17.06.2013 Views

Recent Developments in Microencapsulation of Food Ingredients

Recent Developments in Microencapsulation of Food Ingredients

Recent Developments in Microencapsulation of Food Ingredients

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Dry<strong>in</strong>g Technology, 23: 1361–1394, 2005<br />

Copyright Q 2005 Taylor & Francis, Inc.<br />

ISSN: 0737-3937 pr<strong>in</strong>t/1532-2300 onl<strong>in</strong>e<br />

DOI: 10.1081/DRT-200063478<br />

<strong>Recent</strong> <strong>Developments</strong> <strong>in</strong> <strong>Microencapsulation</strong> <strong>of</strong><br />

<strong>Food</strong> <strong>Ingredients</strong><br />

Kashappa Goud H. Desai and Hyun J<strong>in</strong> Park*<br />

Graduate School <strong>of</strong> Biotechnology, Korea University, Sungbuk-ku,<br />

Seoul, South Korea<br />

Abstract: <strong>Microencapsulation</strong> <strong>in</strong>volves the <strong>in</strong>corporation <strong>of</strong> food <strong>in</strong>gredients,<br />

enzymes, cells, or other materials <strong>in</strong> small capsules. Microcapsules <strong>of</strong>fer food processors<br />

a means with which to protect sensitive food components, ensure aga<strong>in</strong>st<br />

nutritional loss, utilize otherwise sensitive <strong>in</strong>gredients, <strong>in</strong>corporate unusual or<br />

time-release mechanisms <strong>in</strong>to the formulation, mask or preserve flavors and aromas,<br />

and transform liquids <strong>in</strong>to easily handled solid <strong>in</strong>gredients. Various techniques<br />

are employed to form microcapsules, <strong>in</strong>clud<strong>in</strong>g spray dry<strong>in</strong>g, spray chill<strong>in</strong>g<br />

or spray cool<strong>in</strong>g, extrusion coat<strong>in</strong>g, fluidized-bed coat<strong>in</strong>g, liposome entrapment,<br />

coacervation, <strong>in</strong>clusion complexation, centrifugal extrusion, and rotational<br />

suspension separation. <strong>Recent</strong> developments <strong>in</strong> each <strong>of</strong> these techniques are<br />

discussed <strong>in</strong> this review. Controlled release <strong>of</strong> food <strong>in</strong>gredients at the right place<br />

and the right time is a key functionality that can be provided by microencapsulation.<br />

A timely and targeted release improves the effectiveness <strong>of</strong> food additives, broadens<br />

the application range <strong>of</strong> food <strong>in</strong>gredients, and ensures optimal dosage, thereby<br />

improv<strong>in</strong>g the cost effectiveness for the food manufacturer. Reactive, sensitive, or<br />

volatile additives (vitam<strong>in</strong>s, cultures, flavors, etc.) can be turned <strong>in</strong>to stable <strong>in</strong>gredients<br />

through microencapsulation. With carefully f<strong>in</strong>e-tuned controlled-release<br />

properties, microencapsulation is no longer just an added-value technique, but the<br />

source <strong>of</strong> totally new <strong>in</strong>gredients with matchless properties.<br />

Keywords: <strong>Microencapsulation</strong>; <strong>Food</strong> <strong>in</strong>gredients; Controlled release; Spray<br />

dry<strong>in</strong>g; Microcapsules<br />

INTRODUCTION<br />

<strong>Microencapsulation</strong> is def<strong>in</strong>ed as a technology <strong>of</strong> packag<strong>in</strong>g solids,<br />

liquids, or gaseous materials <strong>in</strong> m<strong>in</strong>iature, sealed capsules that can release<br />

Correspondence: Hyun J<strong>in</strong> Park, Graduate School <strong>of</strong> Biotechnology, Korea<br />

University, 1, 5-Ka, Anam-Dong, Sungbuk-ku, Seoul 136–701, South Korea;<br />

Tel.: 82-2-3290-3450; Fax: 82-2-953-5892; E-mail: hjpark@korea.ac.kr


1362 Desai and Park<br />

their contents at controlled rates under specific conditions. [1–6] The<br />

microencapsulation technology has been used by the food <strong>in</strong>dustry for<br />

more than 60 years. In a broad sense, encapsulation technology <strong>in</strong> food<br />

process<strong>in</strong>g <strong>in</strong>cludes the coat<strong>in</strong>g <strong>of</strong> m<strong>in</strong>ute particles <strong>of</strong> <strong>in</strong>gredients (e.g.,<br />

acidulants, fats, and flavors) as well as whole <strong>in</strong>gredients (e.g., rais<strong>in</strong>s,<br />

nuts, and confectionary products), which may be accomplished by microencapsulation<br />

and macro-coat<strong>in</strong>g techniques, respectively. [7] More<br />

specifically, the microcapsule has the ability to preserve a substance <strong>in</strong><br />

the f<strong>in</strong>ely divided state and to release it as occasion demands. [8] These<br />

microcapsules may range from submicrometer to several millimeters <strong>in</strong><br />

size and have a multitude <strong>of</strong> different shapes, depend<strong>in</strong>g on the materials<br />

and methods used to prepare them. The food <strong>in</strong>dustry applies microencapsulation<br />

process for a variety <strong>of</strong> reasons: (1) encapsulation=<br />

entrapment can protect the core material from degradation by reduc<strong>in</strong>g<br />

its reactivity to its outside environment (e.g., heat, moisture, air, and<br />

light), (2) evaporation or transfer rate <strong>of</strong> the core material to the outside<br />

environment is decreased=retarded, (3) the physical characteristics <strong>of</strong> the<br />

orig<strong>in</strong>al material can be modified and made easier to handle, (4) the product<br />

can be tailor to either release slowly over time or at a certa<strong>in</strong> po<strong>in</strong>t<br />

(i.e., to control the release <strong>of</strong> the core material to achieve the property<br />

delay until the right stimulus), (5) the flavor <strong>of</strong> the core material can<br />

be masked, (6) the core material can be diluted when only very small<br />

amounts are required, yet still achieve a uniform dispersion <strong>in</strong> the host<br />

material, and (7) it can be employed to separate components with<strong>in</strong> a<br />

mixture that would otherwise react with one another. [9–14]<br />

Various properties <strong>of</strong> microcapsules that may be changed to suit specific<br />

<strong>in</strong>gredient applications <strong>in</strong>clude composition, mechanism <strong>of</strong> release,<br />

particle size, f<strong>in</strong>al physical form, and cost. The architecture <strong>of</strong> microcapsules<br />

is generally divided <strong>in</strong>to several arbitrary and overlapp<strong>in</strong>g classifications<br />

(Fig. 1). One such classification is known matrix encapsulation.<br />

This is the simplest structure, <strong>in</strong> which a sphere is surrounded by a wall<br />

or membrane <strong>of</strong> uniform thickness resembl<strong>in</strong>g that <strong>of</strong> a hen’s egg. In this<br />

design, the core material is buried to vary<strong>in</strong>g depths <strong>in</strong>side the shell. This<br />

microcapsule has been termed a s<strong>in</strong>gle-particle structure (Fig. 1A). It is<br />

also possible to design microcapsules that have several dist<strong>in</strong>ct cores<br />

with<strong>in</strong> the same microcapsule or, more commonly, number numerous<br />

core particles embedded <strong>in</strong> a cont<strong>in</strong>uous matrix <strong>of</strong> wall material. This<br />

type <strong>of</strong> design is termed the aggregate structure (Fig. 1B).<br />

In order to improve the properties <strong>of</strong> food <strong>in</strong>gredients, immobilization<br />

<strong>of</strong> food <strong>in</strong>gredients onto a suitable polymer or addition <strong>of</strong> antimicrobial<br />

agents are common practices <strong>in</strong> the food <strong>in</strong>dustres. [15–17] For<br />

example, an important bacteria used <strong>in</strong> the food <strong>in</strong>dustry, lactic acid bacteria,<br />

was first immobilized <strong>in</strong> 1975 on Berl saddles and Lactobacillus<br />

lactis was encapsulated <strong>in</strong> alg<strong>in</strong>ate gel beads years later. [18] Seiss and<br />

Davis suggested that immobilized lactic acid bacteria could be used to


<strong>Microencapsulation</strong> <strong>of</strong> <strong>Food</strong> <strong>Ingredients</strong> 1363<br />

Figure 1. Schematic diagram <strong>of</strong> two representative types <strong>of</strong> microcapsules.<br />

cont<strong>in</strong>uously produce yogurt. [19] However, the alg<strong>in</strong>ate gel beads leaked<br />

large quantities <strong>of</strong> cells.<br />

The use <strong>of</strong> microencapsulated food <strong>in</strong>gredients allows food <strong>in</strong>gredients<br />

to be carefully tailored to the specific release site through the choice<br />

and microencapsulation variables, specifically, the method and food<br />

<strong>in</strong>gredients-polymer ratio. [7] The total amount <strong>of</strong> <strong>in</strong>gestion and the<br />

k<strong>in</strong>etics <strong>of</strong> release are variables that can be manipulated to achieve the<br />

desired result. [7,9,14] Us<strong>in</strong>g <strong>in</strong>novative microencapsulation technologies,<br />

and vary<strong>in</strong>g the copolymer ratio, molecular weight <strong>of</strong> the polymer, etc.,<br />

microcapsules can be developed <strong>in</strong>to an optimal food <strong>in</strong>gredient device. [7]<br />

Microcapsule-based systems <strong>in</strong>creases the life span <strong>of</strong> food <strong>in</strong>gredients<br />

and control the release <strong>of</strong> food <strong>in</strong>gredients.<br />

Various properties <strong>of</strong> microcapsules that may be changed to suit<br />

specific <strong>in</strong>gredient applications <strong>in</strong>clude composition, mechanism <strong>of</strong><br />

release, particle size, f<strong>in</strong>al physical form, and cost. Before consider<strong>in</strong>g<br />

the properties desired <strong>in</strong> encapsulated products, the purpose <strong>of</strong> encapsulation<br />

must be clear. In design<strong>in</strong>g the encapsulation process, the follow<strong>in</strong>g<br />

questions are taken <strong>in</strong>to consideration:<br />

1. What functionality should the encapsulated <strong>in</strong>gredients provide the<br />

f<strong>in</strong>al product?<br />

2. What k<strong>in</strong>d <strong>of</strong> coat<strong>in</strong>g material should be selected?<br />

3. What process<strong>in</strong>g conditions must the encapsulated <strong>in</strong>gredient survive<br />

before releas<strong>in</strong>g its content?<br />

4. What is optimal concentration <strong>of</strong> the active <strong>in</strong>gredient <strong>in</strong> the<br />

microcapsule?<br />

5. By what mechanism the <strong>in</strong>gredient be released from the<br />

microcapsules?<br />

6. What are the particle size, density, and stability requirements for the<br />

encapsulated <strong>in</strong>gredient?<br />

7. What are the cost constra<strong>in</strong>ts <strong>of</strong> the encapsulated <strong>in</strong>gredient?


1364 Desai and Park<br />

Controlled release may be def<strong>in</strong>ed as a method by which one or more<br />

active agents or <strong>in</strong>gredients are made available at a desired site and time<br />

at a specific rate. With the emergence <strong>of</strong> controlled-release technology, some<br />

heat-, temperature-, or pH-sensitive additives can be used very conveniently<br />

<strong>in</strong> food systems. Such additives are <strong>in</strong>troduced <strong>in</strong>to the food system mostly<br />

<strong>in</strong> the form <strong>of</strong> microcapsules. The additive present <strong>in</strong> the microcapsule is<br />

released under the <strong>in</strong>fluence <strong>of</strong> a specific stimulus at a specified stage. For<br />

example, flavors and nutrients may be released upon consumption, whereas<br />

sweeteners that are susceptible to heat may be released toward the end <strong>of</strong><br />

bak<strong>in</strong>g, thus prevent<strong>in</strong>g undesirable caramelization <strong>in</strong> the baked product.<br />

[20–30] Although quite a number <strong>of</strong> reviews are published on the microencapsulation<strong>of</strong>food<strong>in</strong>gredients,wehavemadeanattemptheretoupdate<br />

the recent developments <strong>in</strong> the microencapsulation <strong>of</strong> food <strong>in</strong>gredients.<br />

MICROENCAPSULATION TECHNIQUES<br />

Encapsulation <strong>of</strong> food <strong>in</strong>gredients <strong>in</strong>to coat<strong>in</strong>g materials can be achieved<br />

by several methods. The selection <strong>of</strong> the microencapsulation process is<br />

governed by the properties (physical and chemical) <strong>of</strong> core and coat<strong>in</strong>g<br />

materials and the <strong>in</strong>tended application <strong>of</strong> food <strong>in</strong>gredients. However,<br />

the microencapsulation processes that are used to encapsulate food <strong>in</strong>gredients<br />

are given <strong>in</strong> Table 1, which outl<strong>in</strong>es various methods used for the<br />

preparation <strong>of</strong> microencapsulated food systems. Sophisticated shell materials<br />

and technologies have been developed and an extremely wide variety<br />

<strong>of</strong> functionalities can now be achieved through microencapsulation. Any<br />

k<strong>in</strong>d <strong>of</strong> trigger can be used to prompt the release <strong>of</strong> the encapsulated<br />

<strong>in</strong>gredient, such as pH change (enteric and anti-enteric coat<strong>in</strong>g), mechanical<br />

stress, temperature, enzymatic activity, time, osmotic force, etc. However,<br />

cost considerations <strong>in</strong> the food <strong>in</strong>dustry are much more str<strong>in</strong>gent<br />

than <strong>in</strong>, for <strong>in</strong>stance, the pharmaceutical or cosmetic <strong>in</strong>dustries. The<br />

selection <strong>of</strong> microencapsulation method and coat<strong>in</strong>g materials are <strong>in</strong>terdependent.<br />

Based on the coat<strong>in</strong>g material or method applied, the appropriate<br />

method or coat<strong>in</strong>g material is selected. Coat<strong>in</strong>g materials, which<br />

are basically film-form<strong>in</strong>g materials, can be selected from a wide variety<br />

<strong>of</strong> natural or synthetic polymers, depend<strong>in</strong>g on the material to be coated<br />

and characteristics desired <strong>in</strong> the f<strong>in</strong>al microcapsules.<br />

The composition <strong>of</strong> the coat<strong>in</strong>g material is the ma<strong>in</strong> determ<strong>in</strong>ant <strong>of</strong><br />

the functional properties <strong>of</strong> the microcapsule and <strong>of</strong> how it may be used<br />

to improve the performance <strong>of</strong> a particular <strong>in</strong>gredient. An ideal coat<strong>in</strong>g<br />

material should exhibit the follow<strong>in</strong>g characteristics:<br />

1. Good rheological properties at high concentration and easy workability<br />

dur<strong>in</strong>g encapsulation.<br />

2. The ability to disperse or emulsify the active material and stabilize the<br />

emulsion produced.


<strong>Microencapsulation</strong> <strong>of</strong> <strong>Food</strong> <strong>Ingredients</strong> 1365<br />

Table 1. Various microencapsulation techniques and the processes <strong>in</strong>volved <strong>in</strong><br />

each technique<br />

No <strong>Microencapsulation</strong> technique Major steps <strong>in</strong> encapsulation<br />

1 Spray-dry<strong>in</strong>g a. Preparation <strong>of</strong> the dispersion<br />

b. Homogenization <strong>of</strong> the dispersion<br />

c. Atomization <strong>of</strong> the <strong>in</strong>feed dispersion<br />

d. Dehydration <strong>of</strong> the atomized particles<br />

2 Spray-cool<strong>in</strong>g a. Preparation <strong>of</strong> the dispersion<br />

b. Homogenization <strong>of</strong> the dispersion<br />

c. Atomization <strong>of</strong> the <strong>in</strong>feed dispersion<br />

3 Spray-chill<strong>in</strong>g a. Preparation <strong>of</strong> the dispersion<br />

b. Homogenization <strong>of</strong> the dispersion<br />

c. Atomization <strong>of</strong> the <strong>in</strong>feed dispersion<br />

4 Fluidized-bed coat<strong>in</strong>g a. Preparation <strong>of</strong> coat<strong>in</strong>g solution<br />

b. Fluidization <strong>of</strong> core particles.<br />

c. Coat<strong>in</strong>g <strong>of</strong> core particles<br />

5 Extrusion a. Preparation <strong>of</strong> molten coat<strong>in</strong>g solution<br />

b. Dispersion <strong>of</strong> core <strong>in</strong>to molten<br />

polymer<br />

c. Cool<strong>in</strong>g or pass<strong>in</strong>g <strong>of</strong> core-coat<br />

mixture through dehydrat<strong>in</strong>g liquid<br />

6 Centrifugal extrusion a. Preparation <strong>of</strong> core solution<br />

b. Preparation <strong>of</strong> coat<strong>in</strong>g material<br />

solution<br />

c. Co-extrusion <strong>of</strong> core and coat<br />

solution through nozzles<br />

7 Lyophilization a. Mix<strong>in</strong>g <strong>of</strong> core <strong>in</strong> a coat<strong>in</strong>g solution<br />

b. Freeze-dry<strong>in</strong>g <strong>of</strong> the mixture<br />

8 Coacervation a. Formation <strong>of</strong> a three-immiscible<br />

chemical phases<br />

b. Deposition <strong>of</strong> the coat<strong>in</strong>g<br />

9 Centrifugal suspension<br />

separation<br />

c. Solidification <strong>of</strong> the coat<strong>in</strong>g<br />

a. Mix<strong>in</strong>g <strong>of</strong> core <strong>in</strong> a coat<strong>in</strong>g material<br />

b. Pour the mixture over a rotat<strong>in</strong>g disc<br />

to obta<strong>in</strong> encapsulated t<strong>in</strong>y particles<br />

c. Dry<strong>in</strong>g<br />

10 Cocrystallization a. Preparation <strong>of</strong> supersaturated<br />

sucrose solution<br />

b. Add<strong>in</strong>g <strong>of</strong> core <strong>in</strong>to supersaturated<br />

solution<br />

c. Emission <strong>of</strong> substantial heat after<br />

solution reaches the sucrose<br />

crystallization temperature<br />

(Cont<strong>in</strong>ued)


1366 Desai and Park<br />

Table 1. (Cont<strong>in</strong>ued)<br />

No <strong>Microencapsulation</strong> technique Major steps <strong>in</strong> encapsulation<br />

11 Liposome entrapment a. Micr<strong>of</strong>luidization<br />

b. Ultrasonication<br />

c. Reverse-phase evaporation<br />

12 Inclusion complexation Preparation <strong>of</strong> complexes by mix<strong>in</strong>g or<br />

gr<strong>in</strong>d<strong>in</strong>g or spray-dry<strong>in</strong>g<br />

3. Nonreactivity with the material to be encapsulated both dur<strong>in</strong>g process<strong>in</strong>g<br />

and on prolonged storage.<br />

4. The ability to seal and hold the active material with<strong>in</strong> its structure<br />

dur<strong>in</strong>g process<strong>in</strong>g or storage.<br />

5. The ability to completely release the solvent or other materials used<br />

dur<strong>in</strong>g the process <strong>of</strong> encapsulation under dry<strong>in</strong>g or other desolventization<br />

conditions.<br />

6. The ability to provide maximum protection to the active material<br />

aga<strong>in</strong>st environmental conditions (e.g., oxygen, heat, light, humidity).<br />

7. Solubility <strong>in</strong> solvents acceptable <strong>in</strong> the food <strong>in</strong>dustry (e.g., water,<br />

ethanol).<br />

8. Chemical nonreactivity with the active core materials.<br />

9. Inexpensive, food-grade status.<br />

Because no s<strong>in</strong>gle coat<strong>in</strong>g material can meet all <strong>of</strong> the criteria listed<br />

above, <strong>in</strong> practice either coat<strong>in</strong>g materials are employed <strong>in</strong> comb<strong>in</strong>ations<br />

or modifiers such as oxygen scavengers, antioxidants, chelat<strong>in</strong>g agents,<br />

and surfactants are added. Some commonly used biocompatible and<br />

food-grade coat<strong>in</strong>g materials are listed <strong>in</strong> Table 2. However, chemical<br />

modifications <strong>of</strong> the exist<strong>in</strong>g coat<strong>in</strong>g materials to manipulate their<br />

properties are also be<strong>in</strong>g considered. Those modified coat<strong>in</strong>g materials<br />

exhibit better physical and mechanical properties when compared to <strong>in</strong>dividual<br />

coat<strong>in</strong>g materials.<br />

Spray-Dry<strong>in</strong>g<br />

Spray-dry<strong>in</strong>g encapsulation has been used <strong>in</strong> the food <strong>in</strong>dustry s<strong>in</strong>ce the<br />

late 1950s to provide flavor oils with some protection aga<strong>in</strong>st degradation=oxidation<br />

and to convert liquids to powders. Spray-dry<strong>in</strong>g is the<br />

most widely used microencapsulation technique <strong>in</strong> the food <strong>in</strong>dustry<br />

and is typically used for the preparation <strong>of</strong> dry, stable food additives<br />

and flavors. The process is economical; flexible, <strong>in</strong> that it <strong>of</strong>fers substantial<br />

variation <strong>in</strong> microencapsulation matrix; adaptable to commonly used<br />

process<strong>in</strong>g equipment; and produces particles <strong>of</strong> good quality. In fact,


<strong>Microencapsulation</strong> <strong>of</strong> <strong>Food</strong> <strong>Ingredients</strong> 1367<br />

Table 2. Coat<strong>in</strong>g materials for microencapsulation <strong>of</strong> functional food additives<br />

Category Coat<strong>in</strong>g materials<br />

Carbohydrate Starch,maltodextr<strong>in</strong>s,<br />

chitosan,<br />

corn syrup solids,<br />

dextran, modified<br />

starch, cyclodextr<strong>in</strong>s<br />

Cellulose Carboxymethylcellulose,<br />

methyl cellulose,<br />

ethylcellulose,<br />

celluloseacetate-phthalate,<br />

celluloseacetatebutylate-phthalate<br />

Gum Gum acacia, agar, sodium<br />

alg<strong>in</strong>ate, carrageenan<br />

Lipids Wax, paraff<strong>in</strong>, beeswax,<br />

diacylglyerols, oils, fats<br />

Prote<strong>in</strong> Gluten, case<strong>in</strong>, gelat<strong>in</strong>,<br />

album<strong>in</strong>, peptides<br />

Widely used<br />

methods References<br />

Spray- and<br />

freeze-dry<strong>in</strong>g,<br />

extrusion,<br />

coacervation,<br />

<strong>in</strong>clusion<br />

complexation<br />

Coacervation,<br />

spray-dry<strong>in</strong>g,<br />

and edible films<br />

20–24<br />

25–26<br />

Spray-dry<strong>in</strong>g, syr<strong>in</strong>ge 27<br />

method (gel beads)<br />

Emulsion, liposomes, 28–29<br />

film formation<br />

Emulsion, spray-dry<strong>in</strong>g 30<br />

spray-dry<strong>in</strong>g production costs are lower than those associated with most<br />

other methods <strong>of</strong> encapsulation. One limitation <strong>of</strong> the spray-dry<strong>in</strong>g technology<br />

is the limited number <strong>of</strong> shell materials available. S<strong>in</strong>ce almost all<br />

spray-dry<strong>in</strong>g processes <strong>in</strong> the food <strong>in</strong>dustry are carried out from aqueous<br />

feed formulations, the shell material must be soluble <strong>in</strong> water at an<br />

acceptable level. Typical shell materials <strong>in</strong>clude gum acacia, maltodextr<strong>in</strong>s,<br />

hydrophobically modified starch, and mixtures there<strong>of</strong>. Other polysaccharides<br />

(alg<strong>in</strong>ate, carboxymethylcellulose, guar gum) and prote<strong>in</strong>s<br />

(whey prote<strong>in</strong>s, soy prote<strong>in</strong>s, sodium case<strong>in</strong>ate) can be used as the wall<br />

material <strong>in</strong> spray-dry<strong>in</strong>g, but their usage becomes very tedious and<br />

expensive because <strong>of</strong> their low solubility <strong>in</strong> water: the amount <strong>of</strong> water<br />

<strong>in</strong> the feed to be evaporated is much larger due to the lower dry matter<br />

content and the amount <strong>of</strong> active <strong>in</strong>gredient <strong>in</strong> the feed must be reduced<br />

accord<strong>in</strong>gly. In this method, the material for encapsulation is homogenized<br />

with the carrier material at a different ratio. The mixture is then<br />

fed <strong>in</strong>to a spray dryer and atomized with a nozzle or sp<strong>in</strong>n<strong>in</strong>g wheel.<br />

Water is evaporated by the hot air contact<strong>in</strong>g the atomized material.<br />

The microcapsules are then collected after they fall to the bottom <strong>of</strong><br />

the drier. [31]<br />

Rosenberg and Sheu demonstrated the use <strong>of</strong> whey prote<strong>in</strong> isolate as<br />

a wall material for encapsulation <strong>of</strong> volatiles. [32] They encapsulated ethyl<br />

butyrate and ethyl caprylate <strong>in</strong> whey prote<strong>in</strong> isolate and 1:1 mixture <strong>of</strong>


1368 Desai and Park<br />

whey prote<strong>in</strong> isolate and lactose. Retention <strong>of</strong> volatiles was significantly<br />

affected by wall solids concentration (10–30%, w=w), <strong>in</strong>itial ester load<br />

(10–75%,w=w, <strong>of</strong> wall solids), and by ester and wall type. Ester retention<br />

<strong>in</strong> whey prote<strong>in</strong> isolate=lactose was higher than <strong>in</strong> whey prote<strong>in</strong> isolate.<br />

Spray-dry<strong>in</strong>g is a food manufacturer–friendly technique because it allows<br />

the food processor to manipulate the preparation process to improve the<br />

quality <strong>of</strong> the f<strong>in</strong>al product. <strong>Recent</strong>ly, Shiga et al. prepared flavor<strong>in</strong>clusion<br />

powder by a spray-dry<strong>in</strong>g technique us<strong>in</strong>g the comb<strong>in</strong>ed encapsulation<br />

method <strong>of</strong> <strong>in</strong>clusion by b-cyclodextr<strong>in</strong> and emulsified by gum<br />

arabic where d-limonene and ethyl n-hexanoate were used as model<br />

flavors. [33] The effective film-form<strong>in</strong>g property and <strong>in</strong>clusion complex<br />

were achieved by apply<strong>in</strong>g high pressure to the mixture <strong>of</strong> flavors and<br />

b-cyclodextr<strong>in</strong> slurry us<strong>in</strong>g a micr<strong>of</strong>luidizer. It is reported that flavor<br />

retention dur<strong>in</strong>g spray-dry<strong>in</strong>g <strong>in</strong>creased due to blend<strong>in</strong>g <strong>of</strong> gum arabic<br />

and b-cyclodextr<strong>in</strong> <strong>in</strong> the feed liquid. The release rate <strong>of</strong> flavors was<br />

manipulated by the blend<strong>in</strong>g <strong>of</strong> maltodextr<strong>in</strong> <strong>in</strong> the feed liquid. In order<br />

to evaluate the release k<strong>in</strong>etics <strong>of</strong> flavors, the release data were fitted to<br />

Avrami’s equation (Eq. 1).<br />

R ¼ exp½ ðktÞ n Š ð1Þ<br />

where R is the retention <strong>of</strong> flavors dur<strong>in</strong>g release, t is time, n is a parameter<br />

represent<strong>in</strong>g the release mechanism, and k is the release rate constant.<br />

Eq. (1) was orig<strong>in</strong>ally developed the crystal growth <strong>of</strong> polymers,<br />

and has been recently used to represent the time-dependent prote<strong>in</strong><br />

<strong>in</strong>activation <strong>in</strong> amorphous sugar matrices. [34] In Eq. (1), n ¼ 1 represents<br />

the first-order reaction, and n ¼ 0.54 represents the diffusion-limit<strong>in</strong>g<br />

reaction k<strong>in</strong>etics. [35] Tak<strong>in</strong>g a logarithm <strong>of</strong> both sides <strong>of</strong> Eq. (1) twice<br />

yields Eq. (2):<br />

lnð ln RÞ ¼n ln k þ n ln t ð2Þ<br />

From Eq. (2) one can f<strong>in</strong>d the parameter n as a slope by plott<strong>in</strong>g ln( ln<br />

R) vs.lnt, and the release rate constant k from the <strong>in</strong>terception at ln t ¼ 0.<br />

It is important to protect the flavor loss dur<strong>in</strong>g dry<strong>in</strong>g, because<br />

high-temperature air is commonly used <strong>in</strong> spray-dry<strong>in</strong>g. Generally, the<br />

retention <strong>of</strong> flavor <strong>in</strong> microcapsules is manipulated by vary<strong>in</strong>g the<br />

spray-dry<strong>in</strong>g conditions and compositions <strong>of</strong> wall material. <strong>Recent</strong>ly,<br />

Liu et al. adopted new technique where they used emulsified liquid flavor<br />

for spray-dry<strong>in</strong>g. [36] Nearly 100% <strong>of</strong> d-limonene was reta<strong>in</strong>ed dur<strong>in</strong>g<br />

spray-dry<strong>in</strong>g, <strong>in</strong>dependent <strong>of</strong> the composition <strong>of</strong> the feed liquid. However,<br />

the stability <strong>of</strong> emulsion droplets markedly affected the retention<br />

<strong>of</strong> flavors. d-Limonene emulsion was quite stable <strong>in</strong>dependent <strong>of</strong> the<br />

emulsifier, while the emulsion <strong>of</strong> ethyl butyrate was unstable with gum<br />

arabic as the emulsifier. The use <strong>of</strong> a mixture <strong>of</strong> gum arabic and soluble<br />

soybean polysaccharide as the emulsifier improved oil<strong>in</strong>ess, and adjust<strong>in</strong>g


<strong>Microencapsulation</strong> <strong>of</strong> <strong>Food</strong> <strong>Ingredients</strong> 1369<br />

density <strong>of</strong> ethyl butyrate and add<strong>in</strong>g gelat<strong>in</strong> <strong>in</strong>creased the retention <strong>of</strong><br />

ethyl butyrate dur<strong>in</strong>g spray-dry<strong>in</strong>g.<br />

In recent years, new wall materials for use <strong>in</strong> spray-dry<strong>in</strong>g microencapsulation<br />

have not really emerged. A few exceptions are noteworthy,<br />

though. The <strong>in</strong>vestigations <strong>of</strong> other natural gums and their emulsification<br />

and shell properties have been reported. Mesquite gum, for <strong>in</strong>stance, has<br />

been shown to give a better stability <strong>of</strong> the o=w emulsions and higher<br />

encapsulation efficiency compared to gum acacia. [37,38] August<strong>in</strong> et al.<br />

proposed the use <strong>of</strong> Maillard reaction products (MRPs) obta<strong>in</strong>ed by<br />

the reaction at high temperature between prote<strong>in</strong> and carbohydrate to<br />

encapsulate oxidation-sensitive nutrients such as fish oils. [39] The MRPs<br />

are known to exhibit antioxidant properties and form a stable and robust<br />

shell around the oil phase. The stability <strong>of</strong> the oil aga<strong>in</strong>st oxidation was<br />

greatly improved compared to nonencapsulated spray-dried samples <strong>in</strong><br />

ord<strong>in</strong>ary shell material. More <strong>in</strong>terest<strong>in</strong>g is the recent development <strong>of</strong><br />

complex shell formulations for spray-dry<strong>in</strong>g encapsulation. For <strong>in</strong>stance,<br />

aqueous two-phase systems (ATPSs), which result from the phase separation<br />

<strong>of</strong> a mixture <strong>of</strong> soluble polymers <strong>in</strong> a common solvent due to the<br />

low entropy <strong>of</strong> mix<strong>in</strong>g (DS mix) <strong>of</strong> polymer mixtures, can be used to design<br />

double-encapsulated <strong>in</strong>gredients <strong>in</strong> a s<strong>in</strong>gle spray-dry<strong>in</strong>g step. Millqvist-<br />

Fureby et al. encapsulated Enterococcus fæcium <strong>in</strong> a mixture <strong>of</strong> polyv<strong>in</strong>ylpyrrolidone<br />

(PVP) and dextran. [40] While prote<strong>in</strong>s exhibit partition<strong>in</strong>g<br />

between the two phases, whole cells tend to concentrate <strong>in</strong> one <strong>of</strong> the<br />

polymer phases, which make them ideal candidates for ATPS spray-dry<strong>in</strong>g.<br />

The structure <strong>of</strong> the microcapsule, whether PVP is the outer layer and<br />

dextran the <strong>in</strong>ner core or vice versa, can be controlled by adjust<strong>in</strong>g the ratio<br />

and concentration <strong>of</strong> the two polymers. Encapsulated E. fæcium <strong>in</strong> spraydried<br />

ATPS showed a survival rate <strong>of</strong> up to 45% after4weeksatroom<br />

temperature. Another example is the preparation and spray-dry<strong>in</strong>g <strong>of</strong> multiple<br />

emulsions, which results a <strong>in</strong> a double-layered microcapsule, provid<strong>in</strong>g<br />

better protection to sensitive materials such as oxidation-probe flavor oils.<br />

Edris and Bergmtahl have encapsulated orange oil by first prepar<strong>in</strong>g a triple<br />

emulsion o=w=o=w and then evaporat<strong>in</strong>g the outer cont<strong>in</strong>uous aqueous<br />

phase, which conta<strong>in</strong>s sodium case<strong>in</strong>ate and lactose as shell material, by<br />

spray-dry<strong>in</strong>g. [41] The process leads to a dry free-flow<strong>in</strong>g powder constitut<strong>in</strong>g<br />

<strong>of</strong> a double o=w=o, <strong>in</strong> which the <strong>in</strong>ner orange oil phase is dispersed <strong>in</strong> an<br />

aqueous phase, which is itself dispersed <strong>in</strong> an oil phase encapsulated <strong>in</strong><br />

sodium case<strong>in</strong>ate and lactose. This double emulsion process is not practically<br />

more complex than a typical spray-dry<strong>in</strong>g process that requires an<br />

emulsion step anyway. However, prepar<strong>in</strong>g a second emulsion implies a<br />

dilution <strong>of</strong> the flavor oil, and the much lower payload <strong>in</strong> the microcapsule<br />

(5–10%) is a drawback compared to typical spray-dried flavor oils, which<br />

have payloads <strong>of</strong> around 20–25%. The unique protection and delayedrelease<br />

properties obta<strong>in</strong>ed with two layers might compensate for the lower<br />

payload, but this has still to be demonstrated.


1370 Desai and Park<br />

Chitosan is a hydrophilic, biocompatible, and biodegradable, polysaccharide<br />

<strong>of</strong> low toxicity. In recent years, it has been used for development<br />

<strong>of</strong> oral controlled drug delivery systems. It is also a well-known<br />

dietary food additive. Therefore, our research team demonstrated the<br />

cross-l<strong>in</strong>ked chitosan as a wall material for the encapsulation <strong>of</strong> vitam<strong>in</strong><br />

C by a spray-dry<strong>in</strong>g technique. Vitam<strong>in</strong> C, a representative water-soluble<br />

vitam<strong>in</strong>, has a variety <strong>of</strong> biological, pharmaceutical, and dermatological<br />

functions. Vitam<strong>in</strong> C is widely used <strong>in</strong> various types <strong>of</strong> foods as a vitam<strong>in</strong><br />

supplement and as an antioxidant. Hence, <strong>in</strong> previous studies, susta<strong>in</strong>edrelease<br />

carriers <strong>of</strong> vitam<strong>in</strong> C have been prepared by us<strong>in</strong>g cross-l<strong>in</strong>ked<br />

chitosan as a wall material by spray-dry<strong>in</strong>g technique. [42–44] The process<br />

<strong>of</strong> the preparation <strong>of</strong> vitam<strong>in</strong> C–encapsulated chitosan microcapsules is<br />

shown <strong>in</strong> Fig. 2. Chitosan was cross-l<strong>in</strong>ked with nontoxic cross-l<strong>in</strong>k<strong>in</strong>g<br />

agent, i.e., tripolyphosphate. Vitam<strong>in</strong> C–encapsulated chitosan microspheres<br />

<strong>of</strong> different size, surface morphology, load<strong>in</strong>g efficiency, and zeta<br />

potential with controlled-release property could be obta<strong>in</strong>ed by vary<strong>in</strong>g<br />

the manufactur<strong>in</strong>g parameters (<strong>in</strong>let temperature, flow rate) and us<strong>in</strong>g<br />

the different molecular weight and concentration <strong>of</strong> chitosan. Vitam<strong>in</strong><br />

C–encapsulated chitosan microcapsules were spherical <strong>in</strong> shape with a<br />

smooth surface as observed by scann<strong>in</strong>g electron microscopy (Fig. 3).<br />

<strong>Microencapsulation</strong> <strong>of</strong> vitam<strong>in</strong> C improves and broadens its applications<br />

<strong>in</strong> the food <strong>in</strong>dustry.<br />

Figure 2. Procedure <strong>of</strong> preparation <strong>of</strong> vitam<strong>in</strong> C–encapsulated chitosan<br />

microspheres by spray-dry<strong>in</strong>g.


<strong>Microencapsulation</strong> <strong>of</strong> <strong>Food</strong> <strong>Ingredients</strong> 1371<br />

Figure 3. Scann<strong>in</strong>g electronic microscopic picture <strong>of</strong> the vitam<strong>in</strong> C-encapsulated<br />

microcapsule.<br />

Numerous materials have been used as flavor-encapsulat<strong>in</strong>g agents<br />

us<strong>in</strong>g a spray-dry<strong>in</strong>g technique. These <strong>in</strong>clude prote<strong>in</strong>s, gums, and modified<br />

starches. [45] An area <strong>of</strong> research <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>terest is the development<br />

<strong>of</strong> alternative and <strong>in</strong>expensive polymers that may be considered<br />

natural, like gum arabic, and that could encapsulate flavors with the<br />

same efficiency as gum arabic. [46] Mesquite gum has been reported as a<br />

very good encapsulat<strong>in</strong>g agent. [47,48] Berista<strong>in</strong> and Vernon-Carter noted<br />

that a blend <strong>of</strong> 60% gum arabic and 40% mesquite gum encapsulated<br />

93.5% <strong>of</strong> orange peel oil. [49] More recently, Berista<strong>in</strong> et al. reported that<br />

a mixture consist<strong>in</strong>g <strong>of</strong> 40% mesquite gum and 60% maltodextr<strong>in</strong>s was<br />

able to encapsulate 84.6% <strong>of</strong> the start<strong>in</strong>g oil. [50] Cardamom-based oil<br />

microcapsules were successfully produced by spray-dry<strong>in</strong>g us<strong>in</strong>g mesquite<br />

gum. [38] The stability aga<strong>in</strong>st drop coalescence <strong>of</strong> the emulsions was elevated<br />

for all the gum:oil ratios studied. High flavor retention (83.6%) was<br />

atta<strong>in</strong>ed dur<strong>in</strong>g microencapsulation by spray-dry<strong>in</strong>g when a proportion<br />

<strong>of</strong> 4:1 gum:oil was used. This confirmed the <strong>in</strong>terest<strong>in</strong>g emulsify<strong>in</strong>g<br />

properties and good flavor-encapsulation ability that qualify mesquite<br />

gum as an important alternative encapsulat<strong>in</strong>g medium. The microcapsules<br />

can be readily used as a food <strong>in</strong>gredient.<br />

<strong>Recent</strong> developments have been <strong>in</strong> the use <strong>of</strong> new carrier materials<br />

and a newly designed spray dryer. Colloides Naturels and TIC Gums


1372 Desai and Park<br />

have developed new comb<strong>in</strong>ations <strong>of</strong> gum arabic starches to <strong>in</strong>crease<br />

the retention <strong>of</strong> volatiles and shelf life <strong>of</strong> microcapsules. [51,52] Risch and<br />

Re<strong>in</strong>eccius enhanced the retention <strong>of</strong> orange oil and decreased oxidation<br />

by us<strong>in</strong>g gum arabic. [53] Bhandari et al. showed that a new type <strong>of</strong> dryer<br />

called the Leaflish spray dryer, which uses a high air velocity with a temperature<br />

<strong>of</strong> 300 to 400 C, was effective for encapsulat<strong>in</strong>g citral and l<strong>in</strong>alyl<br />

acetate without degradation. [54] A disadvantage is that a separate<br />

agglomeration step is required to prevent separation or to render the<br />

obta<strong>in</strong>ed powder soluble. A chief advantage is that this technique can<br />

be used for heat-labile materials. <strong>Recent</strong>ly, studies on the modification<br />

<strong>of</strong> spray-dry<strong>in</strong>g chamber configurations and atomization along applications<br />

<strong>of</strong> computational fluid dynamic model have been reported to<br />

broaden the applications range <strong>of</strong> spray-dry<strong>in</strong>g methods. [55–60]<br />

Spray-Chill<strong>in</strong>g or Spray-Cool<strong>in</strong>g<br />

In spray-chill<strong>in</strong>g and spray-cool<strong>in</strong>g, the core and wall mixtures are<br />

atomized <strong>in</strong>to the cooled or chilled air, which causes the wall to solidify<br />

around the core. Unlike spray-dry<strong>in</strong>g, spray-chill<strong>in</strong>g or spray-cool<strong>in</strong>g<br />

does not <strong>in</strong>volve evaporation <strong>of</strong> water. In spray-cool<strong>in</strong>g, the coat<strong>in</strong>g<br />

material is typically some form <strong>of</strong> vegetable oil or its derivatives. However,<br />

a wide range <strong>of</strong> other encapsulat<strong>in</strong>g materials may be employed.<br />

These <strong>in</strong>clude fat and stear<strong>in</strong> with melt<strong>in</strong>g po<strong>in</strong>ts <strong>of</strong> 45–122 C, as well<br />

as hard mono- and diacylglycerols with melt<strong>in</strong>g po<strong>in</strong>ts <strong>of</strong> 45–65 C. [31]<br />

In spray-chill<strong>in</strong>g, the coat<strong>in</strong>g material is typically a fractionated or hydrogenated<br />

vegetable oil with a melt<strong>in</strong>g po<strong>in</strong>t <strong>in</strong> the range <strong>of</strong> 32–42 C. [61] In<br />

spray-chill<strong>in</strong>g, there is no mass transfer (i.e., evaporation from the atomized<br />

droplets); therefore these solidify <strong>in</strong>to almost perfect spheres to<br />

give free-flow<strong>in</strong>g powders. Atomization gives an enormous surface area<br />

and an immediate as well as <strong>in</strong>timate mix<strong>in</strong>g <strong>of</strong> these droplets with the<br />

cool<strong>in</strong>g medium. Microcapsules prepared by spray-chill<strong>in</strong>g and spraycool<strong>in</strong>g<br />

are <strong>in</strong>soluble <strong>in</strong> water due to the lipid coat<strong>in</strong>g. Consequently,<br />

these techniques tend to be utilized for encapsulat<strong>in</strong>g water-soluble core<br />

materials such as m<strong>in</strong>erals, water-soluble vitam<strong>in</strong>s, enzymes, acidulants,<br />

and some flavors. [62]<br />

Fluidized-Bed Coat<strong>in</strong>g<br />

Orig<strong>in</strong>ally developed as a pharmaceutical technique, fluidized-bed coat<strong>in</strong>g<br />

is now <strong>in</strong>creas<strong>in</strong>gly be<strong>in</strong>g applied <strong>in</strong> the food <strong>in</strong>dustry to f<strong>in</strong>e-tune<br />

the effect <strong>of</strong> functional <strong>in</strong>gredients and additives. The ma<strong>in</strong> benefits <strong>of</strong><br />

such m<strong>in</strong>iature packages, called microcapsules, <strong>in</strong>clude <strong>in</strong>creased shelf<br />

life, taste mask<strong>in</strong>g, ease <strong>of</strong> handl<strong>in</strong>g, controlled release, and improved<br />

aesthetics, taste, and color. Fluidized-bed coat<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>gly supplies


<strong>Microencapsulation</strong> <strong>of</strong> <strong>Food</strong> <strong>Ingredients</strong> 1373<br />

the food <strong>in</strong>dustry with a wide variety <strong>of</strong> encapsulated versions <strong>of</strong> food<br />

<strong>in</strong>gredients and additives. [63] Compared to pharmaceutical fluidized-bed<br />

coat<strong>in</strong>g, food <strong>in</strong>dustry fluidized-bed coat<strong>in</strong>g is more obliged to cut<br />

production costs and, therefore, should adopt a somewhat different<br />

approach to this rather expensive technology. Solid particles are suspended<br />

<strong>in</strong> a temperature and humidity-controlled chamber <strong>of</strong> highvelocity<br />

air where the coat<strong>in</strong>g material is atomized. [64,65] Typical food<br />

process<strong>in</strong>g applications <strong>of</strong> fluidization <strong>in</strong>clude freez<strong>in</strong>g and cool<strong>in</strong>g, dry<strong>in</strong>g,<br />

puff<strong>in</strong>g, freeze-dry<strong>in</strong>g, spray-dry<strong>in</strong>g, agglomeration and granulation,<br />

classification, and blanch<strong>in</strong>g and cook<strong>in</strong>g. [66] Great variations <strong>in</strong> available<br />

wall materials exist. Cellulose derivatives, dextr<strong>in</strong>s, emulsifiers,<br />

lipids, prote<strong>in</strong> derivatives, and starch derivatives are examples <strong>of</strong> typical<br />

coat<strong>in</strong>g systems, and they may be used <strong>in</strong> a molten state or dissolved <strong>in</strong> an<br />

evaporable solvent. This technique is applicable for hot-melt coat<strong>in</strong>gs<br />

such as hydrogenated vegetable oil, stear<strong>in</strong>es, fatty acids, emulsifiers,<br />

and waxes, or solvent-based coat<strong>in</strong>gs such as starches, gums, maltodextr<strong>in</strong>s.<br />

For hot melts, cool air is used to harden the carrier, whereas for<br />

solvent-based coat<strong>in</strong>gs, hot air is used to evaporate the solvent. Hot-melt<br />

<strong>in</strong>gredients release their contents by <strong>in</strong>creas<strong>in</strong>g the temperature or physical<br />

breakage, whereas water-soluble coat<strong>in</strong>gs release their contents when<br />

water is added. Fluidized-bed encapsulation can be used to isolate iron<br />

from ascorbic acid <strong>in</strong> multivitam<strong>in</strong>s and <strong>in</strong> small tablets such as children’s<br />

vitam<strong>in</strong>s. Many fortified foods, nutritional mixes, and dry mixes, conta<strong>in</strong><br />

fluidized-bed–encapsulated <strong>in</strong>gredients. Citric acid, lactic acid, sorbic<br />

acid, vitam<strong>in</strong> C, sodium bicarbonate <strong>in</strong> baked goods, and salt added to<br />

pretzels and meats are all encapsulated. Nowadays, the applicability<br />

and the utility <strong>of</strong> fluidized-bed coat<strong>in</strong>g and other microencapsulation<br />

techniques <strong>in</strong> the food <strong>in</strong>dustry is well recognized, as presented <strong>in</strong> several<br />

reviews. [66–70] There are, however, important factors to be considered <strong>in</strong><br />

fluidized-bed coat<strong>in</strong>g <strong>of</strong> food <strong>in</strong>gredients and additives.<br />

Fluidized-bed coat<strong>in</strong>g was first developed by D.E. Wurster <strong>in</strong> the<br />

1950s; hence, the term ‘‘Wurster process.’’ [70] Today, the fluidized-bed<br />

coat<strong>in</strong>g method is be<strong>in</strong>g modified by chang<strong>in</strong>g the position <strong>of</strong> the nozzle<br />

to be used for coat<strong>in</strong>g the solid particles. The different fluidized-bed coat<strong>in</strong>g<br />

methods are: (1) top-spray, (2) bottom-spray, and (3) tangentialspray.<br />

The conventional top-spray method is shown <strong>in</strong> Fig. 4. The air<br />

is passed through a bed <strong>of</strong> core particles to suspend them <strong>in</strong> air and coat<strong>in</strong>g<br />

solution is sprayed countercurrently onto the randomly fluidized<br />

particles. The coated particles travel through the coat<strong>in</strong>g zone <strong>in</strong>to the<br />

expansion chamber, and then they fall back <strong>in</strong>to the product conta<strong>in</strong>er<br />

and cont<strong>in</strong>ue cycl<strong>in</strong>g throughout the process. [71] The top-spray system<br />

has successfully been used to coat materials as small as 100 mm. [71] However,<br />

Thiel and Nguyen demonstrated the possibility <strong>of</strong> encapsulat<strong>in</strong>g<br />

very f<strong>in</strong>e particles (2–5 mm) by adsorb<strong>in</strong>g them on a coarser carrier, which<br />

is encapsulated by means <strong>of</strong> conventional fluidized-bed equipment. [72] In


1374 Desai and Park<br />

Figure 4. Top-spray fluidized-bed coat<strong>in</strong>g.<br />

the top-spray configuration, controll<strong>in</strong>g the distance the droplets travel<br />

before contact<strong>in</strong>g the substrate is impossible, and coat<strong>in</strong>g imperfections<br />

can occur due to premature droplet evaporation.<br />

The bottom-spray method known as the Wurster system (Fig. 5) is<br />

widely used for coat<strong>in</strong>g particles as small as 100 mm. In this method,<br />

the particles are recycled through the coat<strong>in</strong>g zone at a faster rate and<br />

the fluidization pattern is much more controlled than the top-spray<br />

method. [73] The typical advantage <strong>of</strong> this method is that, the path <strong>of</strong><br />

the droplets concurrently toward the core particles is extremely short,<br />

Figure 5. Bottom-spray fluidized-bed coat<strong>in</strong>g.


<strong>Microencapsulation</strong> <strong>of</strong> <strong>Food</strong> <strong>Ingredients</strong> 1375<br />

so that premature droplet evaporation is almost absent. In addition,<br />

coat<strong>in</strong>g solution can spread out at the lowest viscosity, produc<strong>in</strong>g a very<br />

dense film with a superior physical strength. In contrary, Wesdyk et al.<br />

reported that particles coated <strong>in</strong> the bottom spray mode did not display<br />

a uniform film thickness with respect to particle size; larger beads displayed<br />

thicker films compared with smaller beads. The film thickness<br />

variation could be expla<strong>in</strong>ed by differences <strong>in</strong> fluidization patterns. This<br />

phenomenon did not occur <strong>in</strong> other configurations. [74]<br />

<strong>Recent</strong>ly, a fasc<strong>in</strong>at<strong>in</strong>g advancement <strong>in</strong> fluidized-bed coat<strong>in</strong>g technique<br />

was reported by Matsuda et al. for the fluidization and coat<strong>in</strong>g<br />

<strong>of</strong> very f<strong>in</strong>e particles. [75] In conventional fluidized-bed coat<strong>in</strong>g, whether<br />

it is top-spray, Wurster, or rotational, the basic concept <strong>of</strong> fluidization<br />

relies on the compensation <strong>of</strong> the gravitational force experienced by the<br />

particles by an upward mov<strong>in</strong>g air flow, which ensures complete fluidization<br />

<strong>of</strong> the particles. Typical fluidized-bed apparatus can efficiently<br />

process particles from 100 mm to a few millimeters. However, for very<br />

small particles, other forces, such as electrostatic forces, start to play<br />

a major role <strong>in</strong> the movement <strong>of</strong> the particles <strong>in</strong> the fluidization chamber<br />

and prevent adequate fluidization. Colloidal particles have been<br />

used with some success to reduce electrostatic force, but are not much<br />

help <strong>in</strong> the fluidization <strong>of</strong> very small (submicron) particles <strong>in</strong> a conventional<br />

fluidized-bed apparatus. In this <strong>in</strong>novative process (Fig. 6), however,<br />

the gravitational force is multiplied through the use <strong>of</strong> a rotat<strong>in</strong>g<br />

perforated drum that conta<strong>in</strong>s the particle. The air flow is then applied<br />

tangentially to the rotation <strong>of</strong> the drum as compensation for the gravitational<br />

force, now a multiple (up to 37 g) <strong>of</strong> the normal gravitational<br />

force.<br />

The conventional top-spray method rema<strong>in</strong>s unique and widely used<br />

technique <strong>in</strong> food <strong>in</strong>dustry. This is due to its high versatility, relatively high<br />

batch size, and relative simplicity. [75] <strong>Recent</strong>ly, cont<strong>in</strong>uous fluidized-bed<br />

Figure 6. Tangential-spray fluidized-bed coat<strong>in</strong>g.


1376 Desai and Park<br />

coaters have been developed. [76] With such a cont<strong>in</strong>uous fluidized-bed<br />

coat<strong>in</strong>g process, manufacturers can adapt the system to their own specific<br />

requirements while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the flexibility needed for a large material<br />

throughput and wide product ranges, and while provid<strong>in</strong>g the coat<strong>in</strong>g<br />

quality demanded <strong>in</strong> the food <strong>in</strong>dustry. The efficiency <strong>of</strong> fluidized-bed<br />

techniques is governed by process variables, ambient variables, and thermodynamic<br />

factors (Table 3). Appropriate modification or comb<strong>in</strong>ations<br />

<strong>of</strong> these variables will yield the desired results.<br />

The use <strong>of</strong> melted fats, waxes, or emulsifiers as shell materials is a<br />

relatively new but very promis<strong>in</strong>g and <strong>in</strong>terest<strong>in</strong>g concept. From an<br />

<strong>in</strong>dustrial po<strong>in</strong>t <strong>of</strong> view, the <strong>in</strong>herent advantage <strong>of</strong> hot-melt fluidizedbed<br />

coat<strong>in</strong>g lies <strong>in</strong> the fact that the coat<strong>in</strong>g formulation is concentrated<br />

(no solvent, as <strong>in</strong> aqueous-based coat<strong>in</strong>g formulation), which means<br />

dramatically shorter process<strong>in</strong>g times. The energy <strong>in</strong>put is also much<br />

lower than with aqueous-based formulation s<strong>in</strong>ce no evaporation needs<br />

to be done. Very few reports have been published on hot-melt coat<strong>in</strong>g<br />

by fluidized beds s<strong>in</strong>ce Jozwiakowsksi et al. described the coat<strong>in</strong>g <strong>of</strong><br />

sucrose particles with partially hydrogenated cottonseed oil and analyzed<br />

the optimal process<strong>in</strong>g parameters by modified central composite<br />

design. [77] A number <strong>of</strong> patent applications, very similar <strong>in</strong> process<strong>in</strong>g<br />

designs, have been published us<strong>in</strong>g fats and emulsifiers <strong>of</strong> various melt<strong>in</strong>g<br />

po<strong>in</strong>ts and have developed an <strong>in</strong>novative fluidized-bed process for coat<strong>in</strong>g<br />

particles with fats and waxes us<strong>in</strong>g supercritical carbon dioxide as the<br />

solvent for the coat<strong>in</strong>g formulation. [78–80] Here, aga<strong>in</strong>, m<strong>in</strong>imal energy<br />

<strong>in</strong>put is needed to evaporate the solvent and the process might lead to<br />

lower cost-<strong>in</strong>-use encapsulated <strong>in</strong>gredients.<br />

Table 3. Different variables <strong>in</strong>fluenc<strong>in</strong>g fluidized-bed operation<br />

No Variables<br />

1 Process variables<br />

1. Inlet air temperature<br />

2. Inlet air velocity<br />

3. Spray rate<br />

4. Solution temperature<br />

5. Solution dry matter content<br />

6. Atomization pressure<br />

2 Ambient variables<br />

1. Ambient air temperature<br />

2. Ambient air relative humidity<br />

3 Thermodynamic<br />

1. Outlet air temperature<br />

2. Outlet air relative humidity


<strong>Microencapsulation</strong> <strong>of</strong> <strong>Food</strong> <strong>Ingredients</strong> 1377<br />

APPLICATION OF FLUIDIZED-BED TECHNIQUE<br />

IN FOOD INDUSTRY<br />

This technique is used to encapsulate nutritional substances such as<br />

vitam<strong>in</strong> C, B vitam<strong>in</strong>s, ferrous sulfate, ferrous fumarate, sodium ascorbate,<br />

potassium chloride, and a variety <strong>of</strong> vitam<strong>in</strong>=m<strong>in</strong>eral premixes.<br />

These encapsulated products are used as nutritional supplements. [81] In<br />

the case <strong>of</strong> bakery products, it is also used to encapsulate the leaven<strong>in</strong>g<br />

system <strong>in</strong>gredients, as well as vitam<strong>in</strong> C, acetic acid, lactic acid, potassium<br />

sorbate, sorbic acid, calcium propionate, and salt. [81,82] In the meat<br />

<strong>in</strong>dustry, several food acids have been fluid-bed encapsulated to develop<br />

color and flavor systems. They are also used to achieve a reproducible pH<br />

<strong>in</strong> cured meat products and to shorten their process<strong>in</strong>g time. Fluid-bed<br />

encapsulated salt is used <strong>in</strong> meats to prevent development <strong>of</strong> rancidity,<br />

as well as premature set due to my<strong>of</strong>ibrilar b<strong>in</strong>d<strong>in</strong>g. [81]<br />

Extrusion<br />

Encapsulation <strong>of</strong> food <strong>in</strong>gredients by extrusion is a relatively new process<br />

compared to spray-dry<strong>in</strong>g. Extrusion used <strong>in</strong> this context is not same as<br />

extrusion used for cook<strong>in</strong>g and texturiz<strong>in</strong>g <strong>of</strong> cereal-based products. Actually,<br />

extrusion, as applied to flavor encapsulation, is a relatively lowtemperature<br />

entrapp<strong>in</strong>g method, which <strong>in</strong>volves forc<strong>in</strong>g a core material <strong>in</strong><br />

a molten carbohydrate mass through a series <strong>of</strong> dies <strong>in</strong>to a bath <strong>of</strong> dehydrat<strong>in</strong>g<br />

liquid. The pressure and temperature employed are typically


1378 Desai and Park<br />

Figure 7. Flow diagram <strong>of</strong> encapsulation <strong>of</strong> food flavors by extrusion method.<br />

core material is removed from the surface <strong>in</strong> an alcohol bath. [14,51,71,81]<br />

This provides an excellent stability aga<strong>in</strong>st oxidation and therefore prolongs<br />

the shelf life. The product can be kept for 1–2 years without any<br />

substantial quality degradation. [71,81] This technique can be classified as<br />

a glass encapsulation system or a controlled-release system, depend<strong>in</strong>g<br />

on the polymeric materials used. The polymer matrices and the plasticizers<br />

used can be modified to produce the capsules for controlled release<br />

<strong>in</strong> food application. [85] However, microcapsules produced from this<br />

method are commonly designed to be soluble <strong>in</strong> water by the use <strong>of</strong><br />

high-molecular-weight hydrophilic polymer. Thus, this encapsulation<br />

technique is considered unsuitable for subsequent extrusion process<strong>in</strong>g<br />

because the water <strong>in</strong> the extruder melt can dissolve the capsules. [86]<br />

Centrifugal Extrusion<br />

Centrifugal extrusion is another encapsulation technique that has been<br />

<strong>in</strong>vestigated and used by some manufacturers. A number <strong>of</strong> food-approved


<strong>Microencapsulation</strong> <strong>of</strong> <strong>Food</strong> <strong>Ingredients</strong> 1379<br />

coat<strong>in</strong>g systems have been formulated to encapsulate products such as<br />

flavor<strong>in</strong>gs, season<strong>in</strong>gs, and vitam<strong>in</strong>s. These wall materials <strong>in</strong>clude gelat<strong>in</strong>,<br />

sodium alg<strong>in</strong>ate, carrageenan, starches, cellulose derivatives, gum<br />

acacia, fats=fatty acids, waxes, and polyethylene glycol. Centrifugal<br />

extrusion is a liquid coextrusion process utiliz<strong>in</strong>g nozzles consist<strong>in</strong>g <strong>of</strong><br />

concentric orifice located on the outer circumference <strong>of</strong> a rotat<strong>in</strong>g cyl<strong>in</strong>der<br />

(i.e., head). The encapsulat<strong>in</strong>g cyl<strong>in</strong>der or head consists <strong>of</strong> a concentric<br />

feed tube through which coat<strong>in</strong>g and core materials are pumped<br />

separately to the many nozzles mounted on the outer surface <strong>of</strong> the<br />

device. While the core material passes through the center tube, coat<strong>in</strong>g<br />

material flows through the outer tube. The entire device is attached to a<br />

rotat<strong>in</strong>g shaft such that the head rotates around its vertical axis. As the<br />

head rotates, the core and coat<strong>in</strong>g materials are co-extruded through<br />

the concentric orifices <strong>of</strong> the nozzles as a fluid rod <strong>of</strong> the core sheathed<br />

<strong>in</strong> coat<strong>in</strong>g material. Centrifugal force impels the rod outward, caus<strong>in</strong>g it<br />

to break <strong>in</strong>to t<strong>in</strong>y particles. By the action <strong>of</strong> surface tension, the coat<strong>in</strong>g<br />

material envelops the core material, thus accomplish<strong>in</strong>g encapsulation.<br />

The microcapsules are collected on a mov<strong>in</strong>g bed <strong>of</strong> f<strong>in</strong>e-gra<strong>in</strong>ed starch,<br />

which cushions their impact and absorbs unwanted coat<strong>in</strong>g moisture.<br />

Particles produced by this method have diameter rang<strong>in</strong>g from 150 to<br />

2000 mm. [87]<br />

Lyophilization<br />

Lyophilization, or freeze-dry<strong>in</strong>g, is a process used for the dehydration <strong>of</strong><br />

almost all heat-sensitive materials and aromas. It has been used to encapsulate<br />

water-soluble essences and natural aromas as well as drugs. Except<br />

for the long dehydration period required (commonly 20 h), freeze-dry<strong>in</strong>g<br />

is a simple technique, which is particularly suitable for the encapsulation<br />

<strong>of</strong> aromatic materials. The retention <strong>of</strong> volatile compounds dur<strong>in</strong>g the<br />

lyophilization is dependent upon the chemical nature <strong>of</strong> the system. [88]<br />

Coacervation<br />

Coacervation <strong>in</strong>volves the separation <strong>of</strong> a liquid phase <strong>of</strong> coat<strong>in</strong>g<br />

material from a polymeric solution followed by the coat<strong>in</strong>g <strong>of</strong> that phase<br />

as a uniform layer around suspended core particles. The coat<strong>in</strong>g is then<br />

solidified. In general, the batch-type coacervation processes consist <strong>of</strong><br />

three steps and are carried out under cont<strong>in</strong>uous agitation.<br />

1. Formation <strong>of</strong> a three-immiscible chemical phase<br />

2. Deposition <strong>of</strong> the coat<strong>in</strong>g<br />

3. Solidification <strong>of</strong> the coat<strong>in</strong>g


1380 Desai and Park<br />

In the first step, a three-phase system consist<strong>in</strong>g <strong>of</strong> a liquid manufactur<strong>in</strong>g<br />

vehicle phase, a core material phase, and a coat<strong>in</strong>g material phase<br />

is formed by either a direct addition or <strong>in</strong> situ separation technique. In<br />

the direct addition approach, the coat<strong>in</strong>g-<strong>in</strong>soluble waxes, immiscible<br />

solutions, and <strong>in</strong>soluble liquid polymers are added directly to the<br />

liquid-manufactur<strong>in</strong>g vehicle, provided that it is immiscible with the<br />

other two phases and is capable <strong>of</strong> be<strong>in</strong>g liquefied. In the <strong>in</strong> situ separation<br />

technique, a monomer is dissolved <strong>in</strong> the liquid vehicle and is then<br />

subsequently polymerized at the <strong>in</strong>terface. Deposition <strong>of</strong> the liquid polymer<br />

coat<strong>in</strong>g around the core material is accomplished by controlled<br />

physical mix<strong>in</strong>g <strong>of</strong> the coat<strong>in</strong>g material (while liquid) and the core<br />

material <strong>in</strong> the manufactur<strong>in</strong>g vehicle <strong>in</strong> the liquid phase; this sorption<br />

phenomenon is a prerequisite to effective coat<strong>in</strong>g. Cont<strong>in</strong>ued deposition<br />

<strong>of</strong> the coat<strong>in</strong>g is prompted by a reduction <strong>in</strong> the total free <strong>in</strong>terfacial<br />

energy <strong>of</strong> the system brought about by a decrease <strong>of</strong> the coat<strong>in</strong>g material<br />

surface area dur<strong>in</strong>g coalescence <strong>of</strong> the liquid polymer droplets. F<strong>in</strong>ally,<br />

solidification <strong>of</strong> the coat<strong>in</strong>g is achieved by thermal, cross-l<strong>in</strong>k<strong>in</strong>g, or desolventization<br />

techniques and forms a self-susta<strong>in</strong><strong>in</strong>g microcapsule. The<br />

microcapsules are usually collected by filtration or centrifugation,<br />

washed with an appropriate solvent, and subsequently dried by standard<br />

techniques such as spray- or fluidized-bed dry<strong>in</strong>g to yield free-flow<strong>in</strong>g,<br />

discrete particles. [7]<br />

A large numbers <strong>of</strong> coat<strong>in</strong>g materials have been evaluated for coacervation<br />

microencapsulation but the most studied and well understood<br />

coat<strong>in</strong>g system is probably the gelat<strong>in</strong>=gum acacia system. However,<br />

other coat<strong>in</strong>g systems such as gliad<strong>in</strong>, hepar<strong>in</strong>=gelat<strong>in</strong>, carrageenan,<br />

chitosan, soy prote<strong>in</strong>, polyv<strong>in</strong>yl alcohol, gelat<strong>in</strong>=carboxymethylcellulose,<br />

B-lactoglobul<strong>in</strong>=gum acacia, and guar gum=dextran are also studied. [89]<br />

In recent years, modified coacervation processes have also been developed<br />

that can overcome some <strong>of</strong> the problems encountered dur<strong>in</strong>g a typical<br />

gelat<strong>in</strong>=gum acacia complex coacervation process, especially when deal<strong>in</strong>g<br />

with food <strong>in</strong>gredients; for example, a room-temperature process for the<br />

encapsulation <strong>of</strong> heat-sensitive <strong>in</strong>gredients such as volatile flavor oils. [90]<br />

In this process, the coat<strong>in</strong>g materials are mixed and then phase separation<br />

(coacervation) is achieved by adjust<strong>in</strong>g the pH. The newly formed coacervate<br />

phase is allowed to separate and sediment, most <strong>of</strong> the supernatant<br />

water is removed, and the flavor oil is then added to the mixture kept at<br />

50 C and emulsified rapidly. The <strong>in</strong>itial volume <strong>of</strong> water is restored with<br />

room temperature water, caus<strong>in</strong>g a quick drop <strong>in</strong> the temperature, which<br />

means that the flavor oils experience a high temperature for only a few<br />

m<strong>in</strong>utes, compared to several hours for a typical coacervation process.<br />

Another process <strong>in</strong>volves the formation <strong>of</strong> a multilayered coacervated<br />

microcapsule. [91] This process consists <strong>of</strong> multiple coacervation stages <strong>in</strong><br />

which an additional layer <strong>of</strong> wall material is applied to the microcapsule<br />

at each passage and the f<strong>in</strong>al shell layer can reach a thickness up to 100 mm.


<strong>Microencapsulation</strong> <strong>of</strong> <strong>Food</strong> <strong>Ingredients</strong> 1381<br />

The coacervation method has some drawbacks. This process is very<br />

expensive and rather complex, and cross-l<strong>in</strong>k<strong>in</strong>g <strong>of</strong> the wall material<br />

usually <strong>in</strong>volves glutaraldehyde, which must be carefully used accord<strong>in</strong>g<br />

to the country’s legislation. The problems related to harmful chemical<br />

cross-l<strong>in</strong>kers could eventually be solved by us<strong>in</strong>g enzymatic cross-l<strong>in</strong>kers<br />

<strong>in</strong>stead. Soper and Thomas, for <strong>in</strong>stance, described a process <strong>in</strong> which a<br />

transglutam<strong>in</strong>ase is used to cross-l<strong>in</strong>k the prote<strong>in</strong>s <strong>in</strong> the shell material.<br />

The enzyme is added to the microencapsulation tank at 10 C and pH 7<br />

and the reaction is carried out over 16 h, after which a hardened shell<br />

<strong>of</strong> coacervate is formed around the flavor oil droplets. [92]<br />

Centrifugal Suspension Separation<br />

Centrifugal suspension is more recent microencapsulation process. The<br />

process <strong>in</strong> pr<strong>in</strong>ciple <strong>in</strong>volves mix<strong>in</strong>g the core and wall materials and then<br />

add<strong>in</strong>g to a rotat<strong>in</strong>g disk. The core materials then leave the disk with a<br />

coat<strong>in</strong>g <strong>of</strong> residual liquid. The microcapsules are then dried or chilled<br />

after removal from the disk. The whole process can take between a few<br />

seconds to m<strong>in</strong>utes. Solids, liquids, or suspensions <strong>of</strong> 30 mm to2mm<br />

can be encapsulated <strong>in</strong> this manner. Coat<strong>in</strong>gs can be 1–200 mm <strong>in</strong> thickness<br />

and <strong>in</strong>clude fats, polyethylene glycol (PEG), diglycerides, and other<br />

meltable substances. S<strong>in</strong>ce this is a cont<strong>in</strong>uous, high-speed method that<br />

can coat particles, it is highly suitable for foods. One application is to<br />

protect foods that are sensitive to or readily absorb moisture, such as<br />

aspartame, vitam<strong>in</strong>s, or methion<strong>in</strong>e. [93] The preparation process <strong>of</strong> encapsulated<br />

particles by centrifugal suspension separation is illustrated <strong>in</strong><br />

Fig. 8.<br />

Cocrystallization<br />

Cocrystallization is a new encapsulation process utiliz<strong>in</strong>g sucrose as a<br />

matrix for the <strong>in</strong>corporation <strong>of</strong> core materials. The sucrose syrup is concentrated<br />

to the supersaturated state and ma<strong>in</strong>ta<strong>in</strong>ed at a temperature<br />

high enough to prevent crystallization. A predeterm<strong>in</strong>ed amount <strong>of</strong> core<br />

material is then added to the concentrated syrup with vigorous mechanical<br />

agitation, thus provid<strong>in</strong>g nucleation for the sucrose=<strong>in</strong>gredient mixture<br />

to crystallize. As the syrup reaches the temperature at which transformation<br />

and crystallization beg<strong>in</strong>, a substantial amount <strong>of</strong> heat is emitted.<br />

Agitation is cont<strong>in</strong>ued <strong>in</strong> order to promote and extend transformation=<br />

crystallization until the agglomerates are discharged from the vessel.<br />

The encapsulated products are then dried to the desired moisture (if<br />

necessary) and screened to a uniform size. It is very important to properly<br />

control the rates <strong>of</strong> nucleation and crystallization as well as the thermal<br />

balance dur<strong>in</strong>g the various phases. [94]


1382 Desai and Park<br />

Figure 8. Representation <strong>of</strong> rotational suspension separation (A: establish<strong>in</strong>g<br />

particle size for pure coat<strong>in</strong>g, and B: encapsulation by suspension separation).<br />

The advantages <strong>of</strong> this technique <strong>in</strong>clude: (1) It can be employed to<br />

achieve particle dry<strong>in</strong>g. By means <strong>of</strong> this process, core materials <strong>in</strong> a<br />

liquid form can be converted to a dry powdered form without additional<br />

dry<strong>in</strong>g. (2) Products <strong>of</strong>fer direct tablet<strong>in</strong>g characteristics because <strong>of</strong> their<br />

agglomerated structure and thus <strong>of</strong>fer significant advantages to the candy<br />

and pharmaceutical <strong>in</strong>dustries. <strong>Recent</strong>ly, Berista<strong>in</strong> et al. encapsulated<br />

orange peel oil by a cocrystallization technique. [95] In their study, encapsulation<br />

capacity <strong>of</strong> sucrose syrups was found to be greater than 90% for<br />

a range <strong>of</strong> 100 to 250 g oil=kg <strong>of</strong> sugar. Surface oil, a measurement <strong>of</strong><br />

encapsulation efficiency, varied from 3350 to 8880 mg oil=kg solids.<br />

Moisture content <strong>of</strong> the crystals was lower than 10 g=kg, and bulk density<br />

was greater than 670 kg=m 3 for all the cocrystallizates prepared. Sensory<br />

evaluation showed that all <strong>of</strong> the panelists were able to detect oxidized<br />

flavors <strong>in</strong> oils without antioxidant added after storage at 35 C for one<br />

day. When butylated hydroxyanisole was added to the oil prior to cocrystallization,<br />

no signs <strong>of</strong> oxidized flavors were detected after 2 months <strong>of</strong><br />

storage at ambient temperature.<br />

Liposome Entrapment<br />

Liposomes consist <strong>of</strong> an aqueous phase that is completely surrounded by<br />

a phospholipid-based membrane. When phospholipids, such as lecith<strong>in</strong>,


<strong>Microencapsulation</strong> <strong>of</strong> <strong>Food</strong> <strong>Ingredients</strong> 1383<br />

are dispersed <strong>in</strong> an aqueous phase, the liposomes form spontaneously.<br />

One can have either aqueous or lipid-soluble material enclosed <strong>in</strong> the<br />

liposome. They have been used for delivery <strong>of</strong> vacc<strong>in</strong>es, hormones,<br />

enzymes, and vitam<strong>in</strong>s. [96] They consist <strong>of</strong> one or more layers <strong>of</strong> lipids<br />

and thus are nontoxic and acceptable for foods. Permeability, stability,<br />

surface activity, and aff<strong>in</strong>ity can be varied through size and lipid composition<br />

variations. They can range from 25 nm to several microns <strong>in</strong> diameter,<br />

are easy to make, and can be stored by freeze-dry<strong>in</strong>g. Kirby and<br />

Gregoriadis have devised a method to encapsulate at high efficiency,<br />

which is easy to scale-up and uses mild conditions appropriate for<br />

enzymes. [97] It is important to reiterate that large unilamellar vesicles<br />

(LUV) are the most appropriate liposomes for the food <strong>in</strong>dustry because<br />

<strong>of</strong> their high encapsulation efficiency, their simple production methods,<br />

and their good stability over time. The great advantage <strong>of</strong> liposomes over<br />

other microencapsulation technologies is the stability liposomes impart<br />

to water-soluble material <strong>in</strong> high water activity application: spray-dryers,<br />

extruders, and fluidized beds impart great stability to food <strong>in</strong>gredients <strong>in</strong><br />

the dry state but release their content readily <strong>in</strong> high water activity application,<br />

giv<strong>in</strong>g up all protection properties. Another unique property <strong>of</strong><br />

liposomes is the targeted delivery <strong>of</strong> their content <strong>in</strong> specific parts <strong>of</strong> the<br />

foodstuff. For example, it has been shown that liposome-encapsulated<br />

enzymes concentrate preferably <strong>in</strong> the curd dur<strong>in</strong>g cheese formation,<br />

whereas nonencapsulated enzymes are usually distributed evenly <strong>in</strong> the<br />

whole milk mixture, which leads to very low (2–4%) retention <strong>of</strong> the<br />

flavor-produc<strong>in</strong>g enzymes <strong>in</strong> the curd. They have prepared bromela<strong>in</strong>loaded<br />

liposomes for use as meat-tenderizer to improve stability <strong>of</strong><br />

the enzyme dur<strong>in</strong>g the process<strong>in</strong>g <strong>of</strong> the food and subsequently improve<br />

the availability <strong>of</strong> the enzyme. [98] Benech Kheadr et al. showed that<br />

liposome-entrapped nis<strong>in</strong> reta<strong>in</strong>ed higher activity aga<strong>in</strong>st Listeria <strong>in</strong>nocua<br />

and had improved stability <strong>in</strong> cheese production, prov<strong>in</strong>g a powerful<br />

tool to <strong>in</strong>hibit the growth <strong>of</strong> Listeria I <strong>in</strong> cheese while not prevent<strong>in</strong>g<br />

the detrimental effect <strong>of</strong> nis<strong>in</strong> on the actual cheese-ripen<strong>in</strong>g process. [99]<br />

Kirby et al. have developed a process to stabilize vitam<strong>in</strong> C <strong>in</strong> the aqueous<br />

<strong>in</strong>ner core <strong>of</strong> liposomes. [100] Encapsulation <strong>of</strong> vitam<strong>in</strong> C gave significant<br />

improvements <strong>in</strong> shelf life (from a few days to up to 2 months),<br />

especially <strong>in</strong> the presence <strong>of</strong> common food components that would normally<br />

speed up decomposition, such as copper ions, ascorbate oxidase,<br />

and lys<strong>in</strong>e. Liposomes can also be used to deliver the encapsulated<br />

<strong>in</strong>gredient at a specific and well-def<strong>in</strong>ed temperature: the liposome<br />

bilayer is <strong>in</strong>stantly broken down at the transition temperature <strong>of</strong> the<br />

phospholipids, typically around 50 C, at which temperature the content<br />

is immediately released.<br />

The most common phospholipid <strong>in</strong> lect<strong>in</strong>, phosphatidyl chol<strong>in</strong>e, is<br />

<strong>in</strong>soluble <strong>in</strong> water and is <strong>in</strong>expensively isolated from soy or egg yolk.<br />

The composition <strong>of</strong> the phospholipids and the process used determ<strong>in</strong>e


1384 Desai and Park<br />

if a s<strong>in</strong>gle layer or multiple layers are formed. Fatty acids also make up<br />

liposomes and their degree <strong>of</strong> saturation is dependent on the source. Animal<br />

sources provide more saturated fatty acids. They <strong>in</strong>fluence the transition<br />

temperature, which is the conversion from a gel to the more leaky<br />

liquid form. The ma<strong>in</strong> issues <strong>in</strong> liposome encapsulation for the food<br />

<strong>in</strong>dustry are (1) the scal<strong>in</strong>g up <strong>of</strong> the microencapsulation process at<br />

acceptable cost-<strong>in</strong>-use levels and (2) the delivery form <strong>of</strong> the liposomeencapsulated<br />

<strong>in</strong>gredients. The development <strong>of</strong> a cost-effective dry<strong>in</strong>g<br />

method for liposome microcapsules and development <strong>of</strong> a dry liposome<br />

formulation that readily reconstitutes upon rehydration would ensure<br />

a promis<strong>in</strong>g future to liposome encapsulation <strong>of</strong> food <strong>in</strong>gredients. The<br />

recent advances <strong>in</strong> liposome technology have most probably solved<br />

the first issue: micr<strong>of</strong>luidization has been shown to be an effective,<br />

cost-effective, and solvent-free cont<strong>in</strong>uous method for the production<br />

<strong>of</strong> liposomes with high encapsulation efficiency. The method can process<br />

a few hundred liters per hour <strong>of</strong> aqueous liposomes on a cont<strong>in</strong>uous<br />

basis. [101,102] The other issue concerns the aqueous form <strong>in</strong> which the liposomes<br />

are usually delivered. Most <strong>of</strong> the time, if not always, liposome formulations<br />

are kept <strong>in</strong> relatively dilute aqueous suspensions and this might<br />

be a very serious drawback for the large-scale production, storage, and<br />

shipp<strong>in</strong>g <strong>of</strong> encapsulated food <strong>in</strong>gredients.<br />

Inclusion Complexation<br />

Molecular <strong>in</strong>clusion is another means <strong>of</strong> achiev<strong>in</strong>g encapsulation. Unlike<br />

other processes discussed to this po<strong>in</strong>t, this technique takes place at a<br />

molecular level; b-cyclodextr<strong>in</strong> is typically used as the encapsulat<strong>in</strong>g<br />

medium. b-Cyclodextr<strong>in</strong> is a cyclic derivative <strong>of</strong> starch made up <strong>of</strong> seven<br />

glucopyranose units. They are prepared from partially hydrolyzed starch<br />

(maltodextr<strong>in</strong>) by an enzymatic process. The external part <strong>of</strong> the cyclodextr<strong>in</strong><br />

molecule is hydrophilic, whereas the <strong>in</strong>ternal part is hydrophobic.<br />

The guest molecules, which are apolar, can be entrapped <strong>in</strong>to the apolar<br />

<strong>in</strong>ternal cavity through a hydrophobic <strong>in</strong>teraction. [103] This <strong>in</strong>ternal<br />

cavity <strong>of</strong> about 0.65 nm diameter permits the <strong>in</strong>clusion <strong>of</strong> essential oil<br />

compounds and can take up one or more flavor volatile molecules. [13]<br />

In this method, the flavor compounds are entrapped <strong>in</strong>side the hollow<br />

center <strong>of</strong> a b-cyclodextr<strong>in</strong> molecule. The chemical structure and geometry<br />

<strong>of</strong> b-cyclodextr<strong>in</strong> are shown <strong>in</strong> Fig. 9.<br />

b-Cyclodextr<strong>in</strong> molecules form <strong>in</strong>clusion complexes with compounds<br />

that can fit dimensionally <strong>in</strong>to their central cavity. These complexes are<br />

formed <strong>in</strong> a reaction that takes place only <strong>in</strong> the presence <strong>of</strong> water. Molecules<br />

that are less polar than water (i.e., most flavor substances) and have<br />

suitable molecular dimensions to fit <strong>in</strong>side the cyclodextr<strong>in</strong> <strong>in</strong>terior can<br />

be <strong>in</strong>corporated <strong>in</strong>to the molecule. There are three methods to produce


<strong>Microencapsulation</strong> <strong>of</strong> <strong>Food</strong> <strong>Ingredients</strong> 1385<br />

Figure 9. Molecular structure and microstructure <strong>of</strong> b-cyclodextr<strong>in</strong>. [79]<br />

the flavor-b-cyclodextr<strong>in</strong> complex. In the first method, b-cyclodextr<strong>in</strong> is<br />

dissolved <strong>in</strong> water to form an aqueous solution, and the flavors are added<br />

to form an <strong>in</strong>clusion complex <strong>in</strong> crystall<strong>in</strong>e form. The crystal obta<strong>in</strong>ed<br />

is then separated and dried. In the second method, b-cyclodextr<strong>in</strong> is<br />

dissolved <strong>in</strong> a lesser amount <strong>of</strong> water than <strong>in</strong> the first method to form<br />

a concentrated suspension, and the flavors are mixed to form an <strong>in</strong>clusion<br />

complex <strong>in</strong> crystall<strong>in</strong>e form. The complex then must be separated and<br />

dried. In the third method, b-cyclodextr<strong>in</strong> is dissolved <strong>in</strong> a much<br />

lower water content to form a paste, and the flavors are mixed dur<strong>in</strong>g<br />

knead<strong>in</strong>g to form an <strong>in</strong>clusion complex. This method is superior to the<br />

former two because it does not require further separation and dry<strong>in</strong>g. [103]<br />

A cyclodextr<strong>in</strong>-complexation method has been patented us<strong>in</strong>g a ball mill<br />

with a charge <strong>of</strong> cyclodextr<strong>in</strong> and a guest molecule. This process needs<br />

little water, preferably 25–60% moisture by weight. The <strong>in</strong>clusion<br />

capacity <strong>of</strong> 1 g <strong>of</strong> b-cyclodextr<strong>in</strong> is not more than 97 mg <strong>of</strong> lemon oil.<br />

Among all exist<strong>in</strong>g microencapsulation methods, molecular <strong>in</strong>clusion<br />

<strong>of</strong> flavor volatiles <strong>in</strong> b-cyclodextr<strong>in</strong> molecules is the most effective for<br />

protect<strong>in</strong>g the aromas. Encapsulat<strong>in</strong>g flavors <strong>in</strong> this way can provide<br />

better protection from volatilization dur<strong>in</strong>g extrusion. However, the use<br />

<strong>of</strong> b-cyclodextr<strong>in</strong> for food application is very limited, possibly due to<br />

regulatory requirements <strong>in</strong> a number <strong>of</strong> countries. [86]


1386<br />

Table 4. Encapsulated food <strong>in</strong>gredients and their application <strong>in</strong> food <strong>in</strong>dustry<br />

Preferred mode <strong>of</strong><br />

encapsulation Applications<br />

Category <strong>of</strong> food<br />

<strong>in</strong>gredients Examples<br />

No.<br />

1. Used to assist <strong>in</strong> the development<br />

<strong>of</strong> color and flavor <strong>in</strong> meat emulsions,<br />

dry sausage products, uncooked<br />

processed meats, and meat conta<strong>in</strong><strong>in</strong>g<br />

products.<br />

2. Bak<strong>in</strong>g <strong>in</strong>dustry use stable acids and<br />

bak<strong>in</strong>g soda <strong>in</strong> wet and dry mixes to<br />

control the release <strong>of</strong> carbon dioxide<br />

dur<strong>in</strong>g process<strong>in</strong>g and subsequent<br />

Fluidized-bed coat<strong>in</strong>g,<br />

extrusion<br />

1 Acidulants Lactic acid, glucono-d-lactone,<br />

vitam<strong>in</strong> C, acetic acid,<br />

potassium sorbate, sorbic acid,<br />

calcium propionate,<br />

and sodium chloride<br />

bak<strong>in</strong>g.<br />

1. To transform liquid flavor<strong>in</strong>gs <strong>in</strong>to<br />

stable and free flow<strong>in</strong>g powders, which<br />

are easier to handle and <strong>in</strong>corporate<br />

<strong>in</strong>to a dry food system.<br />

Inclusion complexation,<br />

extrusion, centrifugal<br />

extrusion, spray-dry<strong>in</strong>g<br />

2 Flavor<strong>in</strong>g agents Citrus oil, m<strong>in</strong>t oils,<br />

onion oils, garlic oils,<br />

spice oleores<strong>in</strong>s


3 Sweeteners Sugars, nutritive<br />

Cocrystallization,<br />

1. To reduce the hygroscopicity, improve<br />

or artificial sugars:<br />

fluidized-bed coat<strong>in</strong>g flowability, and prolong sweetness<br />

aspartame<br />

perception.<br />

4 Colorants Annatto, b-carotene, turmeric Extrusion, emulsion 1. Encapsulated colors are easier to<br />

handle and <strong>of</strong>fer improved solubility,<br />

stability to oxidation, and control<br />

over stratification from dry blends.<br />

5 Lipids Fish oil, l<strong>in</strong>olenic acid,<br />

Spray-dry<strong>in</strong>g, freeze-dry<strong>in</strong>g, 1. To prevent oxidative degradation<br />

rice bra<strong>in</strong> oil,<br />

vacuum-dry<strong>in</strong>g<br />

dur<strong>in</strong>g process<strong>in</strong>g and storage.<br />

egg white powder,<br />

sard<strong>in</strong>e oil,<br />

palmitic acid,<br />

1. To reduce <strong>of</strong>f-flavors.<br />

2. To permit time-release <strong>of</strong> nutrients.<br />

3. To enhance the stability to extremes <strong>in</strong><br />

temperature and moisture.<br />

4. To reduce each nutrient <strong>in</strong>teraction<br />

Coacervation,<br />

<strong>in</strong>clusion complexation,<br />

spray-dry<strong>in</strong>g,<br />

liposome entrapment<br />

seal blubber oil<br />

Fat-soluble:<br />

vitam<strong>in</strong> A, D, E, and K.<br />

Water-soluble: vitam<strong>in</strong> C,<br />

vitam<strong>in</strong> B1, vitam<strong>in</strong> B2,<br />

vitam<strong>in</strong> B6, vitam<strong>in</strong> B12,<br />

niac<strong>in</strong>, folic acid<br />

Lipase, <strong>in</strong>vertase,<br />

Brevibacterium l<strong>in</strong>ens,<br />

Penicillium roqueforti<br />

6 Vitam<strong>in</strong>s and<br />

m<strong>in</strong>erals<br />

other <strong>in</strong>gredients.<br />

1. To improve the stability.<br />

2. To reduce the ripen<strong>in</strong>g time.<br />

Coacervation,<br />

spray method,<br />

liposome entrapment<br />

7 Enzymes and<br />

microorganisms<br />

1387


1388 Desai and Park<br />

ENCAPSULATED INGREDIENTS AND APPLICATIONS<br />

<strong>Microencapsulation</strong> can potentially <strong>of</strong>fer numerous benefits to the materials<br />

be<strong>in</strong>g encapsulated. Various properties <strong>of</strong> active agents may be<br />

changed by encapsulation. For example, handl<strong>in</strong>g and flow properties<br />

can be improved by convert<strong>in</strong>g liquid to a solid encapsulated from.<br />

Hygroscopic materials can be protected from moisture. Some <strong>of</strong> the<br />

encapsulated food <strong>in</strong>gredients and their applications are summarized <strong>in</strong><br />

Table 4.<br />

CONCLUSIONS<br />

The use <strong>of</strong> microencapsulated food <strong>in</strong>gredients for controlled-release<br />

applications is a promis<strong>in</strong>g alternative to solve the major problem <strong>of</strong> food<br />

<strong>in</strong>gredients faced by food <strong>in</strong>dustries. The challenges are to select the<br />

appropriate microencapsulation technique and encapsulat<strong>in</strong>g material.<br />

Despite the wide range <strong>of</strong> encapsulated products that have been<br />

developed, manufactured, and successfully marketed <strong>in</strong> the pharmaceutical<br />

and cosmetic <strong>in</strong>dustries, microencapsulation has found a comparatively<br />

much smaller market <strong>in</strong> the food <strong>in</strong>dustry. The technology is still<br />

far from be<strong>in</strong>g fully developed and has yet to become a conventional tool<br />

<strong>in</strong> the food technologist’s repertoire for several reasons. First <strong>of</strong> all,<br />

the development time is rather long and requires multidiscipl<strong>in</strong>ary<br />

cooperation. Secondly, the low marg<strong>in</strong>s typically achieved <strong>in</strong> food <strong>in</strong>gredients<br />

and the relative <strong>in</strong>ertia <strong>of</strong> well-established corporations are an<br />

effective deterrent to the development and implementation <strong>of</strong> novel technologies<br />

that could result <strong>in</strong> truly unique food products, whether for<br />

more effective production, food fortification, neutraceuticals, improved<br />

organoleptic properties, or development <strong>of</strong> novelty food products. However,<br />

the most important aspect <strong>of</strong> R&D, from the very first lab-bench<br />

tests, is an understand<strong>in</strong>g <strong>of</strong> the <strong>in</strong>dustrial constra<strong>in</strong>ts and requirements<br />

to make a microencapsulation process viable, from the transition to<br />

full-scale production to the market<strong>in</strong>g <strong>of</strong> the f<strong>in</strong>al product.<br />

ACKNOWLEDGEMENT<br />

This study was supported by a grant <strong>of</strong> the Korea Health 21 R and D<br />

Project, M<strong>in</strong>istry <strong>of</strong> Health and Welfare, Republic <strong>of</strong> Korea (A050376).<br />

REFERENCES<br />

1. Chen, X.G.; Lee, C.M.; Park, H.J. O=w emulsification for the self-aggregation<br />

and nanoparticle formation <strong>of</strong> l<strong>in</strong>olenic acid modified chitosan <strong>in</strong><br />

the aqueous system. Journal <strong>of</strong> Agricultural and <strong>Food</strong> Chemistry 2003,<br />

51, 3135–3139.


<strong>Microencapsulation</strong> <strong>of</strong> <strong>Food</strong> <strong>Ingredients</strong> 1389<br />

2. Kim, B.K.; Hwang, S.J.; Park, J.B.; Park, H.J. Preparation and characterization<br />

<strong>of</strong> drug-loaded microspheres by an emulsion solvent evaporation<br />

method. Journal <strong>of</strong> <strong>Microencapsulation</strong> 2002, 19, 811–822.<br />

3. Lee, D.W.; Hwang, S.J.; Park, J.B.; Park, H.J. Preparation and release characteristics<br />

<strong>of</strong> polymer-coated and blended alg<strong>in</strong>ate microspheres. Journal <strong>of</strong><br />

<strong>Microencapsulation</strong> 2003, 20, 179–192.<br />

4. Ko, J.A.; Park, H.J.; Hwang, S.J.; Park, J.B.; Lee, J.S. Preparation and<br />

characterization <strong>of</strong> chitosan microparticles <strong>in</strong>tended for controlled drug<br />

delivery. International Journal <strong>of</strong> Pharmaceutics 2002, 249, 165–174.<br />

5. Lee, J.Y.; Park, H.J.; Lee, C.Y.; Choi, W.Y. Extend<strong>in</strong>g shelf life <strong>of</strong> m<strong>in</strong>imally<br />

processed apples with edible coat<strong>in</strong>gs and antibrown<strong>in</strong>g agents.<br />

Lebensm.-Wiss. U.-Technology 2003, 36, 323–329.<br />

6. Cho, Y.H.; Sh<strong>in</strong>, D.S.; Park, J. Optimization <strong>of</strong> emulsification and spray<br />

dry<strong>in</strong>g processes for the microencapsulation <strong>of</strong> flavor compounds. Korean<br />

Journal <strong>of</strong> <strong>Food</strong> Science and Technology 2000, 32, 132–139.<br />

7. Kirby, C.J. <strong>Microencapsulation</strong> and controlled delivery <strong>of</strong> food <strong>in</strong>gredients.<br />

<strong>Food</strong> Science and Technology Today 1991, 5 (2), 74–80.<br />

8. Andres, C. Encapsulation <strong>in</strong>gredients: I. <strong>Food</strong> Process<strong>in</strong>g 1977, 38 (12),<br />

44–56.<br />

9. Bakan, J.A. <strong>Microencapsulation</strong> <strong>of</strong> food and related products. <strong>Food</strong><br />

Technology 1973, 27 (11), 34–38.<br />

10. Todd, R.D. <strong>Microencapsulation</strong> and food <strong>in</strong>dustry. Flavor Industry 1970, 1,<br />

78–81.<br />

11. Balsa, L.L.; Fanger, G.O. <strong>Microencapsulation</strong> <strong>in</strong> food <strong>in</strong>dustry. Critical<br />

Reviews <strong>in</strong> <strong>Food</strong> Technology 1971, 2, 245–249.<br />

12. Shahidi, F.; Han, X.Q. Encapsulation <strong>of</strong> food <strong>in</strong>gredients. Critical Reviews<br />

<strong>in</strong> <strong>Food</strong> Technology 1993, 33 (6), 501–504.<br />

13. Dziezak, J.D. <strong>Microencapsulation</strong> and encapsulated food <strong>in</strong>gredients. <strong>Food</strong><br />

Technology 1998, 42, 136–151.<br />

14. Gibbs, B.F.; Kermasha, S.; Alli, I.; Mulligan, C.N. Encapsulation <strong>in</strong> food<br />

<strong>in</strong>dustry: A review. International Journal <strong>of</strong> <strong>Food</strong> Science and <strong>Food</strong> Nutrition<br />

1999, 50, 213–234.<br />

15. Cha, D.S.; Cooksey, K.; Ch<strong>in</strong>nan, M.S.; Park, H.J. Release <strong>of</strong> nis<strong>in</strong> from<br />

various heat-pressed and cast films. Lebensm.-Wiss. U.-Technol 2003, 36,<br />

209–213.<br />

16. Cha, D.S.; Choi, J.H.; Ch<strong>in</strong>nan, M.S.; Park, H.J. Antimicrobial films based<br />

on Na-alg<strong>in</strong>ate and j-carrageenan. Lebensm.-Wiss. U.-Technology 2002,<br />

35, 715–719.<br />

17. Choi, W.Y.; Park, H.J.; Ahn, D.J.; Lee, J.; Lee, C.Y. Wettability <strong>of</strong> chitosan<br />

coat<strong>in</strong>g solution on ‘Fuji’ apple sk<strong>in</strong>. Journal <strong>of</strong> <strong>Food</strong> Science 2002, 67,<br />

2668–2672.<br />

18. L<strong>in</strong>ko, P. Immobilized lactic acid bacteria. In Enzymes and Immobilized<br />

Cells <strong>in</strong> Biotechnology; Larson, A., Ed.; Benjam<strong>in</strong> Cumm<strong>in</strong>gs: Meno Park,<br />

CA, 1985; 25–36.<br />

19. Seiss, W.; Divies, C. <strong>Microencapsulation</strong>. Angewandte Chemie International<br />

Edition 1975, 14, 539–550.<br />

20. Godshall, M.A. The role <strong>of</strong> carbohydrates <strong>in</strong> flavor development. <strong>Food</strong><br />

Technology 1988, 42 (11), 71–74.


1390 Desai and Park<br />

21. Fl<strong>in</strong>k, J.; Karel, M. Effects <strong>of</strong> process variables on retention <strong>of</strong> volatiles <strong>in</strong><br />

freeze-dry<strong>in</strong>g. Journal <strong>of</strong> <strong>Food</strong> Science 1970, 35, 444–446.<br />

22. Re<strong>in</strong>eccius, G.A.; Coulter, S.T. Flavor retention dur<strong>in</strong>g dry<strong>in</strong>g. Journal <strong>of</strong><br />

Dairy Science 1989, 52, 1219–1224.<br />

23. Re<strong>in</strong>eccius, G.A. Flavor encapsulation. <strong>Food</strong> Reviews International 1989,<br />

5, 147–150.<br />

24. Re<strong>in</strong>eccius, G.A. Carbohydrates for flavor encapsulation. <strong>Food</strong> Technology<br />

1991, 46 (3), 144–147.<br />

25. Greener, I.K.; Fennema, O. Barrier properties and surface characteristics <strong>of</strong><br />

edible, bilayer films. Journal <strong>of</strong> <strong>Food</strong> Science 1989, 54, 1393–1395.<br />

26. Greener, I.K.; Fennema, O. Evaluation <strong>of</strong> edible, bilayer films for use as<br />

moisture barriers for food. Journal <strong>of</strong> <strong>Food</strong> Science 1989, 54, 1400–1403.<br />

27. Dziezak, J.D. Focus on gums. <strong>Food</strong> Technology 1991, 45 (3), 116–118.<br />

28. Kamper, S.L.; Fennema, O. Water vapor permeability <strong>of</strong> an edible, fatty<br />

acid, bilayer film. Journal <strong>of</strong> <strong>Food</strong> Science 1984, 49, 1482–1485.<br />

29. Kim, H.-H.Y.; Baianu, I.C. Novel liposome microencapsulation techniques<br />

for food applications. Trends <strong>in</strong> <strong>Food</strong> Science and Technology 1991, 2, 55–<br />

60.<br />

30. Ono, F. New encapsulation technique with prote<strong>in</strong>-carbohydrate matrix.<br />

Journal <strong>of</strong> Japanese <strong>Food</strong> Science Technology 1980, 27, 529–535.<br />

31. Taylor, A.H. Encapsulation systems and their applications <strong>in</strong> the flavor<br />

<strong>in</strong>dustry. <strong>Food</strong> Flavor <strong>Ingredients</strong> Packag<strong>in</strong>g and Process<strong>in</strong>g 1983, 5 (9),<br />

48–51.<br />

32. Rosenberg, M.; Sheu, T.Y. <strong>Microencapsulation</strong> <strong>of</strong> volatiles by spray dry<strong>in</strong>g<br />

<strong>in</strong> whey prote<strong>in</strong> based wall systems. International Dairy Journal 1996,<br />

6, 273–284.<br />

33. Shiga, H.; Yoshii, H.; Nishiyama, T.; Furuta, T.; Forssele, P.; Poutanen, K.;<br />

L<strong>in</strong>ko, P. Flavor encapsulation and release characteristics <strong>of</strong> spray-dried<br />

powder by the blended encapsulant <strong>of</strong> cyclodextr<strong>in</strong> and gum arabic. Dry<strong>in</strong>g<br />

Technology 2001, 19 (7), 1385–1395.<br />

34. Sun, W.D.; Davidson, P. Prote<strong>in</strong> <strong>in</strong>activation <strong>in</strong> amorphous sucrose and trehalose<br />

matrices: Effect <strong>of</strong> phase separation and crystallization. Biochimica<br />

Biophysica Acta 1998, 1425, 235–244.<br />

35. Hancock, J.D.; Sharp, J.H. Method <strong>of</strong> compar<strong>in</strong>g solid-state k<strong>in</strong>etic data<br />

and its application to the decomposition <strong>of</strong> kaol<strong>in</strong>ite, brucite and barium<br />

carbonate. Journal <strong>of</strong> American Ceramic Society 1972, 55 (2), 74–77.<br />

36. Liu, X.D.; Atarashi, T.; Furuta, T.; Yoshii, H.; Aishima, S.; Ohkawara, M.;<br />

L<strong>in</strong>ko, P. <strong>Microencapsulation</strong> <strong>of</strong> emulsified hydrophobic flavors by spray<br />

dry<strong>in</strong>g. Dry<strong>in</strong>g Technology 2001, 19 (7), 1361–1374.<br />

37. Berista<strong>in</strong>, C.I.; Garcia, H.S.; Vernon-Carter, E.J. Mesquite gum (Prosopis<br />

juliflora) and maltodextr<strong>in</strong> blends as wall materials for spray-dried encapsulated<br />

orange peel oil. <strong>Food</strong> Science and Technology International 1999, 5,<br />

353–356.<br />

38. Berista<strong>in</strong>, C.I.; Garcia, H.S.; Vernon-Carter, E.J. Spray-dried encapsulation<br />

<strong>of</strong> cardamom (Elettaria cardamomum) essential oil with mesquite (Prosopis<br />

juliflora) gum. Lebensm.-Wiss. U.-Technol 2001, 34, 398–401.<br />

39. August<strong>in</strong>, M.A.; Sanguansri, L.; Margetts, C.; Young, B. <strong>Microencapsulation</strong><br />

<strong>of</strong> food <strong>in</strong>gredients. <strong>Food</strong> Australia 2001, 53, 220–223.


<strong>Microencapsulation</strong> <strong>of</strong> <strong>Food</strong> <strong>Ingredients</strong> 1391<br />

40. Millqvist-Fureby, A.; Malmsten, M.; Bergenstahl, B. An aqueous polymer<br />

two-phase system as carrier <strong>in</strong> the spray-dry<strong>in</strong>g <strong>of</strong> biological material.<br />

Journal <strong>of</strong> Colloid and Interface Science 2000, 225, 54–61.<br />

41. Edris, A.; Benrgnstahl, B. Encapsulation <strong>of</strong> orange oil <strong>in</strong> a spray dried<br />

double emulsion. Nahrung=<strong>Food</strong> 2001, 45,133–137.<br />

42. Desai, K.G.H.; Park, H.J. Encapsulation <strong>of</strong> vitam<strong>in</strong> C <strong>in</strong> tripolyphosphate<br />

crossl<strong>in</strong>ked chitosan microspheres by spray dry<strong>in</strong>g. Journal <strong>of</strong> <strong>Microencapsulation</strong><br />

2005, 22, 179–192.<br />

43. Desai, K.G.H.; Park, H.J. Effect <strong>of</strong> manufactur<strong>in</strong>g parameters on the characteristics<br />

<strong>of</strong> vitam<strong>in</strong> C encapsulated tripolyphosphate-chitosan microspheres<br />

prepared by spray dry<strong>in</strong>g. Journal <strong>of</strong> <strong>Microencapsulation</strong> 2005, In<br />

press.<br />

44. Desai, K.G.H.; Liu, C.; Park, H.J. Characteristics <strong>of</strong> vitam<strong>in</strong> C encapsulated<br />

tripolyphosphate-chitosan microspheres as affected by chitosan<br />

molecular weight. Journal <strong>of</strong> <strong>Microencapsulation</strong> 2005, In press.<br />

45. Ch<strong>in</strong>-Cheng, L.; Shan-Yang, L.; Sun-Hwang, L. <strong>Microencapsulation</strong> <strong>of</strong><br />

squid oil with hydrophilic macromolecules <strong>of</strong> oxidative and thermal stabilization.<br />

Journal <strong>of</strong> <strong>Food</strong> Science 1995, 60, 36–39.<br />

46. Re, M.I. <strong>Microencapsulation</strong> by spray dry<strong>in</strong>g. Dry<strong>in</strong>g Technology 1998, 16,<br />

1195–1196.<br />

47. Berista<strong>in</strong>, C.I.; Vernon-Carter, E.J. Utilization <strong>of</strong> mesquite (Prosopis juliora)<br />

gum as emulsion stabiliz<strong>in</strong>g agent for spray dried encapsulated orange peel<br />

oil. Dry<strong>in</strong>g Technology 1994, 12, 1727–1733.<br />

48. Goycoolea, F.M.; Calderon, De La Barca, A.M.; Balderrama, J.R. Immunological<br />

and functional properties <strong>of</strong> the exudate gum from northwestern<br />

Mexican mesquite (Prosopis spp.) <strong>in</strong> comparison with gum arabic. International<br />

Journal <strong>of</strong> Biological Macromolecules 1997, 21, 29–36.<br />

49. Berista<strong>in</strong>, C.I.; Vernon-Carter, E.J. Studies on the <strong>in</strong>teraction <strong>of</strong> arabic<br />

(Acacia Senegal) and mesquite (Prosopis juliora) gum as emulsion stabiliz<strong>in</strong>g<br />

agents for spray dried encapsulated orange peel oil. Dry<strong>in</strong>g Technology<br />

1995, 29, 645–667.<br />

50. Berista<strong>in</strong>, C.I.; Garcia, H.S.; Vernon-Carter, E.J. Mesquite gum (Prosopis<br />

juliora) and maltodextr<strong>in</strong> blends as wall materials for spray-dried encapsulated<br />

orange peel oil. <strong>Food</strong> Science and Technology International 1999, 5,<br />

353–356.<br />

51. Thevenet, F. Acacia gums: Natural encapsulation agent for food <strong>in</strong>gredients.<br />

In Encapsulation and Controlled Release <strong>of</strong> <strong>Food</strong> <strong>Ingredients</strong>; Risch,<br />

S.J., Re<strong>in</strong>eccius, G.A., Eds.; American Chemical Society: Wash<strong>in</strong>gton,<br />

DC, 1995.<br />

52. Re<strong>in</strong>eccius, G.A.; Ward, F.M.; Whorton, C.; Andon, S.A. <strong>Developments</strong><br />

<strong>in</strong> gum acacias for the encapsulation <strong>of</strong> flavors. In Encapsulation and<br />

Controlled Release <strong>of</strong> <strong>Food</strong> <strong>Ingredients</strong>; American Chemical Society:<br />

Wash<strong>in</strong>gton, DC, 1995.<br />

53. Risch, S.J.; Re<strong>in</strong>eccius, G.A. Spray-dried orange oil: Effect <strong>of</strong> emulsion size<br />

on flavor retention and shelf stability. In Flavor Encapsulation; Risch, S.J.,<br />

Re<strong>in</strong>eccius, G.A., Eds.; American Chemical Society: Wash<strong>in</strong>gton, DC, 1988.<br />

54. Bhandari, B.R.; Dumoul<strong>in</strong>, H.M.J.; Richard, H.M.J. Flavor encapsulation<br />

<strong>of</strong> spray dry<strong>in</strong>g: Application to citral and l<strong>in</strong>alyl acetate. Journal <strong>of</strong> <strong>Food</strong><br />

Science 1992, 51, 1301–1306.


1392 Desai and Park<br />

55. Huang, L.; Kumar, K.; Mujumdar, A.S. Simulation <strong>of</strong> a spray dryer fitted<br />

with a rotary disk atomizer us<strong>in</strong>g a three-dimensional computational fluid<br />

dynamic model. Dry<strong>in</strong>g Technology 2004, 22 (6), 1489–1515.<br />

56. Mujumdar, A.S. Research and developments <strong>in</strong> dry<strong>in</strong>g: <strong>Recent</strong> trends and<br />

future prospectus. Dry<strong>in</strong>g Technology 2004, 22 (1&2), 1–26.<br />

57. Silva, M.A.; Souza, F.V. Dry<strong>in</strong>g behavior <strong>of</strong> b<strong>in</strong>ary mixture <strong>of</strong> solids. Dry<strong>in</strong>g<br />

Technology 2004, 22 (1&2), 165–177.<br />

58. Chen, X.D. Heat-mass transfer and structure formation dur<strong>in</strong>g dry<strong>in</strong>g <strong>of</strong><br />

s<strong>in</strong>gle food droplets. Dry<strong>in</strong>g Technology 2004, 22 (1&2), 179–190.<br />

59. Huang, L.; Kumar, K.; Mujumdar, A.S. A parametric study <strong>of</strong> the gas flow<br />

patterns and dry<strong>in</strong>g performance <strong>of</strong> co-current spray dryer: Results <strong>of</strong> a<br />

computational fluid dynamics study. Dry<strong>in</strong>g Technology 2003, 22 (6),<br />

957–978.<br />

60. Huang, L.; Kumar, K.; Mujumdar, A.S. Use <strong>of</strong> computational fluid dynamics<br />

to evaluate alternative spray dryer chamber configurations. Dry<strong>in</strong>g<br />

Technology 2003, 22 (3), 385–412.<br />

61. Blenford, D. Fully protected. <strong>Food</strong> Flavor <strong>Ingredients</strong> Packag<strong>in</strong>g and<br />

Process<strong>in</strong>g 1986, 8 (7), 43–45.<br />

62. Lamb, R. Spray chill<strong>in</strong>g. <strong>Food</strong> Flavor <strong>Ingredients</strong> Packag<strong>in</strong>g and Process<strong>in</strong>g<br />

1987, 9 (12), 39–42.<br />

63. Shilton, N.C.; Niranjan, K. Fluidization and its applications to food<br />

process<strong>in</strong>g. <strong>Food</strong> Structure 1993, 12, 199–215.<br />

64. Balassa, L.L.; Fanger, G.O. <strong>Microencapsulation</strong> <strong>in</strong> the food <strong>in</strong>dustry. CRC<br />

Reviews <strong>in</strong> <strong>Food</strong> Technology 1971, 2, 245–263.<br />

65. Zhao, L.; Pan, Y.; Li, J.; Chen, G.; Mujumdar, A.S. Dry<strong>in</strong>g <strong>of</strong> a dilute<br />

suspension <strong>in</strong> a revolv<strong>in</strong>g flow fluidized bed <strong>of</strong> <strong>in</strong>ert particles. Dry<strong>in</strong>g<br />

Technology 2004, 22 (1&2), 363–376.<br />

66. Jackson, L.S.; Lee, K. <strong>Microencapsulation</strong> and the food <strong>in</strong>dustry. Lebensm.-<br />

Wiss. U.-Technol 1991, 24, 289–297.<br />

67. Duxbury, D.D.; Swientek, R.J. Encapsulated <strong>in</strong>gredients face healthy<br />

future. <strong>Food</strong> Process<strong>in</strong>g 1992, 53, 38–46.<br />

68. Kanawjia, S.K.; Pathania, V.; S<strong>in</strong>gh, S. <strong>Microencapsulation</strong> <strong>of</strong> enzymes,<br />

micro-organisms and flavours and their applications <strong>in</strong> foods. Indian Dairyman<br />

1992, 44, 280–287.<br />

69. Hegenbart, S. Encapsulated <strong>in</strong>gredients keep problems covered. <strong>Food</strong> Product<br />

Design 1993, 4, 29–50.<br />

70. Arshady, R. Microcapsules for food. Journal <strong>of</strong> <strong>Microencapsulation</strong> 1993,<br />

10 (4), 413–435.<br />

71. Jones, D.M. Controll<strong>in</strong>g particle size and release properties. In Flavor<br />

Encapsulation; Risch, S.J., Re<strong>in</strong>eccius, G.A., Eds.; American Chemical<br />

Society: Wash<strong>in</strong>gton, DC, 1988.<br />

72. Thiel, W.J.; Nguyen, L.T. Fluidized bed film coat<strong>in</strong>g <strong>of</strong> an ordered powder<br />

mixture to produce microencapsulated ordered units. Journal <strong>of</strong> Pharmacy<br />

and Pharmacology 1984, 36, 145–152.<br />

73. Mehta, A.M.; Jones, D.M. Coated pellets under the microscope. Pharmaceutical<br />

Technology 1985, 9, 52–60.<br />

74. Wesdyk, R.; Joshi, Y.M.; De V<strong>in</strong>centis, J.; Newman, A.W.; Ja<strong>in</strong>, N.N.<br />

Factors affect<strong>in</strong>g differences <strong>in</strong> film thickness <strong>of</strong> beads coated <strong>in</strong> fluidized<br />

bed units. International Journal <strong>of</strong> Pharmaceutics 1993, 93, 101–109.


<strong>Microencapsulation</strong> <strong>of</strong> <strong>Food</strong> <strong>Ingredients</strong> 1393<br />

75. Matsuda, S.; Hatano, H.; Kuramoto, K.; Tsutsumi, A. Fluidization <strong>of</strong><br />

ultraf<strong>in</strong>e particles with high G. Journal <strong>of</strong> Chemical Eng<strong>in</strong>eer<strong>in</strong>g Japan<br />

2001, 34, 121–125.<br />

76. Rumpler, K.; Jacob, M. Cont<strong>in</strong>uous coat<strong>in</strong>g <strong>in</strong> fluidized bed. <strong>Food</strong> Market<br />

Technology 1998, 12, 41–43.<br />

77. Jozwiaskowski, M.J.; Jones, D.; Franz, R.M. Characterization <strong>of</strong> a hot melt<br />

fluid bed coat<strong>in</strong>g process from f<strong>in</strong>e granules. Pharmaceutical Research 1990,<br />

7, 3–10.<br />

78. Klose, R.E. Encapsulated bioactive substances. 1992, PCT WO 92=21249.<br />

79. Pacifico, C.J.; Wu, W.H.; Fraley, M. Sensitive substance encapsulation.<br />

U.S. Patent 6 2001, 251,478 B1.<br />

80. Wu, W.H.; Roe, W.S.; Gim<strong>in</strong>o, V.G.; Seriburi, V.; Mart<strong>in</strong>, D.E.; Knapp,<br />

S.E. Low melt encapsulation. 2002, PCT QO 00=74499.<br />

81. Dezarn, T.J. <strong>Food</strong> <strong>in</strong>gredient encapsulation. In Encapsulation and<br />

Controlled Release <strong>of</strong> <strong>Food</strong> <strong>Ingredients</strong>; Risch, S.J., Re<strong>in</strong>eccius, G.A., Eds.;<br />

American Chemical Society: Wash<strong>in</strong>gton, DC, 1995.<br />

82. De Pauw, P.; Dewett<strong>in</strong>ck, K.; Arnaut, F.; Huyghebaert, A. <strong>Microencapsulation</strong><br />

improves the action <strong>of</strong> bakery <strong>in</strong>gredients. Voed<strong>in</strong>gsmiddelentechnologie<br />

1996, 29, 38–40.<br />

83. Schultz, T.H.; Dimick, K.P.; Makower, B. Incorporation <strong>of</strong> natural fruit<br />

flavors <strong>in</strong>to fruit juice powders. I. Lock<strong>in</strong>g <strong>of</strong> citrus oils <strong>in</strong> sucrose and<br />

dextrose. <strong>Food</strong> Technology 1956, 10 (1), 57–60.<br />

84. Swisher, H.E. Solid essential oil-flavor<strong>in</strong>g components. U.S. Patent.<br />

2,809,895, 1957.<br />

85. Ubb<strong>in</strong>k, J.; Schoonman, A. Flavour delivery systems. Kirk-Othmer encyclopedia<br />

<strong>of</strong> chemical technology; John Wiley and Sons: New York, 2003.<br />

86. Yuliani, S.; Bhandari, B.; Rutgers, R.; D’Arcy, B. Application <strong>of</strong> microencapsulated<br />

flavor to extrusion product. <strong>Food</strong> Reviews International 2004,<br />

20 (2), 163–185.<br />

87. Schlameus, W. Centrifugal extrusion encapsulation. In Encapsulation and<br />

Controlled Release <strong>of</strong> <strong>Food</strong> <strong>Ingredients</strong>. Risch, S.J.; Re<strong>in</strong>eccius, G.A. Eds.;<br />

American Chemical Society: Wash<strong>in</strong>gton, DC, 1995.<br />

88. Kopelman, I.J.; Meydav, S.; Wwilmersdorf, P. Storage studies <strong>of</strong> freezedried<br />

lemon crystals. Journal <strong>of</strong> <strong>Food</strong> Technology 1977, 12, 65–69.<br />

89. Gou<strong>in</strong>, S. <strong>Microencapsulation</strong>: Industrial appraisal <strong>of</strong> exist<strong>in</strong>g technologies<br />

and trends. Trends <strong>in</strong> <strong>Food</strong> Science Technology 2004, 15, 330–347.<br />

90. Arneodo, C.J.F. <strong>Microencapsulation</strong> by complex coacervation at ambient<br />

temperature. FR 2732240 A1, 1996.<br />

91. Ijichi, K.; Yoshizawa, H.; Uemura, Y.; Hatate, Y.; Kawano, Y. Multilayered<br />

gelat<strong>in</strong>=acacia microcapsules by complex coacervation method.<br />

Journal <strong>of</strong> Chemical Eng<strong>in</strong>eer<strong>in</strong>g Japan 1997, 30, 793–798.<br />

92. Soper, J.C.; Thomas, M.T. Enzymatically prote<strong>in</strong> encapsulat<strong>in</strong>g oil particles<br />

by complex coacervation. U.S. Patent. 6-039-901, 1997.<br />

93. Sparks, R.E. <strong>Microencapsulation</strong>. In Encyclopedia <strong>of</strong> Chemical Process<br />

Technology; McKetta, J., Ed.; Marcel Dekker: New York, 1989.<br />

94. Rizzuto, A.B.; Chen, A.C.; Veiga, M.F. Modification <strong>of</strong> the sucrose crystal<br />

structure to enhance pharmaceutical properties <strong>of</strong> excipient and drug<br />

substances. Pharmaceutical Technology 1984, 8 (9), 32–35.


1394 Desai and Park<br />

95. Berista<strong>in</strong>, C.; Vazquez, A.V.; Garcia, H.S.; Vernon-Carter, E.J. Encapsulation<br />

<strong>of</strong> orange peel oil by co-crystallization. Lebensm.-Wiss. U.-Technol<br />

1996, 29, 645–647.<br />

96. Gregoriadis, G. In Liposome Technology, Vol. 1–3; CRC Press: Boca Raton,<br />

FL, 1984.<br />

97. Kirby, C.J.; Gregoriadis, G. A simple procedure for prepar<strong>in</strong>g liposomes<br />

capable <strong>of</strong> high encapsulation efficiency under mild conditions. In Liposome<br />

Technology, Vol 1; Gregoriadis, G., Ed.; CRC Press: Boca Raton, FL, 1984.<br />

98. Kheadr, E.E.; Vuillemard, J.C.; El Deeb, S.A. Accelerated cheddar cheese<br />

ripen<strong>in</strong>g with encapsulated prote<strong>in</strong>ases. International Journal <strong>of</strong> <strong>Food</strong><br />

Science and Technology 2000, 35, 483–495.<br />

99. Benech, R.O.; Kheadr, E.E.; Laridi, R.; Lacroix, C.; Fliss, I. Inhibition <strong>of</strong><br />

Listeria <strong>in</strong>nocua <strong>in</strong> cheddar cheese by addition <strong>of</strong> nis<strong>in</strong> Z <strong>in</strong> liposomes or<br />

by <strong>in</strong> situ production <strong>in</strong> mixed culture. Applied Environmental Microbiology<br />

2002, 68, 3683–3690.<br />

100. Kirby, C.J.; Whittle, C.J.; Rigby, N.; Coxon, D.T.; Law, B.A. Stabilization<br />

<strong>of</strong> ascorbic acid by microencapsulation. International Journal <strong>of</strong> <strong>Food</strong><br />

Science and Technology 1991, 26, 437–449.<br />

101. Zheng, S.; Alkan-Onyuksel, H.; Beiss<strong>in</strong>ger, R.L.; Wasan, D.T. Liposome<br />

microencapsulation without us<strong>in</strong>g any organic solvent. Journal <strong>of</strong> Dispersion<br />

Science and Technology 1999, 20, 1189–1203.<br />

102. Maa, Y.F.; Hsu, C. Performance <strong>of</strong> sonication and micr<strong>of</strong>luidization for<br />

liquid-liquid emulsification. Pharmaceutical Development and Technology<br />

1999, 4, 233–240.<br />

103. Pag<strong>in</strong>gton, J.S. b-Cyclodextr<strong>in</strong> and its uses <strong>in</strong> the flavour <strong>in</strong>dustry. In <strong>Developments</strong><br />

<strong>in</strong> <strong>Food</strong> Flavours; Birch, G.G., L<strong>in</strong>dley, M.G., Eds.; Elsevier<br />

Applied Science: London, 1986.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!