscone.pdf

Triscone.pdf

Triscone.pdf

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Electric Field Control of the Electronic Properties of<br />

the Interfacial LaAlO3/SrTiO3 System<br />

STEM by L. Fitting-Kourkoutis,<br />

D.A. Muller (Cornell)<br />

… …<br />

AlO2 LaO<br />

TiO 2<br />

SrO<br />

(001)<br />

Jean-Marc <strong>Triscone</strong> - University of Geneva<br />

LaAlO 3:<br />

band insulator<br />

SrTiO 3:<br />

band insulator<br />

quantum paraelectric


… …<br />

AlO 2<br />

LaO<br />

TiO 2<br />

SrO<br />

(001)<br />

2D Electron Gas<br />

..............................................................<br />

Ahigh-mobilityelectrongasat<br />

the LaAlO 3/SrTiO 3 heterointerface<br />

A. Ohtomo 1,2,3 & H. Y. Hwang 1,3,4<br />

Nature 427, 423 (2004)<br />

1<br />

Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA<br />

2<br />

Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan<br />

3<br />

Japan Science and µ Technology 1000 Agency, cmKawaguchi, 332-0012, Japan<br />

4<br />

Department of Advanced Materials Science, University of Tokyo, Kashiwa,<br />

2 /Vs<br />

Chiba, 277-8651, Japan<br />

.............................................................................................................................................................................<br />

Polarity discontinuities at the interfaces between different crystalline<br />

materials (heterointerfaces) can lead to nontrivial local<br />

atomic and electronic structure, owing to the presence of dangling<br />

bonds and incomplete atomic coordinations 1–3 . These discontinuities<br />

often arise in naturally layered oxide structures,<br />

such as the superconducting copper oxides and ferroelectric<br />

titanates, as well as in artificial thin film oxide heterostructures<br />

such as manganite tunnel junctions 4–6 . If polarity discontinuities<br />

can be atomically controlled, unusual charge states that are<br />

inaccessible in bulk materials could be realized. Here we have<br />

examined a model interface between two insulating perovskite<br />

oxides—LaAlO3 and SrTiO3—in which we control the termination<br />

layer at the interface on an atomic scale. In the simple ionic<br />

limit, th<br />

two-dim<br />

interface<br />

whereas<br />

tremely<br />

low tem<br />

odic wit<br />

quantum<br />

tailor lo<br />

oxide he<br />

An ear<br />

the cons<br />

Both sem<br />

exact la<br />

combine<br />

Just at t<br />

terminat<br />

III–V alt<br />

design i<br />

dangling<br />

an intim<br />

charge-t<br />

sequenc<br />

phases,<br />

accomm<br />

charge n


… …<br />

AlO 2<br />

LaO<br />

TiO 2<br />

SrO<br />

(001)<br />

A. Ohtomo, H. Hwang, Nature 427, 423 (2004)<br />

S. Okamoto, A.J. Millis, Nature 428, 630 (2004)<br />

S. Thiel et al., Science 313, 1942 (2006)<br />

N. Nakagawa et al., Nature Materials 5, 204 (2006)<br />

M. Huijben et al., Nature Materials 5, 556 (2006)<br />

C.W. Schneider, APL 89, 122101 (2006)<br />

A. Brinkman et al., Nature Materials 6, 493 (2007)<br />

G. Herranz et al., PRL 98, 216803 (2007)<br />

W. Siemons et al., PRL 98, 196802 (2007)<br />

P.R. Willmott et al., PRL 99, 155502 (2007)<br />

A. Kalabukov et al., PRB 75, 121404(R) (2007)<br />

Z. Popovic et al., PRL 101, 256801 (2008)<br />

M. Basletic et al., Nature Materials 7, 621 (2008)<br />

C. Cen et al., Nature Materials 7, 298 (2008)<br />

S. Thiel et al., PRL 102, 046809 (2009)<br />

R. Pentchevaet al., PRL 102, 107602 (2009)<br />

M. Salluzzo et al., PRL 102, 166804 (2009)<br />

O. Copie et al., PRL 102, 216804 (2009)<br />

M. Sing et al., PRL 102, 176805 (2009)<br />

C. Bell et al., APL 94, 222111 (2009)<br />

C. Bell et al., PRL 103, 226802 (2009)<br />

C. Cen et al., Science 323, 1026 (2009)<br />

C.L. Jia et al., PRB 79, 081405(R) (2009)<br />

W. Son et al., PRB 79, 245411 (2009)<br />

G. Singh-Bhalla et al., Nature Physics (2010)<br />

A. D. Caviglia et al. PRL 105, 236802 (2010)<br />

M. Ben Shalom et al. PRL 105, 206401 (2010)<br />

A. D. Caviglia et al. PRL 104, 126803 (2010)<br />

A. Dubroka et al. PRL 104, 156807 (2010)<br />

M. Ben Shalom et al. PRL 104, 126802 (2010)<br />

M. Breitschaft et al., PRB 81, 153414 (2010)<br />

M. R. Fitzsimmons et al. PRL 107, 217201 (2011)<br />

C. Cancellieri et al. PRL 107, 056102 (2011)<br />

R. Yamamoto et al. PRL 107, 036104 (2011)<br />

P. Delugas et al. PRL 106, 166807 (2011)<br />

S. A. Pauli et al. PRL 106, 036101 (2011)<br />

L. Li et al., Nature Physics (2011)<br />

J.A. Bert et al., Nature Physics (2011)<br />

D.A. Dikin et al., PRL 107, 56802 (2011)<br />

L. Li et al. Science (2011)<br />

Ariando et al. Nature Comm. (2011)<br />

H. J Gardner et al. Nature Physics (2011)<br />

Stengel PRL 106, 136803 (2011)<br />

H. W. Jang et al. Science (2011)<br />

J. W. Park et al. Nature Comm (2011)


H⟘<br />

100mT<br />

H⫽<br />

flux of upward-propagating low-frequency waves<br />

throughout the solar corona. These waves propagate<br />

at speeds typical of Alfvén waves, and their<br />

direction of propagation mirrors the measured<br />

magnetic field direction. The waves we resolved<br />

do not have enough energy to heat the solar<br />

corona. We conclude that these ubiquitous waves<br />

are indeed Alfvénic and offer the real possibility<br />

of probing the plasma environment of the solar<br />

120, 185 (1983).<br />

13. T. Sakurai, K. Ichimoto, K. P. Raju, J. Singh, Sol. Phys.<br />

209, 265 (2002).<br />

14. J. W. Belcher, Astrophys. J. 168, 505 (1971).<br />

15. P. Charvin, Ann. Astrophys. 28, 877 (1965).<br />

16. S. M. Jefferies et al., Astrophys. J. 434, 795 (1994).<br />

17. W. Finsterle et al., Astrophys. J. 613, L185 (2004).<br />

18. S. W. McIntosh, B. Fleck, T. D. Tarbell, Astrophys. J. 609,<br />

L95 (2004).<br />

19. B. W. Lites, R. Rutten, W. Kalkofen, Astrophys. J. 414,<br />

345 (1993).<br />

A 2D Superconducting Electron Gas<br />

(T = 0) 60 nm d ≈ 10 nm<br />

1196<br />

Superconducting Interfaces Between<br />

Insulating Oxides<br />

N. Reyren, 1 S. Thiel, 2 A. D. Caviglia, 1 L. Fitting Kourkoutis, 3 G. Hammerl, 2 C. Richter, 2<br />

C. W. Schneider, 2 T. Kopp, 2 A.-S. Rüetschi, 1 D. Jaccard, 1 M. Gabay, 4 D. A. Muller, 3<br />

J.-M. <strong>Triscone</strong>, 1 J. Mannhart 2 *<br />

At interfaces between complex oxides, electronic systems with unusual electronic properties can<br />

be generated. We report on superconductivity in the electron gas formed at the interface between<br />

two insulating dielectric perovskite oxides, LaAlO3 and SrTiO3. The behavior of the electron gas<br />

is that of a two-dimensional superconductor, confined to a thin sheet at the interface. The<br />

superconducting transition temperature of ≅ 200 millikelvin provides a strict upper limit to the<br />

thickness of the superconducting layer of ≅ 10 nanometers.<br />

I<br />

npioneeringwork,itwasdemonstratedthata<br />

highly mobile electron system can be induced<br />

at the interface between LaAlO3 and SrTiO3 (1). The discovery of this electron gas at the<br />

interface between two insulators has generated an<br />

impressive amount of experimental and theoretical<br />

work (2–8), in part because the complex<br />

ionic structure and particular interactions found at<br />

such an interface are expected to promote novel<br />

1 Département de Physique de la Matière Condensée,<br />

University of Geneva, 24 quai Ernest-Ansermet, 1211 Genève<br />

4, Switzerland. 2 Experimental Physics VI, Center for Electronic<br />

Correlations and Magnetism, Institute of Physics, University of<br />

Augsburg, D-86135 Augsburg, Germany. 3 School of Applied<br />

and Engineering Physics, Cornell University, Ithaca, NY 14853,<br />

USA. 4 Laboratoire de Physique des Solides, Bat 510, Université<br />

Paris-Sud 11, Centre d’Orsay, 91405 Orsay, Cedex, France.<br />

*To whom correspondence should be addressed. E-mail:<br />

jochen.mannhart@physik.uni-augsburg.de<br />

Science 317, 1196 (2007)<br />

electronic phases that are not always stable as<br />

bulk phases (9–11). This result also generated an<br />

intense debate on the origin of the conducting<br />

layer, which could either be “extrinsic” and due<br />

to oxygen vacancies in the SrTiO 3 crystal or<br />

“intrinsic” and related to the polar nature of the<br />

LaAlO 3 structure. In the polar scenario, a<br />

potential develops as the LaAlO3 layer thickness<br />

increases that may lead to an “electronic reconstruction”<br />

above some critical thickness (5).<br />

Another key issue concerns the ground state of<br />

such a system; at low temperatures, a chargeordered<br />

interface with ferromagnetic spin alignment<br />

was predicted (4). Experimental evidence<br />

in favor of a ferromagnetic ground state was<br />

recently found (6). Yet, rather than ordering<br />

magnetically, the electron system may also<br />

condense into a superconducting state. It was<br />

proposed that in field effect transistor config-<br />

31 AUGUST 2007 VOL 317 SCIENCE www.sciencemag.org<br />

by grant ATM-0541567 from<br />

Supporting Online Materia<br />

www.sciencemag.org/cgi/content/f<br />

Materials and Methods<br />

Table S1<br />

References<br />

Movies S1 to S4<br />

2 April 2007; accepted 27 July 2<br />

10.1126/science.1143304<br />

urations, a superconduc<br />

(2D) electron gas might<br />

SrTiO 3 surface (12). It wa<br />

the polarization of the SrT<br />

the electrons on SrTiO 3 su<br />

at high temperatures a<br />

densate (13, 14). In this<br />

ground state of the LaAlO<br />

clarify whether it orders<br />

approaches absolute zero.<br />

vide evidence that the inve<br />

condense into a superco<br />

characteristics of the tra<br />

with those of a 2D electro<br />

Berezinskii-Kosterlitz-Th<br />

tion (15–17). In the oxy<br />

the observation of superc<br />

strict upper limit to the t<br />

conducting sheet at the La<br />

The samples were p<br />

LaAlO 3 layers with thick<br />

unit cells (uc) on TiO2-ter<br />

of SrTiO 3 single crystals (<br />

grown by pulsed laser de<br />

6 × 10 −5 mbar O 2,thenc<br />

ature in 400 mbar of O2,w<br />

step at 600°C. The fact tha<br />

with a LaAlO3 thickness<br />

conduct (5) was used to<br />

(19). Without exposing t<br />

terface to the environmen<br />

of 100 mm and lengths o<br />

were structured for four<br />

as well as two-uc-thick L<br />

erence (18).


Outline<br />

Electric field control of superconductivity,<br />

phase diagram<br />

Magneto-transport and spin-orbit coupling<br />

Superconductivity in nanostructures


The «Geneva» LaAlO3/SrTiO3 Team<br />

Stefano Gariglio<br />

Alexandre Fête<br />

Daniela<br />

Stornaiuolo<br />

Denver<br />

Li<br />

Marc Gabay<br />

(University of Paris-Sud)<br />

Andrea Caviglia<br />

(now in Hamburg)<br />

in collaboration with<br />

University of Geneva<br />

• Alberto Morpurgo<br />

Benjamin Sacépé<br />

• Didier Jaccard<br />

Gabriel Seyfarth<br />

• Christophe Berthod<br />

Claudia<br />

Cancellieri<br />

(now at PSI)<br />

and:<br />

• Philippe Ghosez (Liège)<br />

• Phil Willmott (PSI)<br />

Nicolas Reyren<br />

(now in Paris)<br />

• Jochen Mannhart (Stuttgart)


«Standard» LaAlO3/SrTiO3 Samples<br />

Layer-by-layer growth<br />

T = 800°C «standard»<br />

P O2 = 1·10 -4 Torr<br />

Fluence = 0.6 J/cm 2<br />

Frequency = 1Hz<br />

Post annealing @ 200 mbar O2<br />

Intensity (a.u.)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

16 18 20 22 24 26 28 30


Ti O 3.9 Å<br />

TiO2-plane<br />

Transport Properties<br />

R sheet (Ω/)<br />

500<br />

400<br />

300<br />

200<br />

100<br />

~2-8×10 13 /cm 2<br />

mobilities 100-1000 cm 2 /Vs<br />

0<br />

200 300 400 500 600<br />

T (mK)


Field Effect Experiments<br />

IS VS VD ID<br />

SrTiO 3<br />

VG,b


Ti O 3.9 Å<br />

TiO2-plane<br />

«Standard» Samples<br />

R sheet (Ω/)<br />

500<br />

400<br />

300<br />

200<br />

100<br />

~2-8×10 13 /cm 2<br />

mobilities 100-1000 cm 2 /Vs<br />

0<br />

200 300 400 500 600<br />

T (mK)


A<br />

R sheet (Ω/)<br />

1x10 4<br />

R Q<br />

1x10 3<br />

1x10 2<br />

Modulation of SC<br />

- 300 V<br />

320 V<br />

1x10<br />

50 100 150 200 250 300 350 400<br />

1<br />

T (mK)<br />

A.D. Caviglia et al, Nature 456, 625 (2008)<br />

5<br />

50 150 250 350 0<br />

T (mK)<br />

20<br />

15<br />

10<br />

R Q<br />

B<br />

R sheet (kΩ/)


System Phase Diagram<br />

See also C. Bell et al. PRL 103, 226802 (2009).


Weak Localization to Weak Antilocalization<br />

Δσ /(e2 Δσ /(e /π h) 2 /π h)<br />

1<br />

0.4<br />

0.2<br />

0.5<br />

0<br />

-0.2<br />

0<br />

-0.4<br />

-0.6<br />

-0.5<br />

-0.8<br />

-1<br />

-1.2<br />

-4 -2 0<br />

μ 0 H (T)<br />

2 4<br />

Weak localization<br />

LAO<br />

STO T=1.5K<br />

-300 V<br />

-100 V<br />

-300 V<br />

-50 -100 VV<br />

-50 V<br />

0 V<br />

0 V<br />

+50 V<br />

+50 V<br />

+100 V<br />

A.D. Caviglia et al., Phys. Rev. Lett. 104, 126803 (2010)<br />

Weak anti-localization<br />

Strong spin-orbit interaction


B (T)<br />

i,so<br />

B (T)<br />

el,so<br />

m*/m* max<br />

10<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

10<br />

1<br />

0.1<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

-300 -200<br />

V (V)<br />

-100 0 100<br />

a)<br />

b)<br />

c)<br />

WL WAL AM<br />

T c - PRL 104<br />

B i - PRL 104<br />

B i - this work<br />

B so - PRL 104<br />

B so - this work<br />

B so - this work<br />

B - this work<br />

el<br />

0.1 1<br />

σ (mS)<br />

2D<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

T (K)<br />

c<br />

B≈1/Dτ<br />

τso∼τel -1<br />

Rashba spin orbit<br />

s<br />

m ⇤ = h2<br />

4⇥<br />

Bso<br />

⇤0


M. Salluzzo et al., PRL 102, 166804 (2009)<br />

Electronic Structure<br />

ns=3.3 10 14 cm -2<br />

Delugas et al., PRL 106, 166807 (2011)


Spin-orbit and Magneto-transport in // Field<br />

B (T)<br />

i,so<br />

B (T)<br />

el,so<br />

m*/m* max<br />

10<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

10<br />

1<br />

0.1<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

-300 -200<br />

V (V)<br />

-100 0 100<br />

a)<br />

b)<br />

c)<br />

WL WAL AM<br />

T c - PRL 104<br />

B i - PRL 104<br />

B i - this work<br />

B so - PRL 104<br />

B so - this work<br />

a)<br />

B 1<br />

so - this work<br />

B el - this work<br />

0.995<br />

σ (mS)<br />

2D<br />

σ (mS)<br />

2D<br />

c)<br />

σ (mS)<br />

2D<br />

0.99<br />

0.985<br />

0.99<br />

0.985<br />

Exp.<br />

0.1<br />

1<br />

1<br />

0.995<br />

σ 2D(mS)<br />

1.004<br />

0.999<br />

0.994<br />

0.989<br />

Theory<br />

0 50 100 150 200 250 300<br />

ϕ (°)<br />

Experiment<br />

Theory<br />

1<br />

7T<br />

1.75T<br />

3.5T<br />

5.25T<br />

7T<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

1.75T<br />

3.5T<br />

5.5T<br />

T (K)<br />

c<br />

b)<br />

σ 2D (mS)<br />

σ (mS)<br />

d)<br />

!<br />

2D<br />

σ (mS)<br />

2D<br />

3 2 3<br />

4 2<br />

2.04<br />

2.02<br />

2<br />

2.06<br />

2.02<br />

2<br />

Exp.<br />

7T<br />

5.25T<br />

3.5T<br />

1.75T<br />

2.04<br />

E kF m<br />

7T<br />

⇤<br />

0<br />

Bso Bso = 4 D⇥so<br />

⇧ Bel = 0<br />

4 D⇥<br />

Theory<br />

5.5T<br />

3.5T<br />

1.75T<br />

⌅WL(B = 0) Bel<br />

0 50 100 150 200 250 300<br />

⌅WL(B = 0)<br />

ϕ (°)<br />

2.06<br />

2.03<br />

2<br />

m ⇤ ⌅D V<br />

Experiment<br />

Theory<br />

B =0<br />

⌅WL(B = 0) = e2<br />

✓<br />

⇤h<br />

A. Fête et al. arXiv:1203.5239<br />

Log[(1 + Bso<br />

Bin<br />

)(1 + 2Bso<br />

)<br />

Bin<br />

1<br />

2 ] Log[ Bel<br />

Bin<br />

Bso<br />

◆<br />

]<br />

⇧so ⇧ 2<br />

⇥so = ⇤2 so⇧ so ⇥ ~⇤so =2 EkF<br />

m ⇤ = h2<br />

4⇤ E<br />

r Bso<br />

⇥0<br />

⇥0 = h<br />

2e<br />

D = 1<br />

2 vF 2 ⇧<br />

µD µ Bel<br />

Bi


1mS<br />

Δso=2.5 meV<br />

a)<br />

σ (mS)<br />

2D<br />

σ (mS)<br />

2D<br />

c)<br />

σ (mS)<br />

2D<br />

a)<br />

kx<br />

b) c)<br />

E (meV)<br />

1<br />

0.995<br />

0.99<br />

0.985<br />

1<br />

0.995<br />

0.99<br />

0.985<br />

1.004<br />

0.999<br />

0.994<br />

(B =0)=2<br />

⇥<br />

dxz<br />

Exp.<br />

Theory<br />

0 50 100 150 200 250 300<br />

ϕ (°)<br />

0.989<br />

0 2 4<br />

B (T), Φ=90°<br />

6 8<br />

dyz<br />

dxz<br />

Experiment<br />

Theory<br />

dyz<br />

mh ⇥ 20me<br />

E (meV)<br />

E Γ<br />

B= 1 T<br />

kx<br />

B ⌅ =0<br />

B Rashba ⌅ = 2<br />

B<br />

7T<br />

1.75T<br />

3.5T<br />

5.25T<br />

7T<br />

1.75T<br />

3.5T<br />

5.5T<br />

ext E<br />

b)<br />

σ 2D (mS)<br />

σ 2D (mS)<br />

d)<br />

σ (mS)<br />

2D<br />

2.04<br />

2.02<br />

E (meV)<br />

2<br />

2.06<br />

2.04<br />

2.02<br />

2<br />

2.06<br />

2.03<br />

2<br />

0 2 4<br />

σ y=+1/2<br />

6 8<br />

B (T), Φ=90°<br />

B= 0 T<br />

Exp.<br />

Theory<br />

0 50 100 150 200 250 300<br />

ϕ (°)<br />

Experiment<br />

Theory<br />

σ y=-1/2<br />

(B,⇥) ⇥<br />

B B (B =0)=1<br />

⇥(B,⌅ = /2)<br />

EF<br />

B =0<br />

g(EF ) ⇥ J<br />

⌅ =0 EF ⇥ E<br />

EF E g(EF )<br />

B =0<br />

E dxy<br />

EF<br />

EF E dxz<br />

J<br />

7T<br />

5.25T<br />

3.5T<br />

1.75T<br />

7T<br />

5.5T<br />

3.5T<br />

1.75T<br />

g(EF )<br />

dxz<br />

B B= 1 T<br />

⇤<br />

⌅ B<br />

B<br />

kx<br />

⌅ Bext (⇥(B,⌅ = /2)<br />

⇥<br />

Bdxz Rashba<br />

EF<br />

⇥(B,⌅ = 0))/⇥(B,⌅ = 0) =<br />

1/8(⇥so/EF ) 2<br />

A. Fête et al. arXiv:1203.5239<br />

B<br />

⇥so<br />

t2g<br />

2mS<br />

Δso=7 meV


alues of<br />

conducerimene<br />

shown<br />

D(B, )<br />

0<br />

2D =2<br />

re which<br />

lays the<br />

, = 0)<br />

ental re-<br />

.5) meV<br />

ll within<br />

, 14].<br />

tal oscildifferent<br />

ero for a<br />

se sheet<br />

egime –<br />

portant<br />

g super-<br />

ion that<br />

e, as one<br />

conduc-<br />

V ,conorbitals,<br />

e severe<br />

f V ,the<br />

dxz,dyz<br />

uctivity,<br />

and by<br />

nce. For<br />

interactructure<br />

e trans-<br />

0 2 4 6 8<br />

B (T)<br />

FIG. 3: (color online) Experimental and model determined<br />

plots of 2D versus B for<br />

0<br />

2D =1mS and 0 2D =2mS.<br />

Δσ (μS)<br />

2D<br />

20<br />

15<br />

10<br />

5<br />

0<br />

2D-SC<br />

0.1 1<br />

0<br />

2D<br />

Are the dxz, dyz bands playing<br />

a special role for<br />

superconductivity?<br />

Some Correlations<br />

σ (mS)<br />

7T<br />

5.25T<br />

3.5T<br />

1.75T<br />

FIG. 4: (color online) Evolution of the amplitude of the experimental<br />

oscillations 2D ( 2D = 2D(B, = ⇡<br />

2 )<br />

0<br />

2D(B, =0)) as a function of 2D ."Plus"symbolspertain<br />

to measurements performed on an additional sample at 7 T.<br />

for their technical assistance. This work was supported<br />

by the Swiss National Science Foundation through the<br />

National Center of Competence in Research, Materials<br />

with Novel Electronic Properties, MaNEP and division<br />

II, by the Institut Universitaire de France (MG), and the<br />

τ (ps)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Ref. [13]<br />

this work<br />

Ref. [13]<br />

this work<br />

0.1 1<br />

0<br />

σ (mS)<br />

2D<br />

Signature of a spin-orbit<br />

protected transport in the 2D<br />

conducting sheet ?<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

e<br />

m*/m


Conclusions<br />

Magneto-transport and superconductivity reveal the<br />

importance of the sub-band structure<br />

Magneto-transport and SdH analyses display signatures of<br />

the presence of spin orbit in the system<br />

The gas properties are preserved in «nano-structures» - that<br />

may reveal signatures of the SC gap

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!