21.06.2013 Views

Technology foresight for Gas Turbines - Endesa Escuela de Energía

Technology foresight for Gas Turbines - Endesa Escuela de Energía

Technology foresight for Gas Turbines - Endesa Escuela de Energía

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Technology</strong> <strong><strong>for</strong>esight</strong> <strong>for</strong> <strong>Gas</strong> <strong>Turbines</strong><br />

Turbinas <strong>de</strong> <strong>Gas</strong>: estado actual <strong>de</strong> las tecnologías<br />

Dr. Tomás Alvarez<br />

Madrid 26 <strong>de</strong> Octubre <strong>de</strong> 2006


INDEX<br />

• I.- A brief history of turbomachinery.<br />

• II.- Chicken and the egg: <strong>Technology</strong> or market?.<br />

• III.- A vision of <strong>Gas</strong> Turbine <strong>Technology</strong>.<br />

• IV.- User´s point of view: lessons learnt.<br />

• V.- <strong>Gas</strong> Turbine market: Present and future.<br />

• VI.- Pathway to achive Advaced Thermal Power Plant.


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

A brief history of turbomachinery<br />

• Why didn´t the Romans make water turbines?<br />

They lacked an un<strong>de</strong>rstanding of hydrodynamics and<br />

mecanics, an un<strong>de</strong>rstanding humankind acquired over<br />

many centuries.


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

A brief history of turbomachinery<br />

• Why didn´t the Romans make gas-turbine engines?<br />

They had no need <strong>for</strong> them.


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

A brief history of turbomachinery<br />

• Why gas turbines?<br />

In their early attempts at flight human kind soon learned that<br />

the human body was totally ina<strong>de</strong>quate as a propulsion <strong>de</strong>vice.


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

A brief history of turbomachinery<br />

Combustion<br />

Bla<strong>de</strong> and<br />

Combustor cooling<br />

Per<strong>for</strong>mance<br />

Materials<br />

<strong>Technology</strong><br />

Themodynamic<br />

cycle<br />

Heat transfer<br />

Fuel technology<br />

Emissions<br />

Mechanical integrity<br />

Electronic control<br />

Fluidmechanics


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Chiken and the Egg: <strong>Technology</strong> or Market?<br />

• Technological history is there<strong>for</strong>e the<br />

consequence of both,<br />

background and incentives <strong>for</strong> <strong>de</strong>velopment:<br />

Background<br />

lead to<br />

Incentives <strong>for</strong> <strong>de</strong>velopment<br />

<strong>Technology</strong> Push<br />

lead to<br />

<strong>Technology</strong> or market?<br />

Market Pull


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

World primary energy<br />

• World primary energy <strong>de</strong>mand<br />

Energy problems are as old as the Romans. They burned<br />

as much as 145kg of wood a day in large houses.<br />

Then ran out of wood. Imported it from 1600 km.<br />

Sound familiar?<br />

Finally, they started taking advantage of solar. Lesson learned:<br />

As one energy source runs short, others are found..


Market Pull<br />

TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Innovation drivers<br />

Centralized<br />

Generation<br />

Hybrid<br />

System<br />

Distributed<br />

Generation<br />

<strong>Technology</strong> Push


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Distributed Generation<br />

”Local, small sized systems <strong>for</strong> energy conversion, production<br />

and storage as well as related services”<br />

Pearl Street Station


Nanoturbines<br />

TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

<strong>Technology</strong> Push<br />

Microturbinas (natural gas, landfill gas,…)<br />

CHP and Tri-generation<br />

Small scale gasification <strong>for</strong> CHP<br />

Small scale bio-CHP<br />

Hybrid system (fuel cells/GT´s..)<br />

Hydrogen Compatibility


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Centralized Generation


New Competitive situation<br />

TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Market Pull<br />

RAMD-S<br />

Per<strong>for</strong>mance<br />

Efficiency<br />

Time<br />

Emissions<br />

Life cycle cost


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Land base GT´s history<br />

<strong>Gas</strong> turbine learning curve


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Conventional (?) Thermal Power Plant<br />

Feed pumps<br />

Boiler<br />

10 metres<br />

Three stages<br />

Steam turbine


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Main components in a gas turbine<br />

205 203 160 119 = 482MW = 277MW<br />

2.2 MW 1.7 MW 1.3 MW<br />

754 MJ/s<br />

Gross Net


Requirements to combustion chamber: chamber<br />

• Multifuel capability<br />

• High combustion effiency<br />

• High use reliability<br />

• Low pressure loss<br />

• Loss emissions<br />

• Nearly uni<strong>for</strong>m outlet temperature distribution<br />

Development of compressor:<br />

compressor<br />

• Lowflowlosses<br />

• Low vibrations<br />

• No stall, surge<br />

TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Main components in a gas turbine<br />

Development of turbines: turbines<br />

• Lowflowlosses<br />

• Optimized bla<strong>de</strong> cooling<br />

• Proved bla<strong>de</strong> materials<br />

Investigations of<br />

rotating annuli: annuli<br />

• Flow<br />

• Heat transfer


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

User requirements <strong>for</strong> power generation<br />

USERS NEEDS SUPPLIERS GOALS<br />

Low installed cost High specific power<br />

Low fuel consumption High efficiency<br />

Low maintenance High maintenability<br />

Low enviroment impact Low emissions<br />

Proven plant Structured <strong>de</strong>velopment<br />

Low CO2 emisions Adv. Cycles/High efficiency<br />

Fuel flexibility Advanced combustors<br />

Operational flexibility High operational reliability


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

User requirements <strong>for</strong> power generation<br />

DESIGN GOALS ACHIEVED BY:<br />

Progressive increase in turbine inlet temperature Higher specfic power<br />

Raising compressor pressure ratio Higher efficiency<br />

Higher exhaust temperature Increased cycle effiency<br />

Dry low NOx burners Lower emissions<br />

Advanced combustors Fluel flexibility<br />

Remote M&D centre (CBM) High <strong>de</strong>pendability (RAMD-S)<br />

Adv. cycles/High efficiency Lower CO2 emissions<br />

High efficiency & <strong>de</strong>pendability Lower Life Cycle Cost


∆T T1 =+80K<br />

∆η th =+0,81%<br />

∆η C =+1%<br />

∆η th =+0,48%<br />

TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Parameter study<br />

Temperature<br />

ratio<br />

Compressor<br />

effiency<br />

Increase in<br />

Efficiency<br />

of turbine<br />

∆η T =+1%<br />

∆η th =+0,70%<br />

Pressure<br />

ratio<br />

Cooling air<br />

mass flow<br />

∆л=+1<br />

∆η th =+0,35%<br />

∆µ 0 =+1%<br />

∆η th =-0,56%


ºC<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

77<br />

7E/9E<br />

79<br />

81<br />

83<br />

85<br />

TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Presure ratio and RIT evolution<br />

7EA/9EC<br />

V84.2/V94.2<br />

87<br />

89<br />

7FA+<br />

9FA/7FA V84.3A<br />

501F/701F<br />

7F/9F<br />

V84.3 /V94.3A<br />

91<br />

93<br />

GT24/GT26<br />

GT13E2<br />

501D5A<br />

/701D<br />

95<br />

GT11N2<br />

97<br />

501ATS<br />

501G/701G<br />

99<br />

7H/9H<br />

%<br />

35<br />

30<br />

25<br />

PR 20<br />

15<br />

10<br />

5<br />

65<br />

60<br />

55<br />

50<br />

45<br />

77<br />

75 77 79 81 83 85 87 90 92 94 96 98 00<br />

7E/9E<br />

79<br />

81<br />

83<br />

Eficiency Power Output<br />

85<br />

7EA/9EC<br />

V84.2/V94.2<br />

87<br />

89<br />

GT24/GT26<br />

501ATS<br />

501G/701G<br />

501F<br />

/701F<br />

V84.3<br />

9FA/7FA<br />

V84.3A<br />

/V94.3A<br />

7F/9F GT13E2 7FA+<br />

GT11N2501D5A<br />

/701D<br />

91<br />

93<br />

95<br />

97<br />

99<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

MW<br />

7H/9H


Requires low<br />

temperatures<br />

TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

<strong>Gas</strong> Turbine combustion<br />

NOx Cooling<br />

Need <strong>for</strong> better<br />

burner & combustor<br />

CO, VOC, Efficiency<br />

burnout<br />

Requires high<br />

temperatures


RELIABILITY<br />

AVAILABILITY<br />

MAINTAINABILITY<br />

DURABILITY<br />

SAFETY<br />

TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Dependability Mangement<br />

RAMD-S<br />

(Dependability Management)<br />

doesn´t fail often<br />

it is there when you need it<br />

easy to repair / maintain<br />

doesn´t fail un<strong>de</strong>r stress<br />

doesn´t cause damages


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Condition Base Maintenance<br />

Human<br />

Interface<br />

Decission support<br />

Prognostics<br />

Per<strong>for</strong>mance & health assessment<br />

Condition monitoring<br />

Control & supervision level<br />

Sensor level


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Operational reliability (Dependability)<br />

• High Reliability<br />

• High Maintenability<br />

• High Durability<br />

• High Safety<br />

• High Per<strong>for</strong>mance<br />

Life cycle cost<br />

Result in<br />

Result in<br />

Result in<br />

High Availability<br />

Result in<br />

High Dependability<br />

Result in<br />

Low Life Cycle Cost<br />

(€/MWh)


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Lessons Learnt<br />

User´s point of view<br />

• Acquire the last proven technology and not the latest.<br />

(“Leading vs. bleeding edge”)<br />

• Power Plants are true test stands <strong>for</strong> gas turbine technologies.<br />

• All possible failure mo<strong>de</strong>s are still unknown <strong>for</strong> the latest generation<br />

of gas turbines.<br />

• Any operation of the gas turbine outsi<strong>de</strong> the i<strong>de</strong>al operating<br />

conditions (base load, ISO conditions) significantly affects its<br />

per<strong>for</strong>mance and durability.<br />

• Cyclic operation of combined cycles is still uncharted territory.<br />

(emissions, fuel, part-load, etc.)


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Lessons Learnt<br />

User´s point of view<br />

• There is little competition <strong>for</strong> non-OEM aftermarket repairs<br />

(It is mainly available <strong>for</strong> 10 or more years ol<strong>de</strong>r technologies).<br />

• Within the lifecycle cost of a combined cycle plant, the maintenance<br />

cost is (approximately) twice the initial cost.<br />

• The <strong>de</strong>sign of a gas turbine always appears to be inconclusive<br />

and subject to continuous improvement.<br />

• There is a need <strong>for</strong> (regulation and) certification of component repair<br />

<strong>for</strong> gas turbine technology.<br />

• Approximately between 70-80% of the cost of electricity<br />

corresponds to the cost of fuel.


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Lessons Learnt<br />

User´s point of view<br />

• Condition Based Maintenance is presented as an alternative<br />

to reduce maintenance costs.<br />

• There are notable differences in the calculation <strong>for</strong>mulas <strong>for</strong><br />

equivalent operating hours that are driving the need<br />

<strong>for</strong> <strong>de</strong>velopment of new lifecycle mo<strong>de</strong>ls.<br />

• The price of fuel has become a very volatile variable.<br />

• During the first three years of operation a plant (could) continue<br />

to be affected by “infant mortality” failures.<br />

• High maintenance costs are being affected by the operation mo<strong>de</strong>s.<br />

• The latest technology contains a high technological risk


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Lessons Learnt<br />

• Main technology risks:<br />

User´s point of view<br />

• Mechanical component failures:<br />

• Thermo-mechanic fatigue, creep, …<br />

• Problems due to high firing temperatures:<br />

• Materials & coating life, cooling effectiveness,..<br />

• Rotor & blading integrity:<br />

• Rotor assembly, vibrational/rotordynamic integrity, .…<br />

• Combustion process:<br />

• Flame instability, NOx control, etc.


30%<br />

25%<br />

20%<br />

15%<br />

10%<br />

5%<br />

0%<br />

Compressor Combustor First Stage<br />

bla<strong>de</strong>s cans no zzle<br />

TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Lessons Learnt<br />

First Stage<br />

Bla<strong>de</strong>s<br />

Controls Bearings Seals Couplings Generator<br />

Contribution of various major components to gas turbine down time<br />

User´s point of view<br />

35%<br />

4%<br />

4%<br />

29%<br />

28%<br />

Turbine Combustor Compressor Rotor Auxiliary<br />

Major failures in gas turbines larger than 220MW


CCGT´s<br />

Or<strong>de</strong>rs<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Heavy duty gas turbine market<br />

1990 1992 1994 1996 1998 2000 2002<br />

1991 1993 1995 1997 1999 2001<br />

World<br />

Latam N. America<br />

Middle East Asia<br />

Europe<br />

World<br />

North America<br />

CCGTs (2)<br />

Or<strong>de</strong>rs<br />

Average of<br />

Usage factor<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

109<br />

104<br />

66<br />

59<br />

53 55 57 59 61<br />

98<br />

99<br />

00<br />

01<br />

TCMA 05-08 :+3,7%<br />

64 66<br />

02 03 04 05 06 07 08 Year<br />

63% 107% (4) 55% 59% 63%


GT´s or<strong>de</strong>rs<br />

( >60 MW)<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

<strong>Gas</strong> Turbine World-wi<strong>de</strong> evolution<br />

415<br />

2000<br />

629<br />

2001 2002 2003 2004<br />

North America<br />

Europe & CIS<br />

Far east<br />

TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

<strong>Gas</strong> Turbine World-wi<strong>de</strong> evolution<br />

400<br />

–70,7%<br />

119<br />

184<br />

Asia, middle east<br />

and Australia<br />

Central/South America<br />

GT´s or<strong>de</strong>rs<br />

>60 MW (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

5% 4% 5% 5%<br />

8% 6% 3% 3%<br />

18%<br />

70% 70% 70% 71%<br />

2000<br />

19% 22% 20%<br />

9%<br />

8%<br />

18%<br />

65%<br />

2001 2002 2003 2004E<br />

Mitsubishi<br />

Alstom<br />

Siemens<br />

GE


Share of OEM´S in the number of GT´s produced in 2005- 2014<br />

Siemens: 867<br />

Rolls-Royce: 455<br />

Others (b): 434<br />

Vericor: 26<br />

Solar: 675<br />

PWPS (UTC PWPS): 155<br />

OPRA: 340<br />

Mitsubishi: 278<br />

Manufacturer varies: 378<br />

Source: Forecast International<br />

TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Alstom: 488<br />

Kawasaki: 1.372<br />

General Electric: 1.993<br />

Hitachi: 89<br />

Siemens: 11,5%<br />

Rolls-Royce: 6,0%<br />

Others (b): 5,7%<br />

Vericor: 0,3%<br />

Solar: 8,9%<br />

PWPS (UTC PWPS):<br />

2,1% OPRA: 4,5%<br />

Mitsubishi: 3,7%<br />

Manufacturer varies:<br />

5,0%<br />

Alstom: 6,5%<br />

Kawasaki: 18,2%<br />

General Electric:<br />

26,4%<br />

Hitachi: 1,2%


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Share in the number of GT´s from 180 MW to large produced in 2005- 2014<br />

Siemens: 365; 29%<br />

Source: Forecast International<br />

Mitsubishi: 256; 20%<br />

Others (b): 41; 3% Alstom: 94; 7%<br />

General Electric: 524;<br />

41%


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Share of power class in the number of GT´s produced in 2005- 2014<br />

125 to 180 MW:<br />

1.122; 15%<br />

180 MW to large: 1.280;<br />

17%<br />

50 to 125 MW:<br />

682; 9%<br />

Source: Forecast International<br />

20 - 50 MW:<br />

1.105; 15%<br />

Up to 3MW:<br />

1.589; 20%<br />

10 to 20 MW:<br />

215; 3%<br />

3 to 10 MW:<br />

1.557; 21%


Pathways to Achive Advanced Thermal Power Plants<br />

• Adv. Materials<br />

• Combustion Tech.<br />

• Aero/thermal<br />

• Control/sensors<br />

• Condition monitoring<br />

• Design tools<br />

• New cycles<br />

<strong>Technology</strong> Roadmaps<br />

TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

• CO 2 reduction<br />

• Fuel flexibility<br />

Advanced<br />

IGCC/Fuel Cell<br />

IGCC<br />

Market Drivers<br />

Advanced<br />

IGCC/H 2<br />

• Higher effiency<br />

Advanced<br />

NGCC<br />

• Improved <strong>de</strong>pendability<br />

Advaced<br />

GT cycle<br />

Oxy - fuel<br />

Turbine<br />

NGCC<br />

Advanced CO 2<br />

compression<br />

NG<br />

GTCC/Fuel Cell<br />

H 2<br />

Turbine


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Lessons Learnt<br />

Main conclusion<br />

“<strong>Gas</strong> Turbine <strong>Technology</strong> is one of the best available options<br />

today and in the years to come <strong>for</strong> power generation,<br />

however, they will continue to be affected or influenced by<br />

their user´s technology and <strong>de</strong>velopment needs pending<br />

resolution” (technological paradox)<br />

(3rd International Conference – The Future of <strong>Gas</strong> Turbine <strong>Technology</strong>, Bruselles 11-12 October 2006)


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

BACKUP SLIDES !


Oil/<strong>Gas</strong>, 4%<br />

Spetial regime, 19%<br />

Nuke, 22%<br />

TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Evolution of installed capacity in Spain<br />

Hydro, 7%<br />

CCGT, 18%<br />

Coal, 30%<br />

20000<br />

18000<br />

16000<br />

14000<br />

12000<br />

MW 10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

16657<br />

11565<br />

12258<br />

7876<br />

6647<br />

18740<br />

Hydro Coal CCGT Nuke Oil/<strong>Gas</strong> Special<br />

regime


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Electrical energy mix today in Spain (2005)<br />

Waste treatment,<br />

6%<br />

Solid waste, 5%<br />

Biomass, 4%<br />

Solar PV, 0%<br />

Small hydro, 7%<br />

Wind, 42%<br />

Oil/<strong>Gas</strong>; 4%<br />

Spetial regime; 19%<br />

Nuke; 22%<br />

CHP, 36%<br />

Hydro; 7%<br />

CCGT; 18%<br />

Coal; 30%


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Installed capacity in Spain as December 2005<br />

MW<br />

20000<br />

18000<br />

16000<br />

14000<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

16657<br />

11565<br />

12258<br />

7876<br />

6647<br />

18740<br />

Hydro Coal CCGT Nuke Oil/<strong>Gas</strong> Special<br />

regime<br />

10000<br />

9000<br />

8000<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

5818<br />

9602<br />

1700<br />

CHP Wind Small<br />

hydro<br />

32<br />

484 581 524<br />

Solar PV Biomass Solid<br />

waste<br />

Waste<br />

treatment


100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Electricity generation in the U.S.<br />

12%<br />

20% 20%<br />

11%<br />

53%<br />

9%<br />

16%<br />

51%<br />

1975 1980 1985 1990 1995 2000 2001 2002 2003 2004 2005 2010<br />

Coal Natural <strong>Gas</strong> Nuclear Renew ables (a) Wind<br />

10%<br />

22%<br />

22%<br />

43%<br />

4%<br />

12%<br />

23%<br />

25%<br />

37%


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Total energy supply in the U.S.


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Centralized Generation


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Efficiency Comparison


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Cost of Electricity Comparison


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Cost of Electricity Comparison


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

<strong>Gas</strong> Turbine material evolution


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

Bla<strong>de</strong> cooling evolution


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

<strong>Gas</strong> Turbine material evolution<br />

100,000 h- rupture strength values of superalloys<br />

Creeping properties of representative superalloys


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

The evolution and complexity of component cooling


TECHNOLOGY FORESIGHT FOR GAS TURBINES<br />

GAS TURBINE TECHNOLOGIES

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!