13.06.2013 Views

Morphological and molecular data on the dermal microfilariae of a ...

Morphological and molecular data on the dermal microfilariae of a ...

Morphological and molecular data on the dermal microfilariae of a ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Veterinary Parasitology 182 (2011) 221– 229<br />

C<strong>on</strong>tents lists available at ScienceDirect<br />

Veterinary Parasitology<br />

jo u rn al hom epa ge : www.elsevier.com/locate/vetpar<br />

<str<strong>on</strong>g>Morphological</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>molecular</str<strong>on</strong>g> <str<strong>on</strong>g>data</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>dermal</strong> <strong>micr<strong>of</strong>ilariae</strong> <strong>of</strong> a<br />

species <strong>of</strong> Cercopithifilaria from a dog in Sicily<br />

Domenico Otranto a,∗ , Emanuele Brianti b , Filipe Dantas-Torres a ,<br />

Stefania Weigl a , Maria Stefania Latr<strong>of</strong>a a , Gabriella Gaglio b , Laura Cauquil b ,<br />

Salvatore Giannetto b , Odile Bain c<br />

a Dipartimento di Sanità Pubblica e Zootecnia, Università degli Studi di Bari, 70010 Valenzano, Bari, Italy<br />

b Dipartimento di Sanità Pubblica Veterinaria, Facoltà di Medicina Veterinaria, Università degli Studi di Messina, Messina, Italy<br />

c Département Systématique et Evoluti<strong>on</strong>, UMR 7205 CNRS, Muséum Nati<strong>on</strong>al d’Histoire Naturelle, Paris, France<br />

a r t i c l e i n f o<br />

Article history:<br />

Received 14 March 2011<br />

Received in revised form 16 May 2011<br />

Accepted 20 May 2011<br />

Keywords:<br />

Canine filarioids<br />

Dermal <strong>micr<strong>of</strong>ilariae</strong><br />

Cercopithifilaria bainae<br />

Cercopithifilaria grassii<br />

Acanthocheil<strong>on</strong>ema rec<strong>on</strong>ditum<br />

1. Introducti<strong>on</strong><br />

a b s t r a c t<br />

Filarioids (Spirurida, Onchocercidae) parasitizing wild<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> domestic mammals can cause zo<strong>on</strong>osis in tropical <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

subtropical regi<strong>on</strong>s (Orihel <str<strong>on</strong>g>and</str<strong>on</strong>g> Eberhard, 1998; Otranto<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Eberhard, 2011). Several <strong>of</strong> <strong>the</strong>se species are parasites<br />

<strong>of</strong> dogs, <str<strong>on</strong>g>and</str<strong>on</strong>g> have ei<strong>the</strong>r blood <strong>micr<strong>of</strong>ilariae</strong> such as <strong>of</strong><br />

Dir<strong>of</strong>ilaria spp. (Orihel <str<strong>on</strong>g>and</str<strong>on</strong>g> Ash, 1995; McCall et al., 2008;<br />

Pampigli<strong>on</strong>e et al., 1995, 2009) <str<strong>on</strong>g>and</str<strong>on</strong>g> Acanthocheil<strong>on</strong>ema<br />

rec<strong>on</strong>ditum (Huynh et al., 2001), or <strong>dermal</strong> <strong>micr<strong>of</strong>ilariae</strong><br />

as Onchocerca lupi (Otranto et al., 2011). Canine filariae<br />

∗ Corresp<strong>on</strong>ding author. Tel.: +39 080 4679839; fax: +39 080 4679839.<br />

E-mail address: d.otranto@veterinaria.uniba.it (D. Otranto).<br />

0304-4017/$ – see fr<strong>on</strong>t matter ©<br />

2011 Elsevier B.V. All rights reserved.<br />

doi:10.1016/j.vetpar.2011.05.043<br />

Dermal <strong>micr<strong>of</strong>ilariae</strong> found in a dog from Sicily, Italy, were characterized morphologically<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> genetically <str<strong>on</strong>g>and</str<strong>on</strong>g> differentiated from those <strong>of</strong> all <strong>the</strong> o<strong>the</strong>r blood <strong>micr<strong>of</strong>ilariae</strong> comm<strong>on</strong>ly<br />

found in dogs. In particular, <strong>the</strong> <strong>micr<strong>of</strong>ilariae</strong> were short (mean length <strong>of</strong> 186.7 m), presented<br />

a body flattened dorso-ventrally <str<strong>on</strong>g>and</str<strong>on</strong>g> a rounded head, bearing a tiny cephalic hook.<br />

The genetic identity <strong>of</strong> <strong>micr<strong>of</strong>ilariae</strong> herein studied was also assessed by <str<strong>on</strong>g>molecular</str<strong>on</strong>g> amplificati<strong>on</strong>,<br />

sequencing <str<strong>on</strong>g>and</str<strong>on</strong>g> analyzing <strong>of</strong> multiple ribosomal ITS-2 <str<strong>on</strong>g>and</str<strong>on</strong>g> mitoch<strong>on</strong>drial (cox1 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

12S) target genes. Both morphologic <str<strong>on</strong>g>and</str<strong>on</strong>g> genetic characterizati<strong>on</strong> as well as <strong>the</strong> <str<strong>on</strong>g>molecular</str<strong>on</strong>g><br />

phylogenetic history inferred using sequences <strong>of</strong> a barcoding <str<strong>on</strong>g>data</str<strong>on</strong>g>set were c<strong>on</strong>cordant<br />

in supporting <strong>the</strong> identificati<strong>on</strong> <strong>of</strong> Cercopithifilaria at <strong>the</strong> genus level. Surprisingly, <strong>micr<strong>of</strong>ilariae</strong><br />

here examined were well distinct from Cercopithifilaria grassii (Noè, 1907), from<br />

nor<strong>the</strong>rn Italy, <str<strong>on</strong>g>and</str<strong>on</strong>g> resembled those <strong>of</strong> a species described in Brazil, Cercopithifilaria bainae<br />

Almeida & Vicente, 1984. This paper provides evidence for <strong>the</strong> existence <strong>of</strong> a Cercopithifilaria<br />

species infesting a dog from Sicily <str<strong>on</strong>g>and</str<strong>on</strong>g> also presents a PCR protocol <strong>on</strong> skin samples as<br />

a tool for fur<strong>the</strong>r epidemiological studies, which could provide evidence <strong>on</strong> <strong>the</strong> aetiology<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> natural history <strong>of</strong> this filarial species.<br />

© 2011 Elsevier B.V. All rights reserved.<br />

with <strong>dermal</strong> <strong>micr<strong>of</strong>ilariae</strong> are not restricted to O. lupi <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

two o<strong>the</strong>r species have been reported in <strong>the</strong> genus Cercopithifilaria<br />

(Eberhard, 1980), although <strong>the</strong>y are little known<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> usually not searched for in dogs (Almeida <str<strong>on</strong>g>and</str<strong>on</strong>g> Vicente,<br />

1984; Bain et al., 1982a).<br />

The genus Cercopithifilaria, originally described as a subgenus<br />

<strong>of</strong> Dipetal<strong>on</strong>ema by Eberhard (1980), is now well<br />

defined <str<strong>on</strong>g>and</str<strong>on</strong>g> comprises 28 species, ei<strong>the</strong>r described in or<br />

reclassified to this genus (Bain et al., 2002). Adult worms<br />

are most <strong>of</strong>ten tiny, located in subcutaneous tissues <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

uneasy to detect. Micr<strong>of</strong>ilariae are always in <strong>the</strong> dermis<br />

instead <strong>of</strong> in <strong>the</strong> blood circulati<strong>on</strong> (Bain et al., 2002). As<br />

far as it is known, species <strong>of</strong> Cercopithifilaria are primarily<br />

transmitted by hard ticks (Ixodida, Ixodidae), such as<br />

Rhipicephalus <str<strong>on</strong>g>and</str<strong>on</strong>g> Ixodes (Noè, 1908; Winkhardt, 1980; Bain


222 D. Otranto et al. / Veterinary Parasitology 182 (2011) 221– 229<br />

et al., 1986; Spratt <str<strong>on</strong>g>and</str<strong>on</strong>g> Haycock, 1988; Petit et al., 1988).<br />

The host range <strong>of</strong> Cercopithifilaria is made <strong>of</strong> a diversity<br />

<strong>of</strong> ruminants, primates, carnivores, rodents, lagomorphs,<br />

marsupials <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>otremes. However, species currently<br />

placed within this genus are well supported by traditi<strong>on</strong>al<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>molecular</str<strong>on</strong>g> <str<strong>on</strong>g>data</str<strong>on</strong>g> (Bain et al., 2008).<br />

In 1907, Noè found a filarial nematode with <strong>dermal</strong><br />

<strong>micr<strong>of</strong>ilariae</strong> in samples collected from a dog in Rome<br />

(Italy). This species was originally described as Filaria<br />

grassii <str<strong>on</strong>g>and</str<strong>on</strong>g> later transferred to Cercopithifilaria by Bain<br />

et al. (1982b). This filaria presents characteristic “gigantesche”<br />

(from Italian, giant) <strong>micr<strong>of</strong>ilariae</strong>, as Noè stated<br />

in his original descripti<strong>on</strong> for this species (Noè, 1907).<br />

These <strong>micr<strong>of</strong>ilariae</strong> developed in ticks (Noè, 1908). C. grassii<br />

species remained ignored until two interesting reports<br />

<strong>of</strong> this parasite, dated back to nearly 30 years ago, in<br />

Switzerl<str<strong>on</strong>g>and</str<strong>on</strong>g> (Bain et al., 1982a) <str<strong>on</strong>g>and</str<strong>on</strong>g> in nor<strong>the</strong>rn Italy<br />

(Pampigli<strong>on</strong>e et al., 1983).<br />

In south-eastern Brazil, <strong>the</strong> species was reported twice,<br />

by Costa <str<strong>on</strong>g>and</str<strong>on</strong>g> Freitas (1962) <str<strong>on</strong>g>and</str<strong>on</strong>g> Almeida <str<strong>on</strong>g>and</str<strong>on</strong>g> Vicente<br />

(1982). However, two years later, <strong>the</strong> last authors examined<br />

additi<strong>on</strong>al material <strong>of</strong> this rare filarioid <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>cluded<br />

that it represented a new species, Cercopithifilaria bainae<br />

Almeida & Vicente, 1984, distinguished for its much smaller<br />

<strong>micr<strong>of</strong>ilariae</strong> (Almeida <str<strong>on</strong>g>and</str<strong>on</strong>g> Vicente, 1984).<br />

The primary aim <strong>of</strong> <strong>the</strong> present investigati<strong>on</strong> was to<br />

reassess <strong>the</strong> occurrence <strong>of</strong> C. grassii in Italy. Dermal <strong>micr<strong>of</strong>ilariae</strong><br />

were retrieved from skin samples <strong>of</strong> a dog from Sicily,<br />

sou<strong>the</strong>rn Italy, <str<strong>on</strong>g>and</str<strong>on</strong>g> coupled morphological <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>molecular</str<strong>on</strong>g><br />

analyses c<strong>on</strong>firmed that this filarial nematode bel<strong>on</strong>ged<br />

to <strong>the</strong> genus Cercopithifilaria. However, <strong>the</strong> morphological<br />

study indicated that this species was not C. grassii, but<br />

seemed related morphologically to <strong>the</strong> Brazilian filarioid<br />

described by Almeida <str<strong>on</strong>g>and</str<strong>on</strong>g> Vicente (1984).<br />

2. Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> methods<br />

2.1. Dermal <strong>micr<strong>of</strong>ilariae</strong> collecti<strong>on</strong><br />

On July 2010, <strong>on</strong>e m<strong>on</strong>grel dog was found positive for<br />

A. rec<strong>on</strong>ditum <strong>micr<strong>of</strong>ilariae</strong> in blood during a survey carried<br />

out in <strong>the</strong> municipal dog shelter in Messina (38 ◦ 11 ′ N;<br />

15 ◦ 33 ′ E), Sicily, Italy (<str<strong>on</strong>g>data</str<strong>on</strong>g> not shown). These larvae were<br />

identified <strong>on</strong> <strong>the</strong> basis <strong>of</strong> <strong>the</strong>ir length (260 m), body width<br />

(4 m), caudal filament, <str<strong>on</strong>g>and</str<strong>on</strong>g> characteristic prominent<br />

cephalic hook. In <strong>the</strong> same shelter, o<strong>the</strong>r dogs were found<br />

to be positive for A. rec<strong>on</strong>ditum (<str<strong>on</strong>g>data</str<strong>on</strong>g> not shown). N<strong>on</strong>e <strong>of</strong><br />

<strong>the</strong> animals had received any an<strong>the</strong>lmintic or ectoparasiticide<br />

treatment during <strong>the</strong> m<strong>on</strong>ths before <str<strong>on</strong>g>and</str<strong>on</strong>g> almost all <strong>of</strong><br />

<strong>the</strong>m were heavily infested by fleas (Ctenocephalides spp.)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> by R. sanguineus ticks (Brianti et al., 2010). At <strong>the</strong> clinical<br />

examinati<strong>on</strong> a subcutaneous nodule was retrieved <strong>on</strong><br />

<strong>the</strong> dog’s right thigh (Fig. 1) <str<strong>on</strong>g>and</str<strong>on</strong>g> thus a biopsy <strong>of</strong> 3 mm was<br />

taken from skin (sample 1; s1). Skin samples were collected<br />

using a disposable scalpel after shaving <strong>the</strong> hair over an<br />

area <strong>of</strong> about 0.5 cm × 0.5 cm × 0.6 cm. Dermal sample was<br />

soaked in saline soluti<strong>on</strong> for 10 min at 37 ◦ C <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>reafter<br />

removed <str<strong>on</strong>g>and</str<strong>on</strong>g> stored at −20 ◦ C. The sediment was observed<br />

under light microscopy after adding a drop <strong>of</strong> methylene<br />

blue (1%). Following <strong>the</strong> retrieval <strong>of</strong> motile <strong>micr<strong>of</strong>ilariae</strong><br />

(see Secti<strong>on</strong> 3), five o<strong>the</strong>r skin biopsies (s2–s5) were per-<br />

Fig. 1. Subcutaneous nodule <strong>on</strong> <strong>the</strong> animal’s right thigh.<br />

formed (i.e., from <strong>the</strong> left thigh, s2; from both right <str<strong>on</strong>g>and</str<strong>on</strong>g> left<br />

temporal areas, s3 <str<strong>on</strong>g>and</str<strong>on</strong>g> s4; <str<strong>on</strong>g>and</str<strong>on</strong>g> from armpits, s5 <str<strong>on</strong>g>and</str<strong>on</strong>g> s6).<br />

2.2. <str<strong>on</strong>g>Morphological</str<strong>on</strong>g> analysis<br />

<str<strong>on</strong>g>Morphological</str<strong>on</strong>g> analysis was d<strong>on</strong>e with fixed <strong>micr<strong>of</strong>ilariae</strong><br />

cleared in lactophenol. The cover-slide was unsealed<br />

in order to orient <strong>the</strong> <strong>micr<strong>of</strong>ilariae</strong> in dorso-ventral or<br />

lateral views, as previously described (Bain et al., 1988;<br />

Uni et al., 2001). Drawings were made with an optic<br />

microscope equipped with a camera lucida <str<strong>on</strong>g>and</str<strong>on</strong>g> measurements<br />

were made <strong>on</strong> drawings. Microscopic images<br />

were acquired using a digital camera (Zeiss Axiocam MRc,<br />

Carl Zeiss, Germany) mounted directly <strong>on</strong> <strong>the</strong> microscope<br />

(Zeiss Axioscop 2 plus, Carl Zeiss, Germany). The s<strong>of</strong>tware<br />

AxioVisi<strong>on</strong> rel. 4.8 (Carl Zeiss, Germany) was used for<br />

<strong>the</strong> image analysis process including measuring <strong>of</strong> larvae,<br />

which are provided in micrometers. Slide-mounted <strong>micr<strong>of</strong>ilariae</strong><br />

were deposited in <strong>the</strong> collecti<strong>on</strong> <strong>of</strong> <strong>the</strong> Muséum<br />

Nati<strong>on</strong>al d’Histoire Naturelle, Paris, France (MNHM), under<br />

<strong>the</strong> accessi<strong>on</strong> numbers 194 YU <str<strong>on</strong>g>and</str<strong>on</strong>g> 284 YU.<br />

2.3. Molecular amplificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> phylogenetic analyses<br />

The <str<strong>on</strong>g>molecular</str<strong>on</strong>g> identificati<strong>on</strong> was performed by extracting<br />

genomic DNA from <strong>micr<strong>of</strong>ilariae</strong> isolated by <strong>the</strong> larval<br />

sediment <strong>of</strong> s1, using a commercial kit (DNeasy Blood<br />

& Tissue Kit, Qiagen, GmbH, Hilden, Germany) in accordance<br />

with <strong>the</strong> manufacturer’s instructi<strong>on</strong>s. In additi<strong>on</strong>, <strong>the</strong><br />

remaining skin saline-soaked sample (s1) was extracted<br />

with <strong>the</strong> remaining samples (s2–s6) as above.<br />

A cox1 (∼689 bp) <str<strong>on</strong>g>and</str<strong>on</strong>g> 12S (∼330 bp) gene fragments,<br />

which are usually employed for barcoding <strong>of</strong> filarioids<br />

(Ferri et al., 2009) were amplified. In particular, cox1 was<br />

amplified by using filarioid-generic primers (Casiraghi<br />

et al., 2004, 2006) whereas 12S was amplified by a set <strong>of</strong><br />

primers (Fila12SF: 5 ′ -CGGGAGTAAAGTTTTGTTTAAACCG-


3 ′ <str<strong>on</strong>g>and</str<strong>on</strong>g> Fila12SR: 5 ′ -CATTGACGGATGGTTTGTACCAC-3 ′ )<br />

designed <strong>on</strong> <strong>the</strong> 12S c<strong>on</strong>served regi<strong>on</strong>s <strong>of</strong> Acanthocheil<strong>on</strong>ema<br />

spp., Cercopithifilaria spp., <str<strong>on</strong>g>and</str<strong>on</strong>g> Dir<strong>of</strong>ilaria<br />

spp. sequences available in GeneBank (Table 2). A third<br />

fragment, <strong>the</strong> ITS-2 rDNA <str<strong>on</strong>g>and</str<strong>on</strong>g> flanking sequences <strong>of</strong> <strong>the</strong><br />

5.8S <str<strong>on</strong>g>and</str<strong>on</strong>g> 28S rRNA genes were amplified by using <strong>the</strong><br />

primers NC1 (forward 5 ′ -ACGTCTGGTTCAGGGTTGTT-3 ′ )<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> NC2 (reverse 5 ′ -TTAGTTTCTTTTCCTCCGCT-3 ′ ) (Gasser<br />

et al., 1993).<br />

In order to assess a diagnostic <str<strong>on</strong>g>molecular</str<strong>on</strong>g> method<br />

to differentiate A. rec<strong>on</strong>ditum <str<strong>on</strong>g>and</str<strong>on</strong>g> Cercopithifilaria<br />

sp., two forward internal primers (i.e., ArCox1F:<br />

5 ′ -ATCTTTGTTTATGGTGTATC-3 ′ <str<strong>on</strong>g>and</str<strong>on</strong>g> CbCox1F: 5 ′ -<br />

CGGGTCTTTGTTGTTTTTATTGC-3 ′ ) were used to amplify a<br />

partial cox1 (pcox1) <strong>of</strong> A. rec<strong>on</strong>ditum (589 bp) <str<strong>on</strong>g>and</str<strong>on</strong>g> Cercopithifilaria<br />

sp. (304 bp), both coupled with reverse primer<br />

described in Casiraghi et al. (2004). The pcox1 specific<br />

primers were designed using <strong>the</strong> criteria <strong>of</strong> Sharrocks<br />

(1994), <strong>on</strong> <strong>the</strong> basis <strong>of</strong> <strong>the</strong> cox1 complete sequences<br />

obtained by <strong>the</strong> amplificati<strong>on</strong> using <strong>the</strong> filarioid-generic<br />

primers <str<strong>on</strong>g>and</str<strong>on</strong>g> by <strong>the</strong> multiple alignments <strong>of</strong> sequences<br />

available in GenBank TM . The amplificati<strong>on</strong> reacti<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

pcox1 c<strong>on</strong>sisted <strong>of</strong> 2 l genomic DNA <str<strong>on</strong>g>and</str<strong>on</strong>g> 23 l <strong>of</strong> PCR<br />

mix c<strong>on</strong>taining 2.5 mM MgCl2, 10 mM Tris–HCl, pH 8.3<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 50 mM KCl, 250 M <strong>of</strong> each dNTP, 50 pmol <strong>of</strong> each<br />

primer <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.25 U <strong>of</strong> Ampli Taq Gold (Applied Biosystems)<br />

using a <strong>the</strong>rmal cycler (2720, Applied Biosystems). The<br />

amplificati<strong>on</strong> reacti<strong>on</strong> <strong>of</strong> pcox1 fragment was optimized by<br />

a serial <strong>of</strong> amplificati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s yielding <strong>the</strong> following<br />

best results: 95 ◦ C for 10 min (first polymerase activati<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> denaturati<strong>on</strong>), followed by 40 cycles <strong>of</strong> 95 ◦ C for 1 min<br />

(denaturati<strong>on</strong>); 58 ◦ C for 1 min (annealing), <str<strong>on</strong>g>and</str<strong>on</strong>g> 72 ◦ C for<br />

1 min (extensi<strong>on</strong>) <str<strong>on</strong>g>and</str<strong>on</strong>g> a final extensi<strong>on</strong> <strong>of</strong> 72 ◦ C for 7 min.<br />

Approximately 100 ng <strong>of</strong> genomic DNA were added to each<br />

PCR. In additi<strong>on</strong>, in order to test <strong>the</strong> specificity <strong>of</strong> both<br />

primers in amplifying A. rec<strong>on</strong>ditum <str<strong>on</strong>g>and</str<strong>on</strong>g> Cercopithifilaria<br />

sp. pcox1, all primer combinati<strong>on</strong>s were tested with D.<br />

repens, D. immitis, A. rec<strong>on</strong>ditum <str<strong>on</strong>g>and</str<strong>on</strong>g> Cercopithifilaria sp.<br />

here detected. DNA from R. sanguineus, blood <str<strong>on</strong>g>and</str<strong>on</strong>g> skin<br />

samples from laboratory-reared beagles (see Otranto et al.,<br />

2010) were used as negative c<strong>on</strong>trols <str<strong>on</strong>g>and</str<strong>on</strong>g>, al<strong>on</strong>g with a<br />

no DNA sample, were included in each PCR run to test <strong>the</strong><br />

specificity <strong>of</strong> <strong>the</strong> reacti<strong>on</strong>.<br />

Amplic<strong>on</strong>s were purified using Ultrafree-DA columns<br />

(Amic<strong>on</strong>, Millipore; Bedford, USA) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>n sequenced<br />

directly using <strong>the</strong> Taq DyeDeoxyTerminator Cycle Sequencing<br />

Kit (v.2, Applied Biosystems) in an automated<br />

sequencer (ABI-PRISM 377). Sequences were determined<br />

from both str<str<strong>on</strong>g>and</str<strong>on</strong>g>s (using <strong>the</strong> same primers individually as<br />

for <strong>the</strong> PCR) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> electropherograms verified by eye.<br />

D. Otranto et al. / Veterinary Parasitology 182 (2011) 221– 229 223<br />

In order to ensure open reading frames, all nucleotide<br />

sequences <strong>of</strong> <strong>the</strong> cox1 fragment were c<strong>on</strong>ceptually translated<br />

into amino acid sequences using <strong>the</strong> invertebrate<br />

mitoch<strong>on</strong>drial code by MEGA 4.0 (Tamura et al., 2007).<br />

Sequences were aligned using ClustalW program (Larkin<br />

et al., 2007) <str<strong>on</strong>g>and</str<strong>on</strong>g> compared with those available in Gen-<br />

Bank <str<strong>on</strong>g>data</str<strong>on</strong>g>set by BLAST analysis. In order to investigate <strong>the</strong><br />

relati<strong>on</strong>ships am<strong>on</strong>g filarioids <strong>of</strong> <strong>the</strong> Onchocercidae family,<br />

sequences <strong>of</strong> both genes were analyzed with those<br />

available in GenBank TM . The evoluti<strong>on</strong>ary history was<br />

inferred by MEGA 4.0, using cox1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 12S sequences, under<br />

Neighbor-Joining methods using 8000 replicates bootstrap<br />

values. Thelazia callipaeda (Spirurida, Thelaziidae) was chosen<br />

as an out-group. The nucleotide sequences analyzed<br />

in this paper are available in <strong>the</strong> GenBank TM <str<strong>on</strong>g>data</str<strong>on</strong>g>base<br />

JF461457, JF461461.1 <str<strong>on</strong>g>and</str<strong>on</strong>g> JF501396.<br />

3. Results<br />

Two types <strong>of</strong> <strong>micr<strong>of</strong>ilariae</strong> were found <strong>on</strong> <strong>the</strong> same<br />

slide (MNHM, 284 YU) as well as in o<strong>the</strong>r slides prepared<br />

from <strong>the</strong> sediment <strong>of</strong> skin samples soaked in saline soluti<strong>on</strong>.<br />

Some <strong>dermal</strong> <strong>micr<strong>of</strong>ilariae</strong> presented morphological<br />

characteristics compatible with Cercopithifilaria <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong><br />

o<strong>the</strong>rs were indistinguishable from blood <strong>micr<strong>of</strong>ilariae</strong> <strong>of</strong> A.<br />

rec<strong>on</strong>ditum. The morphological diagnostic characters were<br />

compared with those available in <strong>the</strong> literature (Table 1)<br />

(Fülleborn, 1912; Bernard <str<strong>on</strong>g>and</str<strong>on</strong>g> Bausche, 1913; Lent <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Freitas, 1937; Olmeda-Garcia <str<strong>on</strong>g>and</str<strong>on</strong>g> Rodriguez-Rodriguez,<br />

1994), by comparing measurements <str<strong>on</strong>g>and</str<strong>on</strong>g> features with<br />

those <strong>of</strong> <strong>the</strong> filarial nematodes most comm<strong>on</strong>ly retrieved in<br />

dogs in Italy, namely, D. immitis, D. repens <str<strong>on</strong>g>and</str<strong>on</strong>g> A. rec<strong>on</strong>ditum<br />

(Otranto <str<strong>on</strong>g>and</str<strong>on</strong>g> Dantas-Torres, 2010) <str<strong>on</strong>g>and</str<strong>on</strong>g> Acanthocheil<strong>on</strong>ema<br />

dracunculoides, with blood <strong>micr<strong>of</strong>ilariae</strong>, as well as C. grassii<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> C. bainae with <strong>dermal</strong> <strong>micr<strong>of</strong>ilariae</strong> (Table 1). These<br />

<strong>dermal</strong> <strong>micr<strong>of</strong>ilariae</strong> here detected were also clearly distinct<br />

from <strong>the</strong> blood <strong>micr<strong>of</strong>ilariae</strong> <strong>of</strong> <strong>the</strong> above filarioid<br />

species (Table 1).<br />

Dermal <strong>micr<strong>of</strong>ilariae</strong> (n = 15) were short with a mean<br />

length <strong>of</strong> 186.7 ± 3.9 m (182–190 m); <strong>the</strong> body was flattened<br />

dorso-ventrally, 8.5–11 m but 3–3.5 wide in lateral<br />

view; <strong>micr<strong>of</strong>ilariae</strong> mostly laid <strong>on</strong> <strong>the</strong> dorso-ventral side.<br />

No sheath was present <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> body cuticle was thick with<br />

transverse striati<strong>on</strong>s, interrupted in lateral plane. A 30 m<br />

l<strong>on</strong>g cephalic anterior part was slightly attenuated <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

identified in dorso-ventral view <strong>on</strong>ly; <strong>the</strong> main part <strong>of</strong> body<br />

presented c<strong>on</strong>stant width (Fig. 2). As for <strong>the</strong> arrangement <strong>of</strong><br />

body nuclei, <strong>on</strong> a transverse line, approximately 4–5 angular<br />

nuclei were detectable in dorso-ventral view <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e<br />

rounded nucleus in lateral view. The head was rounded,<br />

Table 1<br />

Measurements (in micrometers) <str<strong>on</strong>g>and</str<strong>on</strong>g> morphological features <strong>of</strong> <strong>micr<strong>of</strong>ilariae</strong> <strong>of</strong> filarioids affecting dogs (references in <strong>the</strong> text).<br />

Species Length Width Posterior end Cephalic hook<br />

Acanthocheil<strong>on</strong>ema rec<strong>on</strong>ditum 230–290 4.5 Filiform Prominent<br />

Acanthocheil<strong>on</strong>ema dracunculoides 246–258 4–6 N<strong>on</strong> filiform Sharp, extended<br />

Dir<strong>of</strong>ilaria immitis 218–273 5–7 Filiform Tiny<br />

Dir<strong>of</strong>ilaria repens 300–360 6–8 Filiform Tiny<br />

Cercopithifilaria grassii 567–660 12.2–15.5 N<strong>on</strong> filiform ?<br />

Cercopithifilaria bainae 185.18 6.59 N<strong>on</strong> filiform ?<br />

Cercopithifilaria sp. (present study) 182–190 3–3.5 N<strong>on</strong> filiform Tiny


224 D. Otranto et al. / Veterinary Parasitology 182 (2011) 221– 229<br />

mouth <str<strong>on</strong>g>and</str<strong>on</strong>g> plain axis <strong>of</strong> anterior oesophagus were identified;<br />

<strong>the</strong> cephalic space was short; <strong>on</strong> <strong>the</strong> left side, a slight<br />

protuberance bearing <strong>the</strong> tiny cephalic hook was identified.<br />

At 72 m from apex, <strong>the</strong> excretory cell (but not excretory<br />

pore) was identified in dorso-ventral view (Fig. 2). The posterior<br />

part <strong>of</strong> <strong>the</strong> body was c<strong>on</strong>ical, 30 m l<strong>on</strong>g; <strong>the</strong> anal<br />

pore was not visible. The last caudal nucleus was el<strong>on</strong>gated,<br />

at 15 m to tip tail <str<strong>on</strong>g>and</str<strong>on</strong>g>, at its level, <strong>the</strong> tail became slightly<br />

more attenuated in dorso-ventral view <strong>on</strong>ly; <strong>the</strong> tip tail was<br />

blunt (Fig. 2).<br />

The morphological differentiati<strong>on</strong> between A. rec<strong>on</strong>ditum<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> <strong>dermal</strong> short micr<strong>of</strong>ilaria was c<strong>on</strong>firmed by<br />

nucleotide differences in cox1, 12S, <str<strong>on</strong>g>and</str<strong>on</strong>g> ITS-2 sequences<br />

here examined <str<strong>on</strong>g>and</str<strong>on</strong>g> those available in GenBank TM <str<strong>on</strong>g>data</str<strong>on</strong>g>base.<br />

The PCR amplificati<strong>on</strong> <strong>of</strong> each target gene from individual<br />

DNA samples resulted in amplic<strong>on</strong>s <strong>of</strong> <strong>the</strong> expected<br />

size. No intraspecific differences were detected within each<br />

species for each gene sequence examined. cox1 mitoch<strong>on</strong>drial<br />

sequences <strong>of</strong> <strong>the</strong> <strong>dermal</strong> <strong>micr<strong>of</strong>ilariae</strong> had a typical<br />

base compositi<strong>on</strong> <strong>of</strong> AT c<strong>on</strong>tent (62.1%) <str<strong>on</strong>g>and</str<strong>on</strong>g> a bias at <strong>the</strong><br />

third cod<strong>on</strong> positi<strong>on</strong> to AT (69.8%) compared with <strong>the</strong><br />

first <str<strong>on</strong>g>and</str<strong>on</strong>g> sec<strong>on</strong>d positi<strong>on</strong>s (58.1%). The c<strong>on</strong>ceptual translati<strong>on</strong><br />

at sec<strong>on</strong>d cod<strong>on</strong> positi<strong>on</strong> <strong>of</strong> cox1 sequence led to<br />

216 amino acids without stop cod<strong>on</strong>s. The mean inter-<br />

specific aminoacidic difference ranged from 3.2% to 7.9%<br />

in D. immitis vs. D. repens <str<strong>on</strong>g>and</str<strong>on</strong>g> in <strong>dermal</strong> <strong>micr<strong>of</strong>ilariae</strong> vs.<br />

A. rec<strong>on</strong>ditum, respectively. By comparing <strong>the</strong> nucleotide<br />

sequences <strong>of</strong> <strong>the</strong> most frequent species <strong>of</strong> filarioids affecting<br />

dogs (i.e., A. rec<strong>on</strong>ditum, D. immitis, <str<strong>on</strong>g>and</str<strong>on</strong>g> D. repens) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

those <strong>of</strong> <strong>dermal</strong> <strong>micr<strong>of</strong>ilariae</strong>, <strong>the</strong> mean level <strong>of</strong> interspecific<br />

pairwise (Pwc) distance (%) was <strong>of</strong> 12.9%, 13.4% <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

61.9% for cox1, 12S <str<strong>on</strong>g>and</str<strong>on</strong>g> ITS-2, respectively. In particular,<br />

cox1 mean interspecific difference ranged from 9.7% to<br />

15.1% in D. immitis vs. D. repens <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>dermal</strong> <strong>micr<strong>of</strong>ilariae</strong><br />

vs. A. rec<strong>on</strong>ditum, respectively (Table 3). Analogously, 12S<br />

mean interspecific difference ranged from 9.2% to 17.3% in<br />

D. immitis vs. D. repens <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>dermal</strong> <strong>micr<strong>of</strong>ilariae</strong> vs. A. rec<strong>on</strong>ditum,<br />

respectively (Table 3). The alignment <strong>of</strong> <strong>the</strong> ITS-2<br />

sequences ranged from 390 bp in D. repens to 485 bp in A.<br />

rec<strong>on</strong>ditum with interspecific difference ranged from 41.2%<br />

to 69.3% in D. immitis vs. D. repens <str<strong>on</strong>g>and</str<strong>on</strong>g> A. rec<strong>on</strong>ditum vs. D.<br />

repens, respectively (Table 3).<br />

The BLAST analysis <strong>of</strong> <strong>the</strong> Cercopithifilaria sp. sequences<br />

showed <strong>the</strong> highest nucleotide similarity (i.e., 86.5% <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

93.6%) with <strong>the</strong> cox1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 12S sequences <strong>of</strong> C. tumidicervicata<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> C. roussilh<strong>on</strong>i available in GenBank TM . ITS-2<br />

sequence did not display any significant similarity with any<br />

<strong>of</strong> those available in GenBank TM . Analogously, <strong>the</strong> phyloge-<br />

Table 2<br />

GenBank accessi<strong>on</strong> numbers (AN) <strong>of</strong> <strong>the</strong> Onchocercidae <str<strong>on</strong>g>and</str<strong>on</strong>g> Thelazia callipaeda (outgroup) for <strong>the</strong> mitoch<strong>on</strong>drial cytochrome c oxidase subunit 1 (cox1)<br />

gene sequences used herein. Sequences obtained in this study are marked with an asterisk.<br />

Species AN Host<br />

Acanthocheil<strong>on</strong>ema rec<strong>on</strong>ditum (Grassi, 1890) JF461456* Canis familiaris<br />

Acanthocheil<strong>on</strong>ema rec<strong>on</strong>ditum (Grassi, 1890) AJ544876 Canis familiaris<br />

Acanthocheil<strong>on</strong>ema viteae (Krepkogorskaya, 1933) AJ272117 Meri<strong>on</strong>es libycus<br />

Brugia malayi (Brug, 1927) AF538716 Homo sapiens<br />

Brugia pahangi (Buckley & Edes<strong>on</strong>, 1956) AJ271611 Felis catus<br />

Cercopithifilaria sp. JF461457* Canis familiaris<br />

Cercopithifilaria bulboidea Uni & Bain, 2001 AM749247 Capricornis crispus<br />

Cercopithifilaria crassa Uni, Bain & Takaoka, 2002 AM749260 Cervus nipp<strong>on</strong><br />

Cercopithifilaria jap<strong>on</strong>ica Uni, 1983 AM749261 Ursus thibetanus<br />

Cercopithifilaria l<strong>on</strong>ga Uni, Bain & Takaoka, 2002 AM749246 Cervus nipp<strong>on</strong><br />

Cercopithifilaria minuta Uni & Bain, 2001 AM749253 Capricornis crispus<br />

Cercopithifilaria multicauda Uni & Bain, 2001 AM749255 Capricornis crispus<br />

Cercopithifilaria roussilh<strong>on</strong>i Bain, Petit & Chabaud, 1986 AM749264 A<strong>the</strong>rurus africanus<br />

Cercopithifilaria shohoi (Uni, Suzuki & Katsumi, 1998) AM749251 Capricornis crispus<br />

Cercopithifilaria tumidicervicata Uni & Bain, 2001 AM749259 Capricornis crispus<br />

Dipetal<strong>on</strong>ema gracile Rudolphi, 1809 AJ544877 Cebus olivaceus<br />

Dir<strong>of</strong>ilaria immitis Leidy, 1856 AJ271613 Canis familiaris<br />

Dir<strong>of</strong>ilaria immitis Leidy, 1856 AM749228 Canis familiaris<br />

Dir<strong>of</strong>ilaria immitis Leidy, 1856 AM749227 Felis catus<br />

Dir<strong>of</strong>ilaria immitis Leidy, 1856 AM749226 Felis catus<br />

Dir<strong>of</strong>ilaria repens Railliet & Henry, 1911 AM749230 Canis familiaris<br />

Dir<strong>of</strong>ilaria repens Railliet & Henry, 1911 AM749231 Felis catus<br />

Dir<strong>of</strong>ilaria repens Railliet & Henry, 1911 AM749232 Felis catus<br />

Dir<strong>of</strong>ilaria repens Railliet & Henry, 1911 JF461458* Homo sapiens<br />

Dir<strong>of</strong>ilaria repens Railliet & Henry, 1911 AM749234 Homo sapiens<br />

Dir<strong>of</strong>ilaria repens Railliet & Henry, 1911 AM749233 Homo sapiens<br />

Foleyella furcata (Linstow, 1899) AJ544879 Chamele<strong>on</strong><br />

Litomosa westi (Gardner & Smith, 1986) AJ544871 Geomys bursarius<br />

Litomosoides sigmod<strong>on</strong>tis Ch<str<strong>on</strong>g>and</str<strong>on</strong>g>ler, 1931 AM749286 Sigmod<strong>on</strong> hispidus<br />

Loxod<strong>on</strong>t<strong>of</strong>ilaria caprini Uni & Bain, 2006 AM749242 Capricornis crispus<br />

Onchocerca gibb<strong>on</strong>i Clel<str<strong>on</strong>g>and</str<strong>on</strong>g> & Johnst<strong>on</strong>, 1910 AJ271616 Bos taurus<br />

Onchocerca gutturosa Neumann, 1910 AJ271617 Bos taurus<br />

Onchocerca ochengi Bwangamoi, 1969 AJ271618 Bos taurus<br />

Onchocerca lupi Rod<strong>on</strong>aja, 1967 HQ207644 Homo sapiens<br />

Onchocerca volvulus (Leuckart, 1893) AM749284 Homo sapiens<br />

Setaria equina (Abildgaard, 1789) AJ544873 Equus caballus<br />

Setaria labiatopapillosa (Aless<str<strong>on</strong>g>and</str<strong>on</strong>g>rini, 1848) AJ544872 Bos taurus<br />

Thelazia callipaeda Railliet & Henry, 1910 AJ544882 Canis familiaris


Table 3<br />

Level <strong>of</strong> interspecific pairwise (Pwc) distance (%) calculated am<strong>on</strong>g c<strong>on</strong>sensus sequences for cox1, 12S rDNA <str<strong>on</strong>g>and</str<strong>on</strong>g> ITS-2 for <strong>the</strong> most comm<strong>on</strong> species <strong>of</strong> filarioids affecting dogs (i.e., Acanthocheil<strong>on</strong>ema rec<strong>on</strong>ditum,<br />

A.r.; Dir<strong>of</strong>ilaria immitis, D.i.; Dir<strong>of</strong>ilaria repens, D.r.; Cercopithifilaria sp., C. sp.).<br />

Pwc (%) cox1 12S rDNA ITS-2<br />

C. sp.<br />

D. r.<br />

AY693808<br />

D. i.<br />

EU182331<br />

A.r.<br />

AF217801<br />

C. sp.<br />

JF461461<br />

D.r.<br />

JF461462<br />

D.i.<br />

FN391554<br />

A.r.<br />

JF461460<br />

C. sp.<br />

JF461457<br />

D. r.<br />

JF461458<br />

D. i. FN391553<br />

EU169124<br />

A.r.<br />

JF461456<br />

A.r. – –<br />

D.i. 13.1 – 13.5 – 59.2<br />

D.r. 12.6 9.7 – 10.3 9.2 – 65.1 32.3<br />

C.sp. 15.1 14.5 12.9 – 17.3 15.9 14.1 – 58.5 57.1 65.7 –<br />

D. Otranto et al. / Veterinary Parasitology 182 (2011) 221– 229 225<br />

Fig. 2. Cercopithifilaria sp. micr<strong>of</strong>ilaria. (A) Dorso-ventral view. (B–D) Lateral<br />

view <strong>of</strong> anterior end, mid regi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> posterior end, respectively.<br />

(E–G) Dorso-ventral view <strong>of</strong> anterior end, mid regi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> posterior end,<br />

respectively. Scale bars in m: (A) 50; o<strong>the</strong>rs, 20.<br />

netic analysis <strong>of</strong> <strong>the</strong> sequences <strong>of</strong> <strong>the</strong> <strong>dermal</strong> <strong>micr<strong>of</strong>ilariae</strong><br />

here examined <str<strong>on</strong>g>and</str<strong>on</strong>g> those available for <strong>on</strong>chocercid species<br />

was c<strong>on</strong>cordant in clustering it with those <strong>of</strong> o<strong>the</strong>r Cercopithifilaria<br />

spp. available in GenBank TM (Fig. 3). There was<br />

c<strong>on</strong>sistency in <strong>the</strong> topology <strong>of</strong> <strong>the</strong> tree inferred by <strong>the</strong> NJ<br />

(not shown) <str<strong>on</strong>g>and</str<strong>on</strong>g> ME methods (for both target genes). The<br />

phylogenetic analysis <strong>of</strong> <strong>the</strong> cox1 sequence <strong>of</strong> <strong>the</strong> most<br />

comm<strong>on</strong> species <strong>of</strong> filarioids available in GenBankTM <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<strong>on</strong> <strong>the</strong> Cercopithifilaria sp. here produced revealed <strong>the</strong> existence<br />

<strong>of</strong> two main clades. In particular, Onchocerca spp.,<br />

Setaria spp., <str<strong>on</strong>g>and</str<strong>on</strong>g> Brugia spp. were clustered all toge<strong>the</strong>r<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> differentiated by a sec<strong>on</strong>d group including as Cercopithifilaria<br />

spp. <str<strong>on</strong>g>and</str<strong>on</strong>g> Acanthocheil<strong>on</strong>ema spp. These two<br />

genera were grouped to <strong>the</strong> exclusi<strong>on</strong> <strong>of</strong> D. immitis <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Litomosoides spp. (Fig. 3). The branches were overall well<br />

differentiated <str<strong>on</strong>g>and</str<strong>on</strong>g> supported by high bootstrap values in<br />

<strong>the</strong>ir main nodal points.


226 D. Otranto et al. / Veterinary Parasitology 182 (2011) 221– 229<br />

Fig. 3. Phylogeny <strong>of</strong> filarioid Onchocercidae based <strong>on</strong> cox1 gene sequences under Neighbor-Joining methods using 8000 replicates bootstrap values.<br />

Numbers are GenBank accessi<strong>on</strong> numbers. The tree was rooted against Thelazia callipaeda (out-group).<br />

Two different sized pcox1 amplic<strong>on</strong>s were produced<br />

for <strong>the</strong> <strong>dermal</strong> <strong>micr<strong>of</strong>ilariae</strong> (300 bp) <str<strong>on</strong>g>and</str<strong>on</strong>g> for A. rec<strong>on</strong>ditum<br />

(∼590 bp). Both <strong>the</strong> PCR reacti<strong>on</strong>s with specific<br />

primers amplified exclusively <strong>the</strong> <strong>dermal</strong> <strong>micr<strong>of</strong>ilariae</strong> or<br />

A. rec<strong>on</strong>ditum, <str<strong>on</strong>g>and</str<strong>on</strong>g> did not amplify negative c<strong>on</strong>trols (i.e., R.<br />

sanguineus, skin <str<strong>on</strong>g>and</str<strong>on</strong>g> blood from dogs <str<strong>on</strong>g>and</str<strong>on</strong>g> no DNA sample)<br />

as well as <strong>the</strong> o<strong>the</strong>r species <strong>of</strong> filarioids tested (i.e., D. immitis<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> D. repens). Blood sample was <strong>on</strong>ly PCR positive for A.<br />

rec<strong>on</strong>ditum (Fig. 4). A. rec<strong>on</strong>ditum was amplified by specific<br />

pcox1 primers in five out <strong>of</strong> <strong>the</strong> six skin samples (but not in<br />

right armpit, s5) whereas all cutaneous samples were PCR<br />

positive for <strong>the</strong> Cercopithifilaria sp.<br />

4. Discussi<strong>on</strong><br />

The <strong>dermal</strong> localizati<strong>on</strong> <strong>of</strong> <strong>the</strong> <strong>micr<strong>of</strong>ilariae</strong> in <strong>the</strong> dog<br />

suggested that <strong>the</strong> species bel<strong>on</strong>ged to ei<strong>the</strong>r Onchocerca<br />

or Cercopithifilaria, genera that include filarioids already<br />

reported in dogs. The gene sequencing <str<strong>on</strong>g>and</str<strong>on</strong>g> comparis<strong>on</strong><br />

with <strong>the</strong> sequences available in <str<strong>on</strong>g>data</str<strong>on</strong>g>base (Ferri et al.,<br />

2009) well support <strong>the</strong> morphological diagnosis at <strong>the</strong><br />

genus level as Cercopithifilaria. Indeed, in accordance with<br />

those already suggested by Ferri et al. (2009), <strong>the</strong> phylogenetic<br />

topology inferred by cox1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 12S was efficacious<br />

in resolving this species <strong>of</strong> Cercopithifilaria within <strong>the</strong><br />

Onchocercidae <str<strong>on</strong>g>and</str<strong>on</strong>g> within <strong>the</strong> clades <strong>of</strong> <strong>the</strong> genus Cercopithifilaria.<br />

In additi<strong>on</strong>, <strong>the</strong> morphological characteristics<br />

<strong>of</strong> <strong>the</strong> <strong>micr<strong>of</strong>ilariae</strong> c<strong>on</strong>firmed this generic identificati<strong>on</strong>,<br />

particularly <strong>the</strong> dorso-ventrally flattened body <str<strong>on</strong>g>and</str<strong>on</strong>g> tiny<br />

left cephalic hook which are comm<strong>on</strong> in <strong>the</strong> genus (Bain<br />

et al., 1982b, 1987, 1988; Bartlett, 1983; Uni et al., 2001,<br />

2002). Without any doubts, <strong>the</strong> micr<strong>of</strong>ilaria <strong>of</strong> <strong>the</strong> dog from<br />

Sicily is not C. grassii that measures from 567 ± 12.25 m<br />

(Noè, 1907) to 660 ± 15.5 m (Noè, 1911) in length. Am<strong>on</strong>g<br />

<strong>the</strong> remaining 27 species <strong>of</strong> Cercopithifilaria, twenty have<br />

distinctly shorter or l<strong>on</strong>ger <strong>micr<strong>of</strong>ilariae</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>, when stud-


D. Otranto et al. / Veterinary Parasitology 182 (2011) 221– 229 227<br />

Fig. 4. Results <strong>of</strong> specific PCR amplificati<strong>on</strong> <strong>of</strong> a partial mitoch<strong>on</strong>drial cox1 (pcox1) specific for Acanthocheil<strong>on</strong>ema rec<strong>on</strong>ditum (589 bp; lanes 2–15) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Cercopithifilaria sp. (304 bp; lanes 17–30). Genomic DNA skin samples from right <str<strong>on</strong>g>and</str<strong>on</strong>g> left thigh, right <str<strong>on</strong>g>and</str<strong>on</strong>g> left temporal areas <str<strong>on</strong>g>and</str<strong>on</strong>g> right <str<strong>on</strong>g>and</str<strong>on</strong>g> left armpits<br />

(lanes 2–7 <str<strong>on</strong>g>and</str<strong>on</strong>g> 17–22). A. rec<strong>on</strong>ditum (lanes 8, 23), Cercopithifilaria sp. (lanes 9, 24), D. immitis (lanes 10, 25), D. repens (lanes 11, 26), Rhipicephalus sanguineus<br />

(lanes 12, 27), blood (lanes 13, 28) <str<strong>on</strong>g>and</str<strong>on</strong>g> skin samples (lanes 14, 29), no-DNA c<strong>on</strong>trol (lanes 15, 30). Amplic<strong>on</strong>s were sized by comparis<strong>on</strong> with a 100-bp<br />

ladder (Gene RulerTM, MBI Fermentas) (lanes 1, 16).<br />

ied, very distinct gene sequences (C. crassa, C. jap<strong>on</strong>ica,<br />

C. l<strong>on</strong>ga, C. roussilh<strong>on</strong>i, C. shohoi, <str<strong>on</strong>g>and</str<strong>on</strong>g> C. tumidicervicata;<br />

Table 2). Am<strong>on</strong>g <strong>the</strong> seven species with <strong>micr<strong>of</strong>ilariae</strong> <strong>of</strong><br />

similar length than those examined <strong>the</strong> first three are distinct<br />

for both sequences (Table 2, Fig. 3) <str<strong>on</strong>g>and</str<strong>on</strong>g> morphological<br />

features (Uni et al., 2001). The micr<strong>of</strong>ilaria <strong>of</strong> C. multicauda<br />

170 m l<strong>on</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> 5–10 m wide, according to body orientati<strong>on</strong>,<br />

has a cephalic <str<strong>on</strong>g>and</str<strong>on</strong>g> a caudal subterminal c<strong>on</strong>stricti<strong>on</strong>.<br />

In C. minuta Uni & Bain, 2001, <strong>the</strong> micr<strong>of</strong>ilaria, 195 m l<strong>on</strong>g,<br />

is less flattened (4 <str<strong>on</strong>g>and</str<strong>on</strong>g> 6 m wide, compared to 3–3.5 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

8.5–11 m), <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> posterior extremity is shortly attenuated<br />

with a bent point. In C. bulboidea Uni & Bain, 2001, <strong>the</strong><br />

micr<strong>of</strong>ilaria is slightly l<strong>on</strong>ger <str<strong>on</strong>g>and</str<strong>on</strong>g> thinner (190–208 l<strong>on</strong>g,<br />

4–8 m wide), <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> cephalic space is l<strong>on</strong>ger. For <strong>the</strong> last<br />

species sequences are not available but <strong>on</strong>ly morphological<br />

<str<strong>on</strong>g>data</str<strong>on</strong>g> (Bain et al., 1987; Böhm <str<strong>on</strong>g>and</str<strong>on</strong>g> Supperer, 1953; Fain <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Herin, 1955). In C. corneti Bain, Chabaud & Georges, 1987,<br />

from an African viverrid, N<str<strong>on</strong>g>and</str<strong>on</strong>g>inia bilobata, <strong>the</strong> micr<strong>of</strong>ilaria<br />

185–190 m l<strong>on</strong>g is less flattened (5.5–7 m wide).<br />

Informati<strong>on</strong> <strong>on</strong> <strong>the</strong> morphological features <strong>of</strong> <strong>the</strong> <strong>micr<strong>of</strong>ilariae</strong><br />

<strong>of</strong> <strong>the</strong> species in <strong>the</strong> following is scant, <strong>the</strong>re being<br />

<strong>on</strong>ly a single value available for <strong>the</strong> body width <str<strong>on</strong>g>and</str<strong>on</strong>g> thus it<br />

remains unknown whe<strong>the</strong>r <strong>the</strong>ir body is flattened or not.<br />

The micr<strong>of</strong>ilaria <strong>of</strong> C. rugosicauda (Böhm & Supperer, 1953),<br />

from <strong>the</strong> European roe deer Capreolus capreolus, is 212–222<br />

l<strong>on</strong>g, 6–7 wide (Böhm <str<strong>on</strong>g>and</str<strong>on</strong>g> Supperer, 1953) or 195–205 m<br />

l<strong>on</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> 6–6.5 m wide (Winkhardt, 1980), moreover <strong>the</strong><br />

fourth posterior body part is attenuated (not <strong>the</strong> last 30 m,<br />

as in <strong>the</strong> dog micr<strong>of</strong>ilaria). In C. ru<str<strong>on</strong>g>and</str<strong>on</strong>g>ae (Fain <str<strong>on</strong>g>and</str<strong>on</strong>g> Herin,<br />

1955), a species from cattle in Africa, <strong>the</strong> micr<strong>of</strong>ilaria is<br />

170–195 m l<strong>on</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> 6 m wide (Fain & Herin, 1955);<br />

it is improbable that <strong>the</strong> present material might be this<br />

species. Finally, <strong>micr<strong>of</strong>ilariae</strong> <strong>of</strong> C. bainae are 185.18 m<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 6.59 m in length <str<strong>on</strong>g>and</str<strong>on</strong>g> width, respectively (Almeida<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Vicente, 1982), being similar in length to those <strong>of</strong> <strong>the</strong><br />

Sicilian dog.<br />

Am<strong>on</strong>g <strong>on</strong>chocercids, <strong>micr<strong>of</strong>ilariae</strong> are useful to morphologically<br />

differentiate species in absence <strong>of</strong> o<strong>the</strong>r<br />

nematode stages <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>of</strong> <str<strong>on</strong>g>molecular</str<strong>on</strong>g> c<strong>on</strong>firmatory results. In<br />

accordance with <strong>the</strong> natural history <strong>of</strong> <strong>the</strong> genus Cercopithifilaria,<br />

<strong>micr<strong>of</strong>ilariae</strong> (first stage larvae) were <strong>on</strong>ly detected<br />

by soaking skin in saline soluti<strong>on</strong>. Adults <strong>of</strong> species <strong>of</strong><br />

Cercopithifilaria are easily overlooked in <strong>the</strong> subcutaneous<br />

tissues due to <strong>the</strong>ir small size (e.g., in C. bainae: males are<br />

from 7.28 mm to 9.10 mm l<strong>on</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> 44 m wide; females<br />

are from 13.6 mm to 17.85 mm l<strong>on</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> 72–100 m wide)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sequently some authors have relied up<strong>on</strong> <strong>the</strong> protocol<br />

<strong>of</strong> soaking carcasses in warm saline so<strong>on</strong> after death<br />

as proposed by Eberhard (1980). However, this may not<br />

always be efficacious for <strong>the</strong> detecti<strong>on</strong> <strong>of</strong> ei<strong>the</strong>r adults<br />

or skin-inhabiting <strong>micr<strong>of</strong>ilariae</strong>. Xenodiagnosis, <strong>the</strong> detecti<strong>on</strong><br />

<strong>of</strong> larvae in <strong>the</strong>ir vectors, may be more useful in<br />

detecting <strong>the</strong> developing stages <strong>of</strong> skin-inhabiting <strong>micr<strong>of</strong>ilariae</strong>.<br />

Alternatively, a simple PCR protocol <strong>on</strong> dog skin,<br />

as employed in this study, may provide valuable informati<strong>on</strong><br />

<strong>on</strong> <strong>the</strong> occurrence <strong>of</strong> adult or <strong>micr<strong>of</strong>ilariae</strong> <strong>of</strong> filarioid<br />

species associated with <strong>the</strong> skin <strong>of</strong> dogs. Although <strong>the</strong><br />

actual adult parasitic load <strong>of</strong> <strong>the</strong> dog is unknown, <strong>the</strong> presence<br />

<strong>of</strong> positive samples both by skin soaked sediment<br />

examinati<strong>on</strong> (5 out <strong>of</strong> six samples were positive for <strong>micr<strong>of</strong>ilariae</strong>)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> by PCR (all samples were positive), might<br />

indicate that <strong>the</strong>se <strong>micr<strong>of</strong>ilariae</strong> are evenly distributed in<br />

<strong>the</strong> subcutaneous tissue throughout <strong>the</strong> whole body <strong>of</strong> animals,<br />

mainly in anatomical regi<strong>on</strong>s where R. sanguineus<br />

ticks most likely attach for blood feeding (Lorusso et al.,<br />

2010).<br />

The <strong>micr<strong>of</strong>ilariae</strong> usually reported from dogs are those<br />

found in blood samples <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> picture <strong>of</strong> filarial nematodes<br />

is reduced to Dir<strong>of</strong>ilaria spp. <str<strong>on</strong>g>and</str<strong>on</strong>g> Acanthocheil<strong>on</strong>ema<br />

spp. However, in <strong>the</strong> past decade <strong>the</strong> presence <strong>of</strong> skin<br />

<strong>micr<strong>of</strong>ilariae</strong> have been established with an Onchocerca<br />

species (Sréter <str<strong>on</strong>g>and</str<strong>on</strong>g> Széll, 2008), O. lupi. This study provides<br />

evidences that, in additi<strong>on</strong> to <strong>the</strong> most frequent species<br />

<strong>of</strong> filarioids infesting dogs, o<strong>the</strong>r species are present with<br />

<strong>the</strong>ir <strong>micr<strong>of</strong>ilariae</strong> in <strong>the</strong> dermis <strong>of</strong> <strong>the</strong>se animals. Evidences<br />

for this are represented both by morphological <str<strong>on</strong>g>and</str<strong>on</strong>g> molec-


228 D. Otranto et al. / Veterinary Parasitology 182 (2011) 221– 229<br />

ular <str<strong>on</strong>g>data</str<strong>on</strong>g> here presented. Thus, this study also emphasizes<br />

that <strong>the</strong> skin is a site to be investigated towards screening<br />

a complete panel <strong>of</strong> filarioids. The resemblance <strong>of</strong> <strong>the</strong><br />

presently studied <strong>micr<strong>of</strong>ilariae</strong> with C. bainae, if proven<br />

with gene sequencing <str<strong>on</strong>g>and</str<strong>on</strong>g> detailed morphology <strong>of</strong> o<strong>the</strong>r<br />

parasitic stages, might raise interesting questi<strong>on</strong> about <strong>the</strong><br />

origin <strong>of</strong> C. bainae, which might have been introduced from<br />

<strong>the</strong> Palearctic regi<strong>on</strong>, with <strong>the</strong> importati<strong>on</strong> <strong>of</strong> domestic<br />

dogs by humans. Fur<strong>the</strong>r studies <strong>on</strong> this nematode are<br />

needed to elucidate its true identity, life cycle, <str<strong>on</strong>g>and</str<strong>on</strong>g> potential<br />

pathogenic role for dogs.<br />

Acknowledgements<br />

Authors thank Aless<str<strong>on</strong>g>and</str<strong>on</strong>g>ro Fogliazza (Merial, Italy) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Lénaïg Halos (Merial, Europe) for supporting this research.<br />

It has also been partially supported by <strong>the</strong> European Community<br />

grant INCO-CT-2006-032321 <str<strong>on</strong>g>and</str<strong>on</strong>g> by <strong>the</strong> MNHN<br />

grant ATM: Tax<strong>on</strong>omie moléculaire: DNA barcode et gesti<strong>on</strong><br />

des collecti<strong>on</strong>s. Thanks are also to Dr. Yurii Kuzmin,<br />

from Kiev, for editing <strong>the</strong> drawings.<br />

References<br />

Almeida, G.L.G., Vicente, J.J., 1982. Dipetal<strong>on</strong>ema rec<strong>on</strong>ditum (Grassi, 1890),<br />

Dipetal<strong>on</strong>ema grassii (Noè, 1907) e Dir<strong>of</strong>ilaria immitis (Leidy, 1856)<br />

em cães na cidade do Rio de Janeiro (Nematoda-Filarioidea). Atas da<br />

Sociedade de Biologia do Rio de Janeiro 23, 9–12.<br />

Almeida, G.L.G., Vicente, J.J., 1984. Cercopithifilaria bainae sp. n. parasita<br />

de Canis familiaris (L.) (Nematoda, Filarioidea). Atas da Sociedade de<br />

Biologia do Rio de Janeiro 24, 18.<br />

Bain, O., Aeschlimann, A., Chatelanat, P., 1982a. Présence, chez des tiques<br />

de la régi<strong>on</strong> de Genève, de larves infestantes qui pourraient se<br />

rapporter à la filaire de chien Dipetal<strong>on</strong>ema grassii. Annales de Parasitologie<br />

Humaine et Comparée 57, 643–646.<br />

Bain, O., Baker, M., Chabaud, A.G., 1982b. Nouvelles d<strong>on</strong>nées sur la<br />

lignée Dipetal<strong>on</strong>ema (Filarioidea, Nematoda). Annales de parasitologie<br />

humaine et comparée 57, 593–620.<br />

Bain, O., Petit, G., Chabaud, A.G., 1986. Une nouvelle filaire Cercopithifilaria<br />

roussilh<strong>on</strong>i n. sp., parasite de l’athérure au Gab<strong>on</strong> transmise par tiques;<br />

hypothèse sur l’évoluti<strong>on</strong> du genre. Annales de Parasitologie Humaine<br />

et Comparée 61, 81–93.<br />

Bain, O., Chabaud, A.G., Georges, A.J., 1987. Nouvelle filaire du genre<br />

Cercopithifilaria, parasite d’un carnivore africain. Parassitologia 29,<br />

63–69.<br />

Bain, O., Wamae, C.N., Reid, G.D.F., 1988. Diversité des filaires du genre<br />

Cercopithifilaria chez les babouins au Kenya. Annales de Parasitologie<br />

Humaine et Comparée 63, 224–239.<br />

Bain, O., Uni, S., Takaoka, H., 2002. A syn<strong>the</strong>tic look at a twenty years<br />

old tax<strong>on</strong>. Cercopithifilaria its probable evoluti<strong>on</strong>. In: Proceedings<br />

<strong>of</strong> <strong>the</strong> 10th Internati<strong>on</strong>al 5, 194, C<strong>on</strong>gress <strong>of</strong> Parasitology-ICOPA<br />

X, Vancouver (Canada) 4–9 August, M<strong>on</strong>duzzi Editore, pp. 365–<br />

368.<br />

Bain, O., Casiraghi, M., Martin, C., Uni, S., 2008. The Nematoda Filarioidea:<br />

critical analysis linking <str<strong>on</strong>g>molecular</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> traditi<strong>on</strong>al approaches. Parasite<br />

15, 342–348.<br />

Bartlett, C.M., 1983. Cercopithifilaria leporinus n. sp. (Nematoda: Filarioidea)<br />

from <strong>the</strong> snowshoe hare (Lepus americanus Erxleben)<br />

(Lagomorpha) in Canada. Annales de Parasitologie Humaine et Comparée<br />

58, 275–283.<br />

Bernard, P.N., Bausche, J., 1913. C<strong>on</strong>diti<strong>on</strong>s de propagati<strong>on</strong> de la filariose<br />

sous – coutaneǐe du chien. – Stegomyia fasciata hôte intermeǐdiaire<br />

de Dir<strong>of</strong>ilaria repens. Bulletin de la Socieǐteǐ de Pathologie Exotique 6,<br />

89–99.<br />

Böhm, L.K.V., Supperer, R., 1953. Beobachtungen über eine neue Filarie<br />

(Nematoda). Werdikmansia rugosicauda Böhm <str<strong>on</strong>g>and</str<strong>on</strong>g> Supperer, 1953,<br />

aus dem subcutanen bindegewebe des Rehes. Sitz. Osterr. Akad Wissenx.<br />

Math. Naturw. I. 162, 95–104.<br />

Brianti, E., Pennisi, M.G., Brucato, G., Risitano, A.L., Gaglio, G., Lombardo,<br />

G., Malara, D., Fogliazza, A., Giannetto, S., 2010. Efficacy <strong>of</strong> <strong>the</strong><br />

fipr<strong>on</strong>il 10%+(S)-methoprene 9% combinati<strong>on</strong> against Rhipicephalus<br />

sanguineus in naturally infested dogs: speed <strong>of</strong> kill, persistent effi-<br />

cacy <strong>on</strong> immature <str<strong>on</strong>g>and</str<strong>on</strong>g> adult stages <str<strong>on</strong>g>and</str<strong>on</strong>g> effect <strong>of</strong> water. Veterinary<br />

Parasitology 17, 96–103.<br />

Casiraghi, M., Bain, O., Guerrero, R., Martin, C., Pocacqua, V., Gardner, S.L.,<br />

Franceschi, A., B<str<strong>on</strong>g>and</str<strong>on</strong>g>i, C., 2004. Mapping <strong>the</strong> presence <strong>of</strong> Wolbachia<br />

pipientis <strong>on</strong> <strong>the</strong> phylogeny <strong>of</strong> filarial nematodes: evidence for symbi<strong>on</strong>t<br />

loss during evoluti<strong>on</strong>. Internati<strong>on</strong>al Journal for Parasitology 34,<br />

191–203.<br />

Casiraghi, M., Bazzocchi, C., Mortasino, M., Ottina, E., Genchi, C., 2006.<br />

A simple <str<strong>on</strong>g>molecular</str<strong>on</strong>g> method for discriminati<strong>on</strong> comm<strong>on</strong> filarial<br />

nematodes <strong>of</strong> dogs (Canis familiaris). Veterinary Parasitology 141,<br />

368–372.<br />

Costa, H.M.A., Freitas, M.G., 1962. Dipetal<strong>on</strong>ema rec<strong>on</strong>ditum (Grassi,<br />

1890) e Dipetal<strong>on</strong>ema grassii (Noè, 1907) em cães de Minas Gerais<br />

(Nematoda-Filarioidea). Arquivos da Escola de Veterinária da Universidade<br />

de Minas Gerais 15, 35–40.<br />

Eberhard, M.L., 1980. Dipetal<strong>on</strong>ema (Cercopithifilaria) kenyensis subgen. et<br />

sp. n. (Nematoda: Filarioidea) from African babo<strong>on</strong>s, Papio anubis. The<br />

Journal <strong>of</strong> Parasitology 66, 551–554.<br />

Fain, A., Herin, V., 1955. Filarioses des Bovidés au Ru<str<strong>on</strong>g>and</str<strong>on</strong>g>a-Urundi. III Etude<br />

parasitologique. Annales de la Société Belge de Médecine Tropicale 3,<br />

535–554.<br />

Ferri, E., Barbuto, M., Bain, O., Galimberti, A., Uni, S., Guerrero, R., Ferté,<br />

H., B<str<strong>on</strong>g>and</str<strong>on</strong>g>i, C., Martin, C., Casiraghi, M., 2009. Integrated tax<strong>on</strong>omy:<br />

traditi<strong>on</strong>al approach <str<strong>on</strong>g>and</str<strong>on</strong>g> DNA barcoding for <strong>the</strong> identificati<strong>on</strong> <strong>of</strong> filarioid<br />

worms <str<strong>on</strong>g>and</str<strong>on</strong>g> related parasites (Nematoda). Fr<strong>on</strong>tiers in Zoology<br />

6, 1.<br />

Fülleborn, F., 1912. Zur morphologie der Dir<strong>of</strong>ilaria immitis Leydi (sic)<br />

1856. Zentralbl Bakt Parasitenk 65, 341–349.<br />

Gasser, R.B., Chilt<strong>on</strong>, N.B., Hoste, H., Beveridge, I., 1993. Rapid sequencing<br />

<strong>of</strong> rDNA from single worms <str<strong>on</strong>g>and</str<strong>on</strong>g> eggs <strong>of</strong> parasitic helminths. Nucleic<br />

Acids Research 21, 2525–2526.<br />

Huynh, T., Thean, J., Maini, R., 2001. Dipetal<strong>on</strong>ema rec<strong>on</strong>ditum in <strong>the</strong> human<br />

eye. The British Journal <strong>of</strong> Ophthalmology 85, 1391.<br />

Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A.,<br />

McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thomps<strong>on</strong>,<br />

J.D., Gibs<strong>on</strong>, T.J., Higgins, D.G., 2007. ClustalW <str<strong>on</strong>g>and</str<strong>on</strong>g> ClustalX versi<strong>on</strong><br />

2. Bioinformatics 23, 2947–2948.<br />

Lent, H., Freitas, J.F.T., 1937. Dir<strong>of</strong>ilariose sub-cutânea dos cães no Brasil.<br />

Memórias do Instituto Oswaldo Cruz 32, 443–448.<br />

Lorusso, V., Dantas-Torres, F., Lia, R.P., Tarallo, V.D., Mencke, N., Capelli,<br />

G., Otranto, D., 2010. Seas<strong>on</strong>al dynamics <strong>of</strong> <strong>the</strong> brown dog tick. Rhipicephalus<br />

sanguineus, <strong>on</strong> a c<strong>on</strong>fined dog populati<strong>on</strong> in Italy. Medical<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Veterinary Entomology 24, 309–315.<br />

McCall, J.W., Genchi, C., Kramer, L.H., Guerrero, J., Venco, L., 2008. Heartworm<br />

disease in animals <str<strong>on</strong>g>and</str<strong>on</strong>g> humans. Advances in Parasitology 66,<br />

193–285.<br />

Noè, G., 1907. C<strong>on</strong>tribuzi<strong>on</strong>i alla Sistematica e alla Anatomia del Genere.<br />

Filaria. La Filaria grassii. Istituto di Anatomia Comparata della Regia,<br />

Università di Roma, Rome, pp. 236–252.<br />

Noè, G., 1908. Il ciclo evolutivo de la Filaria grassii, mihi, 1907. Atti della<br />

Reale Accademia Lincei, Roma 17, 282–293.<br />

Noè, G., 1911. La Filaria grassii (Noè, 1907). Ricerche Laboratorio<br />

di Anatomia Normale Regia Università di Roma (1910) 15,<br />

235–252.<br />

Olmeda-Garcia, A.S., Rodriguez-Rodriguez, J.A., 1994. Stage-specific development<br />

<strong>of</strong> a filarial nematode (Dipelal<strong>on</strong>ema dracunculoides) in vector<br />

ticks. Journal <strong>of</strong> Helminthology 68, 231–235.<br />

Orihel, T.C., Ash, L.R., 1995. Parasites in human tissues. American Society<br />

<strong>of</strong> Clinical Pathology Press, Chicago, 386 pp.<br />

Orihel, T.C., Eberhard, M.L., 1998. Zo<strong>on</strong>otic filariasis. Clinical Microbiology<br />

Reviews 11, 366–381.<br />

Otranto, D., Dantas-Torres, F., 2010. Canine <str<strong>on</strong>g>and</str<strong>on</strong>g> feline vector-borne<br />

diseases in Italy: current situati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> perspectives. Parasites <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Vectors 3, 2.<br />

Otranto, D., Eberhard, M.L., 2011. Zo<strong>on</strong>otic helminths affecting <strong>the</strong> human<br />

eye. Parasites <str<strong>on</strong>g>and</str<strong>on</strong>g> Vectors 4, 41.<br />

Otranto, D., Testini, G., Dantas-Torres, F., Latr<strong>of</strong>a, M.S., Diniz, P.P., de<br />

Caprariis, D., Lia, R.P., Mencke, N., Stanneck, D., Capelli, G., Breitschwerdt,<br />

E.B., 2010. Diagnosis <strong>of</strong> canine vector-borne diseases in<br />

young dogs: a l<strong>on</strong>gitudinal study. Journal <strong>of</strong> Clinical Microbiology 48,<br />

3316–3324.<br />

Otranto, D., Sakru, N., Testini, G., Gürlü, V.P., Yakar, K., Lia, R.P., Dantas-<br />

Torres, F., Bain, O., 2011. First evidence <strong>of</strong> human zo<strong>on</strong>otic infecti<strong>on</strong> by<br />

Onchocerca lupi (Spirurida, Onchocercidae). American Journal Tropical<br />

Medicine Hygiene 84, 55–58.<br />

Pampigli<strong>on</strong>e, S., Canestri Trotti, G., Marchetti, S., 1983. Ritrovamento di<br />

Diptal<strong>on</strong>ema grassii (Noè, 1907) in Rhipicephalus sanguineus su cane<br />

in Italia e descrizi<strong>on</strong>e di alcuni suoi stadi larvali. Parassitologia 25,<br />

316.


Pampigli<strong>on</strong>e, S., Canestri Trotti, G., Rivasi, F., 1995. Human dir<strong>of</strong>ilariasis<br />

due to Dir<strong>of</strong>ilaria (Nochtiella) repens in Italy: a review <strong>of</strong> word literature.<br />

Parassitologia 37, 149–193.<br />

Pampigli<strong>on</strong>e, S., Rivasi, F., Gustinelli, A., 2009. Dir<strong>of</strong>ilarial human cases<br />

in <strong>the</strong> Old World, attributed to Dir<strong>of</strong>ilaria immitis: a critical analysis.<br />

Histopathology 54, 192–204.<br />

Petit, G., Bain, O., Cass<strong>on</strong>e, J., Seureau, C., 1988. La filaire Cercopithifilaria<br />

roussilh<strong>on</strong>i chez la tique vectrice. Annales de Parasitologie Humaine<br />

et Comparée 63, 296–302.<br />

Sharrocks, A.D., 1994. The design <strong>of</strong> primers for PCR. In: Griffin, H.G.,<br />

Griffin, A.M. (Eds.), PCR Technology, Current Innovati<strong>on</strong>s. CRC Press,<br />

L<strong>on</strong>d<strong>on</strong>, pp. 5–11.<br />

Spratt, D.M., Haycock, P., 1988. Aspects <strong>of</strong> <strong>the</strong> life-history <strong>of</strong> Cercopithifilaria<br />

johnst<strong>on</strong>i (Nematoda: Filarioidea). Internati<strong>on</strong>al Journal for<br />

Parasitology 18, 1087–1092.<br />

Sréter, T., Széll, Z., 2008. Onchocercosis: a newly recognized disease in<br />

dogs. Veterinary Parasitology 151, 1–13.<br />

D. Otranto et al. / Veterinary Parasitology 182 (2011) 221– 229 229<br />

Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: <str<strong>on</strong>g>molecular</str<strong>on</strong>g> evoluti<strong>on</strong>ary<br />

genetics analysis (MEGA) s<strong>of</strong>tware versi<strong>on</strong> 4.0. Molecular<br />

Biology <str<strong>on</strong>g>and</str<strong>on</strong>g> Evoluti<strong>on</strong> 24, 1596–1599.<br />

Uni, S., Suzuki, Y., Baba, M., Mitani, N., Takaoka, H., Katsumi, A.,<br />

Bain, O., 2001. Coexistence <strong>of</strong> five Cercopithifilaria species in<br />

<strong>the</strong> Japanese rupricaprine bovid, Capricornis crispus. Parasite 8,<br />

197–213.<br />

Uni, S., Bain, O., Takaoka, H., Fujita, H., Suzuki, Y., 2002. Diversificati<strong>on</strong> <strong>of</strong><br />

Cercopithifilaria species in Japanese wild ruminants with descripti<strong>on</strong><br />

<strong>of</strong> two new species. Parasite 9, 293–304.<br />

Winkhardt, H.J., 1980. Untersuchungen über den Entwicklungszyklus<br />

v<strong>on</strong> Dipetal<strong>on</strong>ema rugosicauda (syn, Wehrdikmansia rugosicauda)<br />

(Nematoda: Filarioidea). II. Die Entwicklung v<strong>on</strong> Dipetal<strong>on</strong>ema rugosicauda<br />

im Zwischenwirt Ixodes ricinus und Untersuchungen über das<br />

Vorkommen der Mikr<strong>of</strong>ilariae im Reh (Capreolus capreolus). Tropenmedizin<br />

und Parasitologie 31, 21–30.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!