20.06.2013 Views

Geological and environmental implications of the evaporite karst in Spain

Geological and environmental implications of the evaporite karst in Spain

Geological and environmental implications of the evaporite karst in Spain

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Environ Geol (2008) 53:951–965<br />

DOI 10.1007/s00254-007-0721-y<br />

ORIGINAL ARTICLE<br />

<strong>Geological</strong> <strong>and</strong> <strong>environmental</strong> <strong>implications</strong><br />

<strong>of</strong> <strong>the</strong> <strong>evaporite</strong> <strong>karst</strong> <strong>in</strong> Spa<strong>in</strong><br />

F. Gutiérrez Æ J. M. Calaforra Æ F. Cardona Æ<br />

F. Ortí Æ J. J. Durán Æ P. Garay<br />

Received: 15 October 2006 / Accepted: 6 March 2007 / Published onl<strong>in</strong>e: 12 April 2007<br />

Ó Spr<strong>in</strong>ger-Verlag 2007<br />

Abstract In Spa<strong>in</strong>, <strong>evaporite</strong> outcrops cover approximately<br />

7% <strong>of</strong> <strong>the</strong> total area <strong>of</strong> <strong>the</strong> country. Most <strong>of</strong> <strong>the</strong><br />

evaporitic formations are made up <strong>of</strong> Ca-sulfates (gypsum/<br />

anhydrite) or Ca-sulfates <strong>and</strong> halite. Certa<strong>in</strong> Paleogene<br />

mar<strong>in</strong>e <strong>evaporite</strong>s also conta<strong>in</strong> K-Mg-chlorides, <strong>and</strong> some<br />

Tertiary cont<strong>in</strong>ental formations bear substantial amounts <strong>of</strong><br />

Na-sulfates <strong>in</strong> <strong>the</strong> subsurface (glauberite <strong>and</strong> <strong>the</strong>nardite).<br />

Mesozoic evaporitic formations commonly wedge out towards<br />

<strong>the</strong> ground surface, pass<strong>in</strong>g <strong>in</strong>to condensed sequences<br />

<strong>and</strong> dissolution-collapse breccias. Some <strong>of</strong> <strong>the</strong>se<br />

highly porous breccias constitute major regional aquifers.<br />

In several areas, <strong>in</strong>terstratal <strong>karst</strong>ification <strong>of</strong> <strong>the</strong> <strong>evaporite</strong>s<br />

has given rise to gravitational deformations such as bas<strong>in</strong><br />

structures, monocl<strong>in</strong>es, <strong>and</strong> collapse structures cover<strong>in</strong>g<br />

F. Gutiérrez (&)<br />

Dpto. de Ciencias de la Tierra, Universidad de Zaragoza,<br />

C/. Pedro Cerbuna, 12, 50009 Zaragoza, Spa<strong>in</strong><br />

e-mail: fgutier@unizar.es<br />

J. M. Calaforra<br />

Dpto. de Hidrogeología, Universidad de Almería,<br />

04120 La Cañada; Almería, Spa<strong>in</strong><br />

F. Cardona<br />

Espeleo Club de Gràcia, C/. Astúries, 83,<br />

Barcelona, Spa<strong>in</strong><br />

F. Ortí<br />

Dpto. de Geoquímica, Petrología i Prospecció Geológica,<br />

Universidad de Barcelona, 08028 Barcelona, Spa<strong>in</strong><br />

J. J. Durán<br />

Instituto Geológico y M<strong>in</strong>ero de España,<br />

C/. Rios Rosas, 23, 28003 Madrid, Spa<strong>in</strong><br />

P. Garay<br />

Dpto. de Geología, Universitat de Valencia,<br />

46100 Burjassot, Valencia, Spa<strong>in</strong><br />

several square kilometers that record a cumulative subsidence<br />

<strong>in</strong> excess <strong>of</strong> 200 m (Teruel <strong>and</strong> Calatayud Grabens).<br />

A widespread consequence <strong>of</strong> <strong>evaporite</strong> dissolution processes<br />

<strong>in</strong> Spa<strong>in</strong> is <strong>the</strong> hydrochemical degradation <strong>of</strong> surface<br />

waters. Some <strong>of</strong> <strong>the</strong> largest <strong>and</strong> most outst<strong>and</strong><strong>in</strong>g lake<br />

systems, from an <strong>environmental</strong> perspective, occur <strong>in</strong><br />

<strong>karst</strong>ic depressions developed <strong>in</strong> evaporitic formations<br />

(Fuente de Piedra, Gallocanta, Bujaraloz, <strong>and</strong> Bañolas<br />

lakes). S<strong>in</strong>khole activity is a major geohazard <strong>in</strong> several<br />

<strong>evaporite</strong> <strong>karst</strong> areas. The s<strong>in</strong>khole risk has a particularly<br />

high impact <strong>in</strong> sectors where Tertiary <strong>evaporite</strong>s are<br />

overla<strong>in</strong> by Quaternary alluvial aquifers (Calatayud, Zaragoza,<br />

<strong>and</strong> Madrid areas). Some <strong>of</strong> <strong>the</strong> detrimental effects<br />

<strong>of</strong> subsidence <strong>in</strong>clude severe damage to historical monuments<br />

(Calatayud), <strong>the</strong> demolition <strong>of</strong> a whole village (Puilatos),<br />

or <strong>the</strong> derailment <strong>of</strong> a freight tra<strong>in</strong> (Zaragoza area).<br />

The deepest gypsum caves are found <strong>in</strong> Triassic diapiric<br />

structures (El Sumidor Cave, 210 m deep), <strong>and</strong> <strong>the</strong> longest<br />

ones are developed <strong>in</strong> horizontally ly<strong>in</strong>g Neogene sequences<br />

(Sorbas caves, <strong>and</strong> Estremera maze cave). The<br />

Cardona diapir hosts salt caves up to 4,300 m long whose<br />

genesis is related to flood<strong>in</strong>g <strong>of</strong> m<strong>in</strong>e galleries caused by<br />

<strong>the</strong> <strong>in</strong>terception <strong>of</strong> a phreatic conduit. The ma<strong>in</strong> anthropogenic<br />

impacts on <strong>the</strong> endo<strong>karst</strong>ic systems are related to<br />

<strong>the</strong> disposal <strong>of</strong> wastewaters <strong>and</strong> <strong>the</strong> destruction <strong>of</strong> caves<br />

by quarry<strong>in</strong>g. The fluvial valleys that cross Tertiary<br />

evaporitic outcrops commonly show peculiar geological<br />

characteristics related to dissolution-<strong>in</strong>duced synsedimentary<br />

subsidence phenomena: (1) Thickened alluvium fill<strong>in</strong>g<br />

dissolution bas<strong>in</strong>s up to several tens <strong>of</strong> kilometers long <strong>and</strong><br />

more than 100 m deep. The largest thicken<strong>in</strong>gs are found<br />

<strong>in</strong> areas where <strong>the</strong> bedrock conta<strong>in</strong>s halite <strong>and</strong> glauberite.<br />

(2) Superimposed alluvial units locally bounded by angular<br />

unconformities. (3) Abundant deformational structures <strong>and</strong><br />

paleos<strong>in</strong>kholes related to <strong>the</strong> rockhead <strong>and</strong>/or <strong>in</strong>terstratal<br />

123


952 Environ Geol (2008) 53:951–965<br />

<strong>karst</strong>ification <strong>of</strong> <strong>the</strong> substratum. These fluvial valleys typically<br />

are flanked by a prom<strong>in</strong>ent gypsum escarpment.<br />

Rock-falls favored by <strong>the</strong> dissolutional enlargement <strong>of</strong><br />

jo<strong>in</strong>ts derived from <strong>the</strong>se scarps are <strong>the</strong> type <strong>of</strong> mass<br />

movement which has caused <strong>the</strong> highest number <strong>of</strong> casualties<br />

<strong>in</strong> Spa<strong>in</strong>.<br />

Keywords Evaporite <strong>karst</strong> Geohazards Impacts<br />

Spa<strong>in</strong><br />

Evaporite formations <strong>in</strong> Spa<strong>in</strong><br />

The Iberian Pen<strong>in</strong>sula constitutes a microplate located<br />

between <strong>the</strong> convergent European <strong>and</strong> African plates.<br />

Broadly, <strong>the</strong> geology <strong>of</strong> this microplate <strong>in</strong>cludes <strong>the</strong><br />

Hercynian (Variscan) Massif, made up <strong>of</strong> pre-Mesozoic<br />

metamorphic <strong>and</strong> igneous rocks, <strong>and</strong> Alp<strong>in</strong>e orogens <strong>and</strong><br />

Tertiary bas<strong>in</strong>s dom<strong>in</strong>ated by Phanerozoic sedimentary<br />

rocks (Fig. 1). The vast majority <strong>of</strong> <strong>evaporite</strong> formations,<br />

both mar<strong>in</strong>e <strong>and</strong> cont<strong>in</strong>ental <strong>in</strong> orig<strong>in</strong>, occur <strong>in</strong> <strong>the</strong>se orogens<br />

<strong>and</strong> bas<strong>in</strong>s. The <strong>evaporite</strong> outcrops <strong>in</strong> Spa<strong>in</strong> cover<br />

more than 35,000 km 2 , approximately 7% <strong>of</strong> <strong>the</strong> total<br />

country area (~500,000 km 2 ) (Macau <strong>and</strong> Riba 1962).<br />

These figures expla<strong>in</strong> <strong>the</strong> significant impact <strong>of</strong> <strong>the</strong> <strong>environmental</strong><br />

problems related to <strong>evaporite</strong> <strong>karst</strong> <strong>in</strong> Spa<strong>in</strong>.<br />

Mar<strong>in</strong>e <strong>evaporite</strong> sedimentation <strong>in</strong> Spa<strong>in</strong> covers a wide<br />

time span, from <strong>the</strong> Triassic to <strong>the</strong> present-day, whereas<br />

most <strong>of</strong> <strong>the</strong> cont<strong>in</strong>ental <strong>evaporite</strong>s were deposited <strong>in</strong> lake<br />

Fig. 1 Distribution <strong>of</strong> <strong>the</strong> ma<strong>in</strong><br />

<strong>evaporite</strong> outcrops <strong>in</strong> Spa<strong>in</strong> <strong>and</strong><br />

pr<strong>in</strong>cipal fluvial systems<br />

affected by synsedimentary<br />

subsidence phenomena caused<br />

by <strong>evaporite</strong> dissolution. The<br />

small sketch shows <strong>the</strong> ma<strong>in</strong><br />

geological doma<strong>in</strong>s <strong>in</strong> <strong>the</strong><br />

Iberian Pen<strong>in</strong>sula<br />

123<br />

environments dur<strong>in</strong>g <strong>the</strong> Tertiary. Geochemical <strong>and</strong> isotopic<br />

studies demonstrate that <strong>the</strong> Tertiary lacustr<strong>in</strong>e <strong>evaporite</strong>s<br />

were derived from <strong>the</strong> recycl<strong>in</strong>g (dissolution <strong>and</strong><br />

reprecipitation) <strong>of</strong> Mesozoic mar<strong>in</strong>e formations (Utrilla<br />

et al. 1992). Most <strong>of</strong> <strong>the</strong> evaporitic rocks are made up <strong>of</strong><br />

Ca-sulfate (gypsum <strong>and</strong> anhydrite) or Ca-sulfate <strong>and</strong> halite.<br />

Some mar<strong>in</strong>e <strong>and</strong> cont<strong>in</strong>ental formations <strong>in</strong>clude K-Mgchlorides<br />

<strong>and</strong> Na-sulfates (glauberite <strong>and</strong> <strong>the</strong>nardite),<br />

respectively.<br />

Gypsum, with a solubility <strong>of</strong> 2.4 g/l, is commonly <strong>the</strong><br />

only evaporitic m<strong>in</strong>eral that crops out. Although, <strong>the</strong><br />

highly soluble chloride salts <strong>and</strong> Na-sulfates rarely crop<br />

out, <strong>the</strong>ir dissolution by groundwater has played an<br />

<strong>in</strong>strumental role <strong>in</strong> <strong>the</strong> development <strong>of</strong> some <strong>karst</strong>ic<br />

phenomena. Most <strong>of</strong> <strong>the</strong> outcropp<strong>in</strong>g gypsum corresponds<br />

to secondary gypsum com<strong>in</strong>g from <strong>the</strong> hydration <strong>of</strong><br />

anhydrite <strong>and</strong>, <strong>in</strong> <strong>the</strong> case <strong>of</strong> <strong>the</strong> cont<strong>in</strong>ental <strong>evaporite</strong><br />

bear<strong>in</strong>g Na-sulfates, <strong>the</strong> <strong>in</strong>congruent dissolution <strong>of</strong> glauberite.<br />

Primary gypsum has been preserved only <strong>in</strong> some<br />

Neogene mar<strong>in</strong>e <strong>and</strong> terrestrial formations (Ortí 1989;<br />

Ortí et al. 1992). A great proportion <strong>of</strong> <strong>the</strong> exposed<br />

<strong>evaporite</strong> formations were deposited <strong>in</strong> Tertiary bas<strong>in</strong>s<br />

l<strong>in</strong>ked to <strong>the</strong> synorogenic <strong>and</strong> postorogenic evolution <strong>of</strong><br />

<strong>the</strong> Alp<strong>in</strong>e ranges (Fig. 1). Some <strong>of</strong> <strong>the</strong>se bas<strong>in</strong>s underwent<br />

a progressive transition from open-mar<strong>in</strong>e conditions<br />

to a cont<strong>in</strong>ental endorheic regime. Broadly, <strong>the</strong> Paleogene<br />

<strong>evaporite</strong>s are affected by compressional deformations,<br />

whereas <strong>the</strong> Neogene <strong>evaporite</strong>s commonly show a subhorizontal<br />

structure.


Environ Geol (2008) 53:951–965 953<br />

Mar<strong>in</strong>e Mesozoic <strong>and</strong> Tertiary evaporitic formations<br />

The most widespread episodes <strong>of</strong> evaporitic sedimentation<br />

took place dur<strong>in</strong>g Triassic <strong>and</strong> lower Liassic times <strong>in</strong><br />

shallow-mar<strong>in</strong>e platform environments (lagoons, sabkhas)<br />

affected by a rift<strong>in</strong>g process (Ortí et al. 1996). Triassic<br />

<strong>evaporite</strong>s are made up <strong>of</strong> Ca-sulfate <strong>and</strong> halite units up to<br />

400 m thick embedded <strong>in</strong> variegated marls <strong>and</strong> shales. This<br />

formation occurs <strong>in</strong> numerous outcrops dispersed over <strong>the</strong><br />

Alp<strong>in</strong>e orogens, locally form<strong>in</strong>g diapiric structures (Fig. 1).<br />

The lower Liassic <strong>evaporite</strong>s (anhydrite zone), up to 800 m<br />

thick, are composed <strong>of</strong> Ca-sulfates associated with dolomites<br />

(Pérez-López et al. 1996). Borehole data reveal <strong>the</strong><br />

presence <strong>of</strong> several Jurassic <strong>and</strong> Upper Cretaceous anhydritic<br />

units more than 100 m thick <strong>in</strong> some sectors <strong>of</strong> <strong>the</strong><br />

Iberian Pen<strong>in</strong>sula. In <strong>the</strong> Iberian Range <strong>and</strong> <strong>in</strong> <strong>the</strong> Pyrenees<br />

<strong>the</strong>re are also gysiferous units deposited <strong>in</strong> transitional <strong>and</strong><br />

probably cont<strong>in</strong>ental environments with a poorly constra<strong>in</strong>ed<br />

late Cretaceous-Paleocene age (Garum facies).<br />

Jurassic <strong>and</strong> Cretaceous Ca-sulfate units, with a limited<br />

outcrop extent, are frequently represented close to, <strong>and</strong> at,<br />

<strong>the</strong> ground surface by collapse breccias generated by <strong>in</strong>terstratal<br />

<strong>karst</strong>ification <strong>of</strong> <strong>the</strong> <strong>evaporite</strong>s <strong>and</strong> brecciation <strong>of</strong><br />

<strong>the</strong> associated carbonate rocks, form<strong>in</strong>g <strong>the</strong> so-called carniolas<br />

(Gutiérrez et al. 2001).<br />

Dur<strong>in</strong>g <strong>the</strong> Paleogene, mar<strong>in</strong>e evaporitic sedimentation<br />

was restricted to <strong>the</strong> sou<strong>the</strong>rn foredeep <strong>of</strong> <strong>the</strong> Pyrenees,<br />

where <strong>evaporite</strong> deposition took place dur<strong>in</strong>g two regressive<br />

phases: <strong>the</strong> Middle Eocene phase (Lutetian), <strong>and</strong> <strong>the</strong><br />

Upper Eocene phase (Priabonian). Evaporite deposition <strong>of</strong><br />

<strong>the</strong> first phase, conf<strong>in</strong>ed to <strong>the</strong> eastern sector, is represented<br />

by <strong>the</strong> Beuda Gypsum, composed <strong>of</strong> 100 m <strong>of</strong> anhydrite/<br />

gypsum <strong>and</strong> m<strong>in</strong>or halite deposits at depth (Ortí <strong>and</strong> Rosell<br />

1997). The second phase developed <strong>in</strong> two sub bas<strong>in</strong>s,<br />

probably l<strong>in</strong>ked <strong>in</strong> <strong>the</strong> <strong>in</strong>itial stage to form a s<strong>in</strong>gle sedimentary<br />

trough, 300 km long, called <strong>the</strong> South Pyrenean<br />

Potash Bas<strong>in</strong>. These sediments are composed <strong>of</strong> Ca-sulfate<br />

<strong>and</strong> halite with a substantial amount <strong>of</strong> K-Mg chlorides,<br />

ma<strong>in</strong>ly sylvite <strong>and</strong> carnallite. The Cardona Sal<strong>in</strong>e Formation<br />

(eastern subbas<strong>in</strong>), with 300 m <strong>of</strong> chlorides, rema<strong>in</strong>s <strong>in</strong><br />

<strong>the</strong> autochthonous zone <strong>of</strong> <strong>the</strong> Ebro Bas<strong>in</strong>, whereas <strong>the</strong><br />

Guendula<strong>in</strong> Formation (western subbas<strong>in</strong>), up to 100 m<br />

thick, has been <strong>in</strong>corporated <strong>in</strong>to <strong>the</strong> allochthonous structural<br />

units <strong>of</strong> <strong>the</strong> Pyrenees (Rosell <strong>and</strong> Pueyo 1997).<br />

Neogene mar<strong>in</strong>e formations occur <strong>in</strong> <strong>the</strong> Penedés Bas<strong>in</strong><br />

(Catalan Coastal Range) <strong>and</strong> <strong>in</strong> a large number <strong>of</strong><br />

<strong>in</strong>tramontane bas<strong>in</strong>s <strong>of</strong> <strong>the</strong> eastern sector <strong>of</strong> <strong>the</strong> Betic<br />

Cordillera. The <strong>in</strong>ternal bas<strong>in</strong>s <strong>of</strong> <strong>the</strong> Betic Cordillera<br />

(Lorca, Fortuna, Guadalentín, Granada) host Tortonianearly<br />

Mess<strong>in</strong>ian evaporitic sequences up to several hundred<br />

meters thick made up <strong>of</strong> Ca-sulfate <strong>and</strong> halite that record a<br />

transition from mar<strong>in</strong>e to cont<strong>in</strong>ental conditions (Playà<br />

et al. 2000). In <strong>the</strong> external bas<strong>in</strong>s <strong>of</strong> <strong>the</strong> Betic Cordillera<br />

(Sorbas, Almería, Nijar-Carboneras, San Miguel de Sal<strong>in</strong>as,<br />

Palma de Mallorca), <strong>the</strong> mar<strong>in</strong>e <strong>evaporite</strong>s, Upper<br />

Mess<strong>in</strong>ian <strong>in</strong> age, are composed <strong>of</strong> 12–14 cyclic layers <strong>of</strong><br />

primary selenitic gypsum with a total thickness <strong>of</strong> 70–<br />

130 m (Rosell et al. 1998).<br />

Cont<strong>in</strong>ental Tertiary evaporitic formations<br />

Most <strong>of</strong> <strong>the</strong> ma<strong>in</strong> Spanish Tertiary bas<strong>in</strong>s conta<strong>in</strong> extensive<br />

<strong>and</strong> thick cont<strong>in</strong>ental evaporitic formations. The Ebro Bas<strong>in</strong>,<br />

subsequent to <strong>the</strong> Priabonian potassic phase, evolved<br />

<strong>in</strong>to an endorheic condition giv<strong>in</strong>g way to <strong>the</strong> deposition <strong>of</strong><br />

extensive Ca-sulfate <strong>and</strong> halite lacustr<strong>in</strong>e evaporitic formations<br />

<strong>of</strong> Upper Eocene-early Oligocene age. These are<br />

<strong>the</strong> Barbastro Gypsum <strong>and</strong> <strong>the</strong> Puente de la Re<strong>in</strong>a Gypsum,<br />

located <strong>in</strong> <strong>the</strong> central-eastern <strong>and</strong> <strong>the</strong> western sectors <strong>of</strong> <strong>the</strong><br />

bas<strong>in</strong>, respectively. They reach 300–400 m <strong>in</strong> thickness<br />

<strong>and</strong> crop out <strong>in</strong> <strong>the</strong> core <strong>of</strong> several salt anticl<strong>in</strong>es (Salvany<br />

1997). From <strong>the</strong> Middle Oligocene to <strong>the</strong> early Miocene,<br />

two thick evaporitic formations were deposited <strong>in</strong> <strong>the</strong><br />

western sector <strong>of</strong> <strong>the</strong> Ebro Bas<strong>in</strong>, <strong>the</strong> Falces <strong>and</strong> <strong>the</strong> Lerín<br />

Formations. The tightly folded Falces Formation reaches<br />

more than 1,000 m thick <strong>in</strong> <strong>the</strong> core <strong>of</strong> diapiric anticl<strong>in</strong>es<br />

<strong>and</strong> is made up <strong>of</strong> Ca-sulfate, glauberite, <strong>and</strong> halite. The<br />

Lerín Formation, 500–1,000 m <strong>in</strong> thickness, is made up <strong>of</strong><br />

Ca-sulfate, glauberite, halite, <strong>and</strong> polyhalite (Salvany<br />

1997). At <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> <strong>the</strong> Miocene, <strong>the</strong> bas<strong>in</strong> depocenter<br />

shifted to <strong>the</strong> central sector <strong>of</strong> <strong>the</strong> Ebro Bas<strong>in</strong>, where<br />

<strong>the</strong> Zaragoza Formation (upper Oligocene?-lower Miocene)<br />

was deposited. This formation, 800 m thick, crops<br />

out around Zaragoza city <strong>and</strong> <strong>in</strong>cludes, close to <strong>the</strong> surface,<br />

halite <strong>and</strong> glauberite units more than 150 <strong>and</strong> 30 m thick,<br />

respectively (Salvany et al. 2007). The youngest evaporitic<br />

unit corresponds to <strong>the</strong> Cerezo Gypsum (Upper Miocene),<br />

located <strong>in</strong> <strong>the</strong> Bureba corridor, which l<strong>in</strong>ks <strong>the</strong> Ebro <strong>and</strong><br />

<strong>the</strong> Duero bas<strong>in</strong>s. This unit, about 200 m thick, bears Casulfates<br />

<strong>and</strong> glauberite (Anadón 1990). In addition to <strong>the</strong>se<br />

formations deposited <strong>in</strong> central high-sal<strong>in</strong>ity lakes, <strong>the</strong><br />

Ebro Bas<strong>in</strong> fill also conta<strong>in</strong>s several m<strong>in</strong>or gypsum units<br />

deposited <strong>in</strong> marg<strong>in</strong>al lakes, like <strong>the</strong> Paleogene <strong>evaporite</strong>s<br />

associated to <strong>the</strong> Catalan Coastal Range <strong>and</strong> <strong>the</strong> Oligo-<br />

Miocene units located along <strong>the</strong> Iberian marg<strong>in</strong> <strong>of</strong> <strong>the</strong> bas<strong>in</strong><br />

(Ortí 1997).<br />

Evaporite sedimentation <strong>in</strong> <strong>the</strong> Tertiary Duero Bas<strong>in</strong> is<br />

recorded by a few Middle–Upper Miocene gypsum units<br />

less than 100 m thick with a significant proportion <strong>of</strong><br />

<strong>in</strong>soluble sediments (Mediavilla et al. 1996). The Tertiary<br />

Tajo Bas<strong>in</strong> is composed <strong>of</strong> two subbas<strong>in</strong>s: <strong>the</strong> western<br />

sector or <strong>the</strong> Madrid Bas<strong>in</strong>, <strong>and</strong> <strong>the</strong> eastern sector or <strong>the</strong><br />

Loranca Bas<strong>in</strong>. Dur<strong>in</strong>g <strong>the</strong> Paleogene, <strong>evaporite</strong> deposition<br />

was restricted to <strong>the</strong> Madrid Bas<strong>in</strong>, represented by folded<br />

Ca-sulfate units. This bas<strong>in</strong> also conta<strong>in</strong>s an extensive<br />

Miocene evaporitic succession constituted by two units: <strong>the</strong><br />

123


954 Environ Geol (2008) 53:951–965<br />

Sal<strong>in</strong>e Unit <strong>and</strong> <strong>the</strong> overly<strong>in</strong>g Intermediate Unit. The Sal<strong>in</strong>e<br />

Unit, several hundred meters thick, bears substantial<br />

amounts <strong>of</strong> halite <strong>and</strong> Na-sulfates <strong>in</strong> <strong>the</strong> subsurface (Orti<br />

et al. 1979; García del Cura et al. 1979), whereas <strong>the</strong><br />

Intermediate Unit is primarily made up <strong>of</strong> gypsum. The<br />

Loranca Bas<strong>in</strong> hosts several Miocene gypsum units less<br />

than 100 m thick (Torres et al. 1985).<br />

In <strong>the</strong> Calatayud Bas<strong>in</strong> (Iberian Range), <strong>the</strong> evaporitic<br />

sediments crop out <strong>in</strong> Calatayud <strong>and</strong> Barrach<strong>in</strong>a areas. In<br />

Calatayud area <strong>the</strong> evaporitic sequence is composed, <strong>in</strong><br />

ascend<strong>in</strong>g order, <strong>of</strong> a halite unit more than 350 m thick <strong>of</strong><br />

probable Oligo-Miocene age, a Ca-sulfate <strong>and</strong> Na-sulfate<br />

unit more than 200 m thick, <strong>and</strong> an upper gypsum unit<br />

locally more than 150 m thick (Ortí <strong>and</strong> Rosell 2000). In<br />

this area borehole data <strong>in</strong>dicate <strong>the</strong> presence <strong>of</strong> a Neogene<br />

Ca-sulfate formation more than 150 m thick with halite<br />

beds <strong>in</strong> <strong>the</strong> subsurface (Sanz-Rubio et al. 2003). Also <strong>in</strong> <strong>the</strong><br />

Iberian Range, <strong>the</strong> Teruel Graben hosts several Miocene to<br />

Pliocene <strong>evaporite</strong> units (Orrios Gypsum, Tortajada Gypsum,<br />

Libros-Cascante Gypsum, <strong>and</strong> Aljezares Gypsum)<br />

formed ma<strong>in</strong>ly by primary gypsum that locally reach more<br />

than 150 m <strong>in</strong> thickness. Gypsum units less than 100 m<br />

thick are known <strong>in</strong> <strong>the</strong> Neogene <strong>in</strong>fill <strong>of</strong> <strong>the</strong> Granada <strong>and</strong><br />

Baza bas<strong>in</strong>s <strong>in</strong> <strong>the</strong> Betic Cordillera.<br />

Karstification <strong>of</strong> Mesozoic evaporitic rocks<br />

Borehole data <strong>and</strong> field stratigraphic evidence demonstrate<br />

that <strong>the</strong> Mesozoic evaporitic formations commonly th<strong>in</strong><br />

towards <strong>the</strong> ground surface due to <strong>in</strong>terstratal <strong>karst</strong>ification<br />

processes caused by groundwater flow. Triassic <strong>evaporite</strong>s,<br />

commonly with thick halite units at depth, are made up <strong>of</strong><br />

gypsum <strong>and</strong> shales at <strong>the</strong> surface. Jurassic <strong>and</strong> Cretaceous<br />

formations, composed <strong>of</strong> Ca-sulfates <strong>and</strong> carbonates at<br />

depth, typically pass <strong>in</strong>to dissolution-collapse breccias<br />

(carniolas) near <strong>the</strong> surface. The wedg<strong>in</strong>g out <strong>of</strong> evaporitic<br />

sequences <strong>and</strong> <strong>the</strong> collapse breccias reveal that large volumes<br />

<strong>of</strong> <strong>evaporite</strong>s have been evacuated progressively <strong>in</strong><br />

solution by underground flows caus<strong>in</strong>g <strong>the</strong> subsidence <strong>of</strong><br />

overly<strong>in</strong>g sediments. These flows were one <strong>of</strong> <strong>the</strong> sources<br />

for <strong>the</strong> br<strong>in</strong>es <strong>of</strong> <strong>the</strong> lake systems where <strong>the</strong> Tertiary<br />

<strong>evaporite</strong>s were formed by a recycl<strong>in</strong>g process (Coloma<br />

et al. 1997; Sánchez et al. 1999). Although not studied<br />

specifically <strong>in</strong> Spa<strong>in</strong>, <strong>the</strong>se <strong>in</strong>terstratal <strong>karst</strong>ification processes<br />

<strong>and</strong> <strong>the</strong> consequent subsidence phenomena may<br />

have relevant geological <strong>implications</strong>: (1) Karstic gravitational<br />

deformations affect<strong>in</strong>g sediments underla<strong>in</strong>, now or<br />

<strong>in</strong> <strong>the</strong> past, by <strong>evaporite</strong>s, may be erroneously <strong>in</strong>terpreted<br />

as tectonic <strong>in</strong> orig<strong>in</strong>. (2) The dissolution-<strong>in</strong>duced subsidence<br />

phenomena may have controlled thickness variations<br />

<strong>in</strong> sedimentary units deposited synchronically with <strong>the</strong> removal<br />

<strong>of</strong> <strong>the</strong> <strong>evaporite</strong>s (synsedimentary subsidence). (3)<br />

123<br />

Uncerta<strong>in</strong>ties related to <strong>the</strong> previous existence <strong>of</strong> evaporitic<br />

units removed <strong>in</strong> solution, <strong>and</strong> <strong>the</strong> unknown orig<strong>in</strong>al<br />

thickness <strong>of</strong> some formations, may make some lithostratigraphic<br />

<strong>and</strong> paleogeographic <strong>in</strong>terpretations difficult. (4)<br />

S<strong>in</strong>ce some evaporitic formations (primarily Triassic)<br />

constitute a major detachment level <strong>in</strong> some thrust belts,<br />

<strong>the</strong>ir subjacent <strong>karst</strong>ification may have <strong>in</strong>fluenced <strong>the</strong><br />

k<strong>in</strong>ematics <strong>and</strong> style <strong>of</strong> <strong>the</strong>se contractional structures.<br />

The frequent occurrence <strong>of</strong> spr<strong>in</strong>gs <strong>of</strong> <strong>the</strong> sodium<br />

chloride <strong>and</strong> calcium sulfate hydrochemical facies associated<br />

with Mesozoic evaporitic formations demonstrate that<br />

<strong>the</strong> deep-seated <strong>karst</strong>ification is a currently active process.<br />

A remarkable example corresponds to <strong>the</strong> lower Liassic<br />

collapse breccias <strong>in</strong> <strong>the</strong> Iberian Range. This hydrostratigraphic<br />

unit, with a high secondary permeability related to<br />

<strong>in</strong>terstratal <strong>karst</strong>ification <strong>of</strong> anhydrite, constitutes a major<br />

regional aquifer with a great economic <strong>and</strong> <strong>environmental</strong><br />

significance. Locally, hot spr<strong>in</strong>gs related to <strong>the</strong> rapid rise <strong>of</strong><br />

groundwater through this highly porous formation have<br />

propitiated <strong>the</strong> development <strong>of</strong> wetl<strong>and</strong>s (e.g. Ojos de<br />

Pontil <strong>in</strong> <strong>the</strong> Ebro Bas<strong>in</strong>), <strong>the</strong> source <strong>of</strong> rivers (e.g. G<strong>in</strong>el<br />

River <strong>in</strong> <strong>the</strong> Ebro Bas<strong>in</strong>), <strong>and</strong> <strong>the</strong> construction <strong>of</strong> spas with<br />

a highly positive <strong>in</strong>fluence on <strong>the</strong> local economy (e.g. Fitero<br />

<strong>and</strong> Arnedillo villages <strong>in</strong> <strong>the</strong> western sector <strong>of</strong> <strong>the</strong> Ebro<br />

Bas<strong>in</strong>) (Coloma et al. 1997). Triassic <strong>evaporite</strong>s, which<br />

crop out <strong>in</strong> numerous areas throughout <strong>the</strong> Alp<strong>in</strong>e ranges,<br />

are <strong>the</strong> Mesozoic units that display <strong>the</strong> best-developed <strong>karst</strong><br />

systems.<br />

Karst <strong>in</strong> <strong>the</strong> <strong>evaporite</strong> Triassic rocks<br />

<strong>of</strong> <strong>the</strong> Betic Cordillera<br />

The Antequera <strong>karst</strong><br />

The most outst<strong>and</strong><strong>in</strong>g <strong>evaporite</strong> <strong>karst</strong> systems developed <strong>in</strong><br />

<strong>the</strong> western sector <strong>of</strong> <strong>the</strong> Betic Cordillera are found <strong>in</strong> some<br />

halok<strong>in</strong>etic structures developed <strong>in</strong> <strong>the</strong> so-called ‘‘Antequera<br />

Trias’’ (Fig. 1). This geological unit corresponds to a<br />

chaotic megabreccia with gypsum bodies at <strong>the</strong> surface <strong>and</strong><br />

halite <strong>and</strong> Ca-sulfate masses at depth, derived from Triassic<br />

formations <strong>in</strong> Miocene times by olistostromic processes.<br />

A close relationship between <strong>the</strong> geological structure<br />

<strong>and</strong> <strong>the</strong> <strong>karst</strong> morphology <strong>and</strong> hydrochemistry has been<br />

documented <strong>in</strong> several evaporitic outcrops like <strong>in</strong> Gobantes-Meliones<br />

<strong>and</strong> Sal<strong>in</strong>as-Fuente Camacho (Calaforra<br />

<strong>and</strong> Pulido-Bosch 1999a). The Gobantes-Meliones outcrop<br />

consists <strong>of</strong> two dome structures with s<strong>and</strong>stones, limestones<br />

<strong>and</strong> ophites <strong>in</strong> <strong>the</strong> outer zones, <strong>and</strong> <strong>evaporite</strong>s <strong>in</strong> <strong>the</strong><br />

core. Here, <strong>the</strong> collapse s<strong>in</strong>kholes <strong>and</strong> <strong>the</strong> calcium-sulfate<br />

spr<strong>in</strong>gs are concentrated <strong>in</strong> <strong>the</strong> central portion <strong>of</strong> <strong>the</strong> halok<strong>in</strong>etic<br />

structures, whereas <strong>the</strong> outer zones are characterized<br />

by broad subsidence depressions <strong>and</strong> spr<strong>in</strong>gs <strong>of</strong> <strong>the</strong><br />

sodium chloride hydrochemical facies. The rise <strong>of</strong> <strong>the</strong>se


Environ Geol (2008) 53:951–965 955<br />

salt structures has <strong>in</strong>duced <strong>the</strong> development <strong>of</strong> deeply <strong>in</strong>cised<br />

<strong>karst</strong>ic canyons, like <strong>the</strong> Guadalhorce River canyon<br />

<strong>and</strong> <strong>the</strong> Martín Arroyo (Durán 1984), <strong>and</strong> perched spr<strong>in</strong>gs<br />

<strong>and</strong> caves like <strong>the</strong> El Aguila Cave (Calaforra 1998). This<br />

cave, developed at <strong>the</strong> contact between gypsum <strong>and</strong> carbonate<br />

rocks, reaches 120 m <strong>in</strong> depth <strong>and</strong> conta<strong>in</strong>s a<br />

chamber 25 m high <strong>and</strong> about 200 m 2 <strong>in</strong> area.<br />

The existence <strong>of</strong> halite at depth is evidenced by <strong>the</strong><br />

hydrochemistry <strong>of</strong> <strong>the</strong> spr<strong>in</strong>g waters. The Meliones Spr<strong>in</strong>g,<br />

with a mean discharge <strong>of</strong> 1–2 l/s, has an electrical conductivity<br />

higher than 200,000 lS/cm. This spr<strong>in</strong>g, located<br />

<strong>in</strong> <strong>the</strong> upstream sector <strong>of</strong> <strong>the</strong> Guadalhorce River reservoir,<br />

issues around 5,000–10,000 tons <strong>of</strong> sodium chloride per<br />

year, caus<strong>in</strong>g a severe degradation <strong>of</strong> <strong>the</strong> reservoir waters<br />

that supply Malaga city. Several measures have been attempted<br />

to mitigate <strong>the</strong> problem, but with no success. An<br />

attempt was made to prevent <strong>the</strong> water outflow by drill<strong>in</strong>g<br />

boreholes directly <strong>in</strong>to <strong>the</strong> spr<strong>in</strong>g. Additionally, several<br />

dol<strong>in</strong>es <strong>and</strong> cave entrances, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> El Aguila Cave,<br />

were sealed with compacted clays <strong>and</strong> concrete to reduce<br />

water recharge <strong>of</strong> <strong>the</strong> <strong>karst</strong>ic aquifer (Fig. 2a). Obviously,<br />

this measure did not reduce <strong>the</strong> discharge <strong>in</strong> <strong>the</strong> Meliones<br />

Spr<strong>in</strong>g, fed by deep underground flows, <strong>and</strong> it caused a<br />

serious adverse impact on <strong>the</strong> <strong>karst</strong> environment <strong>and</strong> its<br />

protected subterranean fauna. Recently, <strong>the</strong> adm<strong>in</strong>istration<br />

has proposed construction <strong>of</strong> a desal<strong>in</strong>ization plant downstream<br />

<strong>of</strong> <strong>the</strong> Guadalhorce Dam.<br />

The Antequera Triassic outcrops also conta<strong>in</strong> a large<br />

number <strong>of</strong> ephemeral lakes <strong>of</strong> great <strong>environmental</strong> value<br />

constitut<strong>in</strong>g <strong>the</strong> so-called ‘‘Betic endorheism’’ (Durán <strong>and</strong><br />

López-Martínez 1999). The orig<strong>in</strong> <strong>of</strong> <strong>the</strong>se closed depressions<br />

is largely related to subsidence phenomena caused by<br />

ris<strong>in</strong>g groundwater flows. The most outst<strong>and</strong><strong>in</strong>g example<br />

corresponds to <strong>the</strong> Fuente de Piedra Lake, <strong>in</strong>cluded <strong>in</strong> <strong>the</strong><br />

Fig. 2 a Seal<strong>in</strong>g with<br />

compacted clays <strong>and</strong> concrete <strong>of</strong><br />

<strong>the</strong> s<strong>in</strong>khole that gives access to<br />

<strong>the</strong> El Águila Cave to prevent<br />

water recharge. The natural<br />

entrance to <strong>the</strong> cave was<br />

deteriorated with construction<br />

<strong>of</strong> a concrete structure. b<br />

S<strong>in</strong>khole result<strong>in</strong>g from <strong>the</strong><br />

upward stop<strong>in</strong>g <strong>of</strong> cavities<br />

generated by solution m<strong>in</strong><strong>in</strong>g <strong>in</strong><br />

<strong>the</strong> Triassic <strong>evaporite</strong>s <strong>of</strong> <strong>the</strong><br />

Polanco Diapir. c Mio-Pliocene<br />

sediments <strong>in</strong> Teruel Graben<br />

(Iberian range) affected by a<br />

monocl<strong>in</strong>al flexure generated by<br />

<strong>the</strong> <strong>in</strong>terstratal <strong>karst</strong>ification <strong>of</strong><br />

Triassic <strong>evaporite</strong>s. d General<br />

view <strong>of</strong> Gallocanta Lake<br />

(Iberian Range)<br />

Ramsar Convention <strong>of</strong> Wetl<strong>and</strong>s (Fig. 1). This sal<strong>in</strong>e lake,<br />

with sodium-chloride waters, covers 13.6 km 2 <strong>and</strong> hosts<br />

<strong>the</strong> largest breed<strong>in</strong>g colony <strong>of</strong> flam<strong>in</strong>gos (Phoenicopterus<br />

rubber) <strong>in</strong> <strong>the</strong> Iberian Pen<strong>in</strong>sula.<br />

The Vallada <strong>karst</strong><br />

The Vallada <strong>karst</strong>, located <strong>in</strong> <strong>the</strong> transitional zone between<br />

<strong>the</strong> Betic Cordillera <strong>and</strong> <strong>the</strong> Iberian Range, is developed <strong>in</strong><br />

a diapiric structure made up <strong>of</strong> <strong>the</strong> Upper Triassic Keuper<br />

facies. Outcropp<strong>in</strong>g sediments <strong>in</strong>clude massive gypsum,<br />

shales, marls <strong>and</strong> dolomite beds. The structural evidence <strong>of</strong><br />

diapirism <strong>and</strong> <strong>the</strong> presence <strong>of</strong> sal<strong>in</strong>e spr<strong>in</strong>gs <strong>in</strong>dicate <strong>the</strong><br />

existence <strong>of</strong> halite <strong>in</strong> <strong>the</strong> subsurface. The most remarkable<br />

feature corresponds to <strong>the</strong> 210 m deep El Sumidor Cave,<br />

which is <strong>the</strong> second deepest gypsum cave <strong>in</strong> <strong>the</strong> world. The<br />

large shafts <strong>of</strong> this cave are mostly carved <strong>in</strong> gypsum units<br />

juxtaposed aga<strong>in</strong>st steeply dipp<strong>in</strong>g dolomite beds. Although,<br />

calcium-sulfate waters flow through <strong>the</strong> El Sumidor<br />

Cave, <strong>the</strong> spr<strong>in</strong>g that dra<strong>in</strong>s <strong>the</strong> system, located 400 m<br />

beyond <strong>the</strong> lowermost accessible po<strong>in</strong>t <strong>of</strong> <strong>the</strong> cave, issues<br />

water <strong>of</strong> <strong>the</strong> sodium-chloride hydrochemical facies. This<br />

hydrochemical change, toge<strong>the</strong>r with an <strong>in</strong>crease <strong>in</strong> <strong>the</strong><br />

discharge <strong>and</strong> temperature <strong>of</strong> water <strong>in</strong> <strong>the</strong> spr<strong>in</strong>g, is<br />

attributed to <strong>in</strong>corporation along <strong>the</strong> last 400 m long reach<br />

<strong>of</strong> <strong>the</strong> flow path <strong>of</strong> NaCl-rich upward flows com<strong>in</strong>g from<br />

deep halite bodies (Calaforra 1998).<br />

Evaporite <strong>karst</strong> <strong>in</strong> Triassic formations <strong>of</strong> <strong>the</strong> Pyrenees<br />

Outcrops <strong>of</strong> Triassic <strong>evaporite</strong>s <strong>in</strong> <strong>the</strong> Pyrenees are usually<br />

situated <strong>in</strong> <strong>the</strong> core <strong>of</strong> anticl<strong>in</strong>al structures <strong>and</strong> diapirs. The<br />

circulation <strong>of</strong> groundwater through <strong>the</strong> upper part <strong>of</strong> diapiric<br />

bodies, that commonly bear large volumes <strong>of</strong> halite at<br />

123


956 Environ Geol (2008) 53:951–965<br />

depth, has resulted <strong>in</strong> <strong>the</strong> development <strong>of</strong> thick caprocks<br />

devoid <strong>of</strong> sodium chlorides. This <strong>in</strong>dicates that both diapirism<br />

<strong>and</strong> oppos<strong>in</strong>g dissolution-<strong>in</strong>duced subsidence phenomena<br />

have operated <strong>in</strong> <strong>the</strong> evolution <strong>of</strong> <strong>the</strong>se salt<br />

structures. Accord<strong>in</strong>g to borehole data, Quaternary alluvium<br />

underly<strong>in</strong>g <strong>the</strong> Nervión River floodpla<strong>in</strong> <strong>in</strong> <strong>the</strong> central<br />

sector <strong>of</strong> <strong>the</strong> Orduña Diapir reaches more than 80 m <strong>in</strong><br />

thickness, <strong>in</strong>dicat<strong>in</strong>g that <strong>the</strong> fluvial system has been affected<br />

by synsedimentary subsidence caused by <strong>karst</strong>ification<br />

<strong>of</strong> <strong>the</strong> bedrock (Arrate <strong>and</strong> Sanz de Galdeano 2002).<br />

The La Muera Spr<strong>in</strong>g, located <strong>in</strong> <strong>the</strong> lowest po<strong>in</strong>t <strong>of</strong> <strong>the</strong><br />

diapir next to <strong>the</strong> Nervión River, issues around 1,000 tons<br />

<strong>of</strong> solutes per year.<br />

The occurrence <strong>of</strong> s<strong>in</strong>kholes is a relatively frequent<br />

process <strong>in</strong> some diapers, like Orduña, Sal<strong>in</strong>as del Oro, <strong>and</strong><br />

Estella. In <strong>the</strong> Estella Diapir, Eraso (1959) has documented<br />

gypsum caves several tens <strong>of</strong> meters long (Long<strong>in</strong>os Cave),<br />

bedrock collapse s<strong>in</strong>kholes up to 35 m deep <strong>and</strong> 50 m<br />

across, <strong>and</strong> a sal<strong>in</strong>e spr<strong>in</strong>g with a mean discharge <strong>of</strong><br />

100 l/s. In most cases, <strong>the</strong> highly concentrated waters <strong>of</strong><br />

<strong>the</strong> spr<strong>in</strong>gs have a detrimental effect, caus<strong>in</strong>g degradation<br />

<strong>of</strong> <strong>the</strong> surface waters (Ega <strong>and</strong> Nervión Rivers). In some<br />

cases, <strong>the</strong>se spr<strong>in</strong>gs are used to produce salt (Sal<strong>in</strong>as de<br />

Añana) or for <strong>the</strong>rapeutic purposes (Orduña, Estella), thus<br />

constitut<strong>in</strong>g a highly valuable resource for <strong>the</strong> local economy.<br />

In <strong>the</strong> Polanco Diapir <strong>the</strong>re is a group <strong>of</strong> s<strong>in</strong>kholes<br />

that have resulted from <strong>the</strong> upward propagation <strong>of</strong> cavities<br />

generated by solution m<strong>in</strong><strong>in</strong>g (Fig. 2b). Accord<strong>in</strong>g to<br />

Cendrero <strong>and</strong> González-Lastra (1980), <strong>the</strong> old m<strong>in</strong><strong>in</strong>g<br />

operations <strong>in</strong> this diapir, which started <strong>in</strong> 1907, generated<br />

cavities at depths <strong>of</strong> 34 m. The most notable <strong>karst</strong> feature<br />

<strong>in</strong> Triassic <strong>evaporite</strong> outcrops <strong>of</strong> <strong>the</strong> central-eastern sector<br />

<strong>of</strong> <strong>the</strong> Pyrenees corresponds to <strong>the</strong> Estaña Lakes. They are<br />

a group <strong>of</strong> dol<strong>in</strong>es <strong>and</strong> uvalas that host three permanent<br />

lakes with calcium-sulfate waters whose sedimentary fill<br />

has been used <strong>in</strong> paleo<strong>environmental</strong> <strong>and</strong> paleohydrological<br />

<strong>in</strong>vestigations (Riera et al. 2004).<br />

Evaporite <strong>karst</strong> <strong>in</strong> Mesozoic rocks <strong>of</strong> <strong>the</strong> Iberian Range<br />

In Teruel Graben, Neogene sediments are locally affected<br />

by conspicuous gravitational deformations caused by <strong>in</strong>terstratal<br />

<strong>karst</strong>ification <strong>of</strong> <strong>the</strong> underly<strong>in</strong>g Triassic <strong>evaporite</strong>s<br />

(Gutiérrez 1998a). North <strong>of</strong> Teruel city, synsedimentary<br />

<strong>karst</strong>ic subsidence phenomena have been recorded <strong>in</strong><br />

Neogene alluvial fan deposits that show bas<strong>in</strong> structures<br />

with cumulative wedge outs <strong>and</strong> tufaceous facies <strong>in</strong> <strong>the</strong><br />

core. These structures correspond to cover sagg<strong>in</strong>g s<strong>in</strong>kholes<br />

up to several hundred meters <strong>in</strong> length that hosted<br />

palustr<strong>in</strong>e environments with calcium carbonate precipitation.<br />

This paleo<strong>karst</strong> constitutes stratigraphic evidence <strong>of</strong><br />

subsurface dissolution processes <strong>in</strong>volved <strong>in</strong> <strong>the</strong> recycl<strong>in</strong>g<br />

process that lead to deposition <strong>of</strong> Mio-Pliocene gypsum<br />

123<br />

formations <strong>in</strong> <strong>the</strong> Teruel Graben (Gutiérrez 1998a). Also <strong>in</strong><br />

this sector, postsedimentary subsidence caused by <strong>the</strong><br />

subjacent <strong>karst</strong>ification <strong>of</strong> Triassic <strong>evaporite</strong>s has generated<br />

numerous deformations <strong>in</strong> Neogene sediments, <strong>in</strong>clud<strong>in</strong>g<br />

tilt<strong>in</strong>g, passive bend<strong>in</strong>g folds <strong>and</strong> pericl<strong>in</strong>es, <strong>and</strong> transtratal<br />

collapse breccias (Gutiérrez 1998a). The Río Seco monocl<strong>in</strong>e,<br />

1.5 km long <strong>and</strong> 150 m <strong>in</strong> amplitude, affects a Mio-<br />

Pliocene sequence that <strong>in</strong>cludes sediments selected for <strong>the</strong><br />

formal def<strong>in</strong>ition <strong>of</strong> <strong>the</strong> Turolian stage (Calvo et al. 1999)<br />

(Fig. 2c). The concordant slope underla<strong>in</strong> by <strong>the</strong> upper<br />

anticl<strong>in</strong>al fold <strong>of</strong> this structure shows fresh uphill-fac<strong>in</strong>g<br />

fault scarps (sackung) that make evident <strong>the</strong> dissolution<strong>in</strong>duced<br />

subsidence <strong>and</strong> spread<strong>in</strong>g movements that affect<br />

this gravitational structure (Gutiérrez 1998a).<br />

In Orihuela del Tremedal village, built on dolomitic<br />

collapse breccias underla<strong>in</strong> by Triassic <strong>evaporite</strong>s, numerous<br />

build<strong>in</strong>gs are severely damaged by subsidence <strong>and</strong><br />

some have been demolished. Accord<strong>in</strong>g to <strong>the</strong> CEDEX<br />

(1998), subsidence is related to episodic reactivation <strong>of</strong> old<br />

buried s<strong>in</strong>kholes generated by <strong>the</strong> collapse <strong>of</strong> dolomitic<br />

breccias <strong>in</strong>to cavities detected by means <strong>of</strong> boreholes <strong>and</strong><br />

gamma ray logs <strong>in</strong> <strong>the</strong> underly<strong>in</strong>g <strong>evaporite</strong>s. The authors<br />

<strong>of</strong> this report attribute <strong>the</strong> current subsidence to breakdown,<br />

suffusion, <strong>and</strong> compaction processes, <strong>and</strong> <strong>in</strong>dicate a good<br />

temporal correlation between <strong>the</strong> ma<strong>in</strong> subsidence events<strong>in</strong>tervals<br />

<strong>and</strong> high ra<strong>in</strong>fall periods.<br />

The Palancia River Depression close to Segorbe village<br />

is one <strong>of</strong> <strong>the</strong> areas with a high number <strong>of</strong> exo<strong>karst</strong>ic<br />

l<strong>and</strong>forms associated with Triassic <strong>evaporite</strong>s (Garay<br />

2001). Here, m<strong>in</strong><strong>in</strong>g experience <strong>in</strong>dicates that gypsum<br />

gives way to anhydrite at a depth <strong>of</strong> about 30 m. The<br />

frequent tumuli that develop on <strong>the</strong> floor <strong>of</strong> gypsum<br />

quarries are attributed to <strong>the</strong> volume <strong>in</strong>crease caused by<br />

hydration <strong>of</strong> anhydrite (Garay 2001). The Prado de Lagunas<br />

Polje, 1.1 km long <strong>and</strong> 0.5 km wide, is located 1 km<br />

south <strong>of</strong> Segorbe village. The bottom <strong>of</strong> this depression,<br />

occasionally flooded, hosts several ponors (swallow holes)<br />

<strong>in</strong> its sou<strong>the</strong>astern edge. Also <strong>in</strong> this area, <strong>the</strong> upward<br />

stop<strong>in</strong>g <strong>of</strong> cavities developed <strong>in</strong> <strong>the</strong> Triassic <strong>evaporite</strong>s<br />

overla<strong>in</strong> by dolomites produce cyl<strong>in</strong>drical bedrock collapse<br />

s<strong>in</strong>kholes up to 25 m deep <strong>and</strong> 50 m <strong>in</strong> diameter. These<br />

dol<strong>in</strong>es, called ‘‘clotes’’ by <strong>the</strong> local people, reach a density<br />

higher than 20 s<strong>in</strong>kholes/km 2 <strong>in</strong> <strong>the</strong> Tío Cabrera Clotes<br />

area. Accord<strong>in</strong>g to an <strong>in</strong>ventory <strong>of</strong> s<strong>in</strong>kholes compiled by<br />

Garay (1991) <strong>in</strong> <strong>the</strong> eastern sector <strong>of</strong> <strong>the</strong> Iberian Range,<br />

most <strong>of</strong> <strong>the</strong> new s<strong>in</strong>kholes occur <strong>in</strong> areas where <strong>the</strong> natural<br />

hydrogeological conditions have been altered by human<br />

activities. In addition to those found <strong>in</strong> Triassic <strong>evaporite</strong>s,<br />

s<strong>in</strong>kholes <strong>and</strong> large subsidence depressions also have been<br />

documented <strong>in</strong> Upper Cretaceous–Paleogene gypsum outcrops,<br />

like <strong>in</strong> areas to <strong>the</strong> north <strong>of</strong> Cañamares village <strong>and</strong><br />

south <strong>of</strong> Paredes village. In Paredes area, <strong>the</strong> Madrid–<br />

Valencia high-speed railway runs very close to an old


Environ Geol (2008) 53:951–965 957<br />

bedrock collapse s<strong>in</strong>khole 15 m deep <strong>and</strong> 75 m <strong>in</strong> diameter.<br />

Clear evidence <strong>of</strong> <strong>the</strong> active dissolution processes that<br />

affect Triassic <strong>evaporite</strong>s is <strong>the</strong> presence <strong>of</strong> sal<strong>in</strong>e lakes <strong>and</strong><br />

spr<strong>in</strong>gs associated with <strong>the</strong>se formations. The Gallocanta<br />

Lake, 13 km 2 <strong>in</strong> area, is located at <strong>the</strong> bottom <strong>of</strong> a limestone<br />

<strong>karst</strong> polje whose deepen<strong>in</strong>g by corrosion processes<br />

ceased when <strong>the</strong> underly<strong>in</strong>g shales <strong>and</strong> <strong>evaporite</strong>s were<br />

reached, propitiat<strong>in</strong>g <strong>the</strong> development <strong>of</strong> this sal<strong>in</strong>e lacustr<strong>in</strong>e<br />

system <strong>of</strong> paramount <strong>environmental</strong> <strong>in</strong>terest (Gracia<br />

et al. 2001) (Fig. 2d). The waters <strong>of</strong> La Sima spr<strong>in</strong>g <strong>in</strong><br />

Santa Cruz de Moya rise through a <strong>karst</strong>ic conduit developed<br />

at <strong>the</strong> foot <strong>of</strong> a slope flow<strong>in</strong>g <strong>in</strong>to <strong>the</strong> Turia River. In<br />

1984, <strong>the</strong> development <strong>of</strong> several s<strong>in</strong>kholes around <strong>the</strong><br />

spr<strong>in</strong>g triggered a l<strong>and</strong>slide <strong>of</strong> 100,000 tons (Durán <strong>and</strong><br />

Del Val 1984). Subsequent to this event, water <strong>of</strong> <strong>the</strong> Turia<br />

River, which supplies Valencia City, was not dr<strong>in</strong>kable for<br />

a few months, due to <strong>in</strong>creased sal<strong>in</strong>ity.<br />

Karstification <strong>of</strong> Tertiary evaporitic rocks<br />

General geological <strong>and</strong> <strong>environmental</strong> <strong>implications</strong><br />

The subsidence phenomena caused by <strong>karst</strong>ification <strong>of</strong><br />

<strong>evaporite</strong>s is <strong>the</strong> topic that has received a wider attention <strong>in</strong><br />

<strong>the</strong> Tertiary bas<strong>in</strong>s. These are particularly frequent <strong>in</strong> <strong>the</strong><br />

sectors where <strong>the</strong> evaporitic bedrock is overla<strong>in</strong> by<br />

Quaternary alluvial deposits which may behave as perched<br />

aquifers (terraces <strong>and</strong> mantled pediments) or as discharge<br />

areas fed by upward groundwater flows (floodpla<strong>in</strong>s). This<br />

alluvial <strong>karst</strong> occurs <strong>in</strong> reaches <strong>of</strong> <strong>the</strong> ma<strong>in</strong> Spanish<br />

fluvial systems where <strong>the</strong>y traverse evaporitic outcrops<br />

(Gutiérrez <strong>and</strong> Gutiérrez 1998; Benito et al. 2000; Gutiérrez<br />

et al. 2001; Guerrero et al. 2007) (Fig. 1). Commonly,<br />

<strong>in</strong> <strong>the</strong>se areas <strong>the</strong> alluvial deposits show sharp<br />

thicken<strong>in</strong>gs, locally reach<strong>in</strong>g more than 100 m. The<br />

thickened alluvial deposits fill complex dissolution<strong>in</strong>duced<br />

bas<strong>in</strong>s up to several tens <strong>of</strong> kilometers long generated<br />

by synsedimentary subsidence. These thicken<strong>in</strong>gs<br />

are generally larger <strong>in</strong> areas where <strong>the</strong> <strong>evaporite</strong>s conta<strong>in</strong><br />

halite <strong>and</strong> glauberite <strong>in</strong> <strong>the</strong> subsurface. Recently, a novel<br />

morpho-stratigraphical model <strong>of</strong> fluvial evolution controlled<br />

by different subsidence/aggradation ratios has been<br />

proposed for areas affected by this phenomenon (Guerrero<br />

et al. 2007). From an economic perspective, <strong>the</strong> thickened<br />

alluvial deposits constitute highly valuable aquifers <strong>and</strong> a<br />

substantial source <strong>of</strong> aggregates. On <strong>the</strong> o<strong>the</strong>r side, as a<br />

consequence <strong>of</strong> <strong>the</strong> synsedimentary subsidence, deposits <strong>of</strong><br />

different alluvial levels may be superimposed <strong>and</strong> bounded<br />

by angular unconformities (Fig. 3a). These peculiar<br />

arrangements have given rise to erroneous <strong>in</strong>terpretations.<br />

Some authors have attributed a tectonic orig<strong>in</strong> to <strong>the</strong><br />

unconformities <strong>and</strong> ascribed a Tertiary age to <strong>the</strong> deformed<br />

lower units.<br />

Ano<strong>the</strong>r characteristic <strong>of</strong> alluvial sediments underla<strong>in</strong> by<br />

Tertiary <strong>evaporite</strong>s is <strong>the</strong> presence <strong>of</strong> numerous gravitational<br />

deformations. Some <strong>of</strong> <strong>the</strong>se features were erroneously<br />

<strong>in</strong>terpreted as periglacial cryoturbations by several<br />

authors (Imperatori 1955; Johnson 1960; Brosche 1978)<br />

(Fig. 3b). These structures may affect solely <strong>the</strong> alluvial<br />

mantle, or both <strong>the</strong> cover <strong>and</strong> <strong>the</strong> bedrock, depend<strong>in</strong>g on<br />

whe<strong>the</strong>r <strong>the</strong>y result from a rockhead or <strong>in</strong>terstatal <strong>karst</strong>ification,<br />

respectively. Deep-seated <strong>in</strong>terstratal <strong>karst</strong> seems to<br />

be particularly common <strong>in</strong> areas where <strong>the</strong> evaporitic sequence<br />

bears halite <strong>and</strong> glauberite units <strong>in</strong> <strong>the</strong> subsurface<br />

(Guerrero et al. 2004a, 2007). These deformational structures,<br />

toge<strong>the</strong>r with dissolutional features found <strong>in</strong> paleo<strong>karst</strong><br />

exposures, are <strong>the</strong> best source <strong>of</strong> <strong>in</strong>formation to<br />

underst<strong>and</strong> <strong>the</strong> subsidence processes <strong>in</strong>volved <strong>in</strong> <strong>the</strong> generation<br />

<strong>of</strong> s<strong>in</strong>kholes: sagg<strong>in</strong>g, suffusion, <strong>and</strong> collapse (ei<strong>the</strong>r<br />

by brecciation or through <strong>the</strong> development <strong>of</strong> welldef<strong>in</strong>ed<br />

failure planes) (Gutiérrez 2004; Gutiérrez et al.<br />

2008a).<br />

The current activity <strong>of</strong> dissolution <strong>and</strong> subsidence processes<br />

is revealed by <strong>the</strong> formation <strong>and</strong> reactivation <strong>of</strong><br />

s<strong>in</strong>kholes that show a wide variety <strong>of</strong> sizes <strong>and</strong> geometries,<br />

largely depend<strong>in</strong>g on <strong>the</strong> dom<strong>in</strong>ant subsidence mechanism.<br />

S<strong>in</strong>kholes that <strong>in</strong>tercept <strong>the</strong> water table host lakes that may<br />

have a notable <strong>environmental</strong> <strong>in</strong>terest. Although, some <strong>of</strong><br />

<strong>the</strong>se wetl<strong>and</strong>s are protected zones, commonly <strong>the</strong>y are<br />

used for disposal <strong>of</strong> waste material or are filled to transform<br />

<strong>the</strong>m <strong>in</strong>to arable or urban l<strong>and</strong> (Gutiérrez et al. 2007). On<br />

<strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, s<strong>in</strong>khole activity caused by <strong>the</strong> <strong>karst</strong>ification<br />

on Tertiary evaporties constitutes a geological hazard<br />

<strong>of</strong> great economic impact <strong>in</strong> some sectors <strong>of</strong> <strong>the</strong> Spanish<br />

territory, like <strong>in</strong> <strong>the</strong> outskirts <strong>of</strong> Zaragoza city, <strong>in</strong> Calatayud,<br />

<strong>in</strong> <strong>the</strong> sou<strong>the</strong>astern sector <strong>of</strong> Madrid metropolitan<br />

area, <strong>and</strong> <strong>in</strong> Oviedo. As an example, <strong>in</strong> Oviedo city, partially<br />

built <strong>of</strong> Tertiary <strong>evaporite</strong>s, <strong>the</strong> direct economic<br />

losses caused by a s<strong>in</strong>khole event triggered by water<br />

withdrawal <strong>in</strong> 1998 were estimated at 18 million euros<br />

(M. Gutiérrez-Claverol, personal communication).<br />

Generally, <strong>the</strong> s<strong>in</strong>kholes show a higher probability <strong>of</strong><br />

occurrence (hazard) <strong>in</strong> <strong>the</strong> lower alluvial levels, co<strong>in</strong>cid<strong>in</strong>g<br />

with areas where development <strong>and</strong> human activity tend to<br />

concentrate result<strong>in</strong>g <strong>in</strong> high-risk situations (Gutiérrez et al.<br />

2001, 2004a). Commonly, <strong>the</strong> most effective mitigation<br />

strategy is avoidance <strong>of</strong> exist<strong>in</strong>g s<strong>in</strong>kholes <strong>and</strong> high susceptibility<br />

areas. Unfortunately, <strong>the</strong> s<strong>in</strong>khole hazard analyses<br />

are rarely <strong>in</strong>corporated <strong>in</strong> <strong>the</strong> local plann<strong>in</strong>g process.<br />

Ano<strong>the</strong>r frequent characteristic <strong>of</strong> <strong>the</strong> fluvial valleys<br />

excavated <strong>in</strong> Tertiary <strong>evaporite</strong>s is <strong>the</strong> presence <strong>of</strong> unstable<br />

gypsum escarpments with hang<strong>in</strong>g valleys, triangular facets,<br />

<strong>and</strong> numerous mass movements (Gutiérrez et al. 1994,<br />

2001). Slope movements that have produced <strong>the</strong> highest<br />

123


958 Environ Geol (2008) 53:951–965<br />

Fig. 3 a Two superimposed<br />

terrace units <strong>of</strong> <strong>the</strong> Pancrudo<br />

River bounded by an angular<br />

unconformity (Barrach<strong>in</strong>a,<br />

Calatayud Graben). Note <strong>the</strong><br />

synformal structure <strong>of</strong> <strong>the</strong> lower<br />

unit. b Dissolutionally enlarged<br />

jo<strong>in</strong>ts filled with gravels derived<br />

from <strong>the</strong> overly<strong>in</strong>g detrital<br />

cover. The circular bodies <strong>of</strong><br />

gravel correspond to <strong>the</strong><br />

transverse section <strong>of</strong> <strong>in</strong>cl<strong>in</strong>ed<br />

alluvium-filled conduits<br />

(Madrid Bas<strong>in</strong>, R-3 highway). c<br />

Rock-fall occurred on June<br />

1997 destroy<strong>in</strong>g a recently built<br />

house at <strong>the</strong> foot <strong>of</strong> Calatayud<br />

gypsum escarpment. d Cave<br />

passage partially destroyed by<br />

gypsum m<strong>in</strong><strong>in</strong>g <strong>in</strong> Sorbas. e<br />

Carbonate <strong>and</strong> detrital Neogene<br />

sediments (covered by<br />

vegetation) collapsed with<strong>in</strong><br />

halite- <strong>and</strong> glauberite-bear<strong>in</strong>g<br />

<strong>evaporite</strong>s (Calatayud Graben).<br />

f Solution notches <strong>in</strong> <strong>the</strong> human<strong>in</strong>duced<br />

Del Riu Cave <strong>in</strong> <strong>the</strong><br />

Cardona salt diapir. g Sal<strong>in</strong>e<br />

lake developed <strong>in</strong> a solution<br />

dol<strong>in</strong>e <strong>in</strong> <strong>the</strong> Bujaraloz Platform<br />

(Ebro Bas<strong>in</strong>). h Collapse<br />

s<strong>in</strong>khole result<strong>in</strong>g from <strong>the</strong><br />

reactivation <strong>of</strong> a buried dol<strong>in</strong>e<br />

formed on May 23, 2006, next<br />

to <strong>the</strong> 232 highway on <strong>the</strong><br />

outskirts <strong>of</strong> Zaragoza city<br />

number <strong>of</strong> deaths have occurred <strong>in</strong> this type <strong>of</strong> gypsum<br />

scarps, weakened by <strong>karst</strong>ification processes act<strong>in</strong>g along<br />

discont<strong>in</strong>uity planes (Guerrero et al. 2004b). Four rock-fall<br />

events from a gypsum cliff occurred <strong>in</strong> 1856, 1874, 1903<br />

<strong>and</strong> 1946; <strong>the</strong>y killed a total <strong>of</strong> 106 people <strong>in</strong> <strong>the</strong> village <strong>of</strong><br />

Azagra, located <strong>in</strong> <strong>the</strong> western sector <strong>of</strong> <strong>the</strong> Ebro Bas<strong>in</strong><br />

(Ayala et al. 1988).<br />

The Sorbas Gypsum <strong>karst</strong> (Betic Cordillera)<br />

The Sorbas gypsum <strong>karst</strong> has been developed <strong>in</strong> a 120 m<br />

thick sequence made up <strong>of</strong> alternat<strong>in</strong>g gypsum <strong>and</strong> marl<br />

layers. It hosts more than 1,000 cavities <strong>in</strong> an area <strong>of</strong><br />

12 km 2 . Accord<strong>in</strong>g to Calaforra <strong>and</strong> Pulido (2003), speleogenetic<br />

evolution started with development <strong>of</strong> phreatic<br />

conduits <strong>in</strong> gypsum layers at <strong>the</strong> contact with <strong>the</strong> impervious<br />

marl layers. Subsequently, this multilevel system<br />

123<br />

changed progressively <strong>in</strong>to vadose conditions, lead<strong>in</strong>g to<br />

<strong>the</strong> formation <strong>of</strong> passages with triangular sections largely<br />

carved by mechanical erosion <strong>in</strong> <strong>the</strong> marl layers. The Agua<br />

Cave, 8.5 km long, is <strong>the</strong> longest gypsum cave <strong>in</strong> Spa<strong>in</strong>.<br />

Covadura Cave, more than 4 km long, conta<strong>in</strong>s unique<br />

gypsum hollow stalagmites (Calaforra <strong>and</strong> Forti 1990). The<br />

most representative exo<strong>karst</strong>ic l<strong>and</strong>forms <strong>in</strong>clude a large<br />

number <strong>of</strong> bedrock collapse s<strong>in</strong>kholes, <strong>and</strong> gypsum tumuli<br />

generated by bulg<strong>in</strong>g <strong>of</strong> <strong>the</strong> uppermost gypsum layer due to<br />

dissolution <strong>and</strong> reprecipitation processes (Calaforra <strong>and</strong><br />

Pulido-Bosh 1999b). The Mol<strong>in</strong>os del Río spr<strong>in</strong>g, with a<br />

relatively constant mean discharge <strong>of</strong> about 70 l/s, constitutes<br />

<strong>the</strong> ma<strong>in</strong> outlet for waters that flow through <strong>the</strong> partially<br />

conf<strong>in</strong>ed <strong>karst</strong>ic system <strong>and</strong> <strong>the</strong> overly<strong>in</strong>g low<br />

permeability sediments.<br />

Despite <strong>the</strong> fact that <strong>the</strong> Sorbas <strong>karst</strong> was declared a<br />

Natural L<strong>and</strong>scape <strong>in</strong> 1988 by <strong>the</strong> Andalusia Government,


Environ Geol (2008) 53:951–965 959<br />

<strong>the</strong>re is conflict between <strong>the</strong> preservation <strong>of</strong> this exceptional<br />

natural heritage <strong>and</strong> <strong>the</strong> open-cast m<strong>in</strong><strong>in</strong>g <strong>of</strong> gypsum.<br />

One <strong>of</strong> <strong>the</strong> quarries, currently under exploitation, is considered<br />

<strong>the</strong> second largest gypsum quarry <strong>in</strong> <strong>the</strong> world. The<br />

impacts caused by this economic activity <strong>in</strong>clude alteration<br />

<strong>of</strong> <strong>the</strong> natural l<strong>and</strong>scape, destruction <strong>of</strong> exo<strong>karst</strong>ic <strong>and</strong><br />

endo<strong>karst</strong>ic l<strong>and</strong>forms (Fig. 3d), <strong>and</strong> negative changes <strong>in</strong><br />

<strong>the</strong> surface <strong>and</strong> underground hydrology (Pulido-Bosch<br />

et al. 2004).<br />

Calatayud Neogene Graben (Iberian Range)<br />

The most evident manifestation <strong>of</strong> subjacent <strong>karst</strong>ification<br />

<strong>of</strong> <strong>evaporite</strong>s <strong>in</strong> Calatayud Graben, both <strong>in</strong> Calatayud <strong>and</strong><br />

<strong>in</strong> Barrach<strong>in</strong>a areas, are <strong>the</strong> subsidence phenomena recorded<br />

<strong>in</strong> <strong>the</strong> overly<strong>in</strong>g sediments: Neogene sedimentary<br />

units <strong>of</strong> <strong>the</strong> bas<strong>in</strong> fill <strong>and</strong> Quaternary alluvial deposits. To<br />

<strong>the</strong> sou<strong>the</strong>ast <strong>of</strong> Calatayud city <strong>the</strong>re are two areas cover<strong>in</strong>g<br />

4.4 <strong>and</strong> 12 km 2 where <strong>the</strong> supra-evaporitic carbonate <strong>and</strong><br />

detrital units have subsided more than 200 m due to <strong>in</strong>terstratal<br />

<strong>karst</strong>ification <strong>of</strong> <strong>the</strong> halite- <strong>and</strong> glauberite- bear<strong>in</strong>g<br />

<strong>evaporite</strong>s (Fig. 3e). The strongly deformed collapse sediments,<br />

foundered with<strong>in</strong> <strong>the</strong> subhorizontal <strong>evaporite</strong>s, show<br />

numerous brittle <strong>and</strong> ductile deformations with a very<br />

chaotic arrangement (Gutiérrez 1996). In Barrach<strong>in</strong>a area,<br />

Tertiary sediments underla<strong>in</strong> by <strong>evaporite</strong>s also show<br />

abundant dissolution-<strong>in</strong>duced gravitational deformations.<br />

In Calatayud area, terrace deposits <strong>of</strong> <strong>the</strong> Jalón <strong>and</strong> Jiloca<br />

Rivers shows thicken<strong>in</strong>gs <strong>in</strong> excess <strong>of</strong> 100 m, superimposed<br />

terrace units, <strong>and</strong> numerous deformations related to <strong>the</strong><br />

development <strong>of</strong> dissolution-<strong>in</strong>duced bas<strong>in</strong>s <strong>and</strong> paleos<strong>in</strong>kholes.<br />

The magnitude <strong>and</strong> spatial distribution <strong>of</strong> <strong>the</strong><br />

thicken<strong>in</strong>gs identified <strong>in</strong> different terrace levels <strong>in</strong>dicate<br />

that synsedimentary subsidence has dim<strong>in</strong>ished <strong>and</strong><br />

migrated <strong>in</strong> a downstream direction through time (Gutiérrez<br />

1996). In nearby Barrach<strong>in</strong>a village, <strong>the</strong> terrace deposits <strong>of</strong><br />

<strong>the</strong> Pancrudo River also show thicken<strong>in</strong>gs, superimposed<br />

units, <strong>and</strong> sagg<strong>in</strong>g <strong>and</strong> collapse paleos<strong>in</strong>kholes (Fig. 3a).<br />

Current subsidence activity <strong>in</strong> Calatayud area has a clear<br />

<strong>in</strong>fluence on <strong>the</strong> dynamics <strong>of</strong> <strong>the</strong> fluvial systems <strong>and</strong> causes<br />

numerous damages to build<strong>in</strong>gs <strong>and</strong> <strong>in</strong>frastructures. The<br />

Jalón River floodpla<strong>in</strong> shows diffuse-edged <strong>and</strong> swampy<br />

subsidence depressions up to 1 km long that locally control<br />

<strong>the</strong> trajectory <strong>and</strong> s<strong>in</strong>uosity <strong>of</strong> <strong>the</strong> river channel. Collapse<br />

s<strong>in</strong>kholes are particularly frequent <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> irrigation<br />

ditches <strong>and</strong> canals. The <strong>in</strong>itially projected trace <strong>of</strong><br />

<strong>the</strong> Madrid-Barcelona motorway (E-90) was changed to<br />

avoid a s<strong>in</strong>khole-prone area. A 12 km long stretch <strong>of</strong> <strong>the</strong><br />

highly vulnerable Madrid–Zaragoza high-speed railway<br />

has been built on s<strong>of</strong>t <strong>and</strong> water-saturated floodpla<strong>in</strong> alluvium<br />

underla<strong>in</strong> by <strong>karst</strong>ified <strong>evaporite</strong>s. The city <strong>of</strong> Calatayud<br />

is located at <strong>the</strong> foot <strong>of</strong> a gypsum escarpment on an<br />

alluvial fan <strong>and</strong> <strong>the</strong> Jalón River floodpla<strong>in</strong>. Most <strong>of</strong> <strong>the</strong><br />

historical build<strong>in</strong>gs <strong>of</strong> Calatayud, declared Historical<br />

Monuments <strong>in</strong> 1967, are severely damaged by subsidence.<br />

Integrated analysis <strong>of</strong> <strong>the</strong> spatial distribution <strong>of</strong> subsidence<br />

damage, <strong>and</strong> <strong>the</strong> characterization <strong>of</strong> underly<strong>in</strong>g sediments,<br />

<strong>in</strong>dicate that subsidence <strong>in</strong> Calatayud is primarily due to<br />

<strong>karst</strong>ification <strong>of</strong> <strong>the</strong> evaporitic bedrock <strong>and</strong> hydrocompaction<br />

<strong>of</strong> <strong>the</strong> gypsiferous silts <strong>of</strong> <strong>the</strong> alluvial fan deposits<br />

(Gutiérrez 1998a; Gutiérrez <strong>and</strong> Cooper 2002). In<br />

November 2003, <strong>the</strong> structure <strong>of</strong> a five-storey build<strong>in</strong>g with<br />

pad foundations was seriously damaged by a catastrophic<br />

collapse s<strong>in</strong>khole that resulted from upward propagation <strong>of</strong><br />

a cavity more than 600 m 3 <strong>in</strong> volume. The build<strong>in</strong>g was<br />

f<strong>in</strong>ally demolished <strong>and</strong> <strong>the</strong> direct losses caused by this<br />

s<strong>in</strong>gle subsidence event have been estimated at 4.8 million<br />

euros (Gutiérrez et al. 2004b). Frequent rock-falls <strong>and</strong><br />

rock-topples derived from <strong>the</strong> gypsum escarpment restrict<br />

urban development <strong>and</strong> cause frequent road cuts <strong>and</strong><br />

damage to build<strong>in</strong>gs. In 1988, one person was killed by a<br />

rock-fall <strong>and</strong> several build<strong>in</strong>gs have been destroyed by<br />

slope movements (Fig. 3c).<br />

Teruel Neogene Graben (Iberian Range)<br />

The dissolution-<strong>in</strong>duced subsidence phenomena have affected<br />

alluvial deposits <strong>of</strong> <strong>the</strong> Alfambra fluvial system <strong>in</strong><br />

different sectors <strong>of</strong> <strong>the</strong> Teruel Graben. In <strong>the</strong> nor<strong>the</strong>rn<br />

sector (Villalba Alta-Escorihuela), <strong>the</strong> suballuvial <strong>karst</strong>ification<br />

<strong>of</strong> <strong>the</strong> Orrios Gypsum has given rise to thicken<strong>in</strong>gs<br />

<strong>in</strong> terrace <strong>and</strong> pediment deposits, <strong>and</strong> paleos<strong>in</strong>kholes with<br />

synsedimentary deformations that host palustr<strong>in</strong>e facies<br />

(Moissenet 1989). Downstream, <strong>in</strong> <strong>the</strong> area where <strong>the</strong> Alfambra<br />

River crosses <strong>the</strong> Tortajada Gypsum (Cuevas<br />

Labradas-Tortajada), deposits <strong>of</strong> <strong>the</strong> terrace levels situated<br />

at 75, 60–55, <strong>and</strong> 44–38 m above <strong>the</strong> river channel, reach<br />

45, 60, <strong>and</strong> 40 m <strong>in</strong> thickness, respectively. The ma<strong>in</strong><br />

thicken<strong>in</strong>g affects <strong>the</strong> 60–55 m terrace, fill<strong>in</strong>g a dissolution<br />

trough 3.2 km long <strong>in</strong> <strong>the</strong> western marg<strong>in</strong> <strong>of</strong> <strong>the</strong> valley<br />

(Gutiérrez 1998a, b). The most spectacular paleos<strong>in</strong>kholes<br />

are found <strong>in</strong> an artificial railway cut located <strong>in</strong> Villalba<br />

Baja village. Deformed alluvium <strong>in</strong> this exposure shows<br />

gravel pockets <strong>in</strong>terpreted as liquefaction-fluidization<br />

structures <strong>in</strong>duced by catastrophic collapse processes<br />

(Gutiérrez 1998a, b). Several active s<strong>in</strong>kholes associated<br />

with old subsidence structures have been detected at this<br />

site, suggest<strong>in</strong>g that <strong>the</strong> distribution <strong>of</strong> paleos<strong>in</strong>kholes can<br />

be used for <strong>the</strong> spatial prediction <strong>of</strong> s<strong>in</strong>kholes (Gutiérrez<br />

1998a, 2004). North <strong>of</strong> Teruel city, a Middle Pleistocene<br />

terrace <strong>of</strong> <strong>the</strong> Alfambra River, located at 60–50 m above<br />

<strong>the</strong> river channel, reaches more than 55 m <strong>in</strong> thickness.<br />

Synsedimentary subsidence recorded by <strong>the</strong>se deposits may<br />

be related to <strong>the</strong> comb<strong>in</strong>ed effect <strong>of</strong> <strong>karst</strong>ification <strong>of</strong> <strong>the</strong><br />

underly<strong>in</strong>g Triassic <strong>evaporite</strong>s <strong>and</strong> neotectonic activity<br />

(Gutiérrez 1998a).<br />

123


960 Environ Geol (2008) 53:951–965<br />

The Beuda Gypsum <strong>karst</strong> (Eastern Pyrenees)<br />

Although, outcrops <strong>of</strong> this formation are very limited, its<br />

<strong>in</strong>terstratal <strong>and</strong> suballuvial <strong>karst</strong>ification has produced a<br />

considerable amount <strong>of</strong> endo <strong>and</strong> exo<strong>karst</strong>ic features. The<br />

most significant manifestation corresponds to <strong>the</strong> Bañolas<br />

Lake, 1.12 km 2 <strong>in</strong> area (Fig. 1). This lacustr<strong>in</strong>e system has<br />

been developed <strong>in</strong> a group <strong>of</strong> coalescent collapse s<strong>in</strong>kholes<br />

generated by upward flows derived from a deep carbonate<br />

aquifer conf<strong>in</strong>ed by <strong>the</strong> Beuda Gypsum (Sanz <strong>and</strong> Trilla<br />

1982; Canals et al. 1990). Accord<strong>in</strong>g to Bisch<strong>of</strong>f et al.<br />

(1994), dissolution <strong>of</strong> <strong>the</strong> gypsum <strong>in</strong> this <strong>karst</strong>ic aquifer is<br />

favored by dedolomitization reactions that reduce <strong>the</strong> calcium<br />

concentration <strong>in</strong> <strong>the</strong> groundwater. Dur<strong>in</strong>g ra<strong>in</strong>y<br />

periods, <strong>the</strong> upward discharge through a trop ple<strong>in</strong> located<br />

40 m above <strong>the</strong> Bañolas Lake gives rise to an ephemeral<br />

lake, 4 ha <strong>in</strong> area, called <strong>the</strong> Clot d’Espolla (Vila et al.<br />

1989). Some sudden changes <strong>in</strong> <strong>the</strong> water level <strong>of</strong> Bañolas<br />

Lake have been attributed to collapse events <strong>in</strong> its bottom<br />

(Brusí et al. 1992). The occurrence <strong>of</strong> s<strong>in</strong>kholes is relatively<br />

common <strong>in</strong> <strong>the</strong> surround<strong>in</strong>gs <strong>of</strong> <strong>the</strong> lake, ma<strong>in</strong>ly<br />

dur<strong>in</strong>g low discharge periods. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, <strong>the</strong><br />

numerous gravitational deformations <strong>and</strong> paleos<strong>in</strong>kholes<br />

that display <strong>the</strong> Plio-Pleistocene lacustr<strong>in</strong>e sediments <strong>in</strong> <strong>the</strong><br />

Bañoles-Besalú sedimentary bas<strong>in</strong> reveal <strong>the</strong> significant<br />

role played by <strong>karst</strong>ic subsidence phenomena on its morpho-sedimentary<br />

evolution (Fleta et al. 1996; Ros et al.<br />

1996).<br />

In Sant Miquel de Campmajor valley, Pallí <strong>and</strong> Trilla<br />

(1979) have identified 88 active <strong>and</strong> relict s<strong>in</strong>kholes, some<br />

<strong>of</strong> <strong>the</strong>m host<strong>in</strong>g ponds. In Borró River valley, a group <strong>of</strong><br />

funnel-shaped s<strong>in</strong>kholes up to several tens <strong>of</strong> meters across<br />

connect to <strong>the</strong> 1,315 m long Bores de Borró Cave system<br />

(Miret <strong>and</strong> García 1999). In Beuda village area, <strong>the</strong> 962 m<br />

long La Mosquera Cave, with excellent examples <strong>of</strong> scallops<br />

<strong>in</strong> its walls, has been severely spoiled by <strong>the</strong> disposal<br />

<strong>of</strong> excrement from a pig factory (Cardona 1989–1990;<br />

Miret <strong>and</strong> García 1999). The 920 m long Rotgers Cave, <strong>in</strong><br />

Borredá village, is fed by a swallow hole located <strong>in</strong> <strong>the</strong><br />

bottom <strong>of</strong> a stream. Some build<strong>in</strong>gs <strong>in</strong> Besalú village have<br />

been irreversibly damaged by <strong>the</strong> formation <strong>of</strong> s<strong>in</strong>kholes.<br />

In this area, terrace deposits <strong>of</strong> <strong>the</strong> Fluviá River show<br />

numerous deformations <strong>and</strong> thicken<strong>in</strong>gs higher than 60 m<br />

that record subsidence phenomena caused by <strong>karst</strong>ification<br />

<strong>of</strong> <strong>the</strong> Beuda Gypsum (Solá et al. 1996).<br />

Evaporite <strong>karst</strong> <strong>in</strong> <strong>the</strong> Ebro Tertiary Bas<strong>in</strong><br />

The Cardona salt <strong>karst</strong><br />

Pierc<strong>in</strong>g <strong>of</strong> <strong>the</strong> overburden by salt <strong>in</strong> <strong>the</strong> Cardona Diapir<br />

has given rise to <strong>the</strong> largest salt outcrop <strong>in</strong> Western<br />

Europe, cover<strong>in</strong>g around 0.9 km 2 . This salt stock, with a<br />

123<br />

NE-SW trend<strong>in</strong>g ellipsoidal geometry <strong>in</strong> plan view, is<br />

crossed by a me<strong>and</strong>er <strong>of</strong> <strong>the</strong> Cardener River <strong>in</strong> its<br />

nor<strong>the</strong>astern edge. Underground m<strong>in</strong><strong>in</strong>g <strong>of</strong> potassium salts<br />

<strong>and</strong> halite has caused dramatic geomorphological <strong>and</strong><br />

hydrological changes <strong>in</strong> <strong>the</strong> <strong>karst</strong> system (Cardona 1989–<br />

1990; Gutiérrez et al. 2001; Cardona <strong>and</strong> Viver 2002;<br />

Lucha et al. 2008a). The diapir has a well-developed<br />

endo<strong>karst</strong>ic system, <strong>in</strong>clud<strong>in</strong>g historical caves whose<br />

genesis has been <strong>in</strong>duced by <strong>the</strong> m<strong>in</strong><strong>in</strong>g operations. The<br />

680 m long Forat Mico Cave, discovered <strong>in</strong> 1967, has<br />

been for 15 years <strong>the</strong> longest known salt cave <strong>in</strong> <strong>the</strong><br />

world. It is composed <strong>of</strong> two levels. The upper passage<br />

displays unusual scallops <strong>of</strong> aeolian orig<strong>in</strong>. Generation <strong>of</strong><br />

<strong>the</strong> 280 m long Del Riu Cave was due to <strong>in</strong>flow <strong>of</strong> fresh<br />

water from <strong>the</strong> surround<strong>in</strong>g s<strong>and</strong>stone aquifer; this <strong>in</strong>flow<br />

was caused by <strong>the</strong> excavation <strong>of</strong> a ventilation gallery<br />

(Fig. 3f). The 335 m long Riera Salada Cave is carved <strong>in</strong><br />

<strong>the</strong> halite debris <strong>of</strong> a slag heap built between 1925 <strong>and</strong><br />

1972. This cave was primarily generated by sewage waters<br />

<strong>in</strong>filtrated <strong>in</strong> an artificial depression generated by <strong>the</strong><br />

slag heap. In March 1998, <strong>the</strong> <strong>in</strong>terception <strong>of</strong> a phreatic<br />

conduit by a shallow m<strong>in</strong>e led to <strong>the</strong> <strong>in</strong>flow <strong>of</strong> fresh water<br />

from <strong>the</strong> Cardener River <strong>in</strong>to <strong>the</strong> m<strong>in</strong>e galleries, result<strong>in</strong>g<br />

<strong>in</strong> generation <strong>of</strong> <strong>the</strong> 4,300 m long Salt Me<strong>and</strong>ers Cave,<br />

which is <strong>the</strong> third longest explored salt cave <strong>in</strong> <strong>the</strong> world.<br />

This flood<strong>in</strong>g event caused a sudden decl<strong>in</strong>e <strong>in</strong> <strong>the</strong> piezometric<br />

level <strong>of</strong> <strong>the</strong> <strong>karst</strong>ic aquifer <strong>and</strong> massive dissolution<br />

<strong>of</strong> salt with <strong>the</strong> consequent generation <strong>of</strong> a large<br />

number <strong>of</strong> s<strong>in</strong>kholes which caused severe damage <strong>in</strong><br />

roads, build<strong>in</strong>gs, <strong>and</strong> <strong>the</strong> m<strong>in</strong>e <strong>in</strong>frastructure. Lucha et al.<br />

(2008a), based on an <strong>in</strong>ventory <strong>of</strong> 178 s<strong>in</strong>kholes, have<br />

estimated m<strong>in</strong>imum probability <strong>of</strong> occurrence values <strong>of</strong><br />

4.7 <strong>and</strong> 8 s<strong>in</strong>kholes/km 2 year, respectively for <strong>the</strong> time<br />

<strong>in</strong>tervals previous <strong>and</strong> subsequent to <strong>the</strong> 1998 m<strong>in</strong>e flood<br />

event.<br />

The ma<strong>in</strong> exo<strong>karst</strong>ic l<strong>and</strong>forms found <strong>in</strong> <strong>the</strong> salt outcrops<br />

<strong>and</strong> <strong>the</strong> halite slag heaps are dol<strong>in</strong>es <strong>and</strong> different<br />

types <strong>of</strong> karren, ma<strong>in</strong>ly rillenkarren, spitzkarren, <strong>and</strong> salt<br />

pedestals. Measurements carried out <strong>in</strong> solution flutes<br />

(Mottershead et al. 2006) <strong>and</strong> pedestals (hoodoos) have<br />

yielded lower<strong>in</strong>g rates <strong>of</strong> several centimeters per year. The<br />

B<strong>of</strong>ia Gran (mean<strong>in</strong>g big s<strong>in</strong>khole), located <strong>in</strong> <strong>the</strong> southwestern<br />

edge <strong>of</strong> <strong>the</strong> diapir, is a 300 m long <strong>and</strong> 220 m wide<br />

polygenetic <strong>karst</strong>ic depression with nested bedrock collapse<br />

s<strong>in</strong>kholes <strong>and</strong> swallow holes. In 1986, collapse <strong>of</strong> <strong>the</strong><br />

Riera Salada Cave ro<strong>of</strong> generated a subcircular collapse<br />

s<strong>in</strong>khole 50 m across <strong>in</strong> <strong>the</strong> slag heap.<br />

The flow <strong>of</strong> sal<strong>in</strong>e water <strong>in</strong>to <strong>the</strong> Cardener River has<br />

caused a significant hydrochemical degradation <strong>of</strong> <strong>the</strong> river<br />

waters. To partially overcome this problem, a 100 km long<br />

pipe was constructed <strong>in</strong> 1989 to divert <strong>the</strong> br<strong>in</strong>e to <strong>the</strong> sea.<br />

Subsequent to <strong>the</strong> 1998 m<strong>in</strong>e flood event, <strong>the</strong> Cardener<br />

River me<strong>and</strong>er, affected by numerous s<strong>in</strong>kholes, was


Environ Geol (2008) 53:951–965 961<br />

cut-<strong>of</strong>f by means <strong>of</strong> a tunnel to prevent <strong>in</strong>flow <strong>of</strong> <strong>the</strong> river<br />

water <strong>in</strong>to <strong>the</strong> m<strong>in</strong>e galleries.<br />

The Barbastro Formation <strong>evaporite</strong> <strong>karst</strong><br />

Although, <strong>evaporite</strong>s that form <strong>the</strong> core <strong>of</strong> <strong>the</strong> Barbastro<br />

Anticl<strong>in</strong>e bear a substantial amount <strong>of</strong> halite <strong>in</strong> <strong>the</strong> subsurface,<br />

deformations <strong>and</strong> thicken<strong>in</strong>gs <strong>in</strong> terrace deposits<br />

<strong>of</strong> <strong>the</strong> transverse rivers that cross <strong>the</strong> structure are not<br />

very common. In <strong>the</strong> Noguera-Ribagorzana valley, <strong>the</strong><br />

deposit <strong>of</strong> <strong>the</strong> terrace level located at 161–176 m above<br />

<strong>the</strong> river channel reaches 110 m <strong>in</strong> thickness, fill<strong>in</strong>g a<br />

2.5 km long dissolution-<strong>in</strong>duced bas<strong>in</strong>. The terrace levels<br />

situated at 95–50 <strong>and</strong> 59–49 m above <strong>the</strong> channel <strong>of</strong> <strong>the</strong><br />

tributary Lo Reguer Stream also show anomalous thicken<strong>in</strong>gs<br />

caused by synsedimentary <strong>karst</strong>ic subsidence<br />

reach<strong>in</strong>g 100 <strong>and</strong> 50 m, respectively (Lucha et al. 2008b).<br />

Accord<strong>in</strong>g to Lucha et al. (2008b), <strong>the</strong> absence <strong>of</strong><br />

thicken<strong>in</strong>gs <strong>in</strong> <strong>the</strong> C<strong>in</strong>ca River terraces underla<strong>in</strong> by<br />

halite-bear<strong>in</strong>g <strong>evaporite</strong>s could be related to uplift caused<br />

by <strong>the</strong> halok<strong>in</strong>etic upward flow <strong>of</strong> <strong>the</strong> salt towards <strong>the</strong><br />

valley. This hypo<strong>the</strong>sis is supported by deformations that<br />

are displayed <strong>in</strong> some terraces. Terraces situated 92–62<br />

<strong>and</strong> 63–30 m above <strong>the</strong> channel show an upwarp<strong>in</strong>g<br />

structure about 30 m <strong>in</strong> amplitude <strong>and</strong> a conspicuous<br />

backtilt<strong>in</strong>g towards <strong>the</strong> valley flank, respectively (Lucha<br />

et al. 2008b).<br />

Subsidence activity is particularly active <strong>in</strong> areas where<br />

human activities <strong>in</strong>volve an additional <strong>in</strong>put <strong>of</strong> water to<br />

<strong>the</strong> ground (Lucha et al. 2008b). Serviceability <strong>of</strong> <strong>the</strong><br />

Ariéstolas <strong>and</strong> Aragón-Cataluña irrigation canals is frequently<br />

<strong>in</strong>terrupted by <strong>the</strong> occurrence <strong>of</strong> s<strong>in</strong>kholes. This<br />

problem is be<strong>in</strong>g partially ameliorated by <strong>the</strong> <strong>in</strong>jection <strong>of</strong><br />

cement <strong>and</strong> clay mixtures (grout<strong>in</strong>g). The abundant<br />

deformations that show structures <strong>in</strong> Ivars village, built on<br />

a 2 m thick terrace <strong>of</strong> <strong>the</strong> Noguera-Ribagorzana River<br />

underla<strong>in</strong> by <strong>evaporite</strong>s, have been attributed to <strong>karst</strong>ification<br />

<strong>of</strong> <strong>the</strong> bedrock. The water supply pipe network <strong>of</strong><br />

<strong>the</strong> village has been replaced to reduce <strong>the</strong> <strong>in</strong>filtration <strong>of</strong><br />

water <strong>in</strong>to <strong>the</strong> ground from leakages. An additional<br />

<strong>environmental</strong> implication <strong>of</strong> <strong>evaporite</strong> <strong>karst</strong> <strong>in</strong> <strong>the</strong><br />

Barbastro Anticl<strong>in</strong>e is <strong>the</strong> substantial <strong>in</strong>crease <strong>in</strong> <strong>the</strong><br />

sal<strong>in</strong>ity <strong>of</strong> rivers that traverse <strong>the</strong> structure. Lucha et al.<br />

(2008b) estimate that <strong>the</strong> underground flows supply about<br />

300,000 <strong>and</strong> 100,000 tons <strong>of</strong> NaCl <strong>and</strong> CaSO4 per year to<br />

<strong>the</strong> C<strong>in</strong>ca River, respectively.<br />

Geotechnical problems related to <strong>the</strong> dissolution <strong>of</strong><br />

gypsum also affect <strong>the</strong> mantled pediments which conta<strong>in</strong> a<br />

high proportion <strong>of</strong> gypsum particles south <strong>of</strong> <strong>the</strong> Barbastro<br />

Anticl<strong>in</strong>e. In January 2001, an earth dam located <strong>in</strong> <strong>the</strong><br />

vic<strong>in</strong>ity <strong>of</strong> Altorricón village failed catastrophically dur<strong>in</strong>g<br />

<strong>the</strong> first fill<strong>in</strong>g test produc<strong>in</strong>g a flood event. Failure <strong>of</strong> <strong>the</strong><br />

dam, built on gypsum-rich pediment deposits, has been<br />

attributed to subsidence <strong>in</strong>duced by <strong>karst</strong>ification <strong>of</strong> <strong>the</strong><br />

alluvial mantle <strong>and</strong> pip<strong>in</strong>g processes affect<strong>in</strong>g <strong>the</strong> dispersive<br />

clays <strong>of</strong> <strong>the</strong> dam core <strong>and</strong> embankments (Gutiérrez<br />

et al. 2003).<br />

Evaporite <strong>karst</strong> <strong>in</strong> <strong>the</strong> Zaragoza Formation<br />

The ma<strong>in</strong> l<strong>and</strong>forms developed by dissolution <strong>of</strong> this formation<br />

<strong>in</strong> bare <strong>karst</strong> sett<strong>in</strong>gs <strong>in</strong>clude several types <strong>of</strong> karren<br />

(rillenkarren <strong>and</strong> napfkarren), <strong>and</strong> solution dol<strong>in</strong>es that<br />

locally host sal<strong>in</strong>e lakes <strong>of</strong> great <strong>environmental</strong> value<br />

(Gutiérrez <strong>and</strong> Gutiérrez 1998). The Bujaraloz structural<br />

platform, capped by gypsum <strong>and</strong> limestone beds, conta<strong>in</strong>s<br />

around 100 depressions with a prevalent WNW–ESE orientation<br />

that co<strong>in</strong>cides with <strong>the</strong> direction <strong>of</strong> <strong>the</strong> prevail<strong>in</strong>g<br />

w<strong>in</strong>ds. The flat bottom <strong>of</strong> some <strong>of</strong> <strong>the</strong>se bas<strong>in</strong>s, up to<br />

several kilometers long, is occupied by lakes that constitute<br />

<strong>the</strong> nor<strong>the</strong>rnmost playa-lakes with <strong>evaporite</strong> deposition <strong>in</strong><br />

Europe (Fig. 3g). The orig<strong>in</strong> <strong>of</strong> <strong>the</strong>se bas<strong>in</strong>s has been<br />

attributed to <strong>the</strong> comb<strong>in</strong>ed effect <strong>of</strong> <strong>karst</strong>ification <strong>and</strong><br />

deflation processes (Sánchez et al. 1998; Gutiérrez-Elorza<br />

et al. 2001).<br />

Most <strong>of</strong> <strong>the</strong> <strong>karst</strong>ic manifestations documented <strong>in</strong> <strong>the</strong><br />

central sector <strong>of</strong> <strong>the</strong> Ebro Bas<strong>in</strong> are related to subsidence<br />

phenomena caused by dissolution <strong>of</strong> <strong>the</strong> halite- <strong>and</strong> glauberite-bear<strong>in</strong>g<br />

Zaragoza Formation <strong>in</strong> alluvial <strong>karst</strong> sett<strong>in</strong>gs.<br />

The dissolution-<strong>in</strong>duced subsidence has controlled<br />

<strong>the</strong> evolution <strong>of</strong> several fluvial systems, giv<strong>in</strong>g rise to<br />

substantial thicken<strong>in</strong>gs <strong>in</strong> terrace deposits (Gutiérrez <strong>and</strong><br />

Gutiérrez 1998; Benito et al. 2000). Alluvium <strong>in</strong> <strong>the</strong><br />

lower reach <strong>of</strong> <strong>the</strong> Gállego River valley fills a dissolution<br />

trough 30 km long <strong>and</strong> 8 km wide, composed <strong>of</strong> several<br />

bas<strong>in</strong>s up to 110 m deep (Benito et al. 1998). Borehole<br />

data <strong>in</strong>dicate that <strong>the</strong> Quaternary fluvial deposits <strong>in</strong> <strong>the</strong><br />

Ebro valley locally reach more than 60 m thick (Gutiérrez<br />

et al. 2007). In <strong>the</strong> Huerva River, downstream <strong>of</strong> Cuarte<br />

village, deposits <strong>of</strong> <strong>the</strong> terrace located 60 m above <strong>the</strong><br />

river channel change abruptly from less than 4 m to more<br />

than 60 m <strong>in</strong> thickness, fill<strong>in</strong>g a 5 km long dissolution<br />

trough. The co<strong>in</strong>cidence between <strong>the</strong> <strong>in</strong>crease <strong>in</strong> <strong>the</strong> halite<br />

thickness at depth <strong>and</strong> <strong>the</strong> alluvium thicken<strong>in</strong>g strongly<br />

suggests that <strong>the</strong> synsedimentary subsidence is largely<br />

related to <strong>the</strong> <strong>in</strong>terstratal <strong>karst</strong>ification <strong>of</strong> halite units<br />

(Guerrero et al. 2007). A 50 m thick fluvio-lacustr<strong>in</strong>e tufa<br />

deposit <strong>in</strong> <strong>the</strong> Jalón River valley shows several onlaped<br />

bas<strong>in</strong> structures with cumulative wedge-out arrangements<br />

that record spatio-temporal variations <strong>of</strong> a synsedimentary<br />

<strong>karst</strong>ic subsidence probably controlled by paleospr<strong>in</strong>gs<br />

(Arenas et al. 2000). Thicken<strong>in</strong>gs caused by <strong>the</strong> development<br />

<strong>of</strong> subsidence bas<strong>in</strong>s coeval with deposition have<br />

also been studied <strong>in</strong> <strong>the</strong> dissected <strong>in</strong>fill <strong>of</strong> small creeks<br />

like <strong>the</strong> Torrecilla Stream. Here <strong>the</strong> sediments <strong>of</strong> a<br />

thickened <strong>and</strong> deformed alluvial level show sagg<strong>in</strong>g<br />

123


962 Environ Geol (2008) 53:951–965<br />

paleodol<strong>in</strong>es with calcareous <strong>and</strong> carbonaceous facies<br />

(Gutiérrez <strong>and</strong> Arauzo 1997).<br />

In addition to <strong>the</strong> abrupt changes <strong>in</strong> thickness, Quaternary<br />

deposits underla<strong>in</strong> by <strong>the</strong> Zaragoza Formation commonly<br />

show a wide variety <strong>of</strong> gravitational deformations<br />

<strong>and</strong> paleos<strong>in</strong>kholes (Gutiérrez et al. 2008). Initially, some<br />

<strong>of</strong> <strong>the</strong>se structures were <strong>in</strong>terpreted as relict cryotubations<br />

developed under pre-exist<strong>in</strong>g periglacial conditions (Johnson<br />

1960; Brosche 1978). Subsequently, <strong>the</strong>se deformations<br />

were related to gypsum <strong>karst</strong>ification. Recent studies,<br />

based <strong>in</strong> borehole data, paleo<strong>karst</strong> exposures, <strong>and</strong> hydrochemical<br />

evidence, attribute a significant contribution to<br />

<strong>the</strong> <strong>in</strong>terstratal <strong>karst</strong>ification <strong>of</strong> halite <strong>and</strong> glauberite to<br />

expla<strong>in</strong> <strong>the</strong> deformational structures that affect both <strong>the</strong><br />

alluvial mantle <strong>and</strong> <strong>the</strong> bedrock strata (Guerrero et al.<br />

2004a, 2006; Gutiérrez et al. 2007).<br />

The outskirts <strong>of</strong> Zaragoza city are very probably <strong>the</strong> area<br />

<strong>in</strong> Europe where <strong>the</strong> s<strong>in</strong>khole hazard due to <strong>evaporite</strong><br />

dissolution has a higher economic impact. The sudden<br />

occurrence <strong>of</strong> collapse s<strong>in</strong>kholes <strong>in</strong> build<strong>in</strong>gs, railways <strong>and</strong><br />

motorways have made clear <strong>the</strong> serious threat that this<br />

process poses to human safety (Fig. 3h). In <strong>the</strong> Gállego<br />

River valley, <strong>the</strong> village <strong>of</strong> Puilatos was ab<strong>and</strong>oned <strong>in</strong> 1980<br />

<strong>and</strong> demolished 5 years later due to structural failures<br />

caused by <strong>karst</strong>ic subsidence on <strong>the</strong> build<strong>in</strong>gs. In <strong>the</strong> Ebro<br />

valley, <strong>the</strong> s<strong>in</strong>khole types <strong>and</strong> activity show marked differences.<br />

Upstream <strong>of</strong> Zaragoza city, <strong>the</strong> lower terraces are primarily<br />

affected by sagg<strong>in</strong>g <strong>and</strong> collapse s<strong>in</strong>kholes typically<br />

several tens <strong>of</strong> meters <strong>in</strong> diameter (Soriano <strong>and</strong> Simón<br />

1995). The <strong>in</strong>terstratal <strong>karst</strong>ification <strong>of</strong> halite <strong>and</strong> glauberite<br />

beds seems to play a significant role <strong>in</strong> <strong>the</strong> generation<br />

<strong>of</strong> <strong>the</strong>se dol<strong>in</strong>es. Here, subsidence damage is caused ma<strong>in</strong>ly<br />

by <strong>the</strong> activity <strong>and</strong> reactivation <strong>of</strong> artificially filled dol<strong>in</strong>es,<br />

ra<strong>the</strong>r than to <strong>the</strong> generation <strong>of</strong> new s<strong>in</strong>kholes. Van Zuidam<br />

(1976), us<strong>in</strong>g aerial photographs from different dates estimated<br />

a m<strong>in</strong>imum probability <strong>of</strong> occurrence <strong>of</strong> 0.1 s<strong>in</strong>kholes/km<br />

2 year <strong>in</strong> a sector cover<strong>in</strong>g 21 km 2 .<br />

Downstream <strong>of</strong> Zaragoza city, Gutiérrez et al. (2007)<br />

have estimated a probability <strong>of</strong> occurrence <strong>of</strong> 45 s<strong>in</strong>khole/<br />

km 2 year <strong>in</strong> a portion <strong>of</strong> <strong>the</strong> lower terrace <strong>of</strong> <strong>the</strong> Ebro<br />

River. Here <strong>the</strong> s<strong>in</strong>kholes, largely <strong>in</strong>duced by irrigation, are<br />

commonly 1.5–2 m <strong>in</strong> diameter <strong>and</strong> result from <strong>the</strong><br />

downward migration <strong>of</strong> cohesive alluvial mantle <strong>in</strong>to dissolutional<br />

conduits (cover collapse s<strong>in</strong>kholes). Probably,<br />

one <strong>of</strong> <strong>the</strong> ma<strong>in</strong> challenges from <strong>the</strong> risk management<br />

perspective is to produce reliable s<strong>in</strong>khole susceptibility<br />

maps show<strong>in</strong>g <strong>the</strong> relative probability (relative or quantitative)<br />

<strong>of</strong> s<strong>in</strong>khole occurrence. Prelim<strong>in</strong>ary susceptibility<br />

maps have been produced for a stretch <strong>of</strong> <strong>the</strong> Ebro valley<br />

downstream <strong>of</strong> Zaragoza analyz<strong>in</strong>g <strong>the</strong> statistical relationships<br />

between <strong>the</strong> known s<strong>in</strong>kholes <strong>and</strong> a set <strong>of</strong> condition<strong>in</strong>g<br />

factors. Check<strong>in</strong>g <strong>of</strong> <strong>the</strong> models through <strong>the</strong><br />

123<br />

application <strong>of</strong> quantitative validation techniques <strong>in</strong>dicates<br />

that <strong>the</strong>y provide reasonably good predictions (Galve et al.<br />

2007).<br />

The Madrid Tertiary Bas<strong>in</strong><br />

The oldest evidence <strong>of</strong> <strong>evaporite</strong> <strong>karst</strong> <strong>in</strong> Madrid Bas<strong>in</strong><br />

corresponds to extensive paleo<strong>karst</strong> surfaces associated<br />

with major sedimentary breaks <strong>in</strong> <strong>the</strong> Miocene bas<strong>in</strong> fill<br />

(Rodríguez-Ar<strong>and</strong>a et al. 2002; Cañaveras et al. 1996).<br />

These stratigraphic discont<strong>in</strong>uities show cavities, paleos<strong>in</strong>kholes,<br />

collapse breccias, karren features, <strong>and</strong> <strong>karst</strong>ic<br />

residues. Their genesis has been related to <strong>the</strong> <strong>karst</strong>ification<br />

<strong>of</strong> gypsum deposits <strong>in</strong> sal<strong>in</strong>e lakes dur<strong>in</strong>g desiccation episodes.<br />

Locally, Miocene sediments <strong>of</strong> <strong>the</strong> bas<strong>in</strong> fill<br />

underla<strong>in</strong> by evaporitic units also show numerous postsedimentary<br />

deformations caused by <strong>in</strong>terstratal <strong>karst</strong>ification<br />

processes, like <strong>the</strong> examples exposed <strong>in</strong> <strong>the</strong> cuts <strong>of</strong> <strong>the</strong><br />

M-45 highway.<br />

Dissolution subsidence phenomena have controlled <strong>the</strong><br />

Quaternary evolution <strong>of</strong> <strong>the</strong> Tajo River <strong>and</strong> its tributaries,<br />

<strong>the</strong> Jarama, Tajuña, Manzanares, <strong>and</strong> Henares Rivers. In<br />

<strong>the</strong> Tajo River valley, <strong>the</strong> deposit <strong>of</strong> <strong>the</strong> terrace level<br />

situated 60–65 m above <strong>the</strong> channel changes abruptly<br />

from 3 m to more than 60 m <strong>in</strong> thickness <strong>in</strong> <strong>the</strong> sector<br />

where detrital bedrock gives way to an evaporitic substratum<br />

(P<strong>in</strong>illa et al. 1995). In <strong>the</strong> Jarama River, Pérez-<br />

González (1971) recognized a deformed <strong>and</strong> thickened<br />

terrace deposit superimposed by a younger terrace unit. In<br />

<strong>the</strong> lower reach <strong>of</strong> <strong>the</strong> Manzanares River, alluvium <strong>of</strong> <strong>the</strong><br />

oldest terrace, 16–22 m above <strong>the</strong> river channel, shows<br />

conspicuous deformations <strong>and</strong> an anomalously high<br />

thickness (>20 m) (Silva 2003). Even though <strong>the</strong> thicken<strong>in</strong>gs<br />

<strong>and</strong> most <strong>of</strong> <strong>the</strong> deformations that display <strong>the</strong><br />

terrace deposits <strong>in</strong> <strong>the</strong> evaporitic areas <strong>of</strong> <strong>the</strong> Madrid<br />

Bas<strong>in</strong> have been attributed to gypsum <strong>karst</strong>ification<br />

(Fig. 3b), it would be <strong>in</strong>terest<strong>in</strong>g to explore <strong>the</strong> role<br />

played by <strong>the</strong> dissolution <strong>of</strong> halite <strong>and</strong> glauberite beds at<br />

depth. Development <strong>of</strong> s<strong>in</strong>kholes has caused numerous<br />

geotechnical problems <strong>in</strong> some urban areas, like Rivas-<br />

Vaciamadrid <strong>and</strong> <strong>in</strong> <strong>the</strong> M-45 highway. These problems<br />

may <strong>in</strong>crease substantially <strong>in</strong> <strong>the</strong> next few years as <strong>the</strong><br />

metropolitan area <strong>of</strong> Madrid exp<strong>and</strong>s towards <strong>the</strong> evaporitic<br />

outcrops to <strong>the</strong> sou<strong>the</strong>ast (Fig. 1)<br />

The Pedro Fernández or Estremera endo<strong>karst</strong>ic system is<br />

a maze cave controlled by two orthogonal jo<strong>in</strong>t sets that<br />

reach 4 km <strong>in</strong> length <strong>and</strong> 64,000 m 3 <strong>in</strong> volume (Almendros<br />

<strong>and</strong> Antón 1983). This outst<strong>and</strong><strong>in</strong>g cave, with clear similarities<br />

to <strong>the</strong> gypsum caves <strong>of</strong> western Ukra<strong>in</strong>e (Klimchouk<br />

2000), was declared an Artistic <strong>and</strong> Historical<br />

Monument to protect its Neolithic <strong>and</strong> Bronze Age<br />

archaeological sites (Eraso 1995).


Environ Geol (2008) 53:951–965 963<br />

Acknowledgments The authors would like to thank Pr<strong>of</strong>. J.P. Calvo<br />

(Spanish <strong>Geological</strong> Survey) <strong>and</strong> Dr. Pablo Silva (Salamanca University)<br />

for <strong>in</strong>formation provided on <strong>the</strong> <strong>evaporite</strong> <strong>karst</strong> <strong>in</strong> Madrid<br />

Bas<strong>in</strong>. We are also thank Dr. Kenneth S. Johnson (Oklahoma <strong>Geological</strong><br />

Survey) <strong>and</strong> Mr. Pedro Lucha (EUPLA) for <strong>the</strong> thorough review<br />

<strong>of</strong> <strong>the</strong> manuscript. This work has been co-f<strong>in</strong>anced by <strong>the</strong><br />

Spanish Education <strong>and</strong> Science M<strong>in</strong>istry <strong>and</strong> <strong>the</strong> FEDER (project<br />

CGL2004–02892/BTE).<br />

References<br />

Almendros MA, Antón FJ (1983) El complejo kárstico-yesífero<br />

subterráneo ‘‘Pedro Fernández’’ (Estremera, Prov<strong>in</strong>cia de<br />

Madrid). Cuadernos do Laboratorio Xeolóxico de Laxe 5:333–<br />

341<br />

Anadón P (1990) Los Yesos de Cerezo (Mioceno Superior cont<strong>in</strong>ental,<br />

Prov<strong>in</strong>cia de Burgos). In: Ortí F, Salvany JM (eds)<br />

Formaciones evaporíticas de la Cuenca del Ebro y cadenas<br />

periféricas, y de la zona de Levante, ENRESA-GPPG, Barcelona,<br />

pp 127–131<br />

Arenas C, Gutiérrez F, Osácar C, Sancho C (2000) Fluvio-lacustr<strong>in</strong>e<br />

tufa deposits controlled by <strong>evaporite</strong> solution subsidence <strong>in</strong> <strong>the</strong><br />

central Ebro Depression (NE Spa<strong>in</strong>). Sedimentology 47:883–909<br />

Arrate I, Sanz de Galdeano JM (2002) Diapiro de Orduña. In: Nuche<br />

de Rivero R (ed) Patrimonio Geológico de Asturias, Cantabria y<br />

País Vasco Enresa, pp 440–443<br />

Ayala F, Aparicio V, Conconi G (1988) Estudio de <strong>in</strong>estabilidades en<br />

los acantilados yesíferos de la ribera de Navarra. II Simposio<br />

sobre taludes y laderas <strong>in</strong>estables, Andorra, pp 657–668<br />

Benito G, Pérez-González A, Gutiérrez F, Machado MJ (1998)<br />

River response to Quaternary subsidence due to <strong>evaporite</strong><br />

solution (Gállego River, Ebro Bas<strong>in</strong>, Spa<strong>in</strong>). Geomorphology<br />

22:243–263<br />

Benito G, Gutiérrez F, Pérez-González A, Machado MJ (2000)<br />

Geomorphological <strong>and</strong> sedimentological features <strong>in</strong> Quaternary<br />

fluvial systems affected by solution-<strong>in</strong>duced subsidence <strong>in</strong> <strong>the</strong><br />

Ebro Bas<strong>in</strong>, NE-Spa<strong>in</strong>. Geomorphogy 33:209–224<br />

Bisch<strong>of</strong>f JL, Juliá R, Shanks WC, Rosenbauer RJ (1994) Karstification<br />

without carbonic acid: bedrock dissolution by gypsumdriven<br />

dedolomitization. Geology 22:995–998<br />

Brosche KU (1978) Der vorzeithliche periglaciazale formenschatz auf<br />

der Iberischen Halb<strong>in</strong>sel, Mogliehkeiten zu l<strong>in</strong>er klimatischen<br />

auswertung. Coll. Périglaciaire d’altitude du doma<strong>in</strong>e méditerranéen<br />

et abords Estrasburgo, pp 187–202<br />

Brusí D, Maroto J, Vila i Portella X (1992) L’estany de Banyoles In:<br />

Pallí Ll, Brusí D (eds) El medi natural a les terres giron<strong>in</strong>es, pp<br />

117–133<br />

Calaforra JM (1998) Karstología de yesos-Gypsum Karstology.<br />

Monografías Ciencia y Tecnología, Universidad de Almería–<br />

Instituto de Estudios Almerienses, vol 3, 384 pp<br />

Calaforra JM, Forti P (1990) Le pale di gesso e le stalagmite cave:<br />

due nuove forme di concrezionamento gessoso scoperte nelle<br />

grotte di Sorbas (Andalusia, Spagna). Le Grotte d’Italia 4:73–88<br />

Calaforra JM, Pulido-Bosch A (1999a) Gypsum <strong>karst</strong> features as<br />

evidence <strong>of</strong> diapiric proceses <strong>in</strong> <strong>the</strong> Betic Cordillera, Sou<strong>the</strong>rn<br />

Spa<strong>in</strong>. Geomorphology 29:251–264<br />

Calaforra JM, Pulido-Bosch A (1999b) Genesis <strong>and</strong> evolution <strong>of</strong><br />

gypsum tumuli. Earth Surf Process L<strong>and</strong>f 24:919–930<br />

Calaforra JM, Pulido-Bosch A (2003) Evolution <strong>of</strong> <strong>the</strong> gypsum <strong>karst</strong><br />

<strong>of</strong> Sorbas. Geomorphology 50:173–180<br />

Calvo JP, Alcalá L, Alonso-Zarza AM, van Dam J, Gutiérrez-<br />

Santolalla F (1999) Estratigrafía y estructura del área de Los<br />

Mansuetos (Cuenca de Teruel). Precisiones para la def<strong>in</strong>ición del<br />

estratotipo del Turoliense. Geogaceta 25:55–58<br />

Canals M, Got H, Juliá R, Serra J (1990) Solution-collapse<br />

depressions <strong>and</strong> suspensates <strong>in</strong> <strong>the</strong> limnocrenic lake <strong>of</strong> Banyoles<br />

(NE Spa<strong>in</strong>). Earth Surf Process L<strong>and</strong>f 15:243–254<br />

Cañaveras JC, Calvo JP, Hoyos M, Ordóñez S (1996) Paleomorphologic<br />

features <strong>of</strong> an <strong>in</strong>tra-Vallesian paleo<strong>karst</strong>, Tertiary Madrid<br />

Bas<strong>in</strong>: significance <strong>of</strong> paleo<strong>karst</strong>ic surfaces <strong>in</strong> cont<strong>in</strong>ental bas<strong>in</strong><br />

analysis. In: Friend P, Dabrio CJ (eds) Tertiary Iberian Bas<strong>in</strong>s,<br />

<strong>the</strong> stratigraphic record <strong>of</strong> crustal k<strong>in</strong>ematics. Cambridge<br />

University Press, London, pp 278–284<br />

Cardona F (1989–1990) Grans cavitatas de Catalunya. Espeleo Club<br />

de Gràcia, Barcelona pp 488<br />

Cardona F, Viver J (2002) Sota la Sal de Cardona. Espeleo Club de<br />

Gràcia, Barcelona pp 129<br />

CEDEX (1998) Estudio mediante georadar y prospecciones mecánicas<br />

en zonas dañadas en Orihuela del Tremedal (Teruel),<br />

Madrid, 29 p<br />

Cendrero A, González Lastra JR (1980) Diapiro de Polanco. I<br />

Reunión Nacional de Geología Ambiental y Ordenación del<br />

Territorio, Guía de Excursiones, Sant<strong>and</strong>er, pp 112–114<br />

Coloma P, Sánchez-Navarro JA, Martínez-Gil FJ (1997) El drenaje<br />

subterraneo de la Cordillera Ibérica en la Depresión Terciaria del<br />

Ebro: Revista de la Sociedad Geológica de España, vol 10, pp<br />

205–218<br />

Durán JJ (1984) Evolución geomorfológica del cañón del río<br />

Guadalhorce en el Trías de Antequera (Archidona, Málaga).<br />

Cuadernos de Investigación geográfica 10:42–55<br />

Durán JJ, Val J del (1984) Incidencia de la disolución kárstica en<br />

taludes con materiales hipersolubles. El deslizamiento de Santa<br />

Cruz de Moya (Cuenca). VIII Simposio Nacional de la Sociedad<br />

Española de Macánica de las Rocas Madrid, pp 159–172<br />

Durán JJ, López-Martínez J (1999) Torcal de Antequera, Karst<br />

yesífero de Gobantes, sierras de Abdalajís y desfiladeros de El<br />

Chorro. In: Senciales JM, Ferre E (eds) Elementos de los paisajes<br />

de la prov<strong>in</strong>cia de Málaga. Servicio de Publicaciones de la<br />

Universidad de Málaga, pp 111–130<br />

Eraso A (1959) Karst en yeso del diapiro de Estella. Munibe 4:201–<br />

230<br />

Eraso A (1995) Cueva de Estremera o Pedro Fernández. Mundo<br />

Subterráneo, pp 161–168<br />

Fleta J, Grellet B, Philip H, Escuer J, Goula X y Bousquet JC<br />

(1996) Les deformacions tectòniques en els materials plioquaternaris<br />

de la depressió de Tortellà-Besalú In: Maroto J, Pallí Ll<br />

(eds) Geologia de la conca lacustre de Banyoles-Besalú.<br />

Quaderns Centre d’Estudis Comarcals de Banyoles, vol 17,<br />

pp 99–112<br />

Galve JP, Bonachea J, Remondo J, Gutiérrez F, Guerrero J, Lucha P,<br />

Cendrero A, Gutiérrez M, Sánchez JA (2007) Development <strong>and</strong><br />

validation <strong>of</strong> s<strong>in</strong>khole susceptibility models <strong>in</strong> mantled <strong>karst</strong><br />

sett<strong>in</strong>gs. A case study from <strong>the</strong> Ebro valley <strong>evaporite</strong> <strong>karst</strong> (NE<br />

Spa<strong>in</strong>). Eng Geol (<strong>in</strong> press)<br />

Garay P (1991) El riesgo de colapso kárstico y su <strong>in</strong>cidencia en la<br />

Comunidad Valenciana. Lapiaz 20:25–30<br />

Garay P (2001) El dom<strong>in</strong>io triásico Espadán-Calderona. Contribución<br />

a su conocimiento geológico e hidrogeológico. PhD Thesis.<br />

University <strong>of</strong> Valencia<br />

García del Cura MA, Ordóñez S, López Aguayo F (1979) Estudio<br />

petrológico de la Unidad Sal<strong>in</strong>a de la Cuenca del Tajo. Estudios<br />

Geológicos 35:325–339<br />

Gracia FJ, Gutiérrez F, Gutiérrez M (2001) Orig<strong>in</strong> <strong>and</strong> evolution <strong>of</strong><br />

<strong>the</strong> Gallocanta polje (Iberian Range, NE Spa<strong>in</strong>). Zeitschrift für<br />

Geomorphologie 46:245–262<br />

Guerrero J, Gutiérrez F, Lucha P (2004a) Paleosubsidence <strong>and</strong> active<br />

subsidence due to <strong>evaporite</strong> dissolution <strong>in</strong> <strong>the</strong> Zaragoza city area<br />

(Huerva River valley, NE Spa<strong>in</strong>). Processes, spatial distribution<br />

<strong>and</strong> protection measures for l<strong>in</strong>ear <strong>in</strong>frastructures. Eng Geol<br />

72:309–329<br />

123


964 Environ Geol (2008) 53:951–965<br />

Guerrero J, Gutiérrez F, Lucha P (2004b) El riesgo de movimientos<br />

de ladera en escarpes yesíferos. El caso de la localidad de<br />

Cadrete (Depresión del Ebro). In: Benito G, Díez Herrero A<br />

(eds) Riesgos naturales y antrópicos en Geomorfología, VII<br />

Reunión Nacional de Geomorfología, Toledo, pp 453–462<br />

Guerrero J, Gutiérrez F, Lucha P (2007) The impact <strong>of</strong> halite<br />

dissolution subsidence on fluvial terrace development. The case<br />

study <strong>of</strong> <strong>the</strong> Huerva River <strong>in</strong> <strong>the</strong> Ebro Bas<strong>in</strong> (NE Spa<strong>in</strong>).<br />

Geomorphology (<strong>in</strong> press)<br />

Gutiérrez F (1996) Gypsum <strong>karst</strong>ification <strong>in</strong>duced subsidence<br />

(Calatatud Graben, Iberian range, Spa<strong>in</strong>. Geomorphology<br />

16:277–293<br />

Gutiérrez F (1998a) Fenómenos de subsidencia por disolución de<br />

formaciones evaporíticas en las fosas neógenas de Teruel y<br />

Calatayud (Cordillera Ibérica). PhD Thesis. University <strong>of</strong><br />

Zaragoza, 569 pp<br />

Gutiérrez F (1998b) Efectos de la subsidencia por disolución de<br />

evaporitas en sistemas aluviales. El caso del valle del Alfambra<br />

en la Fosa de Teruel (Cordillera Ibérica). In: Meléndez A (ed)<br />

XXXII Curso de Geología Práctica, pp 119–146<br />

Gutiérrez F (2004) El riesgo de dol<strong>in</strong>as de subsidencia en terrenos<br />

evaporíticos. Investigación y mitigación. In: Nisio S, Panetta S,<br />

Vita L (eds) Stato dell’arte sullo studio dei fenomeni di s<strong>in</strong>kholes<br />

e ruolo delle amm<strong>in</strong>istrazioni statali e locali nel gobernó del<br />

territirio. Apat-Dipartimento Difesa del Suolo, pp 367–378<br />

Gutiérrez F, Arauzo T (1997) Subsidencia kárstica s<strong>in</strong>sedimentaria en<br />

un sistema aluvial efímero: El Barranco de Torrecilla (Depresión<br />

del Ebro, Zaragoza). Cuadernos de Geología Ibérica 22:349–372<br />

Gutiérrez M, Gutiérrez F (1998) Geomorphology <strong>of</strong> <strong>the</strong> tertiary<br />

gypsum formations <strong>in</strong> <strong>the</strong> Ebro Depression (Spa<strong>in</strong>). Geoderma<br />

87:1–29<br />

Gutiérrez F, Cooper AH (2002) Evaporite dissolution subsidence <strong>in</strong><br />

<strong>the</strong> historical city <strong>of</strong> Calatayud, Spa<strong>in</strong>: damage appraisal <strong>and</strong><br />

prevention. Nat Hazards 25:259–288<br />

Gutiérrez F, Arauzo T, Desir G (1994) Deslizamientos en el escarpe<br />

en yesos de Alfajarín (Zaragoza). Cuaternario y Geomorfología<br />

8:57–68<br />

Gutiérrez F, Ortí F, Gutiérrez-Elorza M, Pérez-González A, Benito G,<br />

Gracia-Prieto J, Durán JJ (2001a) The stratigraphical record <strong>and</strong><br />

activity <strong>of</strong> <strong>evaporite</strong> dissolution subsidence <strong>in</strong> Spa<strong>in</strong>. Carbonates<br />

Evaporites 16:46–70<br />

Gutiérrez-Elorza M, Desir G, Gutiérrez-Santolalla F (2001b) Yardangs<br />

<strong>in</strong> <strong>the</strong> semiarid central sector <strong>of</strong> <strong>the</strong> Ebro Depression (NE<br />

Spa<strong>in</strong>). Geomorphology 44:155–170<br />

Gutiérrez F, Desir G, Gutiérrez M (2003) Causes <strong>of</strong> <strong>the</strong> catastrophic<br />

failure <strong>of</strong> an earth dam built on gypsiferous alluvium <strong>and</strong><br />

dispersive clays (Altorricón, Huesca Prov<strong>in</strong>ce, NE Spa<strong>in</strong>).<br />

Environ Geol 43:842–851<br />

Gutiérrez F, Calaforra JM, Cardona F, Ortí F, Durán JJ, Garay P<br />

(2004a) El <strong>karst</strong> en las formaciones evaporíticas españolas. In:<br />

Andreo B, Durán JJ (eds) Investigaciones en sistemas kársticos<br />

españoles, IGME, Madrid, pp 49–87<br />

Gutiérrez F, Lucha P, Guerrero J (2004b) La dol<strong>in</strong>a de colapso de la<br />

casa azul de Calatayud (noviembre de 2003). Origen, efectos y<br />

pronóstico. In: Benito G, Díez Herrero A (eds) Riesgos naturales<br />

y antrópicos en Geomorfología. VII Reunión Nacional de<br />

Geomorfología, Toledo, pp 477–488<br />

Gutiérrez F, Guerrero J, Lucha P (2008) A genetic classification <strong>of</strong><br />

s<strong>in</strong>kholes based on <strong>the</strong> analysis <strong>of</strong> evaporate paleo<strong>karst</strong> exposures<br />

<strong>in</strong> Spa<strong>in</strong>. Environ Geol (this issue)<br />

Gutiérrez F, Galve JP, Guerrero J, Lucha P, Cendrero A, Remondo J,<br />

Bonachea J, Gutiérrez M, Sánchez JA (2007) The orig<strong>in</strong>,<br />

typology, spatial distribution, <strong>and</strong> detrimental effects <strong>of</strong> <strong>the</strong><br />

s<strong>in</strong>kholes developed <strong>in</strong> <strong>the</strong> alluvial <strong>evaporite</strong> <strong>karst</strong> <strong>of</strong> <strong>the</strong> Ebro<br />

River valley downstream Zaragoza city (NE Spa<strong>in</strong>). Earth Surf<br />

Process L<strong>and</strong>f, 31, (<strong>in</strong> press)<br />

123<br />

Imperatori L (1955) Documentos para el estudio del Cuaternario<br />

madrileño. Fenómenos de crioturbación en la terraza superior del<br />

Manzanares. Estudios Geológicos 11:139–143<br />

Johnson G (1960) Cryoturbation at Zaragoza, Nor<strong>the</strong>rn Spa<strong>in</strong>:<br />

Zeistchrift für Geomorphologie, vol 4, pp 74–80<br />

Klimchouk A (2000) Speleogenesis <strong>of</strong> <strong>the</strong> great gypsum mazes <strong>in</strong> <strong>the</strong><br />

Western Ukra<strong>in</strong>e. In: Klimchouk A, Ford DC, Palmer AN,<br />

Dreybrodt W (eds) Speleogenesis. Evolution <strong>of</strong> <strong>karst</strong> aquifers.<br />

National Speleological Society. Huntsville. Alabama, pp 261–<br />

273<br />

Lucha P, Cardona F, Gutiérrez F, Guerrero J (2008a) Natural <strong>and</strong><br />

human-<strong>in</strong>duced dissolution <strong>and</strong> subsidence processes <strong>in</strong> <strong>the</strong> salt<br />

outcrop <strong>of</strong> <strong>the</strong> Cardona Diapir (NE Spa<strong>in</strong>). Environ Geol (this<br />

issue)<br />

Lucha P, Gutiérrez F, Guerrero J (2008b) Environmental problems<br />

derived from <strong>evaporite</strong> dissolution <strong>in</strong> <strong>the</strong> Barbastro-Balaguer<br />

anticl<strong>in</strong>e (Ebro Bas<strong>in</strong>, NE Spa<strong>in</strong>. Environ Geol (this issue)<br />

Macau F, Riba O (1962) Situación, características y extensión de los<br />

terrenos yesíferos en España. I Coloquio Internacional sobre las<br />

Obras Públicas en los terrenos yesíferos. Madrid, vol 5, pp 157–<br />

184<br />

Mediavilla R, Dabrio CJ, Martín-Serrano A, Santisteban JI (1996)<br />

Lacustr<strong>in</strong>e Neogene systems <strong>of</strong> <strong>the</strong> Duero Bas<strong>in</strong>: evolution <strong>and</strong><br />

control. In: Friend P, Dabrio CJ (eds) Tertiary bas<strong>in</strong>s <strong>of</strong> Spa<strong>in</strong>,<br />

<strong>the</strong> stratigraphic record <strong>of</strong> crustal k<strong>in</strong>ematics. Cambridge<br />

University Press, pp 228–236<br />

Miret F, García M (1999) Coves de l’Alta Garrotxa. Grup d’Espeleologia<br />

de Badalona. Badalona, 108 pp<br />

Moissenet E (1989) L’Age et les deformations des terrases alluviales<br />

du Fosse de Teruel. II Reunión del Cuaternario Ibérico, ITGE,<br />

Madrid, pp 267–279<br />

Mottershead DN, Duane WJ, Inkpen RJ, Wright JS (2006) An<br />

<strong>in</strong>vestigation on <strong>the</strong> geometric controls on <strong>the</strong> morphological<br />

evolution <strong>of</strong> small-scale salt terra<strong>in</strong>s, Cardona, Spa<strong>in</strong>. Environ<br />

Geol (this issue)<br />

Ortí F (1997) Evaporitic Sedimentation <strong>in</strong> <strong>the</strong> South Pyrenean<br />

Foredeeps <strong>and</strong> <strong>the</strong> Ebro Bas<strong>in</strong> dur<strong>in</strong>g <strong>the</strong> Tertiary: a general<br />

view. In: Busson G, Schreiber Ch (eds) Sedimentary deposition<br />

<strong>in</strong> rift <strong>and</strong> forel<strong>and</strong> bas<strong>in</strong>s <strong>in</strong> France <strong>and</strong> Spa<strong>in</strong>. Columbia<br />

University Press, New York, pp 319–334<br />

Ortí F (1989) Las rocas evaporíticas en España. In: Durán JJ, López-<br />

Martínez J (eds) El Karst en España. S.E.G. Monografía, vol 4,<br />

pp 55–64<br />

Ortí F, Rosell L (1997) First Mar<strong>in</strong>e Evaporitic Phase <strong>in</strong> <strong>the</strong> South<br />

Pyrenean Foreddep: Bueda Gypsum (Middle Eocene: Autochthonous-Allocthonous<br />

Zone. In: Busson G, Schreiber Ch<br />

(eds) Sedimentary deposition <strong>in</strong> rift <strong>and</strong> forel<strong>and</strong> bas<strong>in</strong>s <strong>in</strong><br />

France <strong>and</strong> Spa<strong>in</strong>. Columbia University Press, New York, pp<br />

343–357<br />

Ortí F, Rosell L (2000) Evaporitc systems <strong>and</strong> diagenetic patterns <strong>in</strong><br />

<strong>the</strong> Calatayud Bas<strong>in</strong> (Miocene, central Spa<strong>in</strong>). Sedimentology<br />

47:6565–686<br />

Ortí F, Pueyo JJ, San Miguel A (1979) Petrogénesis del yacimiento de<br />

sales sódicas de Villarrubia de Santiago, Toledo (Terciario<br />

cont<strong>in</strong>ental de la Cuenca del Tajo). Boletín Geológico y M<strong>in</strong>ero<br />

90:347–373<br />

Ortí F, Rosell L, Salvany JM (1992) Depósitos evaporíticos en<br />

España: aspectos geológicos y recursos. In: García Gu<strong>in</strong>ea J,<br />

Martínez Frías J (eds) Recursos m<strong>in</strong>erales de España. Textos<br />

Universitarios, 15. C.S.I.C., Madrid, pp 1171–1209<br />

Ortí F, García-Veigas J, Rosell L, Jurado MJ, Utrilla R (1996)<br />

Formaciones sal<strong>in</strong>as de las cuencas triásicas en la Península<br />

Ibérica: caracterización petrológica y geoquímica. Cuadernos de<br />

Geología Ibérica 20:13–35<br />

Pallí LL, Trilla J (1979) Morfogénesis del valle de St. Miquel de<br />

Campmajor. Acta Geológica Hispánica 14:451–456


Environ Geol (2008) 53:951–965 965<br />

Pérez-González A (1971) Estudio de los procesos de hundimiento en<br />

el valle del río Jarama y sus terrazas (nota prelim<strong>in</strong>ar). Estudios<br />

Geológicos 27:317–324<br />

Pérez-López A, Solé de Porta N, Ortí F (1996) Facies carbonatoevaporíticas<br />

del Trías Superior y tránsito al Lías en el Levante<br />

español: nuevas precisiones estratigráficas. Cuadernos de Geología<br />

Ibérica 20:245–269<br />

P<strong>in</strong>illa L, Pérez-González A, Sopeña A, Parés JM (1995) Fenómenos<br />

de hundimientos s<strong>in</strong>sedimentarios en los depósitos cuaternarios<br />

del río Tajo en la Cuenca de Madrid (Almoguera-Fuentidueñade<br />

Tajo). In: Aleix<strong>and</strong>re T, Pérez-González A (eds) Reconstrucción<br />

de paleoambientes y cambios climáticos durante el Cuaternario.<br />

IX Reunión Nacional sobre el Cuaternario. Centro de Ciencias<br />

Medioambientales. Madrid, Monografía, vol 3, pp 125–140<br />

Playà E, Ortí F, Rosell L (2000) Mar<strong>in</strong>e to nonmar<strong>in</strong>e sedimentation<br />

<strong>in</strong> <strong>the</strong> Upper Miocene <strong>evaporite</strong>s <strong>of</strong> <strong>the</strong> Eastern Betics, SE Spa<strong>in</strong>:<br />

sedimentological <strong>and</strong> geochemical evidence. Sediment Geol<br />

133:135–166<br />

Pulido-Bosch A, Calaforra JM, Pulido-Leboeuf P, Torres-García S<br />

(2004) Impact <strong>of</strong> quarry<strong>in</strong>g gypsum <strong>in</strong> a semidesert <strong>karst</strong>ic area<br />

(Sorbas, SE Spa<strong>in</strong>). Environ Geol 46:583–590<br />

Riera S, Wansard G, Julià R (2004) 2000-year <strong>environmental</strong> history<br />

<strong>of</strong> a <strong>karst</strong>ic lake <strong>in</strong> <strong>the</strong> Mediterranean Pre-Pyrenees: <strong>the</strong> Estanya<br />

lakes (Spa<strong>in</strong>). Catena 55:293–324<br />

Rodríguez-Ar<strong>and</strong>a JP, Calvo JP, Sanz-Montero ME (2002) Lower<br />

Miocene gypsum paleo<strong>karst</strong> <strong>in</strong> <strong>the</strong> Madrid Bas<strong>in</strong> (central Spa<strong>in</strong>):<br />

dissolution diagenesis, morphological relics <strong>and</strong> <strong>karst</strong> end<br />

products. Sedimentology 49:1385–1400<br />

Ros X, Galobart A, Maroto J (1996) El plioquaternari lacustre: les<br />

calcàries i els reompliments d’Incarcal (Crespià). En: Maroto, J.<br />

y Pallí, Ll. (eds), Geologia de la conca lacustre de Banyoles-<br />

Besalú: Quaderns Centre d’Estudis Comarcals de Banyoles, vol<br />

17, pp 41–51<br />

Rosell L, Pueyo JJ (1997) Second mar<strong>in</strong>e evaporitic phase <strong>in</strong> <strong>the</strong><br />

South Pyrenean Foredee: <strong>the</strong> Priabonian Potash Bas<strong>in</strong> (Late<br />

Eocene: Autochthonous–Allochthobous Zone). In: Busson G,<br />

Schreiber Ch (eds) Sedimentary deposition <strong>in</strong> rift <strong>and</strong> forel<strong>and</strong><br />

bas<strong>in</strong>s <strong>in</strong> France <strong>and</strong> Spa<strong>in</strong>. Columbia University Press, New<br />

York, pp 358–387<br />

Rosell L, Ortí F, Kasprzyk A, Playà E, Peryt TM (1998) Strontium<br />

Geochemistry <strong>of</strong> Miocene primary gypsum: Mess<strong>in</strong>ian <strong>of</strong><br />

sou<strong>the</strong>astern Spa<strong>in</strong> <strong>and</strong> Sicily <strong>and</strong> Badenian <strong>of</strong> Pol<strong>and</strong>. J Sedimet<br />

Res 68:63–79<br />

Salvany JM (1997) Cont<strong>in</strong>ental sedimentation <strong>in</strong> Navarra dur<strong>in</strong>g <strong>the</strong><br />

Oligocene to Lower Miocene: Falces <strong>and</strong> Lerín Formations. In:<br />

Busson G, Schreiber Ch (eds) Sedimentary deposition <strong>in</strong> rift <strong>and</strong><br />

forel<strong>and</strong> bas<strong>in</strong>s <strong>in</strong> France <strong>and</strong> Spa<strong>in</strong>. Columbia University Press,<br />

New York, pp 397–411<br />

Salvany JM, García-Veigas J, Ortí F (2007) Glauberite-halite<br />

association <strong>of</strong> <strong>the</strong> Zaragoza Gypsum Formetion (Lower Miocene,<br />

Ebro Bas<strong>in</strong>, NE Spa<strong>in</strong>). Sedimentology (<strong>in</strong> press)<br />

Sánchez JA, Pérez A, Coloma P, Martínez Gil J (1998) Comb<strong>in</strong>ed<br />

effects <strong>of</strong> groundwater <strong>and</strong> aeolian processes <strong>in</strong> <strong>the</strong> formation <strong>of</strong><br />

<strong>the</strong> nor<strong>the</strong>rnmost closed sal<strong>in</strong>e depressions <strong>of</strong> Europe, North-<br />

East Spa<strong>in</strong>. Hydrol Process 12:813–820<br />

Sánchez JA, Coloma P, Pérez A (1999) Sedimentary processes related<br />

to <strong>the</strong> groundwater flows from <strong>the</strong> Mesozoic Carbonate Aquifer<br />

<strong>of</strong> <strong>the</strong> Iberian Cha<strong>in</strong> <strong>in</strong> <strong>the</strong> Tertiary Ebro Bas<strong>in</strong>, nor<strong>the</strong>ast Spa<strong>in</strong>.<br />

Sediment Geol 129:201–213<br />

Sanz M, Trilla J (1982) Aplicación del O-18 al Sistema cárstico de<br />

Banyoles-La Garrotxa. Comunicaciones a la Reunión monográfica<br />

sobre el <strong>karst</strong> de Larra Isaba (Navarra), pp 243–255<br />

Sanz-Rubio E, Sánchez-Moral S, Cañaveras JC, Abdul-Aziz H, Calvo<br />

JP, Cuezva S, Mazo AV, Rouchy JM, Sesé C, van Dam J (2003)<br />

Síntesis de la cronoestratigrafía y evolución sedimentaria de los<br />

sistemas lacustres evaporíticos y carbonatados neógenos de la<br />

cuenca de Calatayud-Montalbán. Estudios Geológicos 59:83–<br />

105<br />

Silva PG (2003) El Cuaternario del valle <strong>in</strong>ferior del Manzanares<br />

(Cuenca de Madrid). Estudios Geológicos 59:107–131<br />

Solà J, Montaner J, Beràstegui X (1996) Els dipòsits alluvials<br />

quaternaris entre Sant Jaume de Llierca i Banyoles. In: Maroto J,<br />

Pallí Ll (eds) Geologia de la conca lacustre de Banyoles-Besalú.<br />

Quaderns Centre d’Estudis Comarcals de Banyoles, vol 17, pp<br />

61–69<br />

Soriano MA, Simón JL (1995) Alluvial dol<strong>in</strong>es <strong>in</strong> <strong>the</strong> central Ebro<br />

bas<strong>in</strong>, Spa<strong>in</strong>: a spatial <strong>and</strong> developmental hazard analysis.<br />

Geomorphology 11:295–309<br />

Torres T, Junco F, Zapata JL, Plaza J (1985) Similitud de los procesos<br />

sedimentarios del Neógeno en la cuenca del Tajo y en la<br />

Depresión Intermedia. I Cong. Esp. Geología, vol I, pp 258–300<br />

Utrilla R, Pierre C, Ortí F, Pueyo JJ (1992) Oxygen <strong>and</strong> sulphur<br />

isotope compositions as <strong>in</strong>dicators <strong>of</strong> <strong>the</strong> orig<strong>in</strong> <strong>of</strong> Mesozoic <strong>and</strong><br />

Cenozoic <strong>evaporite</strong>s from Spa<strong>in</strong>. Chem Geol (Isotope Geosci<br />

Sect) 102:229–244<br />

van Zuidam RA (1976) Geomorphological development <strong>of</strong> <strong>the</strong><br />

Zaragoza Region, Spa<strong>in</strong>. Processes <strong>and</strong> l<strong>and</strong>forms related to<br />

climatic changes <strong>in</strong> a large Mediterranean river bas<strong>in</strong>, ITC,<br />

Enschede, 211 pp<br />

Vila X, Abella CA, Brusí D (1989) Caracterización morfológica del<br />

Clot d’Espolla i les surgències del pla d’Usall (Pla d’Estany).<br />

Scientia Gerundensis 14:23–42<br />

123

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!