23.06.2013 Views

Volume 60 - Tomato Genetics Cooperative - University of Florida

Volume 60 - Tomato Genetics Cooperative - University of Florida

Volume 60 - Tomato Genetics Cooperative - University of Florida

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Report <strong>of</strong> the<br />

<strong>Tomato</strong> <strong>Genetics</strong><br />

<strong>Cooperative</strong><br />

<strong>Volume</strong> <strong>60</strong> December 2010


Foreword<br />

Report<br />

<strong>of</strong> the<br />

<strong>Tomato</strong> <strong>Genetics</strong> <strong>Cooperative</strong><br />

Number <strong>60</strong>- December 2010<br />

<strong>University</strong> <strong>of</strong> <strong>Florida</strong><br />

Gulf Coast Research and Education Center<br />

14625 County Road 672<br />

Wimauma, FL 33598 USA<br />

The <strong>Tomato</strong> <strong>Genetics</strong> <strong>Cooperative</strong>, initiated in 1951, is a group <strong>of</strong> researchers who<br />

share and interest in tomato genetics, and who have organized informally for the<br />

purpose <strong>of</strong> exchanging information, germplasm, and genetic stocks. The Report <strong>of</strong> the<br />

<strong>Tomato</strong> <strong>Genetics</strong> <strong>Cooperative</strong> is published annually and contains reports <strong>of</strong> work in<br />

progress by members, announcements and updates on linkage maps and materials<br />

available. The research reports include work on diverse topics such as new traits or<br />

mutants isolated, new cultivars or germplasm developed, interspecific transfer <strong>of</strong> traits,<br />

studies <strong>of</strong> gene function or control or tissue culture. Relevant work on the Solanaceous<br />

species is encouraged as well.<br />

Paid memberships currently stand at approximately 94 (includes those paid in 2009 and<br />

beyond) from 16 countries.<br />

Cover: Design by Dolly Cummings. Bacterial wilt incited by Ralstonia solanacearum is a<br />

serious threat to tomato production in many humid tropical production regions. Breeding<br />

for resistance has been a challenge due to multiple strains <strong>of</strong> the bacterium, variable<br />

environmental effects on disease expression, largely unknown genetics for resistance,<br />

and linkage <strong>of</strong> resistance to small fruit size. Locating molecular markers tightly linked to<br />

resistance genes should be a boon to future breeding efforts and with the tomato<br />

genome now sequenced this research may advance much more rapidly than in the<br />

past. This years‟ feature article explores the major sources (“roots”) <strong>of</strong> bacterial wilt<br />

resistance and thereby sheds light on the relationships <strong>of</strong> genotypes that could be used<br />

in studies to locate molecular markers. Precision in the exact identification <strong>of</strong> sources is<br />

hampered by a lack <strong>of</strong> information or by conflicting information. Unfortunately some <strong>of</strong><br />

the old sources are no longer available. If you read the article and have information that<br />

would help us improve the article please contact us. We live in an electronic age and if<br />

we get better information we will put it in the article and future versions may be better<br />

than the one published in December <strong>of</strong> 2010. If you have seed <strong>of</strong> a rare source line<br />

send it to us and we will see that it gets in a gene bank. Thanks for your help.<br />

2


Table <strong>of</strong> Contents<br />

Foreword 2<br />

Announcements 4<br />

Feature Article<br />

<strong>Tomato</strong> resistance to bacterial wilt caused by<br />

Ralstonia solanaearum E.F. Smith: ancestry and peculiarities<br />

Daunay M.C., Laterrot H., Scott J.W., Hanson P., Wang J.-F 6<br />

Fig 1: Origins <strong>Tomato</strong> Bacterial Wilt material 20<br />

Table 1: Summing up <strong>of</strong> the phenotype <strong>of</strong> some breeding lines 21<br />

Fig 2-12: Pedigree Montage 30<br />

Research Reports<br />

Preliminary Observations on the Effectiveness <strong>of</strong> Five<br />

Introgressions for Resistance to Begomoviruses in <strong>Tomato</strong>es<br />

Luis Mejía, Rudy E. Teni, Brenda E. García, Ana Cristina Fulladolsa,<br />

and Luis Méndez; Sergio Melgar, and Douglas P. Maxwell 41<br />

Preliminary report on association <strong>of</strong> ‘Candidatus Liberibacter<br />

solanacearum’ with field grown tomatoes in Guatemala<br />

Luis Mejía, Amilcar Sánchez, and Luis Méndez; D. P. Maxwell;<br />

R. L. Gilberston; V.V. Rivera and G.A. Secor 54<br />

Study <strong>of</strong> epidermal cell size <strong>of</strong> petals and stamens in tomato<br />

species and hybrids using confocal laser-scanning microscopy<br />

Christopher L<strong>of</strong>ty, Julian Smith, Pravda Stoeva-Popova 58<br />

Stock Lists 66<br />

Membership List 101<br />

Author Index 107<br />

3


Announcements<br />

From the editor:<br />

Help I‟ve fallen behind and I can‟t catch up! The 2010 TGC is late as a<br />

result but it is still 2010 so it could be worse- my apologies for the delay. This is<br />

our first year <strong>of</strong> our “electronic only” (see below) format and we are determining<br />

how to proceed. No dues were requested from the members in 2010 as most<br />

(but not all) costs are associated with printing and mailing the report. On the web<br />

we will post only the Table <strong>of</strong> Contents for a year and will mail a link to an<br />

electronic version <strong>of</strong> <strong>Volume</strong> <strong>60</strong> to members who paid in 2009. We can also send<br />

a printed version to those who want one and will pay to have one sent. Members<br />

will receive an email about this option. The cost would be $20US for domestic<br />

members and $25US for foreign members. Make checks payable to The<br />

<strong>University</strong> <strong>of</strong> <strong>Florida</strong> from a US bank or a bank with a US affiliation. Sorry no<br />

credit cards can be used. If you do not have easy access to a bank with a US<br />

affiliation we can accept cash in US dollars. For those who only want the<br />

electronic version we will ask for dues <strong>of</strong> $10 per year starting in 2011. Members<br />

will receive an email about this in spring 2011 but send in your dues at any time,<br />

either for electronic only or for electronic and printed versions as per the prices<br />

stated above.<br />

I have not been happy with the key word search <strong>of</strong> the TGC Reports<br />

available on our website: (http://tgc.ifas.ufl.edu/) as it picks up words in areas<br />

outside <strong>of</strong> the reports such as from the Table <strong>of</strong> Contents and thus is somewhat<br />

messy. We have discussed a way to fix this and hope to have it fixed in 2011.<br />

You can see that there are only 3 research reports in this volume. This<br />

epitomizes the trend we have been seeing over the last several years as<br />

researchers are not sending in reports. Perhaps this year‟s dearth <strong>of</strong> reports is<br />

due in part to the change to an electronic only format. However, I do see a place<br />

for the TGC here in the 21 st century and plan to keep moving forward. I hope you<br />

will help by retaining your membership or becoming a member if you are not<br />

presently one and by sending in reports, varietal pedigrees etc.<br />

Last but certainly not least, my heartfelt thanks to Dolly Cummings who<br />

keeps TGC business in order around here. Thanks to Dolly and Christine Cooley<br />

who work on the website updates.<br />

My contact information:<br />

Jay W. Scott<br />

Managing Editor<br />

Jay W. Scott, Ph.D.<br />

Gulf Coast Research & Education Center<br />

14625 CR 672<br />

Wimauma, FL 33598 USA<br />

Phone: 813-633-4135; Fax: 813-634-0001<br />

Email: jwsc@ufl.edu<br />

4


Upcoming meetings:<br />

February 17-19, 2011, Sol-Conference 2011<br />

Chiangmai, Thailand<br />

http://www.sol-symposium2011.com/abstra.aspx<br />

March 20-23, 2011 43rd <strong>Tomato</strong> Breeders Roundtable *<br />

El Cid Castilla Beach Resort Hotel, Mazatlan, Sinaloa,, Mexico.<br />

http://tgc.ifas.ufl.edu/2011TBR.htm<br />

April 11-14 2011 XVIIth EUCARPIA Meeting - Section Vegetables - Working Group<br />

<strong>Tomato</strong>, Málaga, Spain<br />

http://www.eucarpiatomato2011.org<br />

October 16-20, 2011 SOL & ICuGl Joint Conference 2011<br />

Tsukuba International Congress Center (EPOCHAL), Tsukuba, Japan<br />

http://www.sol2011.jp<br />

* Recently cancelled-might be held in conjunction with the <strong>Tomato</strong> Disease Workshop in<br />

October at Cornell <strong>University</strong>, date not yet set nor is it <strong>of</strong>ficial yet so check for updates<br />

on the TGC website at http://tgc.ifas.ufl.edu .<br />

5


FEATURE ARTICLE TGC REPORT VOLUME <strong>60</strong>, 2010<br />

<strong>Tomato</strong> resistance to bacterial wilt caused by Ralstonia solanaearum E.F. Smith:<br />

ancestry and peculiarities<br />

Daunay M.C. (1) , Laterrot H. (1bis) , Scott J.W. (3) , Hanson P. (4) , Wang J.-F (4) .<br />

(1) (1bis)<br />

INRA, UR 1052, Montfavet, France, retiree <strong>of</strong> INRA, UR 1052<br />

(2)<br />

CIRAD, Pôle 3P, Saint Pierre, Réunion Island, France<br />

(3)<br />

<strong>University</strong> <strong>of</strong> <strong>Florida</strong>, Gulf Coast Research & Education Center, Wimauma,<br />

<strong>Florida</strong>, USA<br />

(4)<br />

AVRDC-The World Vegetable Center, Tainan, Taiwan<br />

Summary<br />

Several national tomato breeding projects began work on developing varieties<br />

resistant to bacterial wilt over <strong>60</strong> years ago and several varieties created in the 1950s,<br />

19<strong>60</strong>s, 1970s and later on are still found as reference varieties in many recent<br />

publications dealing with the genetics <strong>of</strong> resistance. From the beginning there were<br />

many exchanges <strong>of</strong> resistant material between the breeding programs that are difficult<br />

to retrace because published information is scarce. As a consequence the source(s) <strong>of</strong><br />

resistance <strong>of</strong> the reference varieties, and the relationships between these varieties are<br />

<strong>of</strong>ten unclear. This paper provides a synthesis <strong>of</strong> the relationships between the breeding<br />

carried out in Puerto Rico, the USA (North Carolina, Hawaii, <strong>Florida</strong>), Japan, the<br />

Philippines, the French West Indies, and Taiwan, the main sources <strong>of</strong> resistance that<br />

they used, as well as the parentage between the lines they created. The limits <strong>of</strong> the<br />

reliability <strong>of</strong> our results are explained. The information on the resistance <strong>of</strong> many<br />

bacterial wilt resistant lines to other vascular diseases is also summarized together with<br />

some other peculiarities, in order to provide a synthesis useful for breeding bacterial wilt<br />

resistant tomatoes and for further genetic studies <strong>of</strong> the resistance patterns.<br />

Introduction<br />

Bacterial wilt is caused by the pathogen formerly known as Pseudomonas<br />

solanacearum, transitorily renamed Burkholderia solanacearum (Yabuuchi et al., 1992)<br />

and presently accepted as Ralstonia solanacearum (Yabuuchi et al., 1995;<br />

Vaneechoutte et al., 2004). Developing varieties with resistance has challenged tomato<br />

breeders for over <strong>60</strong> years for several reasons. Strong interactions are observed<br />

between resistance, environmental conditions and strains (e.g. Kelman, 1953; Acosta,<br />

1963; Krausz & Thurston, 1975; Messiaen, 1989; Peter et al., 1993; Prior et al., 1994;<br />

Hanson et al., 1996; Jaunet & Wang, 1999; Balatero et al., 2005; Hai et al., 2008).<br />

Further, several defaults are <strong>of</strong>ten associated to bacterial wilt resistance, such as small<br />

fruit size (Acosta et al., 1964; Gilbert & Tanaka, 1965; Scott et al., 2005), bitterness due<br />

to high tomatine content (Borchers & Nevin, 1954; Mohanakumaran et al., 1967; Digat &<br />

Derieux, 1968; Messiaen, et al., 1978), green gel around the seeds and epidermis<br />

cracking (Acosta, 1963; Cordeil & Digat, 1967; Daly, 1976). The difficulty in developing<br />

resistance with adaptation to heat and with good horticultural features, in particular fruit<br />

firmness and large size, has been reported by many authors (e.g. Kaan et al., 1969;<br />

6


Opena et al., 1989; Celine et al., 2003; Scott, 1997; Scott et al., 2003). It is also very<br />

difficult to combine bacterial wilt resistance to resistance to root knot nematode<br />

(Messiaen et al., 1978; Prior et al., 1994; Deberdt et al., 1999 a & b).<br />

Kelman (1953) and Acosta (1963) reported the first surveys <strong>of</strong> the early screening<br />

trials carried out during the first half <strong>of</strong> the 20 th century, in the USA and other countries,<br />

with hundreds <strong>of</strong> tomato varieties. The very limited success obtained at that time<br />

outlined the difficulty to identify highly resistant material. The breeding for resistance<br />

took on new momentum after World War II. Sources <strong>of</strong> high levels <strong>of</strong> resistance were<br />

identified and used for breeding. The material most widely used nowadays as; controls,<br />

key source(s) <strong>of</strong> resistance for ongoing breeding programs and/or for genetic studies<br />

was created in the span <strong>of</strong> time running from the 1950s and 1970s. Our main objective<br />

was to draw a worldwide historical outline <strong>of</strong> the major breeding inputs <strong>of</strong> this period, in<br />

order to get a global picture <strong>of</strong> the key original resistance sources used, <strong>of</strong> the major<br />

breeding lines obtained, and <strong>of</strong> their relationships. Indeed, as information on these<br />

topics is scarce, scattered and confusing, it is useful to sum it up for the sake <strong>of</strong> present<br />

and future research on tomato resistance to bacterial wilt. The major programs were<br />

carried out (1) in Puerto Rico, (2) in US Universities (North Carolina, Hawaii, <strong>Florida</strong>),<br />

(3) in the Horticulture Research Station 1 , Japan, (4) in the <strong>University</strong> <strong>of</strong> Philippines<br />

College <strong>of</strong> Agriculture, (5) in the French public institutes INRA 2 in Guadeloupe and<br />

IRAT 3 in Guadeloupe and Martinique (French West Indies), and later on (6) in AVRDC 4 ,<br />

Taiwan.<br />

1. Primary historical breeding programs, their sources <strong>of</strong> resistance and<br />

germplasm flow between programs<br />

The main accessions used and created in the major research and breeding<br />

programs <strong>of</strong> the USA, Japan, Philippines, French West Indies and Taiwan, as well as<br />

their relationships, are outlined in Fig. 1. For the sake <strong>of</strong> clarity the accessions listed are<br />

limited to the major ones, i.e. those which are most frequently mentioned in the<br />

literature for their high level <strong>of</strong> resistance in worldwide trials, or for which the sources <strong>of</strong><br />

resistance have been published. We also took care to mention enough accession<br />

names for the reader to obtain the encoding system used by the different programs. The<br />

arrows linking two accession names indicate their parental link. The arrows starting from<br />

the frame <strong>of</strong> a given program indicate the use <strong>of</strong> material <strong>of</strong> this program in another<br />

program or for creating a given breeding line. The number(s) in brackets indicate the<br />

literature reference where the information about the relationships between accessions<br />

and programs is provided. For the convenience <strong>of</strong> the reader, we summed up in Table 1<br />

1 The name and locations <strong>of</strong> this institute changed along the time: 1921-1950: Horticulture Research<br />

Station (Okitsu, Shizuoka); 1950-1961: Department <strong>of</strong> Horticulture, National Institute <strong>of</strong> Agricultural<br />

Sciences (Hiratsuka, Kanagawa); 1961-1973: Horticulture Research Station (Hiratsuka, Kanagawa);<br />

1973-1986: Vegetable and Ornamental Crops Research Station (Tsu, Mie); 1986-2001: National<br />

Research Institute <strong>of</strong> Vegetables, Ornamental plants and Tea (NIVOT) (Tsu, Mie); 2001-present: National<br />

Institute <strong>of</strong> Vegetable and Tea Science (NIVTS) (Tsu, Mie). Dr H. Fukuoka, NIVTS, pers. com.<br />

2 Institut National de la Recherche Agronomique.<br />

3 Institut de Recherche en Agronomie Tropicale (now part <strong>of</strong> CIRAD, Centre de Coopération<br />

Internationale en Recherche Agronomique pour le Développement).<br />

4 The Asian Vegetables Research and Development Centre (now AVRDC-The World Vegetable Center).<br />

7


available information on the phenotype <strong>of</strong> the main resistant accessions lines displayed<br />

in Figure 1 and issued from the main historical breeding programs.<br />

Puerto Rico<br />

Information about tomato breeding for bacterial wilt resistance in the <strong>University</strong> <strong>of</strong><br />

Puerto Rico is very scarce and dispersed in annual reports <strong>of</strong> the Puerto Rico <strong>University</strong><br />

Agricultural Experiment Station. For instance, Cook (1934, 1935), Roque (1935) and<br />

Theis (1950) mention partial resistance <strong>of</strong> some native material and its use in breeding.<br />

Warmke & Cruzado (1949) experimented with local selections from hybrids between<br />

native and imported tomato varieties, some <strong>of</strong> which showing some resistance to<br />

bacterial wilt and out-yielding the controls. Azzam (1964) reported the existence <strong>of</strong><br />

resistance in S. pimpinellifolium as well as the development <strong>of</strong> breeding lines with some<br />

degree <strong>of</strong> resistance but with unacceptable fruit quality.<br />

At the beginning <strong>of</strong> the 19<strong>60</strong>s, at Rio Piedras station, a double cross involving<br />

[„Platillo‟,( a native variety) X a S. pimpinellifolium, (<strong>of</strong> unknown identity)] X [a tomato, (<strong>of</strong><br />

unknown identity) X „Platillo‟] was made by H. Azzam (Digat & Derieux, 1968; Daly,<br />

1976) and its progenies were used by IRAT in the 19<strong>60</strong>s and 1970s [see below]. The<br />

literature also mentions „Beltville 3814 (=T414)‟ which was said to be from Puerto Rico<br />

and was used in North Carolina breeding effort [See below].<br />

North Carolina<br />

The search and breeding <strong>of</strong> bacterial wilt resistant tomatoes began long ago in the<br />

USA, at the turn <strong>of</strong> the 19 th and 20 th century in the agricultural experiment stations <strong>of</strong><br />

several States including North Carolina, <strong>Florida</strong>, Alabama, and Mississipi (Kelman,<br />

1953). After a lapse <strong>of</strong> years, efforts were resumed at the North Carolina Experiment<br />

Station in 1936 (Schmidt, 1936, 1937) and involved many horticultural scientists such as<br />

W.S. Barham, F.D. Cochran, M.E. Gardner, W.R. Henderson, J.S. Weaver, and plant<br />

pathologists such as D.E. Ellis, S.F. Jenkins, A. Kelman and N.N. Winstead (Henderson<br />

& Jenkins, 1972b). Warmke & Cruzado (1949) as well as Walter (1967) mention the<br />

existence <strong>of</strong> a US Southern <strong>Tomato</strong> Exchange Program (STEP) that was put into<br />

operation in 1946 (Yarnell, 1948), and was complemented with the National Screening<br />

Program for evaluation <strong>of</strong> PI (Plant Introduction) accessions <strong>of</strong> Lycopersicon for disease<br />

resistance. These programs are probably at the origin <strong>of</strong> the complex relationships<br />

between the breeding research carried out in North Carolina, Hawaii, <strong>Florida</strong> and Puerto<br />

Rico for bacterial wilt resistance.<br />

The two widely mentioned sources <strong>of</strong> resistance <strong>of</strong> North Carolina breeding material<br />

are S. lycopersicum var. cerasiforme „PI 129080‟ (=T 702) from Colombia (initially<br />

classified as L. pimpinellifolium -Henderson & Jenkins, 1972b) and (ii) S. lycopersicum<br />

var. pyriforme „Beltsville No. 3814‟ (=T 414) (Henderson & Jenkins, 1972a & b; Laterrot<br />

et al., 1978; Hanson et al., 1998). „Beltsville No. 3814‟ also named „P.I. No. 3814‟ by<br />

Kelman (1953) originated in Puerto Rico according to this author and others (Winstead<br />

& Kelman, 1952; Henderson & Jenkins, 1972a & b) without further details. Thurston<br />

(1976) also said that it is a selection from Puerto Rico. However the name <strong>of</strong> this line<br />

and the fact that it has a PI number both suggest that „Beltsville No. 3814‟ was<br />

associated with the USDA, Beltsville (Maryland). Perhaps USDA researchers were<br />

collaborating with Puerto Rican researchers. „T414‟ displayed, as other bacterial wilt<br />

8


esistant lines, a specific bitter taste with lasting burning sensation, and it was used by<br />

Borchers & Nevin (1954) for setting up a quantitative chemical test <strong>of</strong> the alkaloids<br />

responsible <strong>of</strong> this taste. Another source <strong>of</strong> resistance, S. lycopersicum „Mulua‟ from<br />

Guatemala, is mentioned by Winstead & Kelman (1952) and by Suzuki et al. (1964)<br />

[who refer to Winstead & Kelman (1952) as well as to a personal communication <strong>of</strong> D.E.<br />

Ellis]. According to Winstead & Kelman (1952), „Mulua‟ yielded resistant breeding<br />

material after an initial cross with „Rutgers‟. Suzuki et al. (1964, p.99) still referring to<br />

Winstead & Kelman (1952), mention also a „T-141‟ from Puerto Rico as another source<br />

<strong>of</strong> resistance used in North Carolina, though these latter authors mention „T414‟ and not<br />

„T-141‟. The identity <strong>of</strong> „T-141‟ is henceforth doubtful, either a mistyping <strong>of</strong> „T414‟ by<br />

Suzuki et al. (1964) or another line not reported in any other source we found.<br />

To sum up, the cherry tomato „PI 129080‟ (=T 702) from Colombia, the pear shaped<br />

tomato „Beltsville No. 3814‟ (=T 414) and the tomato „Mulua‟ from Guatemala, have<br />

been included in NC breeding programs as genitors <strong>of</strong> bacterial wilt resistance.<br />

„Venus‟ and „Saturn‟, released in the early 1970s (Henderson & Jenkins, 1972a & b)<br />

are the best known commercial varieties with resistance to bacterial wilt issued from the<br />

North Carolina State program. Their pedigrees are provided in Fig. 2, and their<br />

phylogenic relationship with two other NC lines, „MR4‟ and „NC 72 TR 4-4‟, is provided<br />

in Fig.3.<br />

Hawaii<br />

D.C. McGuire, J.C. Gilbert and J.C. Acosta (breeders) as well as I.W. Buddenhagen<br />

(pathologist) are among the scientists having worked on tomato resistance to bacterial<br />

wilt in the course <strong>of</strong> the 1950s and 19<strong>60</strong>s. Breeding for resistance in commercial type<br />

tomatoes was confined first (prior to 1955) to crossing root knot nematode resistant<br />

Hawaii lines and North Carolina bacterial wilt tolerant lines (Acosta et al., 1963, 1964).<br />

Acosta (1963) indicated that several North Carolina lines which had been bred for<br />

bacterial wilt resistance, proved to be intermediate in wilt susceptibility under Hawaiian<br />

conditions. In 1953 a new source <strong>of</strong> resistance, S. pimpinellifolium „PI 127805A‟,<br />

originating from Peru, was “obtained” [sic] 5 and field selected in Hawaii through 9<br />

generations (Acosta et al., 1964). This accession would be at the origin <strong>of</strong> the line<br />

„5808-2‟ (Mohanakumaran et al., 1967). Acosta (1963) writing the name as „HES 5808-<br />

2‟, mentions that it is an inbred line <strong>of</strong> L. pimpinellifolium obtained by D.C. McGuire, but<br />

he does not refer to any PI number. The commercial variety „Kewalo‟ (Fig. 4),<br />

developed by Gilbert et al. (1974), recombines the resistance to bacterial wilt originating<br />

from „PI 127805A‟ with root-knot nematode resistance(gene Mi) and other useful traits<br />

from „Anahu‟, a local tomato, and its derivative „Kalohi‟.<br />

„Hawaii 7996‟ (H7996), „Hawaii 7997‟ (H7997) and „Hawaii 7998‟ (H7998) were later<br />

bred by J.C. Gilbert in the 1970s (Scott et al., 2005) and it has been reported in the<br />

literature (Hanson et al., 1998; Balatero & Hautea, 2001; Scott et al., 2005) that these<br />

lines had resistance derived from PI 127805A. However, correspondence dated<br />

October 1983 from J. Tanaka (Assistant Horticulturist at Hawaii <strong>University</strong>) to J. Scott<br />

indicates that the 3 mentioned Hawaiian lines and five others („H7975‟, „H7976‟,<br />

„H7981‟, „H7982‟, „H7983‟) are sister lines selected from a initially highly variable<br />

5 The word “obtained” in this sentence is quite imprecise, since it might mean “received from someone” or<br />

“obtained by breeding”.<br />

9


accession named „HSBW‟, which acronym might mean „Hot Set Bacterial Wilt‟. This<br />

enigmatic accession, delivered to J.C. Gilbert via an unidentified way and planted first in<br />

1973, displayed a high level <strong>of</strong> bacterial wilt resistance in hot tropical areas. An earlier<br />

correspondence, dated March 1978, from J.C. Gilbert to H. Laterrot (INRA) indicates<br />

that „Hawaii 7996‟ could be cited as having been selected at the <strong>University</strong> <strong>of</strong> Hawaii for<br />

bacterial wilt resistance, and as having its origin somewhere in the Philippines. J.C.<br />

Gilbert admitted in this letter that no publications had been specifically written for this<br />

line, and that he was not fully satisfied with it because <strong>of</strong> its flavour due to alkaloid<br />

residues in the ripe fruit. He recommended to using it as a rootstock or as a parent to be<br />

crossed with another parent <strong>of</strong> good flavour and some bacterial wilt resistance, for<br />

making F1s. Laterrot et al. (1978) also mentioned as a personal communication <strong>of</strong><br />

Gilbert, a Philippine source at the origin <strong>of</strong> „Hawaii 7996‟. H. Laterrot recorded in his<br />

handwritten notes, based on Kaan personal communication, that „Hawaii 7996‟ was a<br />

selection made in „Hotset X Philippine tomato‟ and that it had very small fruits and a<br />

determinate growth habit. Given the absence <strong>of</strong> further written details, it is probably<br />

impossible to unravel further the pedigrees <strong>of</strong> „HSBW‟ and „Hawaii 7996‟.<br />

In conclusion, a close look at the dispersed information relative to the breeding<br />

programs <strong>of</strong> Hawaii <strong>University</strong> indicates that several sources <strong>of</strong> resistance have been<br />

used successively there, first North Carolina material, then „PI 127805A‟ and lastly<br />

Philippines material. It is possible (or probable), that J.C. Gilbert recombined these<br />

sources along the time in his breeding material, in one way or another. Breeding is an<br />

art as much as a science, and the exact pedigree <strong>of</strong> the most famous bacterial wilt<br />

resistant line „Hawaii 7996‟ will probably remain the secret <strong>of</strong> the breeding genius <strong>of</strong> the<br />

late J.C. Gilbert.<br />

<strong>Florida</strong><br />

According to Sonoda et al. (1979) the first attempts to search for bacterial wilt<br />

resistance in <strong>Florida</strong> started over one century ago, but the breeding efforts took a real<br />

momentum in the late 1970s. The original sources <strong>of</strong> resistance used were „Hawaii<br />

7997‟, S. lycopersicum var. cerasiforme „CRA 66‟ and S. lycopersicum „PI 126408‟. The<br />

latter is one <strong>of</strong> the 28 PI accessions determined as resistant to bacterial wilt out <strong>of</strong> 909<br />

accessions tested (Barham & Ellis, 1951). However most <strong>of</strong> the material derived in<br />

<strong>Florida</strong> utilized „Hawaii 7997‟. Attempts to pyramid resistance genes in the early 1980‟s<br />

were not successful as there were no molecular markers to identify the genes in<br />

resistant plants. No lines were developed that had resistance greater than any <strong>of</strong> the<br />

sources, so there was no evidence that improvements were made under <strong>Florida</strong><br />

conditions. Over the years it was evident that it was difficult to attain large fruit with high<br />

resistance levels. In 1995 „Neptune‟ (Fig.5), a line with larger fruit size than „Hawaii<br />

7997‟, was released, but its resistance level was less than that <strong>of</strong> „Hawaii 7997‟ (Scott et<br />

al., 1995a), and when tested in the world wide test (as Fla. 7421) „Neptune‟ also<br />

displayed a much narrower spectrum <strong>of</strong> resistance (Wang et al., 1998). Breeding efforts<br />

then focused on taking lines like „Neptune‟ and crossing them back to „Hawaii 7997‟ to<br />

attain large fruited lines with high resistance levels. At first, new lines were developed<br />

with moderate fruit size and high resistance. The next crosses were with very large<br />

fruited susceptible inbreds. From this work the sister lines „Fla. 8109‟ and „Fla. 8109B‟<br />

were developed (Scott et al., 2003) and further crossing provided new inbreds with high<br />

10


esistance and very large fruit (Scott et al., 2009). Hypothetically, „Fla. 8109‟ and the<br />

lines developed thereafter contain a resistance gene, missing in „Neptune‟, that was<br />

unlinked from a gene preventing large fruit formation, but this has not been elucidated<br />

yet.<br />

Japan<br />

In Japan, development <strong>of</strong> bacterial wilt resistance in tomato (and eggplant) started<br />

as early as 1951 and was based on the use <strong>of</strong> North Carolina lines. „OTB-1‟ and „OTB-<br />

2‟ are self pollinated <strong>of</strong>fspring obtained in the 1950s respectively from „NC1953-<strong>60</strong>N‟<br />

and „NC1953-64N‟ (Suzuki et al., 1964). According to later reports and papers published<br />

[in Japanese] by the Ministry <strong>of</strong> Agriculture and Forestry (H. Fukuoka 6 , pers. com.)<br />

„OTB-2‟ was segregating for several traits including bacterial wilt resistance (but was<br />

fixed for Fusarium wilt resistance) and was submitted to further screening for bacterial<br />

wilt resistance and further selfing. In 1969 „BF-Okitsu 101‟ was obtained 7 from this<br />

process. „OTB1‟ and „OTB2‟ were described in 1964 by IRAT (French West Indies) as<br />

possessing the traits <strong>of</strong> the Puerto Rican S. pimpinellifolium, but with markedly bigger<br />

fruits and exceptional fruit productivity, together with a good behaviour towards viruses.<br />

Philippines<br />

In Philippines, breeding was established as early as 1954 by T.L. York and J.R.<br />

Deanon who evaluated local and foreign accessions with known resistance to bacterial<br />

wilt (Deanon, 1988). The exact origin <strong>of</strong> the resistance source(s) used in the Philippines<br />

breeding scheme is not found in the literature and hence remains confusing (Deanon,<br />

1988; Wang et al., 1998). Empig et al. (1962) report some resistance in Philippine<br />

native material, such as „Los Baños native‟ which has possibly been used in the local<br />

breeding research. J. Acosta 8 conducted research on the inheritance <strong>of</strong> tomato bacterial<br />

wilt resistance at the <strong>University</strong> <strong>of</strong> Hawaii (Acosta et al., 1964) and one can hypothesize<br />

(i) that he took Philippine material to Hawaii 9 and conversely (ii) that he brought material<br />

back home (to the Philippines). North Carolina material entered Philippines breeding<br />

program according to Mew & Ho (1977). These authors, on the basis <strong>of</strong> a personal<br />

communication <strong>of</strong> J.R. Deanon, indicate that „Venus‟ (North Carolina line) entered the<br />

pedigree <strong>of</strong> the Philippine line „UPCA1169‟, together with a „CA64-1169‟ <strong>of</strong> unmentioned<br />

origin (Figure 1). „UPCA1169‟ is itself at the origin <strong>of</strong> other Philippines<br />

material such as „VC8-1-2‟ and „VC9-1‟ (Mew & Ho, 1977; Wang et al., 1998; Scott et<br />

al., 2005). The origin(s) <strong>of</strong> the resistance <strong>of</strong> other valuable Philippine material, such as<br />

„TML46‟, „TML114‟, „R3034‟, or „HSBW‟ mentioned in the Hawaii section is not known.<br />

6<br />

Dr H. Fukuoka, National Institute <strong>of</strong> Vegetable and Tea Science, Kusawa 3<strong>60</strong>, Ano, Tsu, Mie 514-2392,<br />

Japan.<br />

7<br />

„BF-Okitsu 101‟ was obtained by A. Kotani, T. Kuriyama, H. Shimada-Mochizuki, S. Sakuma, and I.<br />

Suzuki (H. Fukuoka, pers. com.).<br />

8<br />

According to http://www.t<strong>of</strong>il.ph/awardee_pr<strong>of</strong>ile.php?id=78, J Acosta won a Rockefeller scholarship to<br />

the <strong>University</strong> <strong>of</strong> Hawaii in 1958. This is also indicated in Acosta (1963).<br />

9<br />

This hypothesis is consistent with the information <strong>of</strong> Gilbert to Laterrot (Laterrot et al., 1978) that a<br />

Philippine source had been used in Hawaii and is at the origin <strong>of</strong> „Hawaii 7996‟.<br />

11


French West Indies (INRA & IRAT) and Burkina Faso (IRAT)<br />

In the French West Indies, the research on tomato bacterial wilt resistance started in<br />

1963 at IRAT, and in 1964 at INRA, with some collaboration between the two institutes.<br />

According to Cordeil & Digat (1967) a collection from Rio Pedras station <strong>of</strong> the<br />

<strong>University</strong> <strong>of</strong> Puerto Rico was introduced at IRAT Guadeloupe beginning <strong>of</strong> 1964. These<br />

authors mention a variable tolerance to bacterial wilt <strong>of</strong> some lines such as „199 PR‟,<br />

„Platillo 78‟ and L. pimpinellifolium under local conditions. „199 UPR‟, a derivative from<br />

the double cross made at Puerto Rico <strong>University</strong> [„Platillo‟ X S. pimpinellifolium] X [a<br />

tomato <strong>of</strong> unknown identity X „Platillo‟] -see above-, was chosen for its good tolerance to<br />

bacterial wilt (Daly, 1976). After pedigree selection, the F8 lines „199 UPR -39.15‟ and<br />

„199 UPR -39.16‟ were obtained by Daly (1976). These lines were described as having<br />

small watery and not fleshy fruits, with greenish gel around the seeds, and displaying<br />

many concentric cracks (IRAT, 1965; Cordeil & Digat, 1967). Both were crossed with<br />

„Floralou‟, a variety <strong>of</strong> good quantitative and qualitative yield in the conditions <strong>of</strong> the<br />

French West Indies (Cordeil & Digat, 1967; Digat & Derieux, 1968; Daly, 1976). After<br />

pedigree selection, the lines „IRAT L3‟ (Daly, 1976; Laterrot et al., 1978) -Fig.6- and<br />

„Farako-Ba‟ (D‟Arondel de Haye, unpubl., IRAT, 1974, 1975; Laterrot et al., 1978;<br />

Rouamba et al., 1988) were respectively obtained in Martinique and Burkina Faso.<br />

The INRA program in Guadeloupe was based on the use <strong>of</strong> „CRA66‟. The origin <strong>of</strong><br />

this line is still controversial. It is given by Digat & Derieux (1968) and Anaïs (pers.<br />

com.) as one <strong>of</strong> the many small fruited tomato ecotypes grown in Guadeloupe at that<br />

time, and known there as „tomadoses‟. Digat & Derieux described „CRA66‟ as a<br />

vigorous line bearing small, pink, and bitter fruits with resistance to bacterial wilt.<br />

However another origin <strong>of</strong> CRA66 is suggested by Kaan (pers. com.) as being „OTB2‟,<br />

because the phenotype <strong>of</strong> „CRA66‟ is very different from the phenotype <strong>of</strong> the<br />

tomadoses: the plant is more vigorous, the leaves have a spreading leaf growth habit,<br />

the flowers display an exerted style, the fruits are fasciated and although <strong>of</strong> pink colour,<br />

they have a larger size than tomadoses fruits. There is a green gel inside the fruit, the<br />

taste <strong>of</strong> which is more acrid and extremely bitter, and its bacterial wilt resistance level is<br />

higher. However, Suzuki et al. (1964) reported „OTB1‟ was pink fruited, whereas they<br />

described „OTB2‟ as red fruited (but segregating for several traits). As IRAT<br />

experimented in Guadeloupe „OTB1‟, „OTB2‟ and many other bacterial wilt resistant<br />

lines in the mid- 19<strong>60</strong>s (IRAT 1964, 1965), it is plausible that valuable material „reached‟<br />

INRA by some path and perhaps under a distorted identity for some reason. If „CRA66‟<br />

= „OTB2‟, then all the French West Indies material would derive indirectly from North<br />

Carolina material -see Fig. 1-. Comparison <strong>of</strong> molecular fingerprinting <strong>of</strong> „OTB2‟ and<br />

„CRA66‟ is necessary for elucidating the identity <strong>of</strong> these two lines.<br />

Crosses started in the 19<strong>60</strong>s between „CRA66‟ and the susceptible commercial type<br />

„Floradel‟ resulted in the varieties „Cranita‟ (Fig.7), „CRA74‟ & „Carette‟ (Fig. 8 & 9), and<br />

„Caraibo‟ (= „Caraibe‟) -Fig. 9- that were respectively released in 1971, 1973, 1975, and<br />

1980 (Anaïs, 1986, Anaïs 1997). „CRA84-26-3‟ and „Caravel‟ are <strong>of</strong>fspring <strong>of</strong> the cross<br />

[„Caraibo‟ X „HC8‟] where „HC8‟ is a heat-tolerant and bacterial wilt resistant line derived<br />

from the cross „Hawaii 7996‟ x „Campbell 28‟. Later on „Caraibo‟, „HC8‟ and „Caravel‟<br />

were used as genitors in a recurrent selection for recombining their bacterial wilt<br />

12


esistance and agro-climatic adaptation to French West Indies conditions, together with<br />

resistance to Begomoviruses (Ano et al., 2002; Ano et al., 2004).<br />

Taiwan<br />

AVRDC started tomato breeding in 1972, and from 1973-1980 emphasized the<br />

development <strong>of</strong> breeding lines with heat-tolerance and bacterial wilt resistance (Opena<br />

et al., 1989). Sources <strong>of</strong> BW resistance frequently used as parents in AVRDC breeding<br />

included varieties „Venus‟ and „Saturn‟ from North Carolina State <strong>University</strong> and lines<br />

„VC 11-3-1-8‟, „VC 8-1-2-7‟, „VC 48-1‟ from the <strong>University</strong> <strong>of</strong> the Philippines. Most<br />

AVRDC bacterial wilt resistant lines developed in the 1970‟s such as „CL8d-0-7-1‟<br />

(derived from „VC11-1-2-1B‟ x „Venus‟), „CL9-0-0-1-3‟ (derived from „VC11-1-2-1B‟ x<br />

„Saturn‟), and „CL11d-0-2-1‟ (derived from „VC9-1-2-9B‟ x „Venus‟) were bred from<br />

crosses <strong>of</strong> these two sources. Many AVRDC lines developed in the late 1970‟s and<br />

early 1980‟s such as „CL1131‟, „CL5915‟ (Fig.10), and „CLN65‟ (Fig. 11) arose from<br />

complex crosses involving North Carolina, Philippines, or AVRDC lines with BW<br />

resistance derived from the above sources. High levels <strong>of</strong> BW resistance were detected<br />

in „L285‟, a small-fruited S. lycopersicum germplasm accession from Taiwan (Chang #1)<br />

but this source was not used at AVRDC in breeding because it was thought that its<br />

bacterial wilt resistance and small fruit size were closely associated (Opena et al.,<br />

1992). In 1985 AVRDC received resistant lines developed in Guadeloupe, including<br />

„CRA84-58-1‟ and „CRA84-26-3‟, that combined BW resistance and large fruit size. CRA<br />

lines were crossed to heat tolerant and BW resistant AVRDC lines which led to the<br />

development <strong>of</strong> AVRDC lines „CLN1462‟, „CLN1463‟ (Fig.12), „CLN1621‟, „CLN2026‟,<br />

and many others.<br />

2. Limit <strong>of</strong> the reliability <strong>of</strong> the survey: insufficient accuracy <strong>of</strong> the information<br />

The information found in the literature is <strong>of</strong>ten vague and sometimes inconsistent<br />

between publications. The absence <strong>of</strong> published pedigrees for many <strong>of</strong> the important<br />

varieties resistant to bacterial wilt is a real impediment for ascertaining the original<br />

sources <strong>of</strong> their resistance. Henceforth, Figure 1 is the result <strong>of</strong> our interpretation <strong>of</strong><br />

sometimes blurred information as exemplified below.<br />

Names <strong>of</strong> the accessions<br />

Depending on the publications, the accessions used in the various trials or breeding<br />

programs are not exactly named the same way. This is due in some cases to probable<br />

renaming such as for „199 PR‟ (Cordeil & Digat, 1967), which is also found as “199”<br />

(Digat & Derieux, 1968), „199 UPR‟ (Daly, 1976), and „UPR 199‟ (Kaan et al., 1969).<br />

The same situation is encountered for „P.I. No. 3814‟ (Kelman, 1953), also found as<br />

„Beltsville #3814‟ (Henderson & Jenkins, 1972a; Hanson et al., 1998), „Beltsville No.<br />

3814‟ (Henderson & Jenkins, 1972b), and „Beltsville 3814‟ (Laterrot et al., 1978).<br />

However other variations <strong>of</strong> names such as for „H7997‟ also found as „H7997S‟ and<br />

„H7997L‟, „H7998‟ also found as „H7998S‟ and „H7998M‟, or „CRA66‟ found as<br />

„CRA66P‟ and „CRA66S‟ in Wang et al. (1998) and Scott et al. (2005) do not mean<br />

further selections but encode only the name <strong>of</strong> the person who provided the seeds used<br />

in the trials. These latter authors mention „BF-Okitsu‟, otherwise found as „BF-Okitsu<br />

101‟ in Laterrot (1999).<br />

13


Despite the word “Okitsu” (location in Japan where breeding was carried out, H.<br />

Fukuoka, pers. com.) is present in the names <strong>of</strong> bacterial wilt resistant „BF-Okitsu 101‟<br />

and <strong>of</strong> bacterial canker resistant „Okitsu Sozai n°1 10 (Kuriyama & Kuniyasu, 1974),<br />

these accessions should not be confused with each other.<br />

Contradictory data found in the literature<br />

Apart from the controversy concerning the identity <strong>of</strong> „CRA66‟, other contradictory<br />

information is found in the literature. Particularly in the case <strong>of</strong> „Hawaii 7996‟and the<br />

other Hawaii 79## accessions, resistance was said to originate from a Philippines<br />

accession according to several personal communications between breeders in the<br />

1970s, but according to Acosta et al. (1964) „PI 127805A‟ and North Carolina material<br />

are at the origin <strong>of</strong> the resistance to bacterial wilt <strong>of</strong> Hawaiian material. It is not possible<br />

to reconcile these conflicting statements other than to say that the various sources <strong>of</strong><br />

resistance were introduced to the Hawaiian program over time. Therefore we left all<br />

options on Figure 1.<br />

Unclear origin <strong>of</strong> some accessions<br />

We found no original information on the origin or pedigree <strong>of</strong> „Beltsville 3814‟ and<br />

further search <strong>of</strong> 19<strong>60</strong>s and 1970s publications <strong>of</strong> Beltsville USDA research station is<br />

needed. Another case concerns the unclear relationship between the Peruvian S.<br />

pimpinellifolium „PI 127805‟ collected in 1938 and maintained by the USDA Northeast<br />

Regional PI Station and „PI 127805A‟ obtained in 1953 and field selected for resistance<br />

through 9 generations in Hawaii according to Acosta et al. (1964). Furthermore, „5808-<br />

2‟ was derived from „PI 127805A‟ according to Mohanakumaran et al. (1967) but is<br />

given as an inbred line <strong>of</strong> an anonymous L. pimpinellifolium according to Acosta (1963).<br />

Likeness between accessions<br />

Phenotypically „BF-Okitsu‟ is very close to „Hawaii 7998‟ (J. Scott and J. Wang, pers.<br />

obs.), though the published information (Fig.1) does not indicate a closer relationship<br />

than the presence <strong>of</strong> North Carolina material in both their pedigrees. Comparison <strong>of</strong><br />

their molecular fingerprinting would be worthwhile to clarify their genetic relationship.<br />

3. Sources <strong>of</strong> resistance and inheritance patterns<br />

The global survey <strong>of</strong> the major breeding research for tomato bacterial wilt resistance<br />

points out that the main sources <strong>of</strong> resistance used worldwide are perhaps only half a<br />

dozen accessions <strong>of</strong> S. pimpinellifolium („PI 127805A‟), S. lycopersicum var.<br />

cerasiforme („PI 129080‟), S. lycopersicum var. pyriforme („Beltsville 3814‟), a progeny<br />

from a cross between a S. pimpinellifolium and S. lycopersicum („199 UPR‟), S.<br />

lycopersicum („Mulua‟) and the enigmatic Philippine accession used in Hawaii in the<br />

1970s. This number could be extended to seven accessions if one adds „CRA66‟ by<br />

assuming it is a Guadeloupe tomadose and not a progeny from „OTB2‟. Whether there<br />

are 6 or 7 main sources <strong>of</strong> resistance, the genetic basis <strong>of</strong> tomato resistance<br />

mechanisms used worldwide for breeding is quite narrow. North Carolina material has<br />

been integrated in most <strong>of</strong> the other breeding programs, in particular those <strong>of</strong> Hawaii,<br />

Japan, Philippines and Taiwan. By combining NC material, or not, with other sources <strong>of</strong><br />

10 „Okitsu Sozai n°1‟ resistance to Clavibacter michiganensis (formerly named Corynebacterium michiganense) originates from S. habrochaites (L. hirsutum var.<br />

glabratum) „PI 134418‟.<br />

14


esistance, and breeding in geographical areas where different strains <strong>of</strong> bacterial wilt<br />

are prevalent, the breeders exploited the genetic potentialities at their disposal, and<br />

created material resisting a wide range <strong>of</strong> bacterial wilt strains as exemplified by the<br />

results obtained in the worldwide trial carried out by Wang et al. (1998). Indeed, the top<br />

nine resistant accessions which had high levels <strong>of</strong> resistance in almost all 12 locations<br />

tested (>90% survival on average) were developed in Hawaii („H7996‟, „H7997 S and<br />

L‟, „H7998 S and M‟), Philippines („TML46‟ and „TML114‟, „R3034‟), and Japan („BF-<br />

Okitsu‟).<br />

Other sources <strong>of</strong> resistance in wild tomatoes have been described sporadically in<br />

the literature in accessions <strong>of</strong> the same species (S. pimpinellifolium, cherry and pear S.<br />

lycopersicum) as well as in other wild relatives <strong>of</strong> tomato (Laterrot & Kaan, 1977;<br />

Jaworski et al., 1987; Anaïs, 1997; Mohamed et al., 1997; Carmeille et al. 2006b; Hai et<br />

al., 2008). From these results, it seems that resistance to bacterial wilt is not that<br />

frequent in tomato germplasm. The high genetic diversity displayed by Ralstonia<br />

solanacearum complex (Fegan & Prior, 2005) and the strong interactions between<br />

strains and resistant material (Lebeau et al., 2011) suggest that various resistance<br />

mechanisms, including strain specific ones, exist in tomato resistant germplasm.<br />

Therefore, breeders have some opportunities at their disposal to enlarge the relatively<br />

narrow range <strong>of</strong> resistance sources primarily used so far, and to continue accumulating<br />

different mechanisms <strong>of</strong> resistance in tomato genotypes to obtain better stability <strong>of</strong><br />

resistance in different environments. However, they might be limited by the fact that<br />

some bacterial strains are not controlled by any resistant accession (see section 5.<br />

below).<br />

Inheritance studies have focused mostly on F2, F3 and RILs progenies <strong>of</strong> „Hawaii<br />

7996‟ crossed with the susceptible „WVa700‟ (S. pimpinellifolium). Several QTLs <strong>of</strong><br />

resistance have been identified, including a major QTL on chromosome 6 effective<br />

towards „GMI8217‟, an isolate <strong>of</strong> race 1 biovar 1 (Thoquet et al. 1996a & b); <strong>of</strong> „Pss4‟,<br />

an isolate <strong>of</strong> race 1, biovar 3, phylotype 1 (Wang et al., 1998); and „JT516‟, an isolate<br />

representative <strong>of</strong> race 3-phylotype II (Carmeille et al., 2006a). Wang et al. (2000)<br />

identified another major QTL <strong>of</strong> resistance <strong>of</strong> „Hawaii 7996‟ effective towards „Pss4‟ and<br />

located on chromosome 12. Several minor QTLs located on chromosomes 3, 4, 8,<br />

some <strong>of</strong> which having a season dependent expression (Carmeille et al., 2006a) have<br />

also been identified. Mejia et al (2009) confirmed the QTLs on chromosome 6 and 12<br />

were associated with resistance in „Hawaii 7996‟ observed in Guatemala field evaluation<br />

against local phylotype I strains. Work is ongoing at AVRDC for adding markers to the<br />

QTLs regions <strong>of</strong> „Hawaii 7996‟ associated to resistance to bacterial strains belonging to<br />

phylotype I, in order to develop tools for marker assisted selection.<br />

QTLs <strong>of</strong> resistance <strong>of</strong> the resistant line „L285‟ effective towards „UW364‟ an isolate<br />

<strong>of</strong> race 1, biovar 4, have also been located on chromosomes 6, as well as on<br />

chromosomes 7 and 10 (Danesh et al., 1994). Pattern <strong>of</strong> resistance derived from<br />

CRA66 has been described as polygenic (Prior et al., 1994) but no molecular data are<br />

available for this source.<br />

15


4. Resistance to bacterial wilt is sometimes associated to resistance to other<br />

bacterial and fungal pathogens<br />

Kaan & Laterrot (1977) were the first to mention a quantitative resistance to<br />

Fusarium wilt (Fusarium oxysporum f.sp. lycopersici) race 2 in lines bred for bacterial<br />

wilt resistance in Puerto Rico, North Carolina, and the French West Indies and they<br />

suggested this relation to be more likely <strong>of</strong> a pleiotropic nature than being due to a<br />

genetic linkage. Further, Laterrot & Kaan (1978) as well as Laterrot et al. (1978) have<br />

pointed out the frequent association <strong>of</strong> both these partial resistances with the partial<br />

resistance to a third vascular disease, i.e. bacterial canker caused by Clavibacter<br />

michiganensis. These authors exemplified this relation between the resistance to the<br />

three diseases on a set <strong>of</strong> varieties bred for bacterial wilt in North Carolina („NC 72 TR<br />

4-4‟, „MR4‟, „Venus‟ and „Saturn‟), in the French West Indies („Carette‟, „53 RC‟, „IRAT<br />

L3‟), in Burkina Faso („Farako-Ba‟), and in Hawaii („Hawaii 7996‟). They checked that<br />

the resistance to Fusarium wilt race 2 observed was not due to the gene I-2. „Kewalo‟<br />

was the only variety resistant to bacterial wilt that they found susceptible to bacterial<br />

canker, and <strong>of</strong> a low level <strong>of</strong> resistance to Fusarium wilt race 2. This exception suggests<br />

that the mechanisms controlling the resistance to bacterial wilt can be dissociated, in<br />

some genotypes, from those involved in the resistance to the two other vascular<br />

diseases. Unfortunately Laterrot & Kaan (1978) and Laterrot et al. (1978) did not test<br />

bacterial wilt resistant material created in the Philippines and Taiwan, and the general<br />

picture <strong>of</strong> the relationships between the resistance to bacterial wilt and the two other<br />

vascular diseases is incomplete.<br />

The reciprocal relationship between the resistance to bacterial canker and the two<br />

other diseases is verified in some cases, as for instance for „Okitsu Sozai n°1‟ whose<br />

resistance to bacterial canker originates from S. hirsutum var. glabratum PI 134418.<br />

This line is also partially resistant to Fusarium wilt race 2 (Laterrot, unpub. results) as<br />

well as to some strains <strong>of</strong> Ralstonia solanacearum (Lebeau et al., 2011). But „Plovdiv 8-<br />

12‟, the resistance <strong>of</strong> which to bacterial canker originates from a S. pimpinellifolium, is<br />

susceptible to Fusarium wilt race 2 (Laterrot et al. 1978); its behaviour towards bacterial<br />

wilt is unknown.<br />

The bacterial wilt resistant „Hawaii 7998‟ was resistant to a race <strong>of</strong> bacterial spot<br />

later confirmed to be race T1 (Scott & Jones 1986). Later, Scott et al (1995b)<br />

discovered „Hawaii 7981‟, a line susceptible to race T1, was resistant to bacterial spot<br />

race T3 while „Hawaii 7998‟ was susceptible. Thus, bacterial spot resistance has been<br />

found in bacterial wilt resistant lines from Hawaii. For race T1, resistance to bacterial<br />

wilt was not correlated with bacterial spot resistance in an F2 population suggesting<br />

separate genes were responsible for resistance to each disease (Scott et al., 1988).<br />

Resistance to bacterial spot race T4 has been seen in some bacterial wilt resistant<br />

breeding lines derived from „Hawaii 7997‟ even though this line is not resistant to race<br />

T4 (Scott et al., 2010). The genetic control <strong>of</strong> this response is not known but again<br />

illustrates the association <strong>of</strong> bacterial wilt resistance with resistance to another disease.<br />

A further example is that „Hawaii 7998‟ had resistance to bacterial canker (Panthee and<br />

Gardner, 2010) especially the foliar phase. These examples and those mentioned<br />

before indicate the existence <strong>of</strong> frequent associations between the resistance to some<br />

16


acteria (vascular or not) and even fungi (vascular) within single tomato genotypes.<br />

Hence, Scott (1997) advised that when searching for resistance to a given bacterial<br />

pathogen, breeders should not overlook genotypes resistant to other bacteria. In this<br />

regard, resistance genes can emerge by combining genotypes with some reported<br />

bacterial resistance even when one <strong>of</strong> the parent lines does not show resistance to a<br />

particular disease/race. For instance, Hutton et al. (2010) reported that an allele from<br />

„Hawaii 7998‟ was associated with resistance to bacterial spot race T4 even though this<br />

line was susceptible to race T4, suggesting epistasis with genes from the other parent<br />

that was T4 resistant. Another possibility is that the pleiotropic nature <strong>of</strong> resistance in<br />

tomato against several diseases could be associated with higher level <strong>of</strong> expression <strong>of</strong><br />

systemic acquired resistance (SAR). Lin et al (2004) found over-expression <strong>of</strong><br />

Arabidopsis NPR1 (non-expresser <strong>of</strong> PR genes) gene in a susceptible tomato line could<br />

enhance resistance to both Fusarium wilt race 2, bacterial wilt, as well as bacterial spot<br />

and gray leaf spot. In this study, they did not test the enhanced resistance against the<br />

bacterial canker pathogen.<br />

Lastly, Rouamba et al. (1988) tested material resistant to bacterial wilt towards a<br />

fourth vascular disease, the Verticillium wilt caused by Verticillium race 2, but they found<br />

only a loose relationship between both resistances since only two („IRAT L3‟ and<br />

„Farako-Ba‟) out <strong>of</strong> ten lines tested, were resistant to both diseases.<br />

5. Grafting <strong>of</strong> susceptible cultivars on resistant rootstocks, an alternative to<br />

resistant cultivars<br />

Given the difficulty to create highly resistant lines with good commercial quality,<br />

grafting susceptible scions on resistant rootstocks remains an alternative to the<br />

cultivation <strong>of</strong> resistant cultivars. As early as 1969, Gilbert and Chin pointed out that<br />

highly resistant tomato lines with poor fruit quality, could be efficiently used as<br />

rootstocks on which susceptible scions <strong>of</strong> good fruit quality could be grafted. These<br />

authors reported the bacterial wilt resistance <strong>of</strong> the root system as being effective even<br />

when completely susceptible scions are used. This technique is still used nowadays<br />

(Cardoso et al., 2006; Wang et al., 2009), though the protection provided by the<br />

rootstock is sometimes incomplete (Nakaho et al., 2004). Indeed, tomato resistant<br />

material harbours the bacteria symptomlessly and the resistance is associated with the<br />

ability <strong>of</strong> the plant to restrict bacteria invasiveness (Grimault et al., 1993). The absence<br />

<strong>of</strong> incompatible interactions in tomato resistant lines (no symptoms, no latent infection)<br />

has been confirmed by Lebeau et al. (2011) by testing a core collection <strong>of</strong> bacterial wilt<br />

resistant accessions with a core collection <strong>of</strong> bacterial strains.<br />

Eggplant is an alternative rootstock for cultivating susceptible tomatoes in<br />

contaminated conditions. It was shown to provide a better protection than tomato<br />

rootstocks (AVRDC, 1998). This result was confirmed and extended by Lebeau et al.<br />

(2011) who found that apart from common cases <strong>of</strong> latent infection for some eggplant<br />

accessions and all tomato accessions, there also exist incompatible interactions<br />

between some eggplant resistant lines and some bacterial strains. Further, some<br />

eggplant lines control bacterial strains that are not controlled by any <strong>of</strong> the tomato<br />

resistant lines tested so far, as exemplified by Carmeille et al. (2006b), Wicker et al.<br />

(2007) and Lebeau et al. (2011).<br />

17


Conclusion<br />

The earliest breeding efforts for tomato resistance to bacterial wilt started in Puerto<br />

Rico and two American States (North Carolina, Hawaii) 80 years ago followed by<br />

programs in the 1950s in Japan and the Philippines. The programs carried out by<br />

French research institutes in the Caribbean (and Burkina Faso) started during the<br />

course <strong>of</strong> the 19<strong>60</strong>s, whereas AVRDC started at the beginning <strong>of</strong> the 1970s. There<br />

were many exchanges <strong>of</strong> material between the breeding programs for bacterial wilt<br />

resistance carried out in several US States, and between them and the Philippines.<br />

AVRDC is using and recombining now the resistances bred in the USA, the Philippines<br />

and the French West Indies. The breeding material created in Japan was mostly used<br />

locally, and perhaps also in Guadeloupe, if one assumes that the Japanese line „OTB2‟<br />

is equivalent to „CRA66‟, which is not certain.<br />

Our attempt to draw a general picture <strong>of</strong> the main sources <strong>of</strong> resistance to bacterial<br />

wilt, <strong>of</strong> the main breeding programs for this resistance, <strong>of</strong> their most frequently<br />

mentioned resistant varieties, and <strong>of</strong> the relationships between varieties, is based on a<br />

careful work <strong>of</strong> assembling bits and pieces dispersed in many publications. Given the<br />

unavailability <strong>of</strong> complete information, it is not now possible to come up with a better<br />

picture than the one we present here, though more information can emerge out <strong>of</strong><br />

archives <strong>of</strong> the scientists, Universities and research institutes involved. Henceforth the<br />

synthesis provided here displays the most probable general picture, but it may include<br />

some mistakes in the absence <strong>of</strong> further information.<br />

We added to this survey complementary information on some peculiarities <strong>of</strong> tomato<br />

bacterial wilt resistance. The frequent association <strong>of</strong> bacterial wilt resistance with<br />

resistance to other bacterial or fungal diseases should be <strong>of</strong> strong interest for breeding<br />

and/or research on its genetic basis. Breeding over many decades succeeded in<br />

eliminating a number <strong>of</strong> undesirable traits initially associated to high level <strong>of</strong> bacterial<br />

wilt resistance, but breeding efforts are still ongoing for obtaining large fruit size in<br />

resistant material. The adaptation <strong>of</strong> the breeding material to hot environmental<br />

conditions is <strong>of</strong>ten mentioned as necessary for obtaining breeding lines which are<br />

resistant and agronomically acceptable.<br />

On the whole, we hope this paper to be useful for further research using the plant<br />

material mentioned, in particular for comparative genetic studies and breeding<br />

concerning the resistance <strong>of</strong> tomato to bacterial wilt and to other vascular diseases.<br />

Acknowledgments<br />

The authors are very grateful to Ph. Prior and E. Wicker (phyto-bacteriologists at CIRAD<br />

La Réunion Island, Mascarenes) for having motivated the authors to write this historical<br />

review, to F. Kaan and G. Anaïs (retirees <strong>of</strong> INRA Guadeloupe) for having provided<br />

precious complements <strong>of</strong> information, to H. Fukuoka (National Institute <strong>of</strong> Vegetables &<br />

Tea Science, Tsu, Mie, Japan) for having fully clarified the relationships between former<br />

Japanese scientists, former Japanese Institutes and tomato lines and for having<br />

translated key passages <strong>of</strong> Suzuki et al. (1964). We thank also the consortium <strong>of</strong> private<br />

companies (Vilmorin, Gautier Semences, DeRuiter Seeds, Enza Zaden, Nunhems, Rijk<br />

Zwaan) who financed (2007-2010) research based on the present review. Last but not<br />

least, we acknowledge Ch. Olivier (librarian <strong>of</strong> INRA GAFL, Montfavet, France), M.L.<br />

18


Abinne (librarian at INRA-CRAAG, Guadeloupe),and the librarians at North Carolina<br />

State <strong>University</strong>, the <strong>University</strong> <strong>of</strong> Hawaii, AVRDC, and the <strong>University</strong> <strong>of</strong> Puerto Rico<br />

along with Linda Wessel-Beaver for having provided reprints <strong>of</strong> numerous archives.<br />

Acronyms found in some names <strong>of</strong> tomato lines or in related literature<br />

UPR: <strong>University</strong> <strong>of</strong> Puerto Rico<br />

NCSU: North Carolina State <strong>University</strong><br />

UPLB = UPCA: <strong>University</strong> <strong>of</strong> Philippines Los Banos = <strong>University</strong> <strong>of</strong> Philippines College<br />

<strong>of</strong> Agriculture<br />

CRA: Centre de Recherche Agronomique des Antilles (INRA)<br />

19


Figure 1:<br />

General scheme <strong>of</strong> the relationships between worldwide programs and lines.<br />

Notations in color correspond to Literature Cited starting on page 23.<br />

20


origin<br />

Table 1. Summing up <strong>of</strong> the phenotype <strong>of</strong> some breeding lines created or used<br />

in the breeding programmes <strong>of</strong> North Carolina, Hawaii, <strong>Florida</strong>, Japan,<br />

Philippines, French West Indies, and Taiwan.<br />

line or<br />

accession<br />

name growth habit fruit shape fruit size<br />

North Carolina<br />

<strong>University</strong><br />

North Carolina<br />

NC 72 TR 4-4 indeterminate<br />

<strong>University</strong> MR4 indeterminate<br />

slightly<br />

flattened <strong>60</strong>-100 g red<br />

North Carolina<br />

<strong>University</strong> NC1953-<strong>60</strong>N 6,5 g<br />

North Carolina<br />

<strong>University</strong> NC19/53-64N 7,6 g<br />

North Carolina<br />

<strong>University</strong> Saturn indeterminate deep globe 100-140 g red<br />

North Carolina<br />

<strong>University</strong><br />

Hawaii<br />

Venus indeterminate slightly oblate > 180 g red<br />

<strong>University</strong> HES 5808-2 indeterminate 15g<br />

Hawaii<br />

<strong>University</strong> H7996 determinate small oblate 20-<strong>60</strong>g red<br />

Hawaii<br />

<strong>University</strong> H7997 indeterminate small oblate 30-80 g red<br />

Hawaii<br />

<strong>University</strong> H7998 indeterminate small oblate 30 g red<br />

Hawaii<br />

<strong>University</strong><br />

<strong>University</strong> <strong>of</strong><br />

Kewalo determinate flattened 140-180 g red<br />

<strong>Florida</strong> Neptune determinate 123-136g red<br />

Hort. Res.<br />

Sta.,Japan BF-Okitsu indeterminate 15-20 g red<br />

Hort. Res.<br />

Sta.,Japan OTB1 13,8 g pink<br />

Hort. Res.<br />

Sta.,Japan OTB2 30,6 g red<br />

fruit<br />

colour source<br />

Laterrot et al.<br />

(1978); INRA<br />

germplasm<br />

database<br />

Laterrot et al.<br />

(1978)<br />

Suzuki et al.<br />

(1964)<br />

Suzuki et al.<br />

(1964)<br />

Kaan et al.<br />

(1975); INRA<br />

germplasm<br />

database;<br />

Henderson &<br />

Jenkins (1972)<br />

Laterrot et al.<br />

(1978); INRA<br />

germplasm<br />

database;<br />

Henderson &<br />

Jenkins (1972)<br />

INRA germplasm<br />

database, Scott.<br />

pers. com.<br />

Wang et al.<br />

(1998), Scott et<br />

al. (2005), Scott.<br />

pers. com.<br />

Wang et al.<br />

(1998), Scott et<br />

al. (2005), Scott.<br />

pers. com.<br />

INRA germplasm<br />

database<br />

Scott et al.<br />

(1995a)<br />

Wang et al.<br />

(1998)<br />

Suzuki et al.<br />

(1964)<br />

Suzuki et al.<br />

(1964)<br />

21


Philippines<br />

<strong>University</strong> UPCA1169 determinate 20-30 g Source ?<br />

Philippines<br />

<strong>University</strong> CA-64-1169<br />

Philippines<br />

<strong>University</strong> VC8-1-2<br />

Philippines<br />

<strong>University</strong> VC9-1<br />

Philippines<br />

<strong>University</strong><br />

Philippines<br />

TML46 determinate oblate/oblong 30 g red/pink<br />

<strong>University</strong> TML114 determinate oblate/oblong 40 g red/pink<br />

Philippines<br />

<strong>University</strong> R3034<br />

INRA,<br />

Guadeloupe CRA66 indeterminate<br />

semi<br />

determinate deep oblate 30-<strong>60</strong> g red<br />

slightly<br />

flattened 20-<strong>60</strong> g pink<br />

INRA,<br />

Guadeloupe<br />

INRA,<br />

Cranita indeterminate pink<br />

Guadeloupe CRA74 indeterminate wide, deep medium<br />

INRA,<br />

Guadeloupe Carette indeterminate<br />

slightly<br />

flattened 100-140 g red<br />

INRA,<br />

Caraibo =<br />

flattened / 140-180 g /<br />

Guadeloupe<br />

INRA,<br />

Caraibe determinate oblate 150 g red<br />

Guadeloupe<br />

INRA,<br />

Caravel determinate oblate 150-300 g red<br />

Guadeloupe CRA84-26-3 determinate<br />

IRAT<br />

(Guadeloupe &<br />

Martinique) IRAT L3 indeterminate round 45 g red<br />

IRAT (Burkina<br />

Faso)<br />

AVRDC,<br />

Farako-Ba indeterminate round 140-180 g red<br />

Taiwan<br />

AVRDC,<br />

CL5915 determinate oblong 50 g red<br />

Taiwan<br />

AVRDC,<br />

CLN65 determinate oblate 70 g red<br />

Taiwan<br />

AVRDC,<br />

CLN1463 indeterminate globe 150-200 g red<br />

Taiwan L285 indeterminate plum 30 g red<br />

Wang et al.<br />

(1998)<br />

Wang et al.<br />

(1998)<br />

Wang et al.<br />

(1998)<br />

INRA germplasm<br />

database. This<br />

line is recorded<br />

as red fruited in<br />

Wang et al.<br />

(1998); Scott et<br />

al. (2005)<br />

Messiaen et<br />

al.(1978);<br />

Laterrot<br />

Kaan et al.<br />

(1975)<br />

Laterrot et al.<br />

(1978); INRA<br />

germplasm<br />

database<br />

Anais (1986);<br />

Ano et al.(2004);<br />

INRA germplasm<br />

database<br />

Wang et al.<br />

(1998)<br />

Hanson et al.<br />

(1996)<br />

(Laterrot et al.,<br />

1978); INRA<br />

germplasm<br />

database;<br />

Denoyés (1988)<br />

INRA germplasm<br />

database<br />

Wang et al.<br />

(1998)<br />

Wang et al.<br />

(1998)<br />

Wang et al.<br />

(1998)<br />

Wang et al.<br />

(1998)<br />

22


Literature cited<br />

1. Acosta J.C., 1963. Genetic analysis <strong>of</strong> bacterial wilt resistance and certain other<br />

characters in a tomato cross Lycopersicon esculentum Mill. and L. pimpinellifolium<br />

Mill. PhD Thesis, <strong>University</strong> <strong>of</strong> Hawaii (Agriculture, Plant Pathology). On line<br />

accessible at:<br />

http://scholarspace.manoa.hawaii.edu/bitstream/10125/11673/2/uhm_phd_6402645<br />

_r.pdf<br />

2. Acosta, J., Gilbert, J., and Quinon, V.L., 1964. Heritability <strong>of</strong> bacterial wilt resistance<br />

in tomato. Proceedings <strong>of</strong> the American Society for Horticultural Science 84:455-<br />

461.<br />

3. Anaïs G., 1986. Utilisation de la résistance variétale dans la lutte contre le<br />

flétrissement bactérien de la tomate Pseudomonas solanacearum E.F. Smith. Bull.<br />

Tech. D‟Information 409/411 : 449-452.<br />

4. Anaïs G., 1997. La tomate. Pp 591-<strong>60</strong>5 In : L‟Amélioration des Plantes tropicales. A.<br />

Charrier, M. Jacquot, S. Hamon, D. Nicolas (Sc. Eds), Ed. CIRAD, ORSTOM..<br />

5. Anais G., pers. com. 2010.<br />

6. Ano G., Anaïs G., Marival P., 2002. Création de variétés de tomate résistantes à<br />

Ralstonia solanacearum et PYMV, adaptées aux régions tropicales. Proceedings <strong>of</strong><br />

the XXXVIII th Meeting <strong>of</strong> the Carribean Food Crops Society, Martinique : 234-238.<br />

7. Ano G., Anaïs G., Marival P., Chidiac A., 2004. L‟amélioration de la tomate pour les<br />

régions tropicales de plaine: travaux en Guadeloupe. Les familles CRAPY associent<br />

les résistances aux Bégomovirus PYMV et TYLCV à la résistance au Ralstonia<br />

solanacearum (race 1). Phytoma, la défense des végétaux 573 : 23-25.<br />

8. AVRDC Report 1998. Asian Vegetables Research and Development Center,<br />

Taiwan.<br />

9. Azzam H., 1964. <strong>Tomato</strong> breeding for the tropics. Proc. <strong>of</strong> the 2 nd Annual Meeting <strong>of</strong><br />

the Caribbean Food Crops Society, Bridgetown, Barbados 2: 56-59.<br />

10. Balatero, C. H., and Hautea, D. M. 2001. Identification <strong>of</strong> AFLP and RGA markers<br />

associated with bacterial wilt resistance QTL derived from tomato Lycopersicon<br />

pimpinellifolium. p.225-243 in Solanaceae V: advances in taxonomy and utilization,<br />

edited by R. G. van den Berg, G. W. M. Barendse, G. M. van der Weerden and C.<br />

Mariani. Nijmegen <strong>University</strong> Press.<br />

11. Balatero C.H., Hautea D.M., Narciso J.O., Hanson P.M., 2005. QTL mapping for<br />

bacterial wilt resistance in Hawaii 7996 using AFLP, RGA and SSR markers. Pp<br />

301-308 In: Bacterial wilt: the disease and the Ralstonia solanacearum complex. C.<br />

Allen, P. Prior, A.C. Hayward (Sc. Eds), American Phytopathological Society (APS),<br />

St Paul, USA.<br />

12. Barham W.S. Ellis D.E., 1951. Sources <strong>of</strong> resistance to late blight and bacterial wilt.<br />

Rept. <strong>Tomato</strong> Genet. Coop. 1: 2.<br />

13. Borchers E.A.,Nevin C.S., 1954. Quantitative estimation <strong>of</strong> a bitter principle in<br />

tomato. Proc. Amer. Soc. Hort. Sci. 63:420-426.<br />

14. Cardoso, S. C.; Soares, A. C. F.; Brito, A. dos S.; Carvalho, L. A. de; Ledo, C. A. da<br />

S., 2006. Potential <strong>of</strong> Hawaii 7996 hybrid as rootstock for tomato cultivars. Bragantia<br />

65(1): 89-96.<br />

23


15. Carmeille, A., Caranta, C., Dintinger, J., Prior, P., Luisetti, J., and Besse, P. 2006a.<br />

Identification <strong>of</strong> QTLs for Ralstonia solanacearum race 3-phylotype II resistance in<br />

tomato. Theoretical and Applied <strong>Genetics</strong> 113 (1):110-121.<br />

16. Carmeille A., Prior P., Kodja H., Chiroleu F., Luisetti J., Besse P., 2006b. Evaluation<br />

<strong>of</strong> resistance to race 3, Biovar 2 <strong>of</strong> Ralstonia solanacearum in tomato germplasm. J.<br />

Phytopathology 154: 398-402.<br />

17. Celine V.A., Chandrmony D., Gokulapalan C., Rajamony L., 2003. Heat tolerance<br />

and bacterial wilt resistance <strong>of</strong> tomato genotypes in the humid tropics <strong>of</strong> Kerala.<br />

Rept. <strong>Tomato</strong> Genet. Coop. 53: 11:13.<br />

18. Cook M.T., 1934. Annual report <strong>of</strong> the division <strong>of</strong> botany and plant pathology<br />

(tomatoes). In Puerto Rico Univ. Agric. Expt. Sta. Ann. Rpt. (1933/1934): 131-132.<br />

19. Cook M.T., 1935. Annual report <strong>of</strong> the division <strong>of</strong> botany and plant pathology (wilt<br />

disease <strong>of</strong> tomato). In Puerto Rico Univ. Agric. Expt. Sta. Ann. Rpt. (1934/1935):<br />

25-26.<br />

20. Cordeil J., Digat B., 1967. Etude de la résistance variétale de la tomate au<br />

flétrissement bactérien en Guadeloupe et en Guyane française. Proc. <strong>of</strong> the 5 th<br />

Annual Meeting <strong>of</strong> the Caribbean Food Crop Society, Paramarimbo, Surinam, 5: 91-<br />

98.<br />

21. Daly, P. 1976. "IRAT L3" une nouvelle variété de tomate combinant plusieurs<br />

résistance aux maladies. Agronomie Tropicale 31 (4):398-402.<br />

22. Danesh D., Aarons S., Mcgill G.E., Young N.D., 1994. Genetic dissection <strong>of</strong><br />

oligogenic resistance to bacterial wilt in tomato. Molecular Plant Microbe Interaction<br />

7: 464-471.<br />

23. Daunay M.C., 1977. Une résistance de la tomate à trois maladies vasculaires.<br />

Mémoire de fin d‟Etudes, Ecole Nationale des Ingénieurs des Techniques<br />

Horticoles, Angers, FRA. Ed. INRA. 72 pp + annexes.<br />

24. Deanon, J. R. Jr. 1988. Biochemical bases <strong>of</strong> screening tomato for bacterial wilt<br />

resistance. p.83-99 In: Current problems on fruits and vegetables. Philippines<br />

Council for Agriculture Forestry and Natural Resources Research and Development,<br />

Los Banos, Laguna, Philippines.<br />

25. Deanon, Pers. com to Mew & Ho, 1977.<br />

26. Deberdt P., Olivier J., Thoquet P., Grimsley N., Prior P., 1999a. Quantitative<br />

resistance loci to bacterial wilt located on tomato chromosome 6 in near isogenic<br />

lines for the Mi gene. Proc. <strong>of</strong> the First Australasian Soilborne Disease Symp., R.C.<br />

Magarey (Ed), Bureau <strong>of</strong> Sugar Experiment Stations, Brisbane, Australia: 93-94.<br />

27. Deberdt, P., Quénéhervé, P., Darrasse, A., and Prior, P. 1999b. Increased<br />

susceptibility to bacterial wilt in tomatoes by nematode galling and the role <strong>of</strong> the Mi<br />

gene in resistance to nematodes and bacterial wilt. Plant Pathology 48:408-414.<br />

28. Digat, B., and M., Derieux. 1968. A study <strong>of</strong> the varietal resistance to bacterial wilt.<br />

p.95-101 in Proceedings <strong>of</strong> the Caribbean Food Crops Society, 6th Annual meeting,<br />

St Augustine, Trinidad.<br />

29. Empig L.T., Calub A.G., Katigbak M.M., Deanon J.R., 1962. Screening tomato,<br />

eggplant, and pepper varieties and strains for bacterial wilt (P. solanacearum E.F.S.)<br />

resistance. Philippine Agriculturist (46): 303-314.<br />

30. Fegan M., Prior P., 2005. How complex is the “Ralstonia solanacearum species<br />

complex”. In: Bacterial Wilt: the Disease and the Ralstonia solanacearum species<br />

24


complex. C. Allen, P. Prior and C. Hayward (Eds), APS Press, St. Paul, Minnesota,<br />

USA , 449-462.<br />

31. Gilbert J.C., Chinn J.T., 1969. Bacterial wilt resistant combinations. Rept. <strong>Tomato</strong><br />

Genet. Coop. 19: 11.<br />

32. Gilbert J.C., Tanaka J.S., 1965. Horticultural refinement <strong>of</strong> multiple disease resistant<br />

tomatoes in Hawaii. Hawaii Farm Science 14(1): 4-6.<br />

33. Gilbert J.C., Tanaka J.S., Takeda K.Y., 1974. „Kewalo‟ tomato. Hortscience 9: 481-<br />

482.<br />

34. Grimault V., Schmit J., Prior P., 1993. Some characteristics involved in bacterial wilt<br />

(Pseudomonas solanacearum) resistance in tomato. p.112-119 In: Bacterial wilt.<br />

ACIAR proceedings No. 45, edited by G. L. Hartman and A. C. Hayward. ACIAR,<br />

Canberra.<br />

35. Hai T.T.H., Esch E, Wang J.F., 2008. Resistance to Taiwanese race 1 strains <strong>of</strong><br />

Ralstonia solanacearum in wild tomato germplasm. European Journal <strong>of</strong> Plant<br />

Pathology 122 (4): 471-479.<br />

36. Hanson P., 2010. pers. com.<br />

37. Hanson, P. M., Licardo, O., Hanudin, Wang, J. F., and Chen, J. T. 1998. Diallel<br />

analysis <strong>of</strong> bacterial wilt resistance in tomato derived from different sources. Plant<br />

Disease 82:74-78.<br />

38. Hanson, P. M., Wang, J. F., Licardo, O., Hanudin, Mah, S. Y., Hartman, G. L., Lin, Y.<br />

C., and Chen, J. T. 1996. Variable reactions <strong>of</strong> tomato lines to bacterial wilt<br />

evaluated at several locations in Southeast Asia. HortScience 31:143-146.<br />

39. Henderson W.R., Jenkins S.F., 1972a. „Venus‟ and „Saturn‟, tomato varieties<br />

resistant to Southern bacterial wilt. Hortscience 7: 346.<br />

40. Henderson W.R., Jenkins S.F., 1972b. „Venus‟ and „Saturn‟, two new tomato<br />

varieties combining desirable horticultural features with southern bacterial wilt<br />

resistance. Bulletin 444 <strong>of</strong> Agricultural Experiment Station, North Carolina State<br />

<strong>University</strong> (Raleigh), July 1972.<br />

41. Hutton, Samuel F., Jay W. Scott, Yang, Wencai, Sim, Sung-Chur, Francis, David M.,<br />

and Jones, Jeffrey B. 2010. Identification <strong>of</strong> QTL Associated with Resistance to<br />

Bacterial Spot Race T4 in <strong>Tomato</strong>. Theor. Appl. Genet. 121 (7):1275-1287.<br />

42. IRAT, 1964. Annual Report, Guadeloupe Martinique. Ed. IRAT, p. 433.<br />

43. IRAT, 1965. Annual Report, Guadeloupe. Ed. IRAT, p. 563.<br />

44. IRAT, 1974. Annual Report, Martinique. Ed. IRAT, p.134.<br />

45. IRAT, 1975. Annual Report, Martinique. Ed. IRAT, p.141.<br />

46. Jaunet, T. X., and Wang, J. F. 1999. Variation in genotype and aggressiveness <strong>of</strong><br />

Ralstonia solanacearum race 1 isolated from tomato in Taiwan. Phytopathology 89<br />

(4):320-327.<br />

47. Jaworski C.A., Phatak S.C., Ghate S.R., Gitaitis R.D., Widrlechner M.P., 1987. GA<br />

1565-2-4 BWT, GA 219-1-2 BWT, GA 1095-1-4 BWT, and GA 1405-1-2 BWT<br />

Bacterial Wilt Tolerant <strong>Tomato</strong>. HortScience 22(2): 324-325.<br />

48. Kaan F., 1976. Mémoire sur les travaux réalises. CRAAG, Station d‟Amélioration<br />

des Plantes, Guadeloupe. Doc. Interne.<br />

49. Kaan F., Beramis M., Messiaen, C.M., 1969. Recherche de variétés de tomates aux<br />

Antilles. Proceed. VII th Ann. Meeting Caribb. Food Crops Society, 7 : 173-181.<br />

25


50. Kaan F., Laterrot H., 1977. Mise en évidence de la relation entre des résistances de<br />

la tomate à deux maladies vasculaires: le flétrissement bactérien (Pseudomonas<br />

solanacearum E.F. Sm.) et la Fusariose pathotype 2 (Fusarium oxysporum f.sp.<br />

lycopersici (Sacc.) Snyd. & Hans). Ann. Amélior. Plantes 27(I) : 25-34.<br />

51. Kaan F., Laterrot H., Anaïs G., 1975. Etude de 100 variétés de tomate en fonction<br />

de l‟adaptation climatique et de la résistance à sept maladies sévissant aux Antilles.<br />

Nouv. Agron. Antilles-Guyane, (1,2) : 123-138.<br />

52. Kelman, A., 1953. The bacterial wilt caused by Pseudomonas solanacearum. A<br />

literature review and bibliography. North Carolina Agricultural Experiment Station,<br />

Tech. Bul. N°99: 194 pp.<br />

53. Krausz J.P., Thurston H.D., 1975. Breakdown <strong>of</strong> resistance to Pseudomonas<br />

solanacearum in tomato. Phytopathology 65: 1272-1274.<br />

54. Kuriyama T., & Kuniyasu K, 1974. Studies on the breeding <strong>of</strong> disease resistant<br />

tomato by interspecific hybridization. III. On the breeding <strong>of</strong> a new tomato resistant<br />

to bacterial canker caused by Corynebacterium michiganense. Bull. <strong>of</strong> the Veg. and<br />

Ornament. Crops Research Station A, 1: 93-107.<br />

55. Laterrot, H., Kaan, J.F. 1978. Resistance to Corynebacterium michiganense <strong>of</strong> lines<br />

bred for resistance to Pseudomonas solanacearum. Report <strong>of</strong> the <strong>Tomato</strong> <strong>Genetics</strong><br />

<strong>Cooperative</strong> 28.<br />

56. Laterrot, H., Brand, R., Daunay, M. C. 1978. La résistance à Corynebacterium<br />

michiganense chez la tomate. Annales Amélioration des Plantes 28 (5):579-591.<br />

57. Lebeau A., Daunay M.C., Frary A., Palloix A., Wang J.F., Dintinger J., Chiroleu<br />

F., Wicker E., Prior P., 2011. Bacterial wilt resistance in tomato, eggplant and<br />

pepper: genetic resources challenged with the multifaceted Ralstonia solanacearum<br />

species complex. Phytopathology 101(1): 154-165.<br />

58. Lin, W.-C., Liu, C.-F., Wu, J.-W., Cheng, M.-L., Lin, Y.-M., Yang, N.-S., Black, L.,<br />

Green, S.K., Wang, J.-F., and Cheng, C.-P. 2004. Transgenic <strong>Tomato</strong> Plants<br />

Expressing the Arabidopsis NPR1 Gene Confer Enhanced Resistance to A<br />

Spectrum <strong>of</strong> Fungal and Bacterial Diseases. Transgenic Research 13:567-581.<br />

59. Mangin, B., Thoquet, P., Olivier, J., and Grimsley, N. H. 1999. Temporal and multiple<br />

quantitative trait loci analyses <strong>of</strong> resistance to bacterial wilt in tomato permit the<br />

resolution <strong>of</strong> linked loci. <strong>Genetics</strong> 151:1165-1172.<br />

<strong>60</strong>. Mejía, L., Garcia, B. E., Fulladolsa, A. C., Ewert, E. R., Wang, J.-F., Scott, J. W.,<br />

Allen, C. and Maxwell, D. P. 2009. Evaluation <strong>of</strong> recombinant inbred lines for<br />

resistance to Ralstonia solanacearum in Guatemala and preliminary data on PCRbased<br />

tagging <strong>of</strong> introgressions associated with bacterial wilt-resistant Line, Hawaii<br />

7996. Rept. <strong>Tomato</strong> Genet. Coop. 59:32-4.<br />

61. Messiaen C.M., 1989. Environmental influences on the severity <strong>of</strong> tomato bacterial<br />

wilt in the French West Indies: Interactions with varietal resistance. Pp 235-238 In:<br />

<strong>Tomato</strong> and Pepper Production in the Tropics. Proceed. Internat. Symp. on<br />

Integrated Management Practices; S.K. Green (Sc. Ed.), T.D. Griggs & B.T. Mc<br />

Lean (Publ. Eds), AVRDC, Shanhua, Taiwan.<br />

62. Messiaen, C. M., Laterrot, H., and Kaan, F. 1978. Cumulate resistances to<br />

Pseudomonas solanacearum and to Meloidogyne icognita with determinate growth<br />

in tomato. p.48-51 in Vegetables for the hot humid tropics. Mayaguez Institute <strong>of</strong><br />

Tropical Agriculture, Puerto Rico<br />

26


63. Mew T.W., Ho W.C., 1977. Effect <strong>of</strong> soil temperature on resistance <strong>of</strong> tomato<br />

cultivars to bacterial wilt. Phytopathology 67: 909-911.<br />

64. Mohamed M.El.S., Umaharan P., Phelps R.H., 1997. Genetic nature <strong>of</strong> bacterial wilt<br />

resistance in tomato (Lycopersicon esculentum Mill.) accession LA 1421. Euphytica<br />

96: 323-326.<br />

65. Mohanakumaran N., Gilbert J.C., Young R.L., 1967. Bacterial wilt resistant tomato<br />

lines with unusually high content <strong>of</strong> the alkaloid tomatin. Rept. <strong>Tomato</strong> Genet. Coop.<br />

17: 41.<br />

66. Nakaho K., Inoue H., Takayama T., Miyagawa H., 2004. Distribution and<br />

multiplication <strong>of</strong> Ralstonia solanacearum in tomato plants with resistance derived<br />

from different origins. J. Gen. Plant Pathol. 70: 115-119.<br />

67. Opena R.T., Hartman G.L., Chen J.T., Yang C.H. 1992. Breeding for bacterial wilt<br />

resistance in tropical tomato. p.44-50 in: Proceedings <strong>of</strong> the 3 rd international<br />

conference on plant protection in the tropics. Malayasian Plant Protection Society,<br />

Kuala Lumpur.<br />

68. Opena R.T., Green S.K., Talekar N.S., Chen J.T., 1989. Genetic improvement <strong>of</strong><br />

tomato adaptability to the tropics: progress and future prospects. Pp 71-85 In:<br />

<strong>Tomato</strong> and Pepper Production in the Tropics. Proceedings <strong>of</strong> the International<br />

Symposium on Integrated Management Practices, S.K. Green (Sc. Ed.), T.D. Griggs<br />

& B.T. Mc Lean (Publ. Eds), AVRDC, Shanhua, Taiwan.<br />

69. Panthee, D and Gardner R.G. 2010. Identification <strong>of</strong> useful sources <strong>of</strong> bacterial wilt<br />

resistance in tomato: A challenge. Proc. 25th Annual <strong>Tomato</strong> Disease Workshop. P.<br />

18[Abstr.]<br />

70. Peter, K. V., Gopalakrishnan, T. R., Rajan, S., and Sadhan Kumar, P. G. 1993.<br />

Breeding for resistance to bacterial wilt in tomato, eggplant and pepper. p.183-190 in<br />

Bacterial wilt. ACIAR proceedings No. 45, edited by G. L. Hartman and A. C.<br />

Hayward. ACIAR, Canberra.<br />

71. Prior P., Grimault V., Schmit J., 1994. Resistance to bacterial wilt (Pseudomonas<br />

solanacearum) in tomato: present status and prospects. In: Bacterial Wilt, the<br />

disease and its causative agent Pseudomonas solanacearum, A.C. Hayward & G.L.<br />

Hartman (eds.), Wallingford (UK), CAB International : 209-223.<br />

72. Roque A., 1935. Annual Report <strong>of</strong> the Assistant Pathologist (wilt disease <strong>of</strong><br />

tomatoes). Puerto Rico Univ. Agr. Expt. Sta., Ann. Rpt. (1934-1935): 31-33.<br />

73. Rouamba A., Laterrot H., Moretti A., 1988. A case <strong>of</strong> relation between resistances to<br />

Pseudomonas solanacearum and Verticillum pathotype 2. Rept. <strong>Tomato</strong> Genet.<br />

Coop. 38: p.43.<br />

74. Schmidt R., 1936. <strong>Tomato</strong> breeding. N.C. Agri. Expt. Sta. Ann. Rep. 59: 68.<br />

75. Schmidt R., 1937. <strong>Tomato</strong> breeding. N.C. Agri. Expt. Sta. Ann. Rep. <strong>60</strong>: 55-56.<br />

76. Scott, J.W. 1997. <strong>Tomato</strong> improvement for bacterial disease resistance for the<br />

tropics: A contemporary basis and future prospects. In: Proc. First International<br />

Conference on Processing <strong>Tomato</strong>/First International Symposium on Tropical<br />

<strong>Tomato</strong> Diseases, Recife, Brazil, ASHS Press, Alexandria, VA USA. p. 117-123.<br />

77. Scott, J.W., Jones J.B., 1986. Sources <strong>of</strong> resistance to bacterial spot (Xanthomonas<br />

campestris pv. vesicatoria (Doidge) Dye) in tomato. HortScience 21(2):304-306.<br />

27


78. Scott, J.W., Jones J.B., Somodi G.C., 2003. Development <strong>of</strong> a large fruited tomato<br />

with a high level <strong>of</strong> resistance to bacterial wilt (Ralstonia solanacearum). Rept.<br />

<strong>Tomato</strong> Genet. Coop 53:36-37.<br />

79. Scott, J.W., Jones J.B., Somodi G.C., Chellemi D.O., Olson S.M., 1995a. „Neptune‟,<br />

a heat-tolerant, bacterial wilt-tolerant tomato. HortScience 30(3):641-642.<br />

80. Scott, J.W., Jones J.B., Somodi G.C., Stall R.E., 1995b. Screening tomato<br />

accessions for resistance to Xanthomonas campestris pv. vesicatoria, race T3.<br />

HortScience 30(3):579-581.<br />

81. Scott, J.W., Jones J. B., Vallad G. E., 2010. Breeding for Bacterial Wilt Resistance in<br />

<strong>Tomato</strong>: The Struggle Continues. Proc. 25th Annual <strong>Tomato</strong> Disease Workshop.<br />

P.19[Abstr.]<br />

82. Scott J.W., Somodi G.C., Jones J.B., 1988. Bacterial spot resistance is not<br />

associated with bacterial wilt resistance in tomato. Proc. Fla. State Hort. Soc. 101:<br />

390-392.<br />

83 Scott, J.W., G.E. Vallad, and J.B. Jones. 2009. High level <strong>of</strong> resistance to bacterial<br />

wilt (Ralstonia solanacearum) obtained in large-fruited tomato breeding lines derived<br />

from Hawaii 7997. Acta Horticulturae 808:269-274.<br />

84. Scott, J.W., J.F. Wang, and P.M. Hanson. 2005. Breeding tomatoes for resistance<br />

to bacterial wilt, a global view. In: Proceeding <strong>of</strong> the First International Symposium<br />

on <strong>Tomato</strong> Diseases, Orlando, <strong>Florida</strong>, USA. Acta Hort. (ISHS) 695:161-172.<br />

85. Sonoda R.M., Augustine J.J., Volin R.B., 1979. Bacterial wilt <strong>of</strong> tomato in <strong>Florida</strong>:<br />

history, status, and sources <strong>of</strong> resistance. Proc. Fla. State Hort. Sci. 92:100-102.<br />

86. Suzuki, I., Sugahara, Y., Kotani, A., Todaka, S., and Shimada, H. 1964. Studies on<br />

breeding eggplants and tomatoes for resistance to bacterial wilt. I. Investigations on<br />

method <strong>of</strong> evaluating the resistance and on the source <strong>of</strong> resistance in eggplants<br />

and tomatoes. Bulletin-Horticultural Research Station Ministry <strong>of</strong> Agriculture and<br />

Forestry Series A 3:77-106.<br />

87. Theis T., 1950. <strong>Tomato</strong> diseases. Puerto Rico Univ. Agr. Expt. Sta., Ann. Rpt.<br />

(1950): 9.<br />

88. Thoquet, P., Olivier, J., Sperisen, C., Rogowsky, P., Laterrot, H., and Grimsley, N.<br />

1996a. Quantitative trait Loci determining Resistance to Bacterial Wilt in <strong>Tomato</strong><br />

Cultivar Hawaii7996. Molecular Plant-Microbe Interactions 9:826-836.<br />

89. Thoquet, P., Olivier, J., Sperisen, C., Rogowsky, P., Prior, P., Anaïs, G., Mangin, B.,<br />

Bazin, B., Nazer, R., and Grimsley, N. 1996b. Polygenic resistance <strong>of</strong> tomato plants<br />

to bacterial wilt in the French West Indies. Molecular Plant-Microbe Interactions<br />

9:837-842.<br />

90. Thurston H.D., 1976. Resistance to bacterial wilt (Pseudomonas solanacearum).<br />

Proc. 1rst Int. Conference and Worskshop on the ecology and control <strong>of</strong> bacterial<br />

wilt caused by Pseudomonas solanacearum. Raleigh, July 1976: 58-62.<br />

91. Vaneechoutte M, Kämpfer P, De Baere T, Falsen E, Verschraegen G. 2004.<br />

Wautersia gen. nov., a novel genus accommodating the phylogenetic lineage<br />

including Ralstonia eutropha and related species, and proposal <strong>of</strong> Ralstonia<br />

[Pseudomonas] syzygii (Roberts et al. 1990) comb. nov. Int J Syst Evol Microbiol.<br />

54(Pt 2):317-27.<br />

92. Walter J.M., 1967. Hereditary resistance to disease in tomato. Annual Review <strong>of</strong><br />

Phytopathology, vol.5: 131-162.<br />

28


93. Wang, J.-F., P. Hanson, and J.A. Barnes. 1998. Worldwide evaluation <strong>of</strong> an<br />

international set <strong>of</strong> resistance sources to bacterial wilt in tomato. In: P. Prior, C. Allen<br />

and J. Elphinstone (eds.), Bacterial Wilt Disease: Molecular and Ecological Aspects,<br />

Springer-Verlag, Berlin 269-275.<br />

94. Wang, J. F., Olivier, J., Thoquet, P., Mangin, B., Sauviac, L., and Grimsley, N. H.<br />

2000. Resistance <strong>of</strong> tomato line Hawaii7996 to Ralstonia solanacearum Pss4 in<br />

Taiwan is controlled mainly by a major strain-specific locus. Molecular Plant-Microbe<br />

Interactions 13 (1):6-13.<br />

95. Wang HanRong; Ru ShuiJiang; Wang LianPing; Fang Li; Ren HaiYing; Feng<br />

ZhongMen, 2009. Control <strong>of</strong> tomato bacterial wilt with grafting. Acta Agriculturae<br />

Zhejiangensis 21(3): 283-287.<br />

96. Warmke H.E., Cruzado H.J., 1949. <strong>Tomato</strong> breeding. Puerto Rico Fed. Expt. Sta.<br />

Ann. Rpt. For 1949: 9.<br />

97. Wicker E., Grassart L., Coranson-Beaudu R., Mian D., Guilbaud C., Fegan M., Prior<br />

P., 2007. Ralstonia solanacearum strains from Martinique (French West Indies)<br />

exhibiting a new pathogenic potential. Appl. & Environ. Microbiology 73(21): 6790-<br />

6801.<br />

98. Winstead N.N., Kelman A., 1952. Inoculation techniques for evaluating resistance to<br />

Pseudomonas solanacearum. Phytopathology 42: 628-634.<br />

99. Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa<br />

M. 1992. Proposal <strong>of</strong> Burkholderia gen. nov. and transfer <strong>of</strong> seven species <strong>of</strong> the<br />

genus Pseudomonas homology group II to the new genus, with the type species<br />

Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol<br />

Immunol.36(12):1251-75.<br />

100.Yabuuchi E, Kosako Y, Yano I, Hotta H, Nishiuchi Y. 1995. Transfer <strong>of</strong> two<br />

Burkholderia and an Alcaligenes species to Ralstonia gen. Nov.: Proposal <strong>of</strong><br />

Ralstonia pickettii (Ralston, Palleroni and Doudor<strong>of</strong>f 1973) comb. Nov., Ralstonia<br />

solanacearum (Smith 1896) comb. Nov. and Ralstonia eutropha (Davis 1969) comb.<br />

Nov.Microbiol Immunol. 39(11): 897-904.<br />

101.Yarnell S.H., 1948. The southern tomato exchange program. Proc. Am. Soc. Hort.<br />

Sci. 52: 375-382.<br />

29


Figure 3: Pedigree <strong>of</strong> ‘MR4’ & ‘NC 72 TR 4-4’ (and <strong>of</strong> ‘Venus’ and ‘Saturn’)<br />

(North Carolina State <strong>University</strong> material)<br />

(Taken from Daunay, 1977, based on W.R. Henderson & E. Echandi, pers. com. to H.<br />

Laterrot in the 1970s, and on Hendersons & Jenkins, 1972)<br />

31


Figure 9 : Pedigree <strong>of</strong> ‘CRA74’, ‘Carette’ & ‘Caraibo’, (INRA, Guadeloupe material)<br />

(Taken from Anais, 1986)<br />

37


Research Papers TGC REPORT VOLUME <strong>60</strong>, 2010<br />

Preliminary Observations on the Effectiveness <strong>of</strong> five Introgressions for<br />

Resistance to Begomoviruses in <strong>Tomato</strong>es<br />

Luis Mejía, Rudy E. Teni, Brenda E. García, Ana Cristina Fulladolsa, and Luis<br />

Méndez, Facultad de Agronomía, Universidad de San Carlos de Guatemala; Sergio<br />

Melgar, Escuela de Biología, Universidad de San Carlos de Guatemala and Douglas<br />

P. Maxwell, Department <strong>of</strong> Plant Pathology, <strong>University</strong> <strong>of</strong> Wisconsin-Madison<br />

Introduction:<br />

<strong>Tomato</strong>-infecting begomoviruses have remained a major constraint to tomato<br />

production in many parts <strong>of</strong> the tropical and sub-tropical regions. Management<br />

strategies have involved i) extensive use <strong>of</strong> insecticides to control the whitefly vector,<br />

Bemisia tabaci, ii) production <strong>of</strong> virus-free transplants, iii) host-free periods, iv) use <strong>of</strong><br />

whitefly-pro<strong>of</strong> fabric cover in micro- and macro-tunnels for 30 or more days, and v)<br />

use <strong>of</strong> moderately resistant hybrids. Over the past decade the availability <strong>of</strong><br />

moderately resistant hybrids has increased and most private seed companies devote<br />

resources to the incorporation <strong>of</strong> begomovirus-resistance genes into their new<br />

generation <strong>of</strong> hybrids.<br />

Several genes for resistance to begomoviruses have been identified in the last<br />

two decades (Ji et al., 2007). Zamir et al. (1994) described the first resistance gene,<br />

Ty1, originating from the wild species Solanum chilense accession LA1969, to a<br />

region located between 4 cM and 10 cM in the short arm <strong>of</strong> chromosome 6. Later,<br />

gene, Ty2, was incorporated into the genome <strong>of</strong> the tomato from the wild species<br />

Solanum habrochaites by Hanson et al. (2000) and the introgression was located<br />

between 84 and 91 cM in chromosome 11. More recently, Ji et al. (2007b) reported<br />

gene, Ty3, in an introgression derived from S. chilense accession LA2779 and<br />

located at 19 to 25 cM in chromosome 6. An introgression in this same region from<br />

S. chilense accession LA1932 was designed Ty3a (Ji et al., 2007a). The resistant<br />

lines from the accession LA1932 had yet another gene, Ty4, which was recently<br />

located in the upper half <strong>of</strong> chromosome 3 (Ji et al., 2008) near 82 cM (Maxwell,<br />

personal communication). A major QTL, Ty5, was recently mapped in the TY172<br />

breeding line with introgressions from S. peruvianum from approximately 16 to 46 cM<br />

on chromosome 4 (Anbinder et al., 2009).<br />

The potential for pyramiding begomovirus-resistance introgressions from<br />

different accessions <strong>of</strong> S. chilense, from different wild species such as S. peruvianum<br />

or S. habrochaites was discussed by Vidavski et al. (2008). Using several sources <strong>of</strong><br />

resistance in one hybrid may overcome the selection <strong>of</strong> virus variants with novel<br />

genome combinations that may be more aggressive on tomatoes with one<br />

begomovirus-resistance introgression (García-Andrés et al., 2009). Because <strong>of</strong> the<br />

need to understand how different resistance genes respond to begomoviruses, this<br />

project was initiated to evaluate the effectiveness <strong>of</strong> begomovirus-resistance<br />

introgressions (Ty1, Ty2, Ty3, Ty3a, and Ty4) for conferring resistance to<br />

begomoviruses in a field trial in Guatemala. It is expected that this information will<br />

41


provide a rationale for pyramiding begomovirus-resistance introgressions into hybrids<br />

that will have more durable resistance.<br />

Materials and Methods:<br />

Germplasm: The breeding lines used in these experiments were: Gh13,<br />

homozygous for Ty3; Gc143-2, homozygous for Ty1 and Ty3; Gc171, homozygous<br />

for Ty3a and Ty4 (provided by J. Scott, <strong>University</strong> <strong>of</strong> <strong>Florida</strong>); CLN2116 homozygous<br />

for Ty2 (provided by P. Hanson, The World Vegetable Center) and Gh188-2, also<br />

homozygous for Ty2, and Gc21-a, homozygous for Ty3a and lacking Ty4. Gh13 was<br />

selected from the hybrid, Favi9 (Vidavsky and Czosnek, 1988). Gc143-2 was<br />

selected from a cross <strong>of</strong> Gc9 (provided by J. Scott, <strong>University</strong> <strong>of</strong> <strong>Florida</strong>) by a<br />

susceptible commercial hybrid. Gc21-a was obtained by several cycles <strong>of</strong> selfing<br />

from a cross between Gc171 with a susceptible commercial hybrid and an individual<br />

F2 plant. Gh188-2 was selected from a commercial hybrid with Ty2 introgression.<br />

The susceptible germplasm, HUJ-VF, without any <strong>of</strong> the introgressions for resistance,<br />

was used in several crosses. HUV-VF was provided by F. Vidavsky, The Hebrew<br />

<strong>University</strong> <strong>of</strong> Jerusalem. The F2 population used in the segregation <strong>of</strong> genes Ty3a<br />

and Ty4 was obtained from a hybrid produced by a cross between the resistant line<br />

Gc171 and a slightly resistant inbred (Gh44).<br />

PCR Methods for detection <strong>of</strong> the introgressions associated with resistance to<br />

begomoviruses: DNA extraction was as reported by García et al. (2008). PCRbased<br />

molecular markers have been developed for the detection <strong>of</strong> Ty2, Ty3, Ty3a,<br />

and Ty4. Garcia et al. (2007) developed a co-dominant SCAR (Sequence<br />

Characterized Amplified Region) marker from the RFLP T0302 marker at 89 cM for<br />

the detection <strong>of</strong> the Ty2 introgression. The Ty3 and Ty3a introgressions were<br />

monitored with the co-dominant SCAR marker P6-25 (Ji et al., 2007a). The Ty4<br />

introgression was detected with PCR primers developed by Y. Ji and J. Scott<br />

(personal communication, Ji et al., 2008). The presence <strong>of</strong> the Ty1 introgression in<br />

Gc143-2 was determined by sequencing the PCR fragments associated with the<br />

RFLP TG97 marker (García and Maxwell, unpublished).<br />

Field Evaluation <strong>of</strong> disease severity for the different populations: Each<br />

entry was replicated three times with 5 plants per replication. Four-week-old<br />

seedlings were transplanted into a field near Sanarate, Guatemala, where high levels<br />

<strong>of</strong> viruliferous whiteflies were present. In this area, at least 7 bipartite tomatoinfecting<br />

begomoviruses have been identified (Nakhla et al., 2004) as well as the<br />

monopartite begomovirus, <strong>Tomato</strong> yellow leaf curl virus (Mejía and Maxwell,<br />

unpublished results). Each plant was scored at about 30-days after transplanting in<br />

either January 2009 or October 2009 using a disease severity index (DSI) from zero<br />

to six: 0, no symptoms; 1, extremely slight symptoms; 2, slight symptoms; 3,<br />

moderate symptoms; 4, severe symptoms with deformed leaves; 5, severe symptoms<br />

with stunted plant; and 6, very severe symptoms, no marketable fruit and very<br />

stunted plant.<br />

42


Development <strong>of</strong> populations with different introgressions:<br />

Combinations <strong>of</strong> introgressions Ty3a and Ty4: An F2 population was obtained<br />

from a F1 hybrid produced from the cross between line Gc171 (Ty3a/Ty3a, Ty4/Ty4,<br />

Scott and Schuster, 2007) by a slightly resistant line (Gh44, ty3/ty3, ty4/ty4). Leaf<br />

samples were collected from 77 individual plants for molecular analysis. The<br />

genotype <strong>of</strong> these plants was determined with the PCR primers P6-25F2 and P6-<br />

25R5 (SCAR marker P6-25) for introgression Ty3a and a PCR-based marker for Ty4<br />

introgression (Ji et al., 2008). Individual F2 plants were selected that were dominant<br />

for one or both genes (RR, Ty3a/Ty3a, Ty4/Ty4; RS, Ty3a/Ty3a, ty4/ty4; SR, ty3/ty3,<br />

Ty4/Ty4 and SS, ty3/ty3, ty4/ty4). These plants were selfed to produce F3 seeds.<br />

Twelve F3 families, Gc171, Gh44 and a susceptible commercial control C-SS<br />

(ty3/ty3, ty4/ty4) were planted in a field to determine their phenotype, i.e., the level <strong>of</strong><br />

resistance to begomoviruses was determined in January 2009. Each entry was<br />

replicated three times with 5 plants per replication.<br />

Combination <strong>of</strong> introgressions for Ty2 and Ty3: F2 seed was obtained from<br />

the cross between resistant line Gh13 (Ty3/Ty3, ty2/ty2, RS-C, Martin et al., 2007),<br />

and line CLN2116 (ty3/ty3,Ty2/Ty2, SR-C). The genotype <strong>of</strong> the F2 plants was<br />

determined using molecular markers and individuals with one, both or none <strong>of</strong> the<br />

introgressions for resistance (genotypes RR, Ty3/Ty3,Ty2/Ty2; SR, ty3/ty3, Ty2/Ty2;<br />

RS, Ty3/Ty3, ty2/ty2 and SS, ty3/ty3, ty2/ty2) were allowed to self. The genotype <strong>of</strong><br />

each F3 family was verified and seventeen F3 families were transplanted into a field<br />

along with the two parental lines and a susceptible control. Each entry was replicated<br />

three times with 5 plants per replication to determine their phenotype and DSIs were<br />

taken in October 2009.<br />

Combination <strong>of</strong> introgressions Ty1, Ty3 and Ty2: F2 seed was obtained from<br />

the cross between resistant line Gc143-2 (Ty1/Ty1-Ty3/Ty3, ty2/ty2) and line Gh188-<br />

2, (ty1/ty1-ty3/ty3, Ty2/Ty2). The genotype <strong>of</strong> the F2 plants was determined using<br />

molecular markers for Ty3 and Ty2 and individuals with one, both or none <strong>of</strong> the<br />

introgressions were identified (RR, Ty3/Ty3, Ty2/Ty2; RS, Ty3/Ty3, ty2/ty2; SR,<br />

ty3/ty3, Ty2/Ty2 and SS, ty3/ty3, ty2/ty2). The Ty1 introgression was not determined<br />

as it is linked to Ty3. F3 seed was collected from individual F2 plants <strong>of</strong> different<br />

genotypes and the F3 families were transplanted in the field. Sixteen F3 families and<br />

both parental lines were planted and each entry was replicated three times and 5<br />

plants per replication. Plants were scored for their DSIs in October 2009.<br />

Combination <strong>of</strong> introgressions Ty3a and Ty2: Gc21-a (RS, Ty3a/Ty3a,<br />

ty2/ty2), was crossed with line Gh188-2 (SR, ty3/ty3, Ty2/Ty2). Heterozygous<br />

individuals were evaluated for resistance (HH, Ty3a/ty3, Ty2/ty2), along with the<br />

parental genotypes. Gc21-a (RS) and Gh188-2 (SR) were also crossed to the<br />

susceptible line HUJ-VF (ty2/ty2, ty3/ty3). The genotypes <strong>of</strong> the F1 populations were<br />

verified and their resistance phenotype determined in the field in October 2009.<br />

Three hybrids [Gc21-a X Gh188-2 (HH, Ty3a/ty3, Ty2/ty2), Gc21-a X HUJ-VF (HS,<br />

Ty3a/ty3, ty2/ty2) and Gh188-2 X HUJ-VF (SH, ty3/ty3, Ty2/ty2)], two parental lines<br />

and a susceptible commercial control (SS) were planted with three replications <strong>of</strong> 5<br />

plants each. Plants were scored for their DSIs in October 2009.<br />

Combination <strong>of</strong> introgressions Ty3a and Ty3: Line Gc21-a (Ty3a/Ty3a) was<br />

crossed with line Gh13 (Ty3/Ty3). The level <strong>of</strong> resistance in the hybrid (Ty3a/Ty3)<br />

43


was evaluated in relation to the parental genotypes. The genotype <strong>of</strong> the F1 families<br />

was determined and subsequently transplanted in the field for the evaluation <strong>of</strong> their<br />

phenotype <strong>of</strong> resistance. The hybrid (Gc21-a X Gh13), both parental lines, and a<br />

susceptible control were planted in with three replications <strong>of</strong> five plants each. Plants<br />

were scored for their DSIs in October 2009.<br />

Results and Discussion:<br />

Natural inoculation with begomoviruses in a field in Guatemala with high<br />

populations <strong>of</strong> the whitefly vector was used to evaluate various combinations <strong>of</strong><br />

begomovirus-resistance introgressions for their effectiveness to provide resistance to<br />

multiple begomoviruses.<br />

Evaluations <strong>of</strong> the introgressions Ty3a and Ty4: The highly resistant inbred line,<br />

Gc171 (Ty3a/Ty3a, Ty4/Ty4), was crossed with a slightly resistant genotype (Gh44,<br />

ty3/ty3, ty4/ty4) (Garcia, et al., 2008a). Among the 77 F2 plants analyzed, 17 were<br />

found to be homozygous Ty3a/Ty3a, 12 homozygous ty3a/ty3a, and 48 heterozygous<br />

Ty3a/ty3a. With relation to Ty4 introgression, 10 plants were found to be<br />

homozygous Ty4/Ty4, 42 homozygous ty4/ty4, and 25 heterozygous Ty4/ty4. Seven<br />

F3 families were evaluated: three with genotype ty3/ty3, Ty4/Ty4 (SR), and four with<br />

genotype Ty3a/Ty3a, ty4/ty4 (RS) (Fig. 1).<br />

DSI<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

RR RS SR R-RR S-SS C-SS<br />

F3 Families and Parents<br />

Fig. 1. Disease severity index (DSI) and standard errors for F3 families <strong>of</strong> genotypes<br />

RR (4 families Ty3a/Ty3a, Ty4/Ty4), RS (4 families, Ty3a/Ty3a, ty4/ty4), SR (4<br />

families, ty3/ty3, Ty4/Ty4), C-SS (commercial susceptible control), R-RR (parent,<br />

Gc171), S-SS (Gh44).<br />

44


The average DSI for the RS F3 families with the Ty3a introgression was 2.1,<br />

while the SR F3 families with the Ty4 introgression was 3.6, which is similar to the<br />

slightly resistant parent, Gh44 (S-SS). These results indicate that there is a larger<br />

effect on resistance by Ty3a than by Ty4 to the multiple bipartite begomoviruses<br />

present in this area. This is consistent with the report by Ji et al. (2008) where the<br />

Ty4 introgression had a lesser effect on resistance to <strong>Tomato</strong> yellow leaf curl virus<br />

than the Ty3a introgression.<br />

Combinations <strong>of</strong> introgression Ty2 and Ty3: Seventeen F3 families were<br />

obtained from individual F2 plants arising from the cross <strong>of</strong> Gh13 X CLN2116 (F1,<br />

Ty3/ty3, Ty2/ty2). The F3 families were evaluated for symptom development 36 days<br />

after transplanting (Fig. 2).<br />

DSI<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

RR SR RS SS SR-C RS-C SS-C<br />

F3 Families and Parents<br />

Fig. 2. Disease severity index (DSI) with standard errors for the F3 families <strong>of</strong><br />

genotypes RR (6 families, Ty3/Ty3, Ty2/Ty2), SR (5 families, ty3/ty3, Ty2/Ty2), RS (3<br />

families, Ty3/Ty3, ty2/ty2), SS (3 families, ty3/ty3, ty2/ty2), SR-C (CLN2116, ty3/ty3,<br />

Ty2/Ty2), RS-C (Gh13, Ty3/Ty3, ty2/ty2) and SS-C (susceptible commercial hybrid<br />

control, ty3/ty3, ty2/ty2).<br />

45


The parents had average DSIs <strong>of</strong> 0.6 and 3.8 for Gh13 and CLN2116,<br />

respectively. A commercial hybrid with neither introgression had a DSI <strong>of</strong> 5.2. The<br />

average DSI <strong>of</strong> the 6 RR families was 1.6, which was greater than the most resistant<br />

parent, Gh13 (DSI 0.6), and was similar to the DSI for the 3 RS families, which had<br />

an average DSI <strong>of</strong> 1.4. The average DSI <strong>of</strong> the 5 SR families (DSI 2.9) was similar to<br />

that for the 3 SS families (DSI 2.6).<br />

These results indicate that Ty3 introgression from Gh13 was mainly<br />

responsible for the observed level <strong>of</strong> virus resistance in the F3 families and adding<br />

the Ty2 introgression resulted in no increase in virus resistance. The susceptible<br />

control had a DSI <strong>of</strong> 5.1, while the 3 F3 families without the introgressions (ty3/ty3,<br />

ty2/ty2) had a DSI <strong>of</strong> 2.6, indicating the presence <strong>of</strong> other unknown genes for<br />

resistance.<br />

Of interest was the range <strong>of</strong> average DSIs within families <strong>of</strong> one genotype (Fig.<br />

3). For the 6 RR families, the average DSI ranged from 0.8 to 2.3. For the 3 SS<br />

families the range was also great, 1.8 to 3.6, for the 3 RS the range was 1.1 to 1.9.<br />

For the 5 SR families the range was 2.1 to 3.2. One explanation for these differences<br />

among F3 families with the same genotype for the two introgressions could be that<br />

there was segregation <strong>of</strong> other modifying resistance genes in the F2 plants used to<br />

generate the F3 families.<br />

DSI<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

F3 Families and Parents<br />

Fig. 3. Disease severity index (DSI) and standard errors for the individual F3 families<br />

with the genotypes as listed in Fig. 2 along with the parents and susceptible<br />

commercial control.<br />

46


Combination <strong>of</strong> introgressions Ty1-Ty3 and Ty2: Individual F2 plants <strong>of</strong><br />

different genotype obtained from the F1 (Ty1-Ty3/ty1-ty3, Ty2/ty2) <strong>of</strong> the cross <strong>of</strong><br />

Gc143-2 X Gh188-2 were selfed to produce 16 F3 families. The DSI for these<br />

families was determined in the field (Fig. 4).<br />

DSI<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

RR RS SR RS-C SR-C SS<br />

F3 Families and Parents<br />

Fig. 4. Average disease severity index (DSI) and standard errors for 16 F3 families <strong>of</strong><br />

genotypes RR (5 families, Ty1-Ty3/Ty1-Ty3, Ty2/Ty2), RS (3 families, Ty1-Ty3/Ty1-<br />

Ty3, ty2/ty2), SR (3 families, ty1-ty3/ty1-ty3, Ty2/Ty2), SS (5 families, ty1-ty3/ty1-ty3,<br />

ty2/ty2), and the parents: RS-C (Gc143-2, Ty1-Ty3/Ty1-Ty3, ty2/ty2) and SR-C<br />

(Gh188-2, ty1-ty3/ty1-ty3, Ty2/Ty2).<br />

47


The average DSI for RS families with the T1-Ty3 introgression was 1.7 while<br />

DSI for those SR families with the Ty2 introgression was 4.8. RR families with both<br />

introgressions for resistance had an average DSI <strong>of</strong> 1.4 and those with neither<br />

introgression had DSI <strong>of</strong> 3.6. There was no difference in the average DSI for the RR<br />

and SR families. Surprisingly, the DSI for the SR families was higher than the DSI for<br />

the SS families. These observations indicated that Ty2 introgression provides no<br />

effective resistance to these begomoviruses.<br />

An important observation was that there was a considerable range in the<br />

average DSI for families with the same genotype for these two introgressions (Fig. 5).<br />

For example, one RR family had a DSI <strong>of</strong> 3.2, which was greater than the other four<br />

RR families (range <strong>of</strong> 0.3 to 1.4). Within the RS families, one family had a DSI <strong>of</strong> 0.2<br />

and another RS family had a DSI <strong>of</strong> 3.8. The genotype for the markers in these<br />

families, i.e., the presence or absence <strong>of</strong> the PCR fragments corresponding to the S.<br />

lycopersicum size or the introgression size, was reconfirmed by additional testing in<br />

the laboratory. Explanations to consider are that there could have been a<br />

recombination event between the PCR marker and the resistance gene for these<br />

introgressions or that other genes controlling resistance were segregating within the<br />

F2 plants.<br />

DSI<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

F3 Families and Parents<br />

Fig. 5. Average disease severity index (DSI) and standard errors for individual F3<br />

families for each genotype and the two parents. See Fig. 3 for codes.<br />

48


Combinations <strong>of</strong> genes Ty3a and Ty2: Line Gc21-a (DSI 0.7), homozygous<br />

for Ty3a, was crossed to line Gh188-2 (DSI 5.2), homozygous for Ty2; and the DSI<br />

for the F1 (HH, Ty3a/ty3, Ty2/ty2) was 0.4. Lines Gc21-a and Gh188-2 were also<br />

crossed with susceptible line HUJ-VF (ty3/ty3, ty2/ty2). The resulting heterozygous<br />

F1‟s, Ty3a/ty3, ty2/ty2 (HS) and ty3/ty3, Ty2/ty2 (SH) had DSIs <strong>of</strong> 2.9 and 4.2,<br />

respectively (Fig. 6). Thus, the Ty2 gene along either in a homozygous or<br />

heterozygous condition did not confer an adequate level <strong>of</strong> resistance. The Ty3a<br />

introgression in the heterozygous condition conferred a moderate level <strong>of</strong> resistance,<br />

but when both resistance introgressions were present in the heterozygous condition<br />

the F1 was highly resistant.<br />

DSI<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

HH SH HS SR RS SS<br />

F1 families and Parents<br />

Fig. 6. Average disease severity index (DSI) and standard errors for the<br />

heterozygous genotypes HH (Ty2/ty2, Ty3a/ty3), SH (ty3/ty3, Ty2/ty2), HS (Ty3a/ty3,<br />

ty2/ty2) and homozygous parental lines RS (Ty3a/Ty3a, ty2/ty2), SR (ty3/ty3,<br />

Ty2/Ty2), and susceptible commercial control SS (ty2/ty2, ty3/ty3).<br />

49


Combinations <strong>of</strong> introgressions Ty3a and Ty3: Line Gc21-a (Ty3a/Ty3a,<br />

DSI 0.3) was crossed to line Gh13 (Ty3/Ty3, DSI 0.4) and DSI for the F1 was 0.2.<br />

The average DSI <strong>of</strong> the commercial susceptible hybrid was 4.0 (Fig. 7).<br />

DSI<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

21-a 21-a X Gh13 Gh13 Com. Hybrid<br />

F1 families and Parents<br />

Fig. 7. Average disease severity index (DSI) and standard errors for heterozygous<br />

genotypes Gc21-a X Gh13 (Ty3a/Ty3), Gc21-a (Ty3a/Ty3a), Gh13 (Ty3/Ty3) and<br />

commercial susceptible hybrid, (com. hybrid).<br />

These results indicate that the combination <strong>of</strong> introgressions Ty3 and Ty3a<br />

confers a high level <strong>of</strong> resistance (DSI 0.2), and is not different than either <strong>of</strong> the<br />

resistant parents.<br />

50


Conclusions:<br />

It should be recognized that not all <strong>of</strong> the comparisons contained all <strong>of</strong> the<br />

genotypes that would have been useful for making conclusions, that viruliferous<br />

whiteflies populations would have existed at different times, that several bipartite<br />

begomoviruses as well as <strong>Tomato</strong> yellow leaf curl virus would have been present, and<br />

that weather conditions may have impacted symptom expression. In general, the<br />

following observations were considered important concerning the various<br />

introgressions: 1) Ty3a was a more effective source <strong>of</strong> resistance than Ty4. 2) Ty2<br />

either in the homozygous or heterozygous condition was not an effective source <strong>of</strong><br />

resistance unless it was associated with another resistance gene, such as Ty3a. 3) The<br />

heterozygous families with Ty3a were not as resistant as families that were<br />

homozygous for this introgression (Fig. 6). 4) F1 hybrids with two different<br />

introgressions were highly resistant, such as Ty3a and Ty2 (Fig. 6) or Ty3a and Ty3<br />

(Fig. 7). 5) There was considerable variation for the DSIs among the F3 families with<br />

same genotype for an introgression, which indicated that other genes were important in<br />

conditioning resistance. This was most notable in the F3 families from the cross <strong>of</strong><br />

Gc143-2 by Gh188-2 (Fig. 5). Others have reported that several genes are involved in<br />

highest level <strong>of</strong> begomovirus resistance expression (Anbinder et al., 2009; Vidavsky and<br />

Czosnek, 1998; Zamir et al., 1994) and Anbinder et al. (2009) found that there were<br />

minor QTLs for resistance associated with both the resistant and susceptible parent<br />

used in the cross for their molecular analysis <strong>of</strong> resistance. 6) For the near future it is<br />

not enough to only use molecular markers for breeding for begomovirus resistance, but<br />

field evaluations with high levels <strong>of</strong> viruliferous whiteflies will continue to be an important<br />

part <strong>of</strong> any tomato breeding program for begomovirus resistance.<br />

Acknowledgements: This project was funded in part by grant FODECYT 54-07 to L.<br />

Mejía, by Facultad de Agronomía, Universidad de San Carlos, and by the College <strong>of</strong><br />

Agricultural and Life Sciences, <strong>University</strong> <strong>of</strong> Wisconsin-Madison. Appreciation is<br />

expressed to Semillas Tropicales, S.A. for assistance with production <strong>of</strong> the seedlings<br />

and the field facilities.<br />

51


Literature Cited:<br />

Abinder, I., Reuveni, M., Azari, R., Paran,I., Nahon, S., Shlomo, H., Chen, L., Lapidot,<br />

M., and Levin, I. 2009. Molecular dissection <strong>of</strong> <strong>Tomato</strong> leaf curl virus resistance<br />

in tomato line TY172 derived from Solanum peruvianum. Theor. Appl. Genet.<br />

119:519-530.<br />

Garcia, B.E., Graham, E., Jensen, K.S., Hanson, P., Mejía, L., and Maxwell,<br />

D.P. 2007. Co-dominant SCAR for detection <strong>of</strong> the begomovirus-resistance Ty2<br />

locus derived from Solanum habrochaites in tomato germplasm. Tom. Gen.<br />

Coop. Rept. 57:21-24.<br />

Garcia, B.E., Barillas, A.C., Maxwell, D.P., and Mejia, L. 2008a. Genetic analysis <strong>of</strong><br />

an F2 population for the segregation <strong>of</strong> two introgressions associated with the<br />

begomovirus-resistant parent, Gc171. <strong>Tomato</strong> Genetic <strong>Cooperative</strong> Report<br />

58:18-21.<br />

García, B.E., Mejía, L, Melgar, S., Teni, R., Sánchez-Pérez, A., Barillas, A.C.,<br />

Montes, L., Keuler, N.S., Salus, M.S., Havey, M.J., and Maxwell, D.P. 2008b.<br />

Effectiveness <strong>of</strong> the Ty-3 introgression for conferring resistance in F3 families <strong>of</strong><br />

tomato to bipartite begomoviruses in Guatemala. Tom. Genetic Coop. 58:22-28.<br />

García-Andrés, S., Tomás, D.M., Navas-Castillo, J., and Moriones, E. 2009.<br />

Resistance-driven selection <strong>of</strong> begomoviruses associated with the tomato yellow<br />

leaf curl disease. Virus Research 146:66-72.<br />

Hanson, P.M., Bernacchi, D., Green, S., Tanksley, S.D., Muniyappa, V., Padmaja,<br />

A.S., Chen, H.M., Kuo, G., Fang, D., and Chen, J.T. 2000. Mapping <strong>of</strong> a wild<br />

tomato introgression associated with tomato yellow leaf curl virus resistance in a<br />

cultivated tomato line. J. Amer. Soc. Hort. Sci. 125:15-20.<br />

Ji, Y., Salus, M.S., van Betteray, B., Smeets, J., Jensen, K., Martin, C.T., Mejía, L.,<br />

Scott, J.W., Havey, M.J., and Maxwell, D.P. 2007a. Co-dominant SCAR markers<br />

for detection <strong>of</strong> the Ty-3 and Ty-3a loci from Solanum chilense at 25 cM <strong>of</strong><br />

chromosome 6 <strong>of</strong> tomato. Rept. <strong>Tomato</strong> Genetic Coop. 57:25-28.<br />

Ji, Y., Schuster, D.J., and Scott, J.W. 2007b. Ty3, a begomovirus resistance locus<br />

near the <strong>Tomato</strong> yellow leaf curl virus resistance locus Ty-1 on chromosome 6 <strong>of</strong><br />

tomato. Mol. Breeding 20:271-284.<br />

Ji, Y., Scott, J.W., Hanson, P., Graham, E., and Maxwell, D.P. 2007c. Sources <strong>of</strong><br />

resistance, inheritance and location <strong>of</strong> genetic loci conferring resistance to<br />

members <strong>of</strong> the tomato-infecting begomoviruses. In: Czosnek, H. (ed), <strong>Tomato</strong><br />

yellow leaf curl virus Disease. Springer, The Netherlands, pp. 343-362.<br />

Ji, Y., Scott, J.W., Maxwell, D.P., and Schuster, D.J. 2008. Ty-4, a <strong>Tomato</strong> yellow<br />

leaf curl virus resistance gene on chromosome 3 <strong>of</strong> tomato. <strong>Tomato</strong> Genet.<br />

Coop. Rep. 58:29-31.<br />

Martin, C.T., Salus, M.S., Garcia, B.E., Jensen, K.S., Montes, L., Zea, C., Melgar, S.,<br />

El Mehrach, K., Ortiz, J., Sanchez, A., Havey, M.J., Mejía, L., and Maxwell, D.P.<br />

2007. Evaluation <strong>of</strong> PCR-based markers for scanning tomato chromosomes for<br />

introgressions from wild species. Rept. <strong>Tomato</strong> Genetic Coop. 57:31-34.<br />

Mejía, L., Teni, R.E., Vidavski, F., Czosnek, H., Lapidot, M., Nakhla, M.K., and<br />

Maxwell, D.P. 2005. Evaluation <strong>of</strong> tomato germplasm and selection <strong>of</strong> breeding<br />

lines for resistance to begomoviruses in Guatemala. Acta Hort. 695:251-255.<br />

52


Nakhla, M.K., Sorenson, A., Mejía, L., Ramírez, P., Karkashian, J.P., and Maxwell,<br />

D.P. 2005. Molecular Characterization <strong>of</strong> <strong>Tomato</strong>-Infecting Begomoviruses in<br />

Central America and Development <strong>of</strong> DNA-Based Detection Methods. Acta Hort.<br />

695:277-288.<br />

Scott, J.W., and Schuster, D.J. 2007. Gc9, Gc171, and Gc173 begomovirus resistant<br />

inbreds. <strong>Tomato</strong> <strong>Cooperative</strong> <strong>Genetics</strong> Report 57:45-46.<br />

Vidavski, F., Czosnek, H., Gazit, S., Levy, D., and Lapidot, M. 2008. Pyramiding <strong>of</strong><br />

genes conferring resistance to <strong>Tomato</strong> yellow leaf curl virus from different wild<br />

tomato species. Plant Breeding 127:625-631.<br />

Vidavsky, F., and Czosnek, H. 1998. <strong>Tomato</strong> breeding lines immune and tolerant to<br />

tomato yellow leaf curl virus (TYLCV) issued from Lycopersicon hirsutum.<br />

Phytopathology 88:910-914.<br />

Zamir, D., Michelson, I., Zakay, Y., Navot, N., Zeidan, N., Sarfatti, M., Eshed, Y.,<br />

Harel, E., Pleban, T., van-Oss, H., Kedar, N., Rabinowitch, H.D., and Czosnek, H.<br />

1994. Mapping and introgression <strong>of</strong> a tomato yellow leaf curl virus tolerance<br />

gene, Ty-1. Theor. Appl. Genet. 88:141-146.<br />

53


Research Papers TGC REPORT VOLUME <strong>60</strong>, 2010<br />

Preliminary report on association <strong>of</strong> ‘Candidatus Liberibacter solanacearum’<br />

with field grown tomatoes in Guatemala<br />

Luis Mejía, Amilcar Sánchez, and Luis Méndez, Facultad de Agronomía, Universidad<br />

de San Carlos de Guatemala; D. P. Maxwell, Department <strong>of</strong> Plant Pathology,<br />

<strong>University</strong> <strong>of</strong> Wisconsin-Madison; R. L. Gilberston, Department <strong>of</strong> Plant Pathology,<br />

<strong>University</strong> <strong>of</strong> California-Davis; V.V. Rivera and G.A. Secor, Department <strong>of</strong> Plant<br />

Pathology, North Dakota State <strong>University</strong>, Fargo.<br />

Introduction<br />

A new disease <strong>of</strong> tomatoes has received considerable attention in the local<br />

newspapers in Guatemala. Locally, it is referred to “Paratrioza disease”, which refers<br />

to the insect associated with symptomatic plants. The symptoms on tomatoes are<br />

flower abortion, purple margins <strong>of</strong> youngest leaves, upward cupping <strong>of</strong> leaves,<br />

thickened stems and retarded internode growth, and stunting <strong>of</strong> the plants (Fig. 1). In<br />

Mexico, a disease <strong>of</strong> tomato with similar symptoms is called permanent damage<br />

disease or permanent yellowing disease (daňo permanente del tomate; Páramo<br />

Menchaca, 2007) and Munyaneza et al. (2009) reported that Candidatus Liberibacter<br />

solanacearum was associated with these plants. This unculturable bacterium is<br />

transmitted by the tomato/potato psyllid (Bactericerca (Paratrioza) cockerelli).<br />

Fig. 1. Typical symptoms associated with “Paratrioza disease” <strong>of</strong> tomato in<br />

Guatemala. Image taken December 2009 and shows flower abortion, purple leaf<br />

margins, cupping <strong>of</strong> leaves and thickened petioles and stems.<br />

In a tomato field (about 0.7 ha, at 1,500 m, Department <strong>of</strong> Sacatepéquez) where<br />

symptom incidence was over 90%, samples <strong>of</strong> young leaves with typical symptoms<br />

were collected in December 2009. DNA was extracted at San Carlos <strong>University</strong>,<br />

Guatemala City (Garcia et al., 2007). PCR was performed at North Dakota State<br />

54


<strong>University</strong> with 16s rRNA primers,CLi.po.F/O12c and PCR fragments sequenced using<br />

protocols reported by Secor et al. (2009). A PCR fragment <strong>of</strong> about 1,100 bp was<br />

obtained and sequenced in both directions. After correction by visual pro<strong>of</strong>reading, a<br />

966-nt region (contact D.P. Maxwell for sequence) was submitted to a BLAST analysis<br />

at the National Center for Biotechnology Information data base; and a 100% nucleotide<br />

identity was obtained with the 16s-23s rRNA intergenic spacer region for „Candidatus<br />

Liberibacter solanacearum’ from potato from Guatemala (FJ395205, Secor et al., 2009)<br />

and tomato from Sinaloa, Mexico (FJ957897, Munyaneza et al., 2009b). These<br />

sequences also had a 100% nucleotide identity with „Ca. L. solanacearum‟ from tomato<br />

in New Zealand (EU834130, Liefting et al., 2009a, 2009b), from bell pepper collected in<br />

Sinaloa, Mexico (FJ957896, Munyaneza et al., 2009a) and „Candidatus Liberibacter<br />

psyllaurous‟ (synonym „Ca. L. solanacearum‟, see discussion in Secor et al., 2009)<br />

from Zebra chip symptomatic potatoes in California (FJ498802, Crosslin and Bester,<br />

2009). In Central America, Rehman et al. (2010) report the widespread occurrence <strong>of</strong><br />

„Ca. L. solanacerum‟ (GQ926922) and its potato psyllid vector in potato fields in<br />

Honduras. Pair wise comparison <strong>of</strong> this sequence from „Ca. L. solanacearum‟ from<br />

potato with the Guatemalan „Ca. L. solanacearum’ sequence from tomato showed that<br />

there was a difference <strong>of</strong> two SNP between the sequences (678 nt), and this might<br />

indicate a different geographic origin <strong>of</strong> these two pathogens.<br />

Subsequently to samples collected in December 2009, samples were collected<br />

from tomatoes with either typical begomovirus symptoms and/or purple/yellowing<br />

symptoms on younger leaves in the Department <strong>of</strong> El Progresso in March 2010. The<br />

samples were prepared for transport to the <strong>University</strong> <strong>of</strong> California-Davis using AgDia<br />

absorption strips. This is a method to capture total nucleic acids from plant tissue in<br />

which sap is prepared from the target tissue, applied to an absorbent matrix on the end<br />

<strong>of</strong> a plastic 'stick', and allowed to dry prior to transport. DNA extracts were prepared<br />

from the 12 samples and tested for the presence <strong>of</strong> Liberobacter and begomovirus<br />

infection by PCR. 'Ca. Liberibacter sp.' was detected in 4 <strong>of</strong> 12 samples, and these<br />

samples showed symptoms <strong>of</strong> stunted and distorted growth; older leaves were yellow<br />

and brittle and younger leaves were upcurled with yellowing and vein purpling.<br />

Begomovirus infection was detected in all 12 samples.<br />

Additionally, 49 tomato samples were collected from March to June, 2010 and<br />

assayed for Liberibacter sp. using PCR primers CLi.po.F/O12c (Secor et al., 2009).<br />

The expected size fragment for Liberibacter sp. was obtained from 17 samples and no<br />

fragments were obtained with the other 32 samples. Positive PCR samples were<br />

collected from the following Departments: Sacatepéquez, Guatemala and Baja<br />

Verapaz,. These PCR fragments will be sequenced for more definitive identification.<br />

Universal PCR primers for phytoplasma (Smart et al., 1996) were used with the<br />

DNA samples from tomato collected in Guatemala and all were negative. Because <strong>of</strong><br />

the purple top symptoms, phytoplasma were originally suspected as being present.<br />

In the last two years, there has been considerable effort devoted to<br />

understanding the etiology <strong>of</strong> Zebra Chip (see Secor et al., 2009) and the new<br />

Candidatus Liberibacter sp. associated with solanaceous plants (see Liefting et al.,<br />

2009a, 2009b). These efforts plus the report here indicate that this unculturable<br />

bacterium transmitted by the tomato/potato psyllid will result in a serious disease for<br />

55


tomatoes and peppers grown in the field or greenhouse (Brown et al., 2010) in Central<br />

America.<br />

No universally accepted name exists for this disease on tomatoes, as illustrated<br />

by the use <strong>of</strong> different names: tomato vein-greening in Arizona (Brown et al., 2010),<br />

permanent yellowing in Mexico (Munyaneza et al., 2009b) and Paratrioza disease in<br />

Guatemala. At least from our observations in Guatemala several symptoms are<br />

notable: flower abortion, purpling <strong>of</strong> the leaf margins, stem thickening, yellowing <strong>of</strong><br />

younger leaves, and stunting. An internet search reveals that there is a substantial<br />

number <strong>of</strong> sources using „permanente del tomate‟ or permanent yellowing disease <strong>of</strong><br />

tomato. Thus, it is proposed that this diseased be named Liberibacter permanente del<br />

tomate or Liberibacter yellowing disease <strong>of</strong> tomato. This would distinguish this disease<br />

from psyllid yellows (Brown et al., 2010).<br />

56


Literature Cited:<br />

Brown, J.K., Rehman, M., Rogan, D., Martin, R.R., and Idris, A.M. 2010. First report <strong>of</strong><br />

„Candidatus Liberibacter psyllaurous‟ (synonym „Ca. L. solanacearum‟ associated<br />

with „tomato vein-greening‟ and „tomato psyllid yellows‟ dieseses in commercial<br />

greenhouses in Arizona. Plant Dis. 94:376.<br />

Crosslin, J.M., and Bester, G. 2009. First report <strong>of</strong> „Candidatus Liberibacter<br />

psyllasurous‟ in Zebra chip symptomatic potatoes from California. Plant Dis.<br />

93:551.<br />

Garcia, B.E., Graham, E., Jensen, K.S., Hanson, P., Mejía, L., and Maxwell, D.P.<br />

2007. Co-dominant SCAR for detection <strong>of</strong> the begomovirus-resistance Ty2 locus<br />

derived from Solanum habrochaites in tomato germplasm. Tom. Gen. Coop. Rept.<br />

57:21-24.<br />

Liefting, L.W., Weir, B.S., Pennycook, S.R., and Clover, G.R.G. 2009a. „Candidatus<br />

Liberibacter solanacearum‟ associated with plants in the family Solanaceae.<br />

Internat. J. System. and Evolut. Microbiol. 59:2274-2276.<br />

Liefting, L.W., Sutherland, P.W., Ward, L.I., Paice, K.L., Weir, B.S., and Clover, G.R.G.<br />

2009b. A new „Candidatus Liberibacter‟ species associated with diseases <strong>of</strong><br />

Solanaceous crops. Plant Dis. 93:208-214.<br />

Munyaneza, J.E., Sengoda, V.G., Crosslin, J.M., Garzón-Tiznado, J.A., and Cardenas-<br />

Valenzuela, O.G. 2009a. First report <strong>of</strong> „Candidatus Liberibacter solanacearum‟ in<br />

pepper plants in México. Plant Dis. 93:1079.<br />

Munyaneza, J.E., Sengoda, V.G., Crosslin, J.M., Garzón-Tiznado, J.A., and Cardenas-<br />

Valenzuela, O.G. 2009b. First report <strong>of</strong> „Candidatus Liberibacter solanacearum‟ in<br />

tomato plants in México. Plant Dis. 93:1079.<br />

Páramo Menchaca, V. Estrategia integrada: control de Paratrioza, pulgón saltador o<br />

psílido de la papa y el tomate. Productores de Hortalizas. April, 2007.<br />

Rehman, M., Melgar, J.C., Rivera, J.M., Idris, A.M., and Brown, J.K. 2010. First report<br />

<strong>of</strong> „Candidatus Liberibacter psyllaurous‟ or „Ca. Liberibacter solanacearum‟<br />

associated with severe foliar chlorosis, curling, and necrosis and tuber<br />

discoloration <strong>of</strong> potato plants in Honduras. Plant Dis. 94:376.<br />

Secor, G.A., Rivera, V.V., Abad, J.A., Clover, G.R.G, Liefting, L.W., Li. X., and De<br />

Boer, S.H. 2009. Association <strong>of</strong> „Candidatus Liberibacter solanacearum‟ with<br />

Zebra Chip disease <strong>of</strong> potato established by graft and psyllid transmission,<br />

electron microscopy, and PCR. Plant Dis. 93:574-583.<br />

Smart, C.D., Schneider, B., Blomquist, C.L., Guerra, L.J., Harrison, N.A., Ahrens, U.,<br />

Lorenz, K.-H., Seemuller, E., and Kirkpatrick, B.C. 1996. Phytoplasm-specific<br />

PCR primers based on sequences <strong>of</strong> the 16s-23s rRNA spacer region. Applied<br />

and Environ. Microbiol. 62:2988-2993.<br />

57


Research Papers TGC REPORT VOLUME <strong>60</strong>, 2010<br />

Study <strong>of</strong> epidermal cell size <strong>of</strong> petals and stamens in tomato species and hybrids<br />

using confocal laser-scanning microscopy<br />

Christopher L<strong>of</strong>ty, Julian Smith, Pravda Stoeva-Popova<br />

Department <strong>of</strong> Biology, Winthrop <strong>University</strong>, Rock Hill SC 29733<br />

E-mail: stoevap@winthrop.edu<br />

Introduction<br />

The phenomenon <strong>of</strong> cytoplasmic male sterility (CMS) has been described and<br />

the genetics underlying the phenomemon studied in many species. Whether arising<br />

spontaneously, as the result <strong>of</strong> mutations, or through alloplasmic incompatibilities in<br />

interspecific crosses, the main effect <strong>of</strong> CMS is on the development <strong>of</strong> stamens and<br />

pollen, leading to aberrant stamens with no pollen or aborted pollen (Kaul 1988). Other<br />

changes correlated with the CMS phenotype are changes in the second whorl affecting<br />

petal size and color (Andersen 1963, 1964; Petrova et al. 1999; Farbos et al. 2001;<br />

Leino et al. 2003)<br />

In the tomato, CMS does not occur naturally. CMS has been reported in<br />

interspecies hybrids. Andersen (1963, 1964) reported the emergence and increase <strong>of</strong><br />

pollen abortion in F1 and backcrosses <strong>of</strong> the crosses between Solanum lycopersicum,<br />

S. cheesmaniiae (formerly L. chesmanii f. typicum and f. minor) or S. habrochaites<br />

(formerly L. hirsutum f. glabratum) used as pistillate parents and S. pennellii as the<br />

recurrent pollinating parent. Pleiotropic effects <strong>of</strong> the CMS phenotype included the<br />

reduction <strong>of</strong> anther length and size, and the lengthening <strong>of</strong> the filaments. The anther<br />

size was negatively correlated to the percent <strong>of</strong> aborted pollen.<br />

Similar results were observed by Valkova-Atchkova (1980) in crosses involving<br />

S. peruvianum as pistillate parent and S. pennellii and S. habrochaites (formerly L.<br />

hirsutum f. typicum) as pollinating parents. Further introgression <strong>of</strong> the nuclear genome<br />

<strong>of</strong> the recurrent parents confirmed the stability <strong>of</strong> the CMS phenotype over many<br />

generations (Petrova et al. 1999, Stoeva et al. 2007).<br />

As a preliminary step to dissecting morphological (and underlying genetic)<br />

changes occurring in the CMS phenotype, this study has focused on the comparative<br />

analysis <strong>of</strong> the size <strong>of</strong> epidermal cells from abaxial and adaxial sides <strong>of</strong> petals and<br />

stamens <strong>of</strong> mature flowers from CMS-pennellii line (0% stainable pollen), the isonuclear<br />

S. pennellii (100% pollen fertility), and the cultivated tomato S. lycopersicum.<br />

Materials and methods<br />

Plant material<br />

In the study the following genotypes were used: Solanum lycopersicum (cv.<br />

Merkurii), Solanum pennellii (LA716), and CMS-pennellii (CMS line) previously<br />

described in Petrova et al. (1998) and Radkova (2002). To determine the size <strong>of</strong> the<br />

epidermal cells, fully expanded flowers in stage 20 according to the classification <strong>of</strong><br />

Burkhin et al. (2003) were collected from plants grown in the same environmental<br />

58


chamber with 24C/ 20C day/night temperature and 18/6 hours day/night photoperiod<br />

(Fig. 1).<br />

<strong>Tomato</strong> flower preparation for confocal microscopy:<br />

A 0.1% aqueous solution <strong>of</strong> calc<strong>of</strong>luor white (SIGMA) was made (Pringle 1991).<br />

Excess solution was kept in the freezer and defrosted as needed. Excised floral<br />

structures (petals, anthers or filaments) were immersed in approximately 5 ml <strong>of</strong> 0.1%<br />

calc<strong>of</strong>luor solution and placed under vacuum until rapid boil was achieved. The sunken<br />

specimens were allowed to soak for 20 minutes in the dark and then were rinsed in<br />

dH2O for 10 minutes. Specimens were dissected and placed on slides. For the anthers,<br />

spacers <strong>of</strong> approximately 0.5 mm – 1 mm thick were used to ensure the specimens<br />

were not smashed by the coverslip. Coverslips were placed on top and fixed with nail<br />

polish at each corner. Calc<strong>of</strong>luor staining <strong>of</strong> epidermal cell walls was observed using the<br />

DAPI channel <strong>of</strong> the confocal laser-scanning microscope (CLSM) (FV1000). Images<br />

were taken at the planes in which cell wall margins contacted each other. Cells were<br />

counted in image frames measuring from 150 m X 150 m to 300 m X 270 m, with<br />

the frame size adjusted as needed to include from five to twenty cells in each frame.<br />

Ten to fifteen cells from both sides (abaxial and adaxial) <strong>of</strong> each floral structure<br />

were measured using ImageJ (Rasband, 2009) to obtain cell areas (in m 2 ). The<br />

ANOVA and Tukey's LSD statistical tests (Minitab, Inc.) were performed separately for<br />

each epidermal floral surface across genotypes to determine if any significant difference<br />

existed between the mean surface areas <strong>of</strong> studied epidermal cells.<br />

Results<br />

Petal abaxial cell surface area was significantly different among the three<br />

genotypes (p < 0.001) with CMS line having the largest mean cell size and S. pennellii<br />

having the smallest (Figs. 2, 3). Petal adaxial cell sizes differed significantly with S.<br />

lycopersicum and S. pennelli both being larger than the CMS line (Fig 3). Although no<br />

statistical test was done, abaxial cells were smaller than the adaxial in the two species<br />

S. pennellii and S. lycopersicum. On the contrary, the abaxial cells in the CMS line<br />

were larger in comparison to the adaxial cells.<br />

Epidermal cell area on both the adaxial and the abaxial surfaces <strong>of</strong> the anthers<br />

was significantly different (p< 0.001) among the three genotypes (Figs.4, 5), with S.<br />

lycopersicum having the largest mean cell size for both, and the CMS line, the smallest.<br />

Among the filament epidermal cells, the abaxial cells in the CMS line and<br />

cultivated tomato were not significantly different, but both were significantly bigger than<br />

those in S. pennellii (p< 0.001) (Fig.6, 7). There were no significant differences in the<br />

mean size <strong>of</strong> the epidermal cells on the adaxial surface <strong>of</strong> the filaments <strong>of</strong> the three<br />

strains (p=0.252) (Fig.5, 6). There was a large variation (Fig. 7) in the size <strong>of</strong> the adaxial<br />

epidermal cells in S. pennellii and the CMS line, while the size <strong>of</strong> the adaxial cells <strong>of</strong><br />

filament in the cultivated tomato showed less variation.<br />

Discussion<br />

According to published data, cytoplasmic male sterility has a considerable effect<br />

on the size and color <strong>of</strong> petals and stamens (Kaul 1988, Farbos et al. 2001, Leino et al.<br />

2003). Our previous studies had also shown that in comparison to S. pennellii, the CMS<br />

59


flowers have smaller and lighter green petals and anthers and longer filaments (Fig 1;<br />

Petrova et al 1998). In addition to tomato nuclear male sterility mutants (reviewed in<br />

Gorman and McCormick 1997) ), similar changes <strong>of</strong> flower structures have been<br />

reported for tomato plants grown at low temperatures (Lozano et al. 1998) and in loss<strong>of</strong>-function<br />

transgenic plants for the B-class genes required for petal and stamen<br />

identity (De Martino et al. 2006).<br />

The size <strong>of</strong> plant organs is determined by cell division and cell expansion and<br />

elongation. Our investigation <strong>of</strong> the size <strong>of</strong> epidermal cells shows that the smaller size <strong>of</strong><br />

the anthers in the CMS line (Fig. 1; Stoeva-Popova et al., unpublished) can be<br />

explained largely by the reduction in the size <strong>of</strong> the cells. The epidermal cells on both<br />

surfaces <strong>of</strong> the CMS anther were significantly smaller in comparison to S. pennellii:<br />

respectively 51% smaller on the adaxial side, and 42.3% on the abaxial surface. On<br />

the other hand, no corresponding effect <strong>of</strong> cytoplasmic male sterility on cell size in the<br />

petals was observed On the abaxial surface <strong>of</strong> the petals <strong>of</strong> CMS line, the cells were<br />

81.5% larger than in S. pennellii, while on the adaxial side, they were 32.2 % smaller.<br />

According to our measurements (Stoeva et al., unpublished data) the CMS-pennellii<br />

filaments are several magnitudes longer than the filaments <strong>of</strong> S. pennellii (Fig. 1). This<br />

is not merely a consequence <strong>of</strong> increased cells size, as the filament epidermal cells <strong>of</strong><br />

CMS are statistically larger than those <strong>of</strong> S. pennellii only on the abaxial side. CMSpennellii<br />

and S. pennellii share the same nuclear genome and cytoplasmic male sterility<br />

affects expression <strong>of</strong> nuclear genes ( reviewed in Linke, Börner 2005, Chase 2006). Our<br />

results above show that cytoplasmic male sterility does not equally affect the<br />

development <strong>of</strong> petals, stamens and filaments.<br />

Our study has shown that there are significant differences in the size <strong>of</strong><br />

epidermal cells between the two species: the red-fruited cultivated tomato and the<br />

green-fruited S. pennellii. Significant differences were determined for the epidermal cells<br />

<strong>of</strong> the anthers and petals. The epidermal cells <strong>of</strong> the anthers <strong>of</strong> the cultivated tomato<br />

were larger, which is an indication that the anthers <strong>of</strong> S. pennellii have greater number<br />

<strong>of</strong> epidermal cells. The same conclusion could be drawn from the study <strong>of</strong> the abaxial<br />

epidermal cells <strong>of</strong> the petals and the filaments. Since the two species are not closely<br />

related it will be interesting to investigate other representatives <strong>of</strong> the tomato clade and<br />

to determine if the size <strong>of</strong> epidermal cells <strong>of</strong> flower structures can be indicative <strong>of</strong><br />

species relatedness.<br />

Although no statistical analysis was carried out, our data show one consistent<br />

feature across all genotypes: the largest epidermal cells were observed on anthers,<br />

while the ones with the smallest surface area were epidermal cells <strong>of</strong> petals.<br />

<strong>60</strong>


References<br />

Andersen W.R. (1964). Evidence for plasmon differentiation in Lycopersicon. Report<br />

<strong>Tomato</strong> Genet. Coop. 14:4-6<br />

Andersen, W.R. (1963). Cytoplasmic sterility in hybrids <strong>of</strong> Lycopersicon esculentum and<br />

Solanum pennellii. Report <strong>Tomato</strong> Genet. Coop. 13:7-8<br />

Burkhin V., Hernould M., Gonzalez N., Chevalier C., Mouras A. (2003). Flower<br />

development schedule in tomato Lycopersicon esculentum cv. sweet cherry. Sex.<br />

Plant. Reprod. 15:311-320<br />

Chase Ch. (2006). Cytoplasmic male sterility: a window to the world <strong>of</strong> plant<br />

mitochondrial-nuclear interactions. Trends in <strong>Genetics</strong> 23 (3):81-90<br />

de Martino G., Pan I., Emmanuel E., Levy A., Irish V.F. (2006). Functional analysis <strong>of</strong><br />

two tomato APETALA3 genes demonstrate diversification in their roles in regulating<br />

floral development. Plant Cell 18:1833-1845<br />

Farbos I., Mouras A., Bereterbide A., Glimelius K. (2001). Defective cell proliferation in<br />

the floral meristems <strong>of</strong> alloplasmic plants <strong>of</strong> Nicotiana tabacum leads to abnormal<br />

floral organ development and male sterility. Plant Journal 26:131-142.<br />

Gorman S.W., McCormick S. (1997). Male sterility in tomato. Critical Reviews in Plant<br />

Sciences 16(1):31-53<br />

Kaul M.L.H (1988). Male sterility in higher plants. In: Monographs on Theor. Appl.<br />

Genet. 10. Springer Verlag Berlin<br />

Leino M., Teixeira R., Landgren M., Glimelius K. (2003). Brassica napus lines with<br />

rearranged Arabidopsis mitochondria display CMS and a range <strong>of</strong> developmental<br />

aberrations. Theor. Appl. Genet. 106:1156-1163<br />

Linke B., Börner T. (2005). Mitochondrial effects on flower and pollen development.<br />

Mitochondrion 5:389-402<br />

Lozano R., Angosto T., Gomez P., payan C., Huijer P., Salinas J., Martinez-Zapater<br />

J.M. (1998). <strong>Tomato</strong> flower abnormalities induced by low temperatures are<br />

associated with changes <strong>of</strong> expression <strong>of</strong> MADS-box genes. Plant Physiology<br />

117:91-100<br />

Petrova M., Vulkova Z., Gorinova N., Izhar S., Firon N., Jacquemin J.-M., Atanassov A.,<br />

Stoeva P. (1999). Characterization <strong>of</strong> cytoplasmic male sterile hybrid line between<br />

Lycopersicon peruvianum Mill. x Lycopersicon pennellii Corr. and its crosses with<br />

the cultivated tomato. Theor. Appl. Genet. 98:825-830<br />

Pringle JR. (1991) Staining <strong>of</strong> bud scars and other cell wall chitin with calc<strong>of</strong>luor.<br />

Methods in Enzymology 4:732-5<br />

Radkova M. (2002). Morphological, cytogenetic and molecular genetic studies <strong>of</strong><br />

cytoplasmic male sterility in genus Lycopersicon. PhD Thesis, AgroBioInstitute,<br />

S<strong>of</strong>ia, Bulgaria<br />

Rasband W.S., (2009) ImageJ. U. S. National Institutes <strong>of</strong> Health, Bethesda,<br />

Maryland, USA, http://rsb.info.nih.gov/ij.<br />

61


Stoeva P., Dimaculangan 2 D., Radkova M., Vulkova Z. (2007). Towards cytoplasmic<br />

male sterility in cultivated tomato. Journal <strong>of</strong> Agricultural, Food and Environmental<br />

Sciences 1(1): http://www.scientificjournals.org/journals2007/articles/1058.htm<br />

Valkova-Achkova Z. (1980). L. peruvianum a source <strong>of</strong> CMS. Rep. <strong>Tomato</strong> Genet.<br />

Coop. 30:36<br />

Authors’ contributions:<br />

P.S-P. designed the experiment and provided the plant material. C.L. prepared all <strong>of</strong><br />

the specimens and measured the specimens using techniques designed in collaboration<br />

with J.SIII. C.L. drafted the Methods and Results sections, and performed the statistical<br />

analysis under the supervision <strong>of</strong> JSIII. P.S-P. drafted the Introduction and Discussion.<br />

All three authors contributed to the final editing and read and approved the manuscript<br />

before submission.<br />

Fig.1: Flowers <strong>of</strong> Solanum lycopersicum (A), S. pennellii (B) and CMS-pennellii (C)<br />

A B<br />

C<br />

62


Fig 2: CLSM photographs <strong>of</strong> epidermal cells from abaxial and adaxial surfaces <strong>of</strong> petals<br />

from flowers (genotypes and magnification as indicated on pictures)<br />

Fig 3: Mean epidermal surface area <strong>of</strong> petals. Bars with the same letter are statistically<br />

equal<br />

63


Fig. 4: CLSM photographs <strong>of</strong> epidermal cells from abaxial and adaxial surfaces <strong>of</strong><br />

mature anthers (genotypes and magnification as indicated on pictures<br />

Fig. 5: Mean epidermal surface area <strong>of</strong> anthers. Bars with the same letter are<br />

statistically equal<br />

64


Fig. 6: CLSM photographs <strong>of</strong> epidermal cells from abaxial and adaxial surfaces <strong>of</strong><br />

filaments from mature stamens (genotypes and magnification as indicated on<br />

pictures)<br />

Fig 7: Mean epidermal surface area <strong>of</strong> filaments. Bars with the same letter are<br />

statistically equal<br />

65


Revised List <strong>of</strong> Wild Species Stocks<br />

Chetelat, R. T.<br />

TGC REPORT VOLUME <strong>60</strong>, 2010<br />

C.M. Rick <strong>Tomato</strong> <strong>Genetics</strong> Resource Center, Dept. <strong>of</strong> Plant Sciences, <strong>University</strong><br />

<strong>of</strong> California, One Shields Ave., Davis, CA 95616<br />

The following list <strong>of</strong> 1,196 accessions <strong>of</strong> wild tomatoes and allied Solanum species<br />

is a revision <strong>of</strong> the list published in TGC vol. 57, 2007. Other types <strong>of</strong> TGRC stocks are<br />

catalogued in TGC 58 (monogenic mutants) and TGC 59 (miscellaneous stocks).<br />

Inactive accessions have been dropped and new collections added to the present list.<br />

The new material includes populations <strong>of</strong> wild or feral cherry tomato (S. lycopersicum<br />

‘cerasiforme‟) from Mexico (LA4352, LA4353), a stock <strong>of</strong> S. pimpinellifolium containing<br />

the sun gene introgressed from S. lycopersicum, and populations <strong>of</strong> S. peruvianum from<br />

the Azapa valley <strong>of</strong> northern Chile (LA4445-LA4448).<br />

Seed samples will be provided, upon request, for research, breeding or<br />

educational purposes. Some accessions may be temporarily unavailable for distribution<br />

during seed multiplication. In general, only small quantities <strong>of</strong> seed will be provided: 25<br />

seed per accession for the self-pollinated accessions, 50 for the outcrossers or<br />

facultative accessions, and 5-10 for the allied Solanum species. These seed samples<br />

should be sufficient for researchers to produce larger quantities <strong>of</strong> seed, if needed.<br />

Accessions are grown for seed increase in the UC-Davis greenhouses, except for<br />

cherry tomatoes and certain populations <strong>of</strong> S. pimpinellifolium, which are grown in the<br />

field. The population sizes used for seed multiplication depend on the mating system,<br />

and are designed to maintain genetic diversity within accessions (see guidelines at<br />

http://tgrc.ucdavis.edu).<br />

The following tables are ordered by species name, using the classification<br />

system <strong>of</strong> Peralta et al. (2008) 11 , but with the equivalent Lycopersicon names listed as<br />

well. Although only brief collection site data can be presented here, more detailed<br />

records are available from our website, including geographic coordinates, images, and<br />

donor information. An appendix table lists the accessions belonging to the core subsets<br />

for each species.<br />

S. arcanum (L. peruvianum or L. peruvianum var. humifusum)<br />

LA0378 Cascas Cajamarca Peru<br />

LA0385 San Juan (Rio Jequetepeque) Cajamarca Peru<br />

LA0389 Abra Gavilan Cajamarca Peru<br />

LA0392 Llallan Cajamarca Peru<br />

LA0441 Cerro Campana La Libertad Peru<br />

LA1027 Cajamarca Peru<br />

11 Peralta, I. E., D. M. Spooner, S. Knapp (2008) Taxonomy <strong>of</strong> wild tomatoes and their relatives<br />

(Solanum sect. Lycopersicoides, sect. Juglandifolia, and sect. Lycopersicon; Solanaceae).<br />

Systematic Botany Monographs 84: 1-186.<br />

66


S. arcanum (L. peruvianum or L. peruvianum var. humifusum)<br />

LA1031 Balsas Amazonas Peru<br />

LA1032 Aricapampa La Libertad Peru<br />

LA1346 Casmiche La Libertad Peru<br />

LA1350 Chauna Cajamarca Peru<br />

LA1351 Rupe Cajamarca Peru<br />

LA13<strong>60</strong> Pariacoto Ancash Peru<br />

LA1394 Balsas - Rio Utcubamba Amazonas Peru<br />

LA1395 Chachapoyas Amazonas Peru<br />

LA1396 Balsas (Chachapoyas) Amazonas Peru<br />

LA1626 Mouth <strong>of</strong> Rio Rupac Ancash Peru<br />

LA1708 Chamaya to Jaen Cajamarca Peru<br />

LA1984 Otuzco La Libertad Peru<br />

LA1985 Casmiche La Libertad Peru<br />

LA2150 Puente Muyuno (Rio Jequetepeque) Cajamarca Peru<br />

LA2151 Morochupa (Rio Jequetepeque) Cajamarca Peru<br />

LA2152 San Juan #1 (Rio Jequetepeque) Cajamarca Peru<br />

LA2153 San Juan #2 (Rio Jequetepeque) Cajamarca Peru<br />

LA2157 Tunel Chotano Cajamarca Peru<br />

LA2163 Cochabamba to Yamaluc Cajamarca Peru<br />

LA2164 Yamaluc Cajamarca Peru<br />

LA2172 Cuyca Cajamarca Peru<br />

LA2185 Pongo de Rentema Amazonas Peru<br />

LA2326 Above Balsas Amazonas Peru<br />

LA2327 Aguas Calientes Cajamarca Peru<br />

LA2328 Aricapampa La Libertad Peru<br />

LA2330 Chagual La Libertad Peru<br />

LA2331 Agallapampa La Libertad Peru<br />

LA2333 Casmiche La Libertad Peru<br />

LA2334 San Juan Cajamarca Peru<br />

LA2388 Cochabamba to Huambos (Chota) Cajamarca Peru<br />

LA2548 La Moyuna (Magadalena) Cajamarca Peru<br />

LA2550 El Tingo, Chorpampa (Rio Jequetepeque) Cajamarca Peru<br />

LA2553 Balconcillo de San Marcos Cajamarca Peru<br />

LA2555 Marical - Castilla La Libertad Peru<br />

LA2565 Potrero de Panacocha a Llamellin Ancash Peru<br />

LA2566 Cullachaca Ancash Peru<br />

LA2582 San Juan (4x) Cajamarca Peru<br />

LA2583 (4x)<br />

LA2917 Chullchaca Ancash Peru<br />

LA4316 Kuntur Wasi Cajamarca Peru<br />

S. cheesmaniae (L. cheesmanii)<br />

LA0166 Santa Cruz: Barranco, N <strong>of</strong> Punta Ayora Galapagos Islands Ecuador<br />

67


S. cheesmaniae (L. cheesmanii)<br />

LA0421 Cristobal: cliff East <strong>of</strong> Wreck Bay Galapagos Islands Ecuador<br />

LA0422 San Cristobal: Wreck Bay, Puerto Baquerizo Galapagos Islands Ecuador<br />

LA0428 Santa Cruz: Trail Bellavista to Miconia Zone Galapagos Islands Ecuador<br />

LA0429 Santa Cruz: Crater in highlands Galapagos Islands Ecuador<br />

LA0434 Santa Cruz: Rambech Trail Galapagos Islands Ecuador<br />

LA0437 Isabela: Ponds North <strong>of</strong> Villamil Galapagos Islands Ecuador<br />

LA0521 Fernandina: Inside Crater Galapagos Islands Ecuador<br />

LA0522 Fernandina: Outer slopes Galapagos Islands Ecuador<br />

LA0524 Isabela: Punta Essex Galapagos Islands Ecuador<br />

LA0528B Santa Cruz: Academy Bay Galapagos Islands Ecuador<br />

LA0529 Fernandina: Crater Galapagos Islands Ecuador<br />

LA0531 Baltra: Barranco slope, N side Galapagos Islands Ecuador<br />

LA0746 Isabela: Punta Essex Galapagos Islands Ecuador<br />

LA0749 Fernandina: North side Galapagos Islands Ecuador<br />

LA0927 Santa Cruz: Academy Bay Galapagos Islands Ecuador<br />

LA0932 Isabela: Tagus Cove Galapagos Islands Ecuador<br />

LA1035 Fernandina: Low elevation Galapagos Islands Ecuador<br />

LA1036 Isabela: far north end Galapagos Islands Ecuador<br />

LA1037 Isabela: Alcedo East slope Galapagos Islands Ecuador<br />

LA1039 Isabela: Cape Berkeley Galapagos Islands Ecuador<br />

LA1040 San Cristobal: Caleta Tortuga Galapagos Islands Ecuador<br />

LA1041 Santa Cruz: El Cascajo Galapagos Islands Ecuador<br />

LA1042 Isabela: Cerro Santo Tomas Galapagos Islands Ecuador<br />

LA1043 Isabela: Cerro Santo Tomas Galapagos Islands Ecuador<br />

LA1138 Isabela: E <strong>of</strong> Cerro Azul Galapagos Islands Ecuador<br />

LA1139 Isabela: W <strong>of</strong> Cerro Azul Galapagos Islands Ecuador<br />

LA1402 Fernandina: W <strong>of</strong> Punta Espinoza Galapagos Islands Ecuador<br />

LA1404 Fernandina: W flank caldera Galapagos Islands Ecuador<br />

LA1406 Fernandina: SW rim caldera Galapagos Islands Ecuador<br />

LA1407 Fernandina: caldera, NW bench Galapagos Islands Ecuador<br />

LA1409 Isabela: Punta Albermarle Galapagos Islands Ecuador<br />

LA1412 San Cristobal: opposite Isla Lobos Galapagos Islands Ecuador<br />

LA1414 Isabela: Cerro Azul Galapagos Islands Ecuador<br />

LA1427 Fernandina: WSW rim <strong>of</strong> caldera Galapagos Islands Ecuador<br />

LA1447 Santa Cruz: Darwin Station-Punta Nunez Galapagos Islands Ecuador<br />

LA1448 Santa Cruz: Puerto Ayora, Pelican Bay Galapagos Islands Ecuador<br />

LA1449 Santa Cruz: Darwin Station, Seismo Station Galapagos Islands Ecuador<br />

LA1450 Isabela: Bahia San Pedro Galapagos Islands Ecuador<br />

LA3124 Santa Fe: near E landing Galapagos Islands Ecuador<br />

S. chilense (L. chilense)<br />

LA0130 Moquegua Moquegua Peru<br />

LA0294 Tacna Tacna Peru<br />

68


S. chilense (L. chilense)<br />

LA0456 Clemesi Moquegua Peru<br />

LA0458 Tacna Tacna Peru<br />

LA04<strong>60</strong> Palca Tacna Peru<br />

LA0470 Taltal Ant<strong>of</strong>agasta Chile<br />

LA1029 Moquegua Moquegua Peru<br />

LA1030 Tarata Rd. Tacna Peru<br />

LA1782 Quebrada de Acari Arequipa Peru<br />

LA1917 Llauta (4x) Ayacucho Peru<br />

LA1930 Quebrada Calapampa Arequipa Peru<br />

LA1932 Minas de Acari Arequipa Peru<br />

LA1938 Quebrada Salsipuedes Arequipa Peru<br />

LA1958 Pampa de la Clemesi Moquegua Peru<br />

LA1959 Huaico Moquegua Moquegua Peru<br />

LA19<strong>60</strong> Rio Osmore Moquegua Peru<br />

LA1961 Toquepala Tacna Peru<br />

LA1963 Rio Caplina Tacna Peru<br />

LA1965 Causuri Tacna Peru<br />

LA1967 Pachia, Rio Caplina Tacna Peru<br />

LA1968 Cause Seco Tacna Peru<br />

LA1969 Estique Pampa Tacna Peru<br />

LA1970 Tarata Tacna Peru<br />

LA1971 Palquilla Tacna Peru<br />

LA1972 Rio Sama Tacna Peru<br />

LA2404 Arica to Tignamar Tarapaca Chile<br />

LA2405 Tignamar Tarapaca Chile<br />

LA2406 Arica to Putre Tarapaca Chile<br />

LA2731 Moquella Tarapaca Chile<br />

LA2737 Yala-yala Tarapaca Chile<br />

LA2739 Nama to Camina Tarapaca Chile<br />

LA2746 Asentamiento-18 Tarapaca Chile<br />

LA2747 Alta Azapa Tarapaca Chile<br />

LA2748 Soledad Tarapaca Chile<br />

LA2749 Punta Blanca Ant<strong>of</strong>agasta Chile<br />

LA2750 Mina La Despreciada Ant<strong>of</strong>agasta Chile<br />

LA2751 Pachica (Rio Tarapaca) Tarapaca Chile<br />

LA2753 Laonzana Tarapaca Chile<br />

LA2754 W <strong>of</strong> Chusmisa Tarapaca Chile<br />

LA2755 Banos de Chusmisa Tarapaca Chile<br />

LA2757 W <strong>of</strong> Chusmisa Tarapaca Chile<br />

LA2759 Mamina Tarapaca Chile<br />

LA2762 Quebradas de Mamina a Parca Tarapaca Chile<br />

LA2764 Codpa Tarapaca Chile<br />

LA2765 Timar Tarapaca Chile<br />

69


S. chilense (L. chilense)<br />

LA2767 Chitita Tarapaca Chile<br />

LA2768 Empalme Codpa Tarapaca Chile<br />

LA2771 Above Poconchile Tarapaca Chile<br />

LA2773 Zapahuira Tarapaca Chile<br />

LA2774 Socorama Tarapaca Chile<br />

LA2778 Chapiquina Tarapaca Chile<br />

LA2779 Cimentario Belen Tarapaca Chile<br />

LA2780 Belen to Lupica Tarapaca Chile<br />

LA2879 Peine Ant<strong>of</strong>agasta Chile<br />

LA2880 Quebrada Tilopozo Ant<strong>of</strong>agasta Chile<br />

LA2882 Camar Ant<strong>of</strong>agasta Chile<br />

LA2884 Ayaviri Ant<strong>of</strong>agasta Chile<br />

LA2887 Quebrada Bandurria Ant<strong>of</strong>agasta Chile<br />

LA2888 Loma Paposo Ant<strong>of</strong>agasta Chile<br />

LA2891 Taltal Ant<strong>of</strong>agasta Chile<br />

LA2930 Quebrada Taltal Ant<strong>of</strong>agasta Chile<br />

LA2931 Guatacondo Tarapaca Chile<br />

LA2932 Quebrada Gatico, Mina Escalera Ant<strong>of</strong>agasta Chile<br />

LA2946 Guatacondo Tarapaca Chile<br />

LA2949 Chusmisa Tarapaca Chile<br />

LA2952 Camiña Tarapaca Chile<br />

LA2955 Quistagama Tarapaca Chile<br />

LA2980 Yacango Moquegua Peru<br />

LA2981A Torata to Chilligua en route to Puno Moquegua Peru<br />

LA3111 Tarata Tacna Peru<br />

LA3112 Estique Pampa Tacna Peru<br />

LA3113 Apacheta Tacna Peru<br />

LA3114 Quilla Tacna Peru<br />

LA3115 W <strong>of</strong> Quilla Tacna Peru<br />

LA3153 Desvio Omate (Rio de Osmore) Moquegua Peru<br />

LA3155 Quinistaquillas Moquegua Peru<br />

LA3355 Cacique de Ara Tacna Peru<br />

LA3356 W <strong>of</strong> Tacna Tacna Peru<br />

LA3357 Irrigacion Magollo Tacna Peru<br />

LA3358 Rio Arunta-Cono Sur Tacna Peru<br />

LA3784 Rio Chaparra Arequipa Peru<br />

LA3785 Terras Blancas Arequipa Peru<br />

LA3786 Alta Chaparra Arequipa Peru<br />

LA4106 Taltal Ant<strong>of</strong>agasta Chile<br />

LA4107 Catarata Taltal Ant<strong>of</strong>agasta Chile<br />

LA4108 Caleta Punta Grande Ant<strong>of</strong>agasta Chile<br />

LA4109 Quebrada Canas Ant<strong>of</strong>agasta Chile<br />

LA4117A San Pedro - Paso Jama Ant<strong>of</strong>agasta Chile<br />

70


S. chilense (L. chilense)<br />

LA4117B San Pedro - Paso Jama Ant<strong>of</strong>agasta Chile<br />

LA4118 Toconao Ant<strong>of</strong>agasta Chile<br />

LA4119 Socaire Ant<strong>of</strong>agasta Chile<br />

LA4120 Cahuisa Tarapaca Chile<br />

LA4121 Pachica - Poroma Tarapaca Chile<br />

LA4122 Chiapa Tarapaca Chile<br />

LA4127 Alto Umayani Tarapaca Chile<br />

LA4129 Pachica (Rio Camarones) Tarapaca Chile<br />

LA4132 Esquina Tarapaca Chile<br />

LA4319 Alto Rio Lluta Tarapaca Chile<br />

LA4321 Quebrada Cardones Tarapaca Chile<br />

LA4324 Estacion Puquio Tarapaca Chile<br />

LA4327 Pachica, Rio Camarones Tarapaca Chile<br />

LA4329 Puente del Diablo, Rio Salado Ant<strong>of</strong>agasta Chile<br />

LA4330 Caspana Ant<strong>of</strong>agasta Chile<br />

LA4332 Rio Grande Ant<strong>of</strong>agasta Chile<br />

LA4334 Quebrada Sicipo Ant<strong>of</strong>agasta Chile<br />

LA4335 Quebrada Tucuraro Ant<strong>of</strong>agasta Chile<br />

LA4336 Quebrada Cascabeles Ant<strong>of</strong>agasta Chile<br />

LA4337 Quebrada Paposo Ant<strong>of</strong>agasta Chile<br />

LA4338 Quebrada Taltal, Estacion Breas Ant<strong>of</strong>agasta Chile<br />

LA4339 Quebrada Los Zanjones Ant<strong>of</strong>agasta Chile<br />

S. chmielewskii (L. chmielewskii)<br />

LA1028 Casinchihua Apurimac Peru<br />

LA1306 Tambo Ayacucho Peru<br />

LA1316 Ocros Ayacucho Peru<br />

LA1317 Hacienda Pajonal Ayacucho Peru<br />

LA1318 Auquibamba Apurimac Peru<br />

LA1325 Puente Cunyac Apurimac Peru<br />

LA1327 Sorocata Apurimac Peru<br />

LA1330 Hacienda Francisco Apurimac Peru<br />

LA2639B Puente Cunyac Apurimac Peru<br />

LA2663 Tujtohaiya Cusco Peru<br />

LA2677 Huayapacha #1 Cusco Peru<br />

LA2678 Huayapacha #2 Cusco Peru<br />

LA2679 Huayapacha #3 Cusco Peru<br />

LA2680 Puente Apurimac #1 Cusco Peru<br />

LA2681 Puente Apurimac #2 Cusco Peru<br />

LA2695 Chihuanpampa Cusco Peru<br />

LA3642 Ankukunka Cusco Peru<br />

LA3643 Colcha Cusco Peru<br />

LA3644 Puente Tincoj Cusco Peru<br />

71


S. chmielewskii (L. chmielewskii)<br />

LA3645 Boca del Rio Velille Cusco Peru<br />

LA3648 Huallapachaca Apurimac Peru<br />

LA3653 Matara Apurimac Peru<br />

LA3654 Casinchigua to Chacoche Apurimac Peru<br />

LA3656 Chalhuani Apurimac Peru<br />

LA3658 Occobamba Apurimac Peru<br />

LA3661 Pampotampa Apurimac Peru<br />

LA3662 Huancarpuquio Apurimac Peru<br />

S. corneliomulleri (L. peruvianum or L. peruv. f. glandulosum)<br />

LA0103 Cajamarquilla, Rio Rimac Lima Peru<br />

LA0107 Hacienda San Isidro, Rio Canete Lima Peru<br />

LA0364 9 Km W <strong>of</strong> Canta Lima Peru<br />

LA0366 12 Km W <strong>of</strong> Canta Lima Peru<br />

LA0444 Chincha #1 Ica Peru<br />

LA0451 Arequipa Arequipa Peru<br />

LA1133 Huachipa Lima Peru<br />

LA1271 Horcon Lima Peru<br />

LA1274 Pacaibamba Lima Peru<br />

LA1281 Sisacaya Lima Peru<br />

LA1283 Santa Cruz de Laya Lima Peru<br />

LA1284 Espiritu Santo Lima Peru<br />

LA1292 San Mateo Lima Peru<br />

LA1293 Matucana Lima Peru<br />

LA1294 Surco Lima Peru<br />

LA1296 Tornamesa Lima Peru<br />

LA1304 Pampano Huancavelica Peru<br />

LA1305 Ticrapo Huancavelica Peru<br />

LA1331 Nazca Ica Peru<br />

LA1339 Capillucas Lima Peru<br />

LA1373 Asia Lima Peru<br />

LA1377 Navan Lima Peru<br />

LA1379 Caujul Lima Peru<br />

LA1473 Callahuanca, Santa Eulalia valley Lima Peru<br />

LA1551 Rimac Valley, Km 71 Lima Peru<br />

LA1552 Rimac Valley, Km 93 Lima Peru<br />

LA1554 Huaral to Cerro de Pasco, Rio Chancay Lima Peru<br />

LA1<strong>60</strong>9 Asia - El Pinon Lima Peru<br />

LA1646 Yaso Lima Peru<br />

LA1647 Huadquina, Topara Ica Peru<br />

LA1653 Uchumayo, Arequipa Arequipa Peru<br />

LA1677 Fundo Huadquina, Topara Ica Peru<br />

LA1694 Cacachuhuasiin, Cacra Lima Peru<br />

72


S. corneliomulleri (L. peruvianum or L. peruv. f. glandulosum)<br />

LA1722 Ticrapo Viejo Huancavelica Peru<br />

LA1723 La Quinga Ica Peru<br />

LA1744 Putinza Lima Peru<br />

LA1910 Tambillo Huancavelica Peru<br />

LA1937 Quebrada Torrecillas Arequipa Peru<br />

LA1944 Rio Atico Arequipa Peru<br />

LA1945 Caraveli Arequipa Peru<br />

LA1973 Yura Arequipa Peru<br />

LA2717 Chilca Lima Peru<br />

LA2721 Putinza Lima Peru<br />

LA2724 Huaynilla Lima Peru<br />

LA2962 Echancay Arequipa Peru<br />

LA2981B Torata to Chilligua en route to Puno Moquegua Peru<br />

LA3154 Otora-Puente Jahuay Moquegua Peru<br />

LA3156 Omate Valley Moquegua Peru<br />

LA3219 Catarindo (Islay) Arequipa Peru<br />

LA3637 Coayllo Lima Peru<br />

LA3639 Ccatac Lima Peru<br />

LA3664 Nazca grade Ica Peru<br />

LA3666 La Yapa Ica Peru<br />

S. galapagense (L. cheesmanii f. minor)<br />

LA0317 Bartolome Galapagos Islands Ecuador<br />

LA0426 Bartolome: E <strong>of</strong> landing Galapagos Islands Ecuador<br />

LA0436 Isabela: Villamil Galapagos Islands Ecuador<br />

LA0438 Isabela: coast at Villamil Galapagos Islands Ecuador<br />

LA0480A Isabela: Cowley Bay Galapagos Islands Ecuador<br />

LA0483 Fernandina: inside crater Galapagos Islands Ecuador<br />

LA0526 Pinta: W Side Galapagos Islands Ecuador<br />

LA0527 Bartolome: W side, Tower Bay Galapagos Islands Ecuador<br />

LA0528 Santa Cruz: Academy Bay Galapagos Islands Ecuador<br />

LA0530 Fernandina: crater Galapagos Islands Ecuador<br />

LA0532 Pinzon: NW side Galapagos Islands Ecuador<br />

LA0747 Santiago: Cape Trenton Galapagos Islands Ecuador<br />

LA0748 Santiago: E Trenton Island Galapagos Islands Ecuador<br />

LA0929 Isabela: Punta Flores Galapagos Islands Ecuador<br />

LA0930 Isabela: Cabo Tortuga Galapagos Islands Ecuador<br />

LA1044 Bartolome Galapagos Islands Ecuador<br />

LA1136 Gardner-near-Floreana Islet Galapagos Islands Ecuador<br />

LA1137 Rabida: N side Galapagos Islands Ecuador<br />

LA1141 Santiago: N crater Galapagos Islands Ecuador<br />

LA1400 Isabela: N <strong>of</strong> Punta Tortuga Galapagos Islands Ecuador<br />

LA1401 Isabela: N <strong>of</strong> Punta Tortuga Galapagos Islands Ecuador<br />

73


S. galapagense (L. cheesmanii f. minor)<br />

LA1403 Fernandina: W <strong>of</strong> Punta Espinoza Galapagos Islands Ecuador<br />

LA1408 Isabela: SW volcano, Cape Berkeley Galapagos Islands Ecuador<br />

LA1410 Isabela: Punta Ecuador Galapagos Islands Ecuador<br />

LA1411 Santiago: N James Bay Galapagos Islands Ecuador<br />

LA1452 Isabela: E slope, Volcan Alcedo Galapagos Islands Ecuador<br />

LA1508 Corona del Diablo Islet (near Floreana) Galapagos Islands Ecuador<br />

LA1627 Isabela: Tagus Cove Galapagos Islands Ecuador<br />

LA3909 Bartolome: tourist landing Galapagos Islands Ecuador<br />

S. habrochaites (L. hirsutum, L. hirsutum f. glabratum)<br />

LA0094 Canta-Yangas Lima Peru<br />

LA0361 Canta Lima Peru<br />

LA0386 Cajamarca Cajamarca Peru<br />

LA0387 Santa Apolonia Cajamarca Peru<br />

LA0407 Mirador, Guayaquil Guayas Ecuador<br />

LA1033 Hacienda Taulis Lambayeque Peru<br />

LA1223 Alausi Chimborazo Ecuador<br />

LA1252 Loja Loja Ecuador<br />

LA1253 Pueblo Nuevo - Landangue Loja Ecuador<br />

LA1255 Loja (Pedestal district) Loja Ecuador<br />

LA1264 Bucay Chimborazo Ecuador<br />

LA1265 Rio Chimbo Chimborazo Ecuador<br />

LA1266 Pallatanga Chimborazo Ecuador<br />

LA1295 Surco Lima Peru<br />

LA1298 Yaso Lima Peru<br />

LA1347 Empalme Otusco La Libertad Peru<br />

LA1352 Rupe Cajamarca Peru<br />

LA1353 Contumaza Cajamarca Peru<br />

LA1354 Contumaza to Cascas Cajamarca Peru<br />

LA1361 Pariacoto Ancash Peru<br />

LA1362 Chacchan Ancash Peru<br />

LA1363 Alta Fortaleza Ancash Peru<br />

LA1366 Cajacay Ancash Peru<br />

LA1378 Navan Lima Peru<br />

LA1391 Bagua to Olmos Cajamarca Peru<br />

LA1392 Huaraz - Casma Road Ancash Peru<br />

LA1393 Huaraz - Caraz Ancash Peru<br />

LA1557 Huaral to Cerro de Pasco, Rio Chancay Lima Peru<br />

LA1559 Desvio Huamantanga-Canta Lima Peru<br />

LA15<strong>60</strong> Matucana Lima Peru<br />

LA1624 Jipijapa Manabi Ecuador<br />

LA1625 S <strong>of</strong> Jipijapa Manabi Ecuador<br />

LA1648 Above Yaso Lima Peru<br />

74


S. habrochaites (L. hirsutum, L. hirsutum f. glabratum)<br />

LA1681 Mushka Lima Peru<br />

LA1691 Yauyos Lima Peru<br />

LA1695 Cacachuhuasiin, Cacra Lima Peru<br />

LA1696 Huanchuy to Cacra Lima Peru<br />

LA1717 Sopalache Piura Peru<br />

LA1718 Huancabamba Piura Peru<br />

LA1721 Ticrapo Viejo Huancavelica Peru<br />

LA1731 Rio San Juan Huancavelica Peru<br />

LA1736 Pucutay Piura Peru<br />

LA1737 Cashacoto Piura Peru<br />

LA1738 Desfiladero Piura Peru<br />

LA1739 Canchaque to Cerran Piura Peru<br />

LA1740 Huancabamba Piura Peru<br />

LA1741 Sondorilla Piura Peru<br />

LA1753 Surco Lima Peru<br />

LA1764 West <strong>of</strong> Canta Lima Peru<br />

LA1772 West <strong>of</strong> Canta Lima Peru<br />

LA1775 Rio Casma Ancash Peru<br />

LA1777 Rio Casma Ancash Peru<br />

LA1778 Rio Casma Ancash Peru<br />

LA1779 Rio Casma Ancash Peru<br />

LA1918 Llauta Ayacucho Peru<br />

LA1927 Ocobamba Ayacucho Peru<br />

LA1928 Ocana Ayacucho Peru<br />

LA1978 Colca Ancash Peru<br />

LA2092 Chinuko Chimborazo Ecuador<br />

LA2098 Sabianga Loja Ecuador<br />

LA2099 Sabiango to Zozoranga Loja Ecuador<br />

LA2100 Sozorango Loja Ecuador<br />

LA2101 Cariamanga Loja Ecuador<br />

LA2103 Lansaca Loja Ecuador<br />

LA2104 Pena Negra Loja Ecuador<br />

LA2105 Jardin Botanico, Loja Loja Ecuador<br />

LA2106 Yambra Loja Ecuador<br />

LA2107 Los Lirios Loja Ecuador<br />

LA2108 Anganumo Loja Ecuador<br />

LA2109 Yangana #1 Loja Ecuador<br />

LA2110 Yangana #2 Loja Ecuador<br />

LA2114 San Juan Loja Ecuador<br />

LA2115 Pucala Loja Ecuador<br />

LA2116 Las Juntas Loja Ecuador<br />

LA2119 Saraguro Loja Ecuador<br />

LA2124 Cumbaratza Zamora-Chinchipe Ecuador<br />

75


S. habrochaites (L. hirsutum, L. hirsutum f. glabratum)<br />

LA2128 Zumbi Zamora-Chinchipe Ecuador<br />

LA2144 Chanchan Chimborazo Ecuador<br />

LA2155 Maydasbamba Cajamarca Peru<br />

LA2156 Ingenio Montan Cajamarca Peru<br />

LA2158 Rio Chotano Cajamarca Peru<br />

LA2159 Atonpampa Cajamarca Peru<br />

LA2167 Cimentario Cajamarca Cajamarca Peru<br />

LA2171 El Molino Piura Peru<br />

LA2174 Rio Chinchipe, San Augustin Cajamarca Peru<br />

LA2175 Timbaruca Cajamarca Peru<br />

LA2196 Caclic Amazonas Peru<br />

LA2204 Balsapata Amazonas Peru<br />

LA2314 San Francisco Amazonas Peru<br />

LA2321 Chirico Amazonas Peru<br />

LA2324 Leimebamba Amazonas Peru<br />

LA2329 Aricapampa La Libertad Peru<br />

LA2409 Miraflores Lima Peru<br />

LA2552 Las Flores Cajamarca Peru<br />

LA2556 Puente Moche La Libertad Peru<br />

LA2567 Quita Ancash Peru<br />

LA2574 Cullaspungro Ancash Peru<br />

LA2648 Santo Domingo Piura Peru<br />

LA2650 Ayabaca Piura Peru<br />

LA2651 Puente Tordopa Piura Peru<br />

LA2722 Puente Auco Lima Peru<br />

LA2812 Lambayeque Lambayeque Peru<br />

LA2855 Mollinomuna, Celica Loja Ecuador<br />

LA28<strong>60</strong> Cariamanga Loja Ecuador<br />

LA2861 Las Juntas Loja Ecuador<br />

LA2863 Macara Loja Ecuador<br />

LA2864 Sozorango Loja Ecuador<br />

LA2869 Matola-La Toma Loja Ecuador<br />

LA2975 Coltao Ancash Peru<br />

LA2976 Huangra Ancash Peru<br />

LA3794 Alta Fortaleza Ancash Peru<br />

LA3796 Anca, Marca Ancash Peru<br />

LA3854 Llaguén La Libertad Peru<br />

LA3862 Purunuma Loja Ecuador<br />

LA3863 Sozoranga Loja Ecuador<br />

LA3864 Yangana Loja Ecuador<br />

LA4137 Barrio Delta, Cajamarca Cajamarca Peru<br />

76


S. huaylasense (L. peruvianum)<br />

LA0110 Cajacay Ancash Peru<br />

LA1358 Yautan Ancash Peru<br />

LA1364 Alta Fortaleza Ancash Peru<br />

LA1365 Caranquilloc Ancash Peru<br />

LA1981 Vocatoma Ancash Peru<br />

LA1982 Huallanca Ancash Peru<br />

LA1983 Rio Manta Ancash Peru<br />

LA2068 Chasquitambo Ancash Peru<br />

LA2561 Huallanca Ancash Peru<br />

LA2562 Canon del Pato Ancash Peru<br />

LA2563 Canon del Pato Ancash Peru<br />

LA2575 Valle de Casma Ancash Peru<br />

LA2808 Huaylas Ancash Peru<br />

LA2809 Huaylas Ancash Peru<br />

S. juglandifolium<br />

LA2120 Sabanilla Zamora-Chinchipe Ecuador<br />

LA2134 Tinajillas Zamora-Chinchipe Ecuador<br />

LA2788 Quebrada La Buena Antioquia Colombia<br />

LA3322 Quito Pinchincha Ecuador<br />

LA3323 Manuel Cornejo Astorga Pichincha Ecuador<br />

LA3324 Sabanillas Zamora-Chinchipe Ecuador<br />

LA3325 Cosanga Napo Ecuador<br />

LA3326 Sicalpa Chimborazo Ecuador<br />

S. lycopersicoides<br />

LA1964 Chupapalca Tacna Peru<br />

LA1966 Palca Tacna Peru<br />

LA1990 Palca Tacna Peru<br />

LA2385 Chupapalca to Ingenio Tacna Peru<br />

LA2386 Chupapalca Tacna Peru<br />

LA2387 Lago Aricota (Tarata) Tacna Peru<br />

LA2407 Arica to Putre Tarapaca Chile<br />

LA2408 Above Putre Tarapaca Chile<br />

LA2730 Moquella Tarapaca Chile<br />

LA2772 Zapahuira Tarapaca Chile<br />

LA2776 Catarata Perquejeque Tarapaca Chile<br />

LA2777 Putre Tarapaca Chile<br />

LA2781 Desvio a Putre Tarapaca Chile<br />

LA2951 Quistagama Tarapaca Chile<br />

LA4018 Lago Aricota Tacna Peru<br />

LA4123 Camina Tarapaca Chile<br />

LA4126 Camina - Nama Tarapaca Chile<br />

77


S. lycopersicoides<br />

LA4130 Pachica (Rio Camarones) Tarapaca Chile<br />

LA4131 Esquina Tarapaca Chile<br />

LA4320 Rio Lluta Tarapaca Chile<br />

LA4322 Quebrada Cardones Tarapaca Chile<br />

LA4323 Putre Tarapaca Chile<br />

LA4326 Cochiza, Rio Camarones Tarapaca Chile<br />

S. lycopersicum (L. esculentum var. cerasiforme)<br />

LA0168 New Caledonia Fr. Oceania<br />

LA0292 Santa Cruz Galapagos Islands Ecuador<br />

LA0349 Unknown<br />

LA0384 Chilete (Rio Jequetepeque) Cajamarca Peru<br />

LA0475 Sucua Morona-Santiago Ecuador<br />

LA0476 Sucua Morona-Santiago Ecuador<br />

LA1025 Oahu: Wahiawa Hawaii USA<br />

LA1203 Ciudad Vieja Guatemala<br />

LA1204 Quetzaltenango Guatemala<br />

LA1205 Copan Honduras<br />

LA1206 Copan Ruins Honduras<br />

LA1207 Mexico<br />

LA1208 Sierra Nevada Colombia<br />

LA1209 Colombia<br />

LA1226 Sucua Morona-Santiago Ecuador<br />

LA1227 Sucua Morona-Santiago Ecuador<br />

LA1228 Macas, San Jacinto de los Monos Morona-Santiago Ecuador<br />

LA1229 Macas Plaza Morona-Santiago Ecuador<br />

LA1230 Macas Morona-Santiago Ecuador<br />

LA1231 Tena Napo Ecuador<br />

LA1247 La Toma Loja Ecuador<br />

LA1268 Chaclacayo Lima Peru<br />

LA1286 San Martin de Pangoa Junin Peru<br />

LA1287 Fundo Ileana #1 Junin Peru<br />

LA1289 Fundo Ileana #3 Junin Peru<br />

LA1290 Mazamari Junin Peru<br />

LA1291 Satipo Granja Junin Peru<br />

LA1307 Hotel Oasis, San Francisco Ayacucho Peru<br />

LA1308 San Francisco Ayacucho Peru<br />

LA1310 Hacienda Santa Rosa Ayacucho Peru<br />

LA1311-1 Santa Rosa Puebla Ayacucho Peru<br />

LA1311-10 Santa Rosa Puebla Ayacucho Peru<br />

LA1311-11 Santa Rosa Puebla Ayacucho Peru<br />

78


S. lycopersicum (L. esculentum var. cerasiforme)<br />

LA1311-12 Santa Rosa Puebla Ayacucho Peru<br />

LA1311-13 Santa Rosa Puebla Ayacucho Peru<br />

LA1311-14 Santa Rosa Puebla Ayacucho Peru<br />

LA1311-15 Santa Rosa Puebla Ayacucho Peru<br />

LA1311-16 Santa Rosa Puebla Ayacucho Peru<br />

LA1311-17 Santa Rosa Puebla Ayacucho Peru<br />

LA1311-18 Santa Rosa Puebla Ayacucho Peru<br />

LA1311-19 Santa Rosa Puebla Ayacucho Peru<br />

LA1311-2 Santa Rosa Puebla Ayacucho Peru<br />

LA1311-3 Santa Rosa Puebla Ayacucho Peru<br />

LA1311-4 Santa Rosa Puebla Ayacucho Peru<br />

LA1311-5 Santa Rosa Puebla Ayacucho Peru<br />

LA1311-6 Santa Rosa Puebla Ayacucho Peru<br />

LA1311-7 Santa Rosa Puebla Ayacucho Peru<br />

LA1311-8 Santa Rosa Puebla Ayacucho Peru<br />

LA1311-9 Santa Rosa Puebla Ayacucho Peru<br />

LA1312-2 Paisanato Cusco Peru<br />

LA1312-3 Paisanto Cusco Peru<br />

LA1312-4 Paisanato Cusco Peru<br />

LA1314 Granja Pichari Cusco Peru<br />

LA1320 Hacienda Carmen Apurimac Peru<br />

LA1323 Pfacchayoc Cusco Peru<br />

LA1324 Hacienda Potrero, Quillabamba Cusco Peru<br />

LA1328 Rio Pachachaca Apurimac Peru<br />

LA1334 Pescaderos Arequipa Peru<br />

LA1338 Puyo Napo Ecuador<br />

LA1372 Santa Eulalia Lima Peru<br />

LA1385 Quincemil Cusco Peru<br />

LA1386 Balsas Amazonas Peru<br />

LA1387 Quincemil Cusco Peru<br />

LA1388 San Ramon Junin Peru<br />

LA1420 Lago Agrio Napo Ecuador<br />

LA1421 Santa Cecilia Napo Ecuador<br />

LA1423 Near Santo Domingo Pichincha Ecuador<br />

LA1425 Villa Hermosa Cauca Colombia<br />

LA1426 Cali Cauca Colombia<br />

LA1429 La Estancilla Manabi Ecuador<br />

LA1453 Kauai: Poipu Hawaii USA<br />

LA1454 Mexico<br />

LA1455 Gral Teran Nuevo Leon Mexico<br />

LA1456 Papantla Vera Cruz Mexico<br />

LA1457 Tehuacan Puebla Mexico<br />

LA1458 Huachinango Puebla Mexico<br />

79


S. lycopersicum (L. esculentum var. cerasiforme)<br />

LA1461 <strong>University</strong> Philippines, Los Banos Philippines<br />

LA1464 El Progreso, Yoro Honduras<br />

LA1465 Taladro, Comayagua Honduras<br />

LA1467 Cali Cauca Colombia<br />

LA1468 Fte. Casa, Cali Cauca Colombia<br />

LA1479 Sucua Morona-Santiago Ecuador<br />

LA1480 Sucua Morona-Santiago Ecuador<br />

LA1481 Sucua Morona-Santiago Ecuador<br />

LA1482 Segamat Malaysia<br />

LA1483 Trujillo Saipan<br />

LA1509 Tawan Sabah Borneo<br />

LA1510 Mexico<br />

LA1511 Siete Lagoas Minas Gerais Brazil<br />

LA1512 Lago de Llopango El Salvador<br />

LA1519 Vitarte Lima Peru<br />

LA1540 Cali to Popayan Cauca Colombia<br />

LA1542 Turrialba Costa Rica<br />

LA1543 Upper Parana Brazil<br />

LA1545 Becan Ruins Campeche Mexico<br />

LA1546 Papantla Vera Cruz Mexico<br />

LA1548 Fundo Liliana Junin Peru<br />

LA1549 Chontabamba Pasco Peru<br />

LA1569 Jalapa Vera Cruz Mexico<br />

LA1574 Nana Lima Peru<br />

LA1619 Pichanaki Junin Peru<br />

LA1620 Castro Alves Bahia Brazil<br />

LA1621 Rio Venados Hidalgo Mexico<br />

LA1622 Lusaka Zambia<br />

LA1623 Muna Yucatan Mexico<br />

LA1632 Puerto Maldonado Madre de Dios Peru<br />

LA1654 Tarapoto San Martin Peru<br />

LA1655 Tarapoto San Martin Peru<br />

LA1662 El Ejido Merida Venezuela<br />

LA1667 Cali Cauca Colombia<br />

LA1668 Acapulco Guerrero Mexico<br />

LA1673 Nana Lima Peru<br />

LA1701 Trujillo La Libertad Peru<br />

LA1705 Sinaloa Mexico<br />

LA1709 Desvio Yojoa Honduras<br />

LA1710 Cariare Limon Costa Rica<br />

LA1711 Zamorano Honduras<br />

80


S. lycopersicum (L. esculentum var. cerasiforme)<br />

LA1712 Pejibaye Costa Rica<br />

LA1713 CATIE, Turrialba Costa Rica<br />

LA1909 Quillabamba Cusco Peru<br />

LA1953 La Curva Arequipa Peru<br />

LA2076 Naranjitos Bolivia<br />

LA2077 Paco, Coroica La Paz Bolivia<br />

LA2078 Mosardas Rio Grande de Sol Brazil<br />

LA2079 Maui: Kihei Hawaii USA<br />

LA2080 Maui: Kihei Hawaii USA<br />

LA2081 Maui: Kihei Hawaii USA<br />

LA2082 Arenal Valley Honduras<br />

LA2085 Kempton Park S. Africa<br />

LA2095 La Cidra Loja Ecuador<br />

LA2121 Yacuambi-Guadalupe Zamora-Chinchipe Ecuador<br />

LA2122A Yacuambi-Guadalupe Zamora-Chinchipe Ecuador<br />

LA2122B Yacuambi-Guadalupe Zamora-Chinchipe Ecuador<br />

LA2122C Yacuambi-Guadalupe Zamora-Chinchipe Ecuador<br />

LA2122D Yacuambi-Guadalupe Zamora-Chinchipe Ecuador<br />

LA2123A La Saquea Zamora-Chinchipe Ecuador<br />

LA2123B La Saquea Zamora-Chinchipe Ecuador<br />

LA2126A El Dorado Zamora-Chinchipe Ecuador<br />

LA2126B El Dorado Zamora-Chinchipe Ecuador<br />

LA2126C El Dorado Zamora-Chinchipe Ecuador<br />

LA2126D El Dorado Zamora-Chinchipe Ecuador<br />

LA2127 Zumbi Zamora-Chinchipe Ecuador<br />

LA2129 San Roque Zamora-Chinchipe Ecuador<br />

LA2130 Gualaquiza Zamora-Chinchipe Ecuador<br />

LA2131 Bomboiza Zamora-Chinchipe Ecuador<br />

LA2135 Limon Santiago-Morona Ecuador<br />

LA2136 Bella Union Santiago-Morona Ecuador<br />

LA2137 Tayusa Santiago-Morona Ecuador<br />

LA2138A Chinimpini Santiago-Morona Ecuador<br />

LA2138B Chinimpini Santiago-Morona Ecuador<br />

LA2139A Logrono Santiago-Morona Ecuador<br />

LA2139B Logrono Santiago-Morona Ecuador<br />

LA2140A Huambi Santiago-Morona Ecuador<br />

LA2140B Huambi Santiago-Morona Ecuador<br />

LA2140C Huambi Santiago-Morona Ecuador<br />

LA2141 Rio Blanco Santiago-Morona Ecuador<br />

LA2142 Cambanaca Santiago-Morona Ecuador<br />

LA2143 Nuevo Rosario Santiago-Morona Ecuador<br />

LA2177A San Ignacio Cajamarca Peru<br />

81


S. lycopersicum (L. esculentum var. cerasiforme)<br />

LA2177B San Ignacio Cajamarca Peru<br />

LA2177C San Ignacio Cajamarca Peru<br />

LA2177E San Ignacio Cajamarca Peru<br />

LA2177F San Ignacio Cajamarca Peru<br />

LA2205A Santa Rosa de Mirador San Martin Peru<br />

LA2205B Santa Rosa de Mirador San Martin Peru<br />

LA2308 San Francisco San Martin Peru<br />

LA2312 Jumbilla #1 Amazonas Peru<br />

LA2313 Jumbilla #2 Amazonas Peru<br />

LA2392 Jakarta Indonesia<br />

LA2393 Mercedes Canton Hoja Ancha Guanacaste Costa Rica<br />

LA2394 San Rafael de Hoja Ancha Guanacaste Costa Rica<br />

LA2402 Florianopolis Santa Catarina Brazil<br />

LA2411 Yanamayo Puno Peru<br />

LA2587 (4x, origin unknown)<br />

LA2616 Naranjillo Huanuco Peru<br />

LA2617 El Oropel Huanuco Peru<br />

LA2618 Santa Lucia, Tulumayo Huanuco Peru<br />

LA2619 Caseria San Augustin Loreto Peru<br />

LA2620 La Divisoria Loreto Peru<br />

LA2621 3 de Octubre Loreto Peru<br />

LA2624 Umashbamba Cusco Peru<br />

LA2625 Chilcachaca Cusco Peru<br />

LA2626 Santa Ana Cusco Peru<br />

LA2627 Pacchac, Chico Cusco Peru<br />

LA2629 Echarate Cusco Peru<br />

LA2630 Calzada Cusco Peru<br />

LA2631 Chontachayoc Cusco Peru<br />

LA2632 Maranura Cusco Peru<br />

LA2633 Huayopata Cusco Peru<br />

LA2635 Huayopata Cusco Peru<br />

LA2636 Sicre Cusco Peru<br />

LA2637 Sicre Cusco Peru<br />

LA2640 Molinopata Apurimac Peru<br />

LA2642 Molinopata Apurimac Peru<br />

LA2643 Bella Vista Apurimac Peru<br />

LA26<strong>60</strong> San Ignacio de Moxos Beni Bolivia<br />

LA2664 Yanahuana Puno Peru<br />

LA2665 San Juan del Oro Puno Peru<br />

LA2666 San Juan del Oro Puno Peru<br />

LA2667 Pajchani Puno Peru<br />

LA2668 Cruz Playa Puno Peru<br />

LA2669 Huayvaruni #1 Puno Peru<br />

82


S. lycopersicum (L. esculentum var. cerasiforme)<br />

LA2670 Huayvaruni #2 Puno Peru<br />

LA2671 San Juan del Oro, Escuela Puno Peru<br />

LA2673 Chuntopata Puno Peru<br />

LA2674 Huairurune Puno Peru<br />

LA2675 Casahuiri Puno Peru<br />

LA2683 Consuelo Cusco Peru<br />

LA2684 Patria Cusco Peru<br />

LA2685 Gavitana Madre de Dios Peru<br />

LA2686 Yunguyo Madre de Dios Peru<br />

LA2687 Mansilla Madre de Dios Peru<br />

LA2688 Santa Cruz near Shintuyo #1 Madre de Dios Peru<br />

LA2689 Santa Cruz near Shintuyo #2 Madre de Dios Peru<br />

LA2690 Atalaya Cusco Peru<br />

LA2691 Rio Pilcopata Cusco Peru<br />

LA2692 Pilcopata #1 Cusco Peru<br />

LA2693 Pilcopata #2 Cusco Peru<br />

LA2694 Aguasantas Cusco Peru<br />

LA2696 El Paramillo, La Union Valle Colombia<br />

LA2697 Mata de Cana, El Dovio Valle Colombia<br />

LA2698 La Esperanza de Belgica Valle Colombia<br />

LA2700 Aoti, Satipo Junin Peru<br />

LA2702 Kandy #1 Sri Lanka<br />

LA2709 Bidadi, Bangalore Karnataka India<br />

LA2710 Porto Firme Brazil<br />

LA2782 El Volcan #1 - Pajarito Antioquia Colombia<br />

LA2783 El Volcan #2 - Titiribi Antioquia Colombia<br />

LA2784 La Queronte Antioquia Colombia<br />

LA2785 El Bosque Antioquia Colombia<br />

LA2786 Andes #1 Antioquia Colombia<br />

LA2787 Andes #2 Antioquia Colombia<br />

LA2789 Canaveral Antioquia Colombia<br />

LA2790 Buenos Aires Antioquia Colombia<br />

LA2791 Rio Frio Antioquia Colombia<br />

LA2792 Tamesis Antioquia Colombia<br />

LA2793 La Mesa Antioquia Colombia<br />

LA2794 El Libano Antioquia Colombia<br />

LA2795 Camilo Antioquia Colombia<br />

LA2807 Taypiplaya Yungas Bolivia<br />

LA2811 Cerro Huayrapampa Apurimac Peru<br />

LA2814 Ccascani, Sandia Puno Peru<br />

LA2841 Chinuna Amazonas Peru<br />

LA2842 Santa Rita San Martin Peru<br />

LA2843 Moyobamba mercado San Martin Peru<br />

83


S. lycopersicum (L. esculentum var. cerasiforme)<br />

LA2844 Shanhao San Martin Peru<br />

LA2845 Mercado Moyobamba San Martin Peru<br />

LA2871 Chamaca Sud Yungas Bolivia<br />

LA2873 Lote Pablo Luna #2 Sud Yungas Bolivia<br />

LA2874 Playa Ancha Sud Yungas Bolivia<br />

LA2933 Jipijapa Manabi Ecuador<br />

LA2977 Belen Beni Bolivia<br />

LA2978 Belen Beni Bolivia<br />

LA3135 Pinal del Jigue Holguin Cuba<br />

LA3136 Arroyo Rico Holguin Cuba<br />

LA3137 Pinares de Mayari Holguin Cuba<br />

LA3138 El Quemada Holguin Cuba<br />

LA3139 San Pedro de Cananova Holguin Cuba<br />

LA3140 Los Platanos Holguin Cuba<br />

LA3141 Guira de Melena La Habana Cuba<br />

LA3162 N <strong>of</strong> Copan Honduras<br />

LA3452 CATIE, Turrialba Turrialba Costa Rica<br />

LA3623 Tablones Manabi Ecuador<br />

LA3633 Botanical garden Ghana<br />

LA3652 Matara Apurimac Peru<br />

LA3842 El Limon, Maracay Araguay Venezuela<br />

LA3843 El Limon, Maracay Aragua Venezuela<br />

LA3844 Algarrobito Guarico Venezuela<br />

LA4133 Makapuu Beach, Oahu Hawaii USA<br />

LA4352 Bamoa Sinaloa Mexico<br />

LA4353 Guasave Sinaloa Mexico<br />

S. neorickii (L. parviflorum)<br />

LA0247 Chavinillo Huanuco Peru<br />

LA0735 Huariaca Huanuco Peru<br />

LA1319 Abancay Apurimac Peru<br />

LA1321 Curahuasi Apurimac Peru<br />

LA1322 Limatambo Cusco Peru<br />

LA1326 Rio Pachachaca Apurimac Peru<br />

LA1329 Yaca Apurimac Peru<br />

LA1626A Mouth <strong>of</strong> Rio Rupac Ancash Peru<br />

LA1716 Huancabamba Piura Peru<br />

LA2072 Huanuco Huanuco Peru<br />

LA2073 Huanuco, N <strong>of</strong> San Rafael Huanuco Peru<br />

LA2074 Huanuco Huanuco Peru<br />

LA2075 Huanuco Huanuco Peru<br />

LA2113 La Toma Loja Ecuador<br />

LA2133 Ona Azuay Ecuador<br />

84


S. neorickii (L. parviflorum)<br />

LA2190 Tialango Amazonas Peru<br />

LA2191 Campamento Ingenio Amazonas Peru<br />

LA2192 Pedro Ruiz Amazonas Peru<br />

LA2193 Churuja Amazonas Peru<br />

LA2194 Chachapoyas West Amazonas Peru<br />

LA2195 Caclic Amazonas Peru<br />

LA2197 Luya Amazonas Peru<br />

LA2198 Chachapoyas East Amazonas Peru<br />

LA2200 Choipiaco Amazonas Peru<br />

LA2201 Pipus Amazonas Peru<br />

LA2202 Tingobamba Amazonas Peru<br />

LA2315 Sargento Amazonas Peru<br />

LA2317 Zuta Amazonas Peru<br />

LA2318 Lima Tambo Amazonas Peru<br />

LA2319 Chirico Amazonas Peru<br />

LA2325 Above Balsas Amazonas Peru<br />

LA2403 Wandobamba Huanuco Peru<br />

LA2613 Matichico-San Rafael Huanuco Peru<br />

LA2614 San Rafael Huanuco Peru<br />

LA2615 Ayancocho Huanuco Peru<br />

LA2639A Puente Cunyac Apurimac Peru<br />

LA2641 Nacchera Apurimac Peru<br />

LA2727 Ona Azuay Ecuador<br />

LA2847 Suyubamba Amazonas Peru<br />

LA2848 Pedro Ruiz Amazonas Peru<br />

LA2862 Saraguro-Cuenca Azuay Ecuador<br />

LA2865 Rio Leon Azuay Ecuador<br />

LA2913 Uchucyaco - Hujainillo Huanuco Peru<br />

LA3651 Matara Apurimac Peru<br />

LA3655 Casinchigua to Chacoche Apurimac Peru<br />

LA3657 Casinchigua to Pichirhua Apurimac Peru<br />

LA36<strong>60</strong> Murashaya Apurimac Peru<br />

LA3793 Huariaca to San Rafael Huanuco Peru<br />

LA4020 Gonozabal Loja Ecuador<br />

LA4021 Guancarcucho Azuay Ecuador<br />

LA4022 Pueblo Nuevo Azuay Ecuador<br />

LA4023 Paute Azuay Ecuador<br />

S. ochranthum<br />

LA2118 San Lucas Loja Ecuador<br />

LA21<strong>60</strong> Acunac Cajamarca Peru<br />

LA2161 Cruz Roja Cajamarca Peru<br />

LA2162 Yatun Cajamarca Peru<br />

85


S. ochranthum<br />

LA2166 Pacopampa Cajamarca Peru<br />

LA2203 Pomacochas San Martin Peru<br />

LA2682 Chinchaypujio Cusco Peru<br />

LA3649 Curpahuasi-Pacaipampa Apurimac Peru<br />

LA3650 Choquemaray Apurimac Peru<br />

S. pennellii (L. pennellii, L. pennellii var. puberulum)<br />

LA0716 Atico Arequipa Peru<br />

LA0750 Ica to Nazca Ica Peru<br />

LA0751 Sisacaya Lima Peru<br />

LA1272 Pisaquera Lima Peru<br />

LA1273 Cayan Lima Peru<br />

LA1275 Quilca road junction Lima Peru<br />

LA1277 Trapiche Lima Peru<br />

LA1282 Sisacaya Lima Peru<br />

LA1297 Pucara Lima Peru<br />

LA1299 Santa Rosa de Quives Lima Peru<br />

LA1302 Quita Sol Ica Peru<br />

LA1303 Pampano Huancavelica Peru<br />

LA1340 Capillucas Lima Peru<br />

LA1356 Moro Ancash Peru<br />

LA1367 Santa Eulalia Lima Peru<br />

LA1376 Sayan Lima Peru<br />

LA1515 Sayan to Churin Lima Peru<br />

LA1522 Quintay Lima Peru<br />

LA1649 Molina Ica Peru<br />

LA1656 Marca to Chincha Ica Peru<br />

LA1657 Buena Vista to Yautan Ancash Peru<br />

LA1674 Toparilla Canyon Lima Peru<br />

LA1693 Quebrada Machurango Lima Peru<br />

LA1724 La Quinga Ica Peru<br />

LA1732 Rio San Juan Huancavelica Peru<br />

LA1733 Rio Canete Lima Peru<br />

LA1734 Rio Canete Lima Peru<br />

LA1735 Rio Canete Lima Peru<br />

LA1809 El Horador (playa) Piura Peru<br />

LA1911 Locari Ica Peru<br />

LA1912 Cerro Locari Ica Peru<br />

LA1920 Cachiruma (Rio Grande) Ayacucho Peru<br />

LA1926 Agua Perdida (Rio Ingenio) Ica Peru<br />

LA1940 Rio Atico, Km 26 Arequipa Peru<br />

LA1941 Rio Atico, Km 41 Arequipa Peru<br />

LA1942 Rio Atico, Km 54 Arequipa Peru<br />

86


S. pennellii (L. pennellii, L. pennellii var. puberulum)<br />

LA1943 Rio Atico, Km 61 Arequipa Peru<br />

LA1946 Caraveli Arequipa Peru<br />

LA25<strong>60</strong> Santa to Huaraz Ancash Peru<br />

LA2580 Valle de Casma Ancash Peru<br />

LA2657 Bayovar Piura Peru<br />

LA2963 Acoy Arequipa Peru<br />

LA3635 Omas Lima Peru<br />

LA3665 Ica to Nazca (Rio Santa Cruz) Ica Peru<br />

LA3778 Palpa to Nazca Ica Peru<br />

LA3788 Rio Atico, Km 10 Arequipa Peru<br />

LA3789 Rio Atico, Km 26 Arequipa Peru<br />

LA3791 Caraveli Arequipa Peru<br />

S. peruvianum (L. peruvianum)<br />

LA0098 Chilca Lima Peru<br />

LA0111 Supe Lima Peru<br />

LA0153 Culebras Ancash Peru<br />

LA0370 Hacienda Huampani Lima Peru<br />

LA0371 Supe Lima Peru<br />

LA0372 Culebras #1 Ancash Peru<br />

LA0374 Culebras #2 Ancash Peru<br />

LA0445 Chincha #2 Ica Peru<br />

LA0446 Atiquipa Arequipa Peru<br />

LA0448 Chala Arequipa Peru<br />

LA0453 Yura Arequipa Peru<br />

LA0454 Tambo Arequipa Peru<br />

LA0455 Tambo Arequipa Peru<br />

LA0462 Sobraya Tarapaca Chile<br />

LA0464 Hacienda Rosario Tarapaca Chile<br />

LA0752 Sisacaya Lima Peru<br />

LA1161 Huachipa Lima Peru<br />

LA1270 Pisiquillo Lima Peru<br />

LA1278 Trapiche Lima Peru<br />

LA1300 Santa Rosa de Quives Lima Peru<br />

LA1333 Loma Camana Arequipa Peru<br />

LA1336 Atico Arequipa Peru<br />

LA1337 Atiquipa Arequipa Peru<br />

LA1368 San Jose de Palla Lima Peru<br />

LA1369 San Geronimo Lima Peru<br />

LA1474 Lomas de Camana Arequipa Peru<br />

LA1475 Fundo 'Los Anitos', Barranca Lima Peru<br />

LA1513 Atiquipa Arequipa Peru<br />

LA1517 Irrigacion Santa Rosa Lima Peru<br />

87


S. peruvianum (L. peruvianum)<br />

LA1537 Azapa Valley Tarapaca Chile<br />

LA1556 Hacienda Higuereta Lima Peru<br />

LA1616 La Rinconada Lima Peru<br />

LA1675 Toparilla Canyon Lima Peru<br />

LA1692 Putinza Lima Peru<br />

LA1913 Tinguiayog Ica Peru<br />

LA1929 La Yapana (Rio Ingenio) Ica Peru<br />

LA1935 Lomas de Atiquipa Arequipa Peru<br />

LA1947 Puerto Atico Arequipa Peru<br />

LA1949 Las Calaveritas Arequipa Peru<br />

LA1951 Ocona Arequipa Peru<br />

LA1954 Mollendo Arequipa Peru<br />

LA1955 Matarani Arequipa Peru<br />

LA1975 Desvio Santo Domingo Lima Peru<br />

LA1977 Orcocoto Lima Peru<br />

LA1989 (self-fertile selection, origin unknown)<br />

LA2573 Valle de Casma Ancash Peru<br />

LA2581 Chacarilla (4x) Tarapaca Chile<br />

LA2732 Moquella Tarapaca Chile<br />

LA2742 Camarones-Guancarane Tarapaca Chile<br />

LA2744 Sobraya Tarapaca Chile<br />

LA2745 Pan de Azucar Tarapaca Chile<br />

LA2770 Lluta Tarapaca Chile<br />

LA2834 Hacienda Asiento Ica Peru<br />

LA2955B Quistagama Tarapaca Chile<br />

LA2959 Chaca to Caleta Vitor Tarapaca Chile<br />

LA2964 Quebrada de Burros Tacna Peru<br />

LA3218 Quebrada Guerrero (Islay) Arequipa Peru<br />

LA3220 Cocachacra Arequipa Peru<br />

LA3636 Coayllo Lima Peru<br />

LA3640 Mexico City Mexico<br />

LA3781 Quebrada Oscollo (Atico) Arequipa Peru<br />

LA3783 Rio Chaparra Arequipa Peru<br />

LA3787 Alta Chaparra Arequipa Peru<br />

LA3790 Caraveli Arequipa Peru<br />

LA3795 Alta Fortaleza Ancash Peru<br />

LA3797 Anca, Marca (Rio Fortaleza) Ancash Peru<br />

LA3799 Río Pativilca Ancash Peru<br />

LA3853 Mollepampa La Libertad Peru<br />

LA3858 Canta Lima Peru<br />

LA3900 (CMV tolerant selection)<br />

LA4125 Camina Tarapaca Chile<br />

LA4128 Pachica (Rio Camarones) Tarapaca Chile<br />

88


S. peruvianum (L. peruvianum)<br />

LA4317 Rio Lluta, desembocadura Tarapaca Chile<br />

LA4318 Sora - Molinos, Rio Lluta Tarapaca Chile<br />

LA4325 Caleta Vitor Tarapaca Chile<br />

LA4328 Pachica, Rio Camarones Tarapaca Chile<br />

LA4445 Azapa Valley, 27 km from Arica Tarapaca Chile<br />

LA4446 Azapa Valley, Km 37 from Arica Tarapaca Chile<br />

LA4447 Azapa Valley, Km 27 and Km 37 from Arica Tarapaca Chile<br />

S. pimpinellifolium (L. pimpinellifolium)<br />

LA0100 La Cantuta (Rimac Valley) Lima Peru<br />

LA0114 Pacasmayo La Libertad Peru<br />

LA0121 Trujillo La Libertad Peru<br />

LA0122 Poroto La Libertad Peru<br />

LA0369 La Cantuta (Rimac Valley) Lima Peru<br />

LA0373 Culebras #1 Ancash Peru<br />

LA0375 Culebras #2 Ancash Peru<br />

LA0376 Hacienda Chiclin La Libertad Peru<br />

LA0381 Pongo La Libertad Peru<br />

LA0391 Magdalena (Rio Jequetepeque) Cajamarca Peru<br />

LA0397 Hacienda Tuman Lambayeque Peru<br />

LA0398 Hacienda Carrizal Cajamarca Peru<br />

LA0400 Hacienda Buenos Aires Piura Peru<br />

LA0411 Pichilingue Los Rios Ecuador<br />

LA0412 Pichilingue Los Rios Ecuador<br />

LA0413 Cerecita Guayas Ecuador<br />

LA0417 Puna Guayas Ecuador<br />

LA0418 Daule Guayas Ecuador<br />

LA0420 El Empalme Guayas Ecuador<br />

LA0442 Sechin Ancash Peru<br />

LA0443 Pichilingue Los Rios Ecuador<br />

LA0480 Hacienda Santa Inez Ica Peru<br />

LA0722 Trujillo La Libertad Peru<br />

LA0753 Lurin Lima Peru<br />

LA1236 Tinelandia, Santo Domingo Pichincha Ecuador<br />

LA1237 Atacames Esmeraldas Ecuador<br />

LA1242 Los Sapos Guayas Ecuador<br />

LA1243 Co-op Carmela Guayas Ecuador<br />

LA1245 Santa Rosa El Oro Ecuador<br />

LA1246 La Toma Loja Ecuador<br />

LA1248 Hacienda Monterrey Loja Ecuador<br />

LA1256 Naranjal Guayas Ecuador<br />

LA1257 Las Mercedes Guayas Ecuador<br />

LA1258 Voluntario de Dios Guayas Ecuador<br />

89


S. pimpinellifolium (L. pimpinellifolium)<br />

LA1259 Catarama Los Rios Ecuador<br />

LA12<strong>60</strong> Pueblo Viejo Los Rios Ecuador<br />

LA1261 Babahoyo Los Rios Ecuador<br />

LA1262 Milagro Empalme Guayas Ecuador<br />

LA1263 Barranco Chico Guayas Ecuador<br />

LA1269 Pisiquillo Lima Peru<br />

LA1279 Cieneguilla Lima Peru<br />

LA1280 Chontay Lima Peru<br />

LA1301 Hacienda San Ignacio Ica Peru<br />

LA1332 Nazca Ica Peru<br />

LA1335 Pescaderos Arequipa Peru<br />

LA1341 Huampani Lima Peru<br />

LA1342 Casma Ancash Peru<br />

LA1343 Puente Chao La Libertad Peru<br />

LA1344 Laredo La Libertad Peru<br />

LA1345 Samne La Libertad Peru<br />

LA1348 Pacasmayo La Libertad Peru<br />

LA1349 Cuculi Lambayeque Peru<br />

LA1355 Nepena Ancash Peru<br />

LA1357 Jimbe Ancash Peru<br />

LA1359 La Crau Ancash Peru<br />

LA1370 San Jose de Palla Lima Peru<br />

LA1371 Santa Eulalia Lima Peru<br />

LA1374 Ingenio Ica Peru<br />

LA1375 San Vicente de Canete Lima Peru<br />

LA1380 Chanchape Piura Peru<br />

LA1381 Naupe Lambayeque Peru<br />

LA1382 Chachapoyas to Balsas Amazonas Peru<br />

LA1383 Chachapoyas to Bagua Amazonas Peru<br />

LA1384 Quebrada Parca Lima Peru<br />

LA1416 Las Delicias Pichincha Ecuador<br />

LA1428 La Estancilla Manabi Ecuador<br />

LA1466 Chongoyape Lambayeque Peru<br />

LA1469 El Pilar, Olmos Lambayeque Peru<br />

LA1470 Motupe to Desvio Olmos-Bagua Lambayeque Peru<br />

LA1471 Motupe to Jayanca Lambayeque Peru<br />

LA1472 Quebrada Topara Lima Peru<br />

LA1478 Santo Tome (Pabur) Piura Peru<br />

LA1514 Sayan to Churin Lima Peru<br />

LA1520 Sayan to Churin Lima Peru<br />

LA1521 El Pinon, Asia Lima Peru<br />

LA1547 Chota to El Angel Carchi Ecuador<br />

LA1561 San Eusebio Lima Peru<br />

90


S. pimpinellifolium (L. pimpinellifolium)<br />

LA1562 Cieneguilla Lima Peru<br />

LA1571 San Jose de Palle Lima Peru<br />

LA1572 Hacienda Huampani Lima Peru<br />

LA1573 Nana Lima Peru<br />

LA1575 Huaycan Lima Peru<br />

LA1576 Manchay Alta Lima Peru<br />

LA1577 Cartavio La Libertad Peru<br />

LA1578 Santa Marta La Libertad Peru<br />

LA1579 Colegio Punto Cuatro #1 Lambayeque Peru<br />

LA1580 Colegio Punto Cuatro #2 Lambayeque Peru<br />

LA1581 Punto Cuatro Lambayeque Peru<br />

LA1582 Motupe Lambayeque Peru<br />

LA1583 Tierra de la Vieja Lambayeque Peru<br />

LA1584 Jayanca to La Vina Lambayeque Peru<br />

LA1585 Cuculi Lambayeque Peru<br />

LA1586 Zana, San Nicolas La Libertad Peru<br />

LA1587 San Pedro de Lloc La Libertad Peru<br />

LA1588 Laredo to Barraza La Libertad Peru<br />

LA1589 Viru to Galunga La Libertad Peru<br />

LA1590 Viru to Tomaval La Libertad Peru<br />

LA1591 Ascope La Libertad Peru<br />

LA1592 Moche La Libertad Peru<br />

LA1593 Puente Chao La Libertad Peru<br />

LA1594 Cerro Sechin Ancash Peru<br />

LA1595 Nepena to Samanco Ancash Peru<br />

LA1596 Santa to La Rinconada Ancash Peru<br />

LA1597 Rio Casma Ancash Peru<br />

LA1598 Culebras to La Victoria Ancash Peru<br />

LA1599 Huarmey Ancash Peru<br />

LA1<strong>60</strong>0 Las Zorras, Huarmey Ancash Peru<br />

LA1<strong>60</strong>1 La Providencia Lima Peru<br />

LA1<strong>60</strong>2 Rio Chillon to Punchauca Lima Peru<br />

LA1<strong>60</strong>3 Quilca Lima Peru<br />

LA1<strong>60</strong>4 Horcon Lima Peru<br />

LA1<strong>60</strong>5 Canete - San Antonio Lima Peru<br />

LA1<strong>60</strong>6 Tambo de Mora Ica Peru<br />

LA1<strong>60</strong>7 Canete - La Victoria Lima Peru<br />

LA1<strong>60</strong>8 Canete - San Luis Lima Peru<br />

LA1610 Asia - El Pinon Lima Peru<br />

LA1611 Rio Mala Lima Peru<br />

LA1612 Rio Chilca Lima Peru<br />

LA1613 Santa Eusebia Lima Peru<br />

LA1614 Pampa Chumbes Lima Peru<br />

91


S. pimpinellifolium (L. pimpinellifolium)<br />

LA1615 Piura to Simbala Piura Peru<br />

LA1617 Tumbes South Tumbes Peru<br />

LA1618 Tumbes North Tumbes Peru<br />

LA1628 Huanchaco La Libertad Peru<br />

LA1629 Barrancos de Miraflores Lima Peru<br />

LA1630 Fundo La Palma Ica Peru<br />

LA1631 Planta Envasadora San Fernando (Moche) La Libertad Peru<br />

LA1633 Co-op Huayna Capac Ica Peru<br />

LA1634 Fundo Bogotalla #1 Ica Peru<br />

LA1635 Fundo Bogotalla #2 Ica Peru<br />

LA1636 Laran Ica Peru<br />

LA1637 La Calera Ica Peru<br />

LA1638 Fundo El Portillo Lima Peru<br />

LA1645 Banos de Miraflores Lima Peru<br />

LA1651 Vivero, La Molina Lima Peru<br />

LA1652 Cieneguilla Lima Peru<br />

LA1659 Pariacoto Ancash Peru<br />

LA16<strong>60</strong> Yautan to Pariacoto Ancash Peru<br />

LA1661 Esquina de Asia Lima Peru<br />

LA1670 Rio Sama Tacna Peru<br />

LA1676 Fundo Huadquina, Topara Ica Peru<br />

LA1678 San Juan Lucumo de Topara Ica Peru<br />

LA1679 Tambo de Mora Ica Peru<br />

LA1680 La Encanada Lima Peru<br />

LA1682 Montalban - San Vicente Lima Peru<br />

LA1683 Miramar Piura Peru<br />

LA1684 Chulucanas Piura Peru<br />

LA1685 Marcavelica Piura Peru<br />

LA1686 Valle Hermosa #1 Piura Peru<br />

LA1687 Valle Hermoso #2 Piura Peru<br />

LA1688 Pedregal Piura Peru<br />

LA1689 Castilla #1 Piura Peru<br />

LA1690 Castilla #2 Piura Peru<br />

LA1697 Hacienda Quiroz, Santa Anita Lima Peru<br />

LA1719 E <strong>of</strong> Arenillas El Oro Ecuador<br />

LA1720 Yautan Ancash Peru<br />

LA1728 Rio San Juan Ica Peru<br />

LA1729 Rio San Juan Ica Peru<br />

LA1742 Olmos-Marquina Lambayeque Peru<br />

LA1781 Bahia de Caraquez Manabi Ecuador<br />

LA1921 Majarena Ica Peru<br />

LA1923 Cabildo Ica Peru<br />

LA1924 Piedras Gordas Ica Peru<br />

92


S. pimpinellifolium (L. pimpinellifolium)<br />

LA1925 Pangaravi Ica Peru<br />

LA1933 Jaqui Arequipa Peru<br />

LA1936 Huancalpa Arequipa Peru<br />

LA1950 Pescadores Arequipa Peru<br />

LA1987 Viru-Fundo Luis Enrique La Libertad Peru<br />

LA1992 Pichicato Lima Peru<br />

LA1993 Chicama Valley? Lima Peru<br />

LA2093 La Union El Oro Ecuador<br />

LA2096 Playa Loja Ecuador<br />

LA2097 Macara Loja Ecuador<br />

LA2102 El Lucero Loja Ecuador<br />

LA2112 Hacienda Monterrey Loja Ecuador<br />

LA2145 Juan Montalvo Los Rios Ecuador<br />

LA2146 Hacienda Limoncarro La Libertad Peru<br />

LA2147 Yube Cajamarca Peru<br />

LA2149 Puente Muyuno Cajamarca Peru<br />

LA2170 Pai Pai Cajamarca Peru<br />

LA2173 Cruz de Huayquillo Cajamarca Peru<br />

LA2176 Timbaruca Cajamarca Peru<br />

LA2178 Tororume Cajamarca Peru<br />

LA2179 Tamboripa - La Manga Cajamarca Peru<br />

LA2180 La Coipa Cajamarca Peru<br />

LA2181 Balsa Huaico Cajamarca Peru<br />

LA2182 Cumba Amazonas Peru<br />

LA2183 Corral Quemado Amazonas Peru<br />

LA2184 Bagua Amazonas Peru<br />

LA2186 El Salao Amazonas Peru<br />

LA2187 La Caldera Amazonas Peru<br />

LA2188 Machugal #1 Amazonas Peru<br />

LA2189 Machugal #2 Amazonas Peru<br />

LA2335 (4x)<br />

LA2340 (4x)<br />

LA2345 (doubled haploid, origin unknown)<br />

LA2346 (doubled haploid, origin unknown)<br />

LA2347 (doubled haploid, origin unknown)<br />

LA2348 Trujillo La Libertad Peru<br />

LA2389 Tembladera Cajamarca Peru<br />

LA2390 Chungal Cajamarca Peru<br />

LA2391 Chungal to Monte Grande Cajamarca Peru<br />

LA2401 Moxeque Ancash Peru<br />

LA2412 Fundo Don Javier, Chilca Lima Peru<br />

LA2533 Lomas de Latillo Lima Peru<br />

LA2576 Valle de Casma Ancash Peru<br />

93


S. pimpinellifolium (L. pimpinellifolium)<br />

LA2578 Tuturo Ancash Peru<br />

LA2585 (4x, origin unknown)<br />

LA2628 Echarate Cusco Peru<br />

LA2645 Desvio Chulucanas-Morropon Piura Peru<br />

LA2646 Chalaco Piura Peru<br />

LA2647 Morropon-Chalaco Piura Peru<br />

LA2652 Sullana Piura Peru<br />

LA2653 San Francisco de Chocon Querecotillo Piura Peru<br />

LA2655 La Huaca to Sullana Piura Peru<br />

LA2656 Suarez Tumbes Peru<br />

LA2659 Castilla, Univ. Nac. de Piura Piura Peru<br />

LA2718 Chilca Lima Peru<br />

LA2725 Tambo Colorado Ica Peru<br />

LA2805 cv. Indehiscent Currant<br />

LA2831 Rio Nazca Ica Peru<br />

LA2832 Chicchi Tara Ica Peru<br />

LA2833 Hacienda Asiento Ica Peru<br />

LA2836 Fundo Pongo Ica Peru<br />

LA2839 Tialango Amazonas Peru<br />

LA2840 San Hilarion de Tomaque Amazonas Peru<br />

LA2850 Santa Rosa, Manta Manabi Ecuador<br />

LA2851 La Carcel de Montecristo Manabi Ecuador<br />

LA2852 Cirsto Rey de Charapoto Manabi Ecuador<br />

LA2853 Experiment Station, Portoviejo-INIAP Manabi Ecuador<br />

LA2854 Jipijapa Manabi Ecuador<br />

LA2857 Isabela: Puerto Villamil Galapagos Islands Ecuador<br />

LA2866 Via a Amaluza Loja Ecuador<br />

LA2914A Urb. La Castellana, Surco Lima Peru<br />

LA2914B La Castellana, Surco Lima Peru<br />

LA2915 El Remanso de Olmos Lambayeque Peru<br />

LA2934 Carabayllo Lima Peru<br />

LA2966 La Molina Lima Peru<br />

LA2974 Huaca del Sol La Libertad Peru<br />

LA2982 Chilca #1 Lima Peru<br />

LA2983 Chilca #2 Lima Peru<br />

LA3123 Santa Cruz: summit Galapagos Islands Ecuador<br />

LA3158 Los Mochis Sinaloa Mexico<br />

LA3159 Los Mochis Sinaloa Mexico<br />

LA31<strong>60</strong> Los Mochis Sinaloa Mexico<br />

LA3161 Los Mochis Sinaloa Mexico<br />

LA3468 La Molina Vieja Lima Peru<br />

LA3634 Santa Rosa de Asia Lima Peru<br />

LA3638 Ccatac Lima Peru<br />

94


S. pimpinellifolium (L. pimpinellifolium)<br />

LA3798 Río Pativilca Ancash Peru<br />

LA3803 Pacanguilla La Libertad Peru<br />

LA3852 Atinchik, Pachacamac Lima Peru<br />

LA3859 TYLCV resistant selection „hirsute‟<br />

LA3910 Near tortoise preserve, Santa Cruz Galapagos Islands Ecuador<br />

LA4027 Olmos-Jaen Road Lambayeque Peru<br />

LA4138 El Corregidor, La Molina Lima Peru<br />

S. sitiens (S. rickii)<br />

LA1974 Chuquicamata Ant<strong>of</strong>agasta Chile<br />

LA2876 Chuquicamata Ant<strong>of</strong>agasta Chile<br />

LA2877 El Crucero Ant<strong>of</strong>agasta Chile<br />

LA2878 Mina La Exotica Ant<strong>of</strong>agasta Chile<br />

LA2885 Caracoles Ant<strong>of</strong>agasta Chile<br />

LA4105 Mina La Escondida Ant<strong>of</strong>agasta Chile<br />

LA4110 Mina San Juan Ant<strong>of</strong>agasta Chile<br />

LA4112 Aguada Limon Verde Ant<strong>of</strong>agasta Chile<br />

LA4113 Estacion Cere Ant<strong>of</strong>agasta Chile<br />

LA4114 Pampa Carbonatera Ant<strong>of</strong>agasta Chile<br />

LA4115 Quebrada desde Cerro Oeste de Paqui Ant<strong>of</strong>agasta Chile<br />

LA4116 Quebrada de Paqui Ant<strong>of</strong>agasta Chile<br />

LA4331 Cerro Quimal Ant<strong>of</strong>agasta Chile<br />

95


Appendix. Wild species core collections. The accession numbers included in the core<br />

subsets for each species are listed below. In addition, this table lists accessions in the<br />

SolCAP core which are derived from the TGRC (wild species only). The „species<br />

sampler‟ subset includes 2-3 accessions from each species group.<br />

S. arcanum<br />

LA0441<br />

LA1346<br />

LA13<strong>60</strong><br />

LA1626<br />

LA1708<br />

LA1984<br />

LA2152<br />

LA2163<br />

LA2172<br />

LA2185<br />

LA2326<br />

LA2328<br />

LA2553<br />

S. cheesmaniae<br />

LA0428<br />

LA0429<br />

LA0531<br />

LA1039<br />

LA1041<br />

LA1406<br />

LA1407<br />

LA1409<br />

LA1412<br />

LA1450<br />

S. chilense<br />

LA1930<br />

LA1932<br />

LA1958<br />

LA19<strong>60</strong><br />

LA1963<br />

LA1967<br />

LA1969<br />

LA1971<br />

LA2748<br />

LA2750<br />

LA2753<br />

LA2759<br />

LA2765<br />

S. chilense<br />

LA2771<br />

LA2778<br />

LA2880<br />

LA2884<br />

LA2930<br />

LA2946<br />

LA3114<br />

S. chmielewskii<br />

LA1028<br />

LA1306<br />

LA1316<br />

LA1317<br />

LA1325<br />

LA1330<br />

LA2663<br />

LA2677<br />

LA2680<br />

LA2695<br />

LA0103<br />

S. corneliomulleri<br />

LA0107<br />

LA0444<br />

LA1292<br />

LA1305<br />

LA1331<br />

LA1339<br />

LA1647<br />

LA1677<br />

LA1910<br />

LA1937<br />

LA1945<br />

LA1973<br />

S. galapagense<br />

LA0317<br />

LA0438<br />

LA0483<br />

LA0526<br />

LA1136<br />

96


97<br />

S. galapagense<br />

LA1137<br />

LA1141<br />

LA1401<br />

LA1410<br />

S. habrochaites<br />

LA0407<br />

LA1223<br />

LA1266<br />

LA1347<br />

LA1353<br />

LA1361<br />

LA1363<br />

LA1559<br />

LA1624<br />

LA1718<br />

LA1721<br />

LA1731<br />

LA1753<br />

LA1777<br />

LA1918<br />

LA1928<br />

LA2098<br />

LA2103<br />

LA2109<br />

LA2119<br />

LA2128<br />

LA2155<br />

LA2158<br />

LA2167<br />

LA2174<br />

LA2204<br />

LA2329<br />

LA2409<br />

LA2650<br />

LA2864<br />

S. huaylasense<br />

LA1364<br />

LA1365<br />

LA1982<br />

LA2808<br />

S. lyc. cerasiforme<br />

LA0292<br />

LA1204<br />

S. lyc. cerasiforme<br />

LA1206<br />

LA1228<br />

LA1231<br />

LA1268<br />

LA1286<br />

LA1307<br />

LA1314<br />

LA1320<br />

LA1323<br />

LA1338<br />

LA1385<br />

LA1388<br />

LA1420<br />

LA1425<br />

LA1429<br />

LA1453<br />

LA1456<br />

LA1461<br />

LA1464<br />

LA1482<br />

LA1483<br />

LA1509<br />

LA1511<br />

LA1542<br />

LA1543<br />

LA1620<br />

LA1622<br />

LA2078<br />

LA2095<br />

LA2131<br />

LA2138A<br />

LA2308<br />

LA2392<br />

LA2402<br />

LA2621<br />

LA2670<br />

LA2675<br />

LA2688<br />

LA2709<br />

LA2710<br />

LA2783<br />

LA2845<br />

LA2871


98<br />

S. lyc. cerasiforme<br />

LA4133<br />

LA0247<br />

S. neorickii<br />

LA1319<br />

LA1322<br />

LA1626A<br />

LA1716<br />

LA2113<br />

LA2133<br />

LA2190<br />

LA2198<br />

LA2319<br />

LA2325<br />

S. pennellii<br />

LA0716<br />

LA0751<br />

LA1272<br />

LA1277<br />

LA1356<br />

LA1367<br />

LA1376<br />

LA1656<br />

LA1674<br />

LA1724<br />

LA1732<br />

LA1733<br />

LA1926<br />

LA1946<br />

LA2580<br />

LA2963<br />

S. peruvianum<br />

LA0153<br />

LA0446<br />

LA0752<br />

LA1274<br />

LA1336<br />

LA1474<br />

LA1954<br />

LA2732<br />

LA2744<br />

S. pimpinellifolium<br />

LA0373<br />

LA0400<br />

S. pimpinellifolium<br />

LA0411<br />

LA0417<br />

LA0442<br />

LA1237<br />

LA1245<br />

LA1246<br />

LA1261<br />

LA1279<br />

LA1301<br />

LA1335<br />

LA1371<br />

LA1375<br />

LA1478<br />

LA1521<br />

LA1547<br />

LA1576<br />

LA1578<br />

LA1582<br />

LA1584<br />

LA1586<br />

LA1590<br />

LA1593<br />

LA1599<br />

LA1<strong>60</strong>2<br />

LA1<strong>60</strong>6<br />

LA1617<br />

LA1659<br />

LA1683<br />

LA1689<br />

LA1924<br />

LA1936<br />

LA2102<br />

LA2173<br />

LA2181<br />

LA2183<br />

LA2401<br />

LA2533<br />

LA2852<br />

SolCAP<br />

LA0166<br />

LA0317<br />

LA0373<br />

LA0407


99<br />

SolCAP<br />

LA0422<br />

LA0438<br />

LA0446<br />

LA0716<br />

LA0722<br />

LA1028<br />

LA1037<br />

LA1141<br />

LA1208<br />

LA1237<br />

LA1246<br />

LA1269<br />

LA1272<br />

LA1274<br />

LA1282<br />

LA1283<br />

LA1290<br />

LA1301<br />

LA1314<br />

LA1322<br />

LA1331<br />

LA1338<br />

LA1340<br />

LA1346<br />

LA1406<br />

LA1455<br />

LA1457<br />

LA1464<br />

LA1478<br />

LA1512<br />

LA1542<br />

LA1545<br />

LA1547<br />

LA1549<br />

LA1569<br />

LA1578<br />

LA1582<br />

LA1589<br />

LA1617<br />

LA1620<br />

LA1621<br />

LA1623<br />

LA1632<br />

SolCAP<br />

LA1654<br />

LA1656<br />

LA1668<br />

LA1674<br />

LA1701<br />

LA1712<br />

LA1732<br />

LA1777<br />

LA1809<br />

LA1912<br />

LA1926<br />

LA1930<br />

LA1941<br />

LA1946<br />

LA1953<br />

LA1963<br />

LA1973<br />

LA2076<br />

LA2077<br />

LA2078<br />

LA2093<br />

LA2099<br />

LA2126A<br />

LA2131<br />

LA2135<br />

LA2137<br />

LA2163<br />

LA2181<br />

LA2184<br />

LA2185<br />

LA2190<br />

LA2308<br />

LA2312<br />

LA2411<br />

LA2533<br />

LA25<strong>60</strong><br />

LA2561<br />

LA2626<br />

LA2632<br />

LA2633<br />

LA26<strong>60</strong><br />

LA2663<br />

LA2664


SolCAP<br />

LA2675<br />

LA2744<br />

LA2779<br />

LA2788<br />

LA2792<br />

LA2852<br />

LA2880<br />

LA2930<br />

LA2932<br />

LA2951<br />

LA3136<br />

LA3137<br />

LA3650<br />

LA3795<br />

LA4331<br />

Species Sampler<br />

LA0528<br />

LA0716<br />

LA0722<br />

LA1037<br />

LA1223<br />

LA1226<br />

LA1274<br />

LA1293<br />

LA1326<br />

LA1589<br />

LA1777<br />

LA1926<br />

LA1932<br />

LA1982<br />

LA2150<br />

LA2663<br />

LA2884<br />

LA2930<br />

LA3661<br />

100


Membership List<br />

Aarden, Harriette Monsanto Holland BV, Dept. <strong>Tomato</strong> Breeding.<br />

Leeuwenhoekweg 52, CZ Bergschenhoek, 2661<br />

harriette.aarden@monsanto.com<br />

Alger, Hillary Johnny's Selected Seeds, USA halger@johnnyseeds.com<br />

ARC Veg and Orn Plant Inst.<br />

Atanassiva, Bistra Institute <strong>of</strong> <strong>Genetics</strong>, Pr<strong>of</strong>. D. Kostov, BAS, Plovdivsko<br />

Choss 13km, S<strong>of</strong>ia, BULGARIA, 1113 bistra_a@yahoo.com<br />

Augustine, Jim BHN Research/ BHN Seed, PO Box 3267, Immokalee, Fl, USA,<br />

34143 jaugustine@bhnseed.com<br />

Beck Bunn, Teresa Monsanto/Seminis, 37437 State Hwy 16, Woodland, CA,<br />

USA, 95695 teresa.beck.bunn@seminis.com<br />

Beckles, Diane M. <strong>University</strong> <strong>of</strong> Cal- Davis, Plant Sciences- MS3, One Shields Ave,<br />

Davis, CA, USA, 95616 dmbeckles@ucdavis.edu<br />

Buonfiglioli, Carlo Della Rimembranze nr. 6A, San Lazzaro di Savena, Bologna,<br />

ITALY, 40068 red@prorainbow.com<br />

Burdick, Allan 3000 Woodkirk Dr., Columbia, MO, USA, 65203<br />

allanburdick@pocketmail.com<br />

California <strong>Tomato</strong> Research Institute, Inc. Library 18650 E. Lone Tree Rd., Escalon,<br />

CA, USA, 95320-9759<br />

Carli, Stefano Nunhems Italy, via Ghiarone 2, S.Agata, Bolongnese, ITALY,<br />

40019 stefano.carli@nunhems.com<br />

Carrijo Iedo, Valentim Rua Joao Angelo do Pinho 77, Apto 102, Betim, MG,<br />

BRAZIL, 32.510-040 iedovc@uai.com.br<br />

Chen, Dei Wei Bucolic Seeds Co. Ltd., P.O. 2-39, Tantzu, Taichung Co., TAIWAN,<br />

427 bucolic.seeds@msa.hinet.net<br />

Chetelat, Roger <strong>University</strong> <strong>of</strong> California, Dept <strong>of</strong> Veg Crops, One Shields Ave,<br />

Davis, CA, USA, 95616-8746 trchetelat@ucdavis.edu .<br />

Cornell <strong>University</strong>, Albert R Mann Library, Serials Unit/Acquisition Div, Ithaca, NY, USA,<br />

14853<br />

101


Coulibaly, Sylvaine Nunhems USA, 7087 E. Peltier Rd, Acampo, CA, USA, 95220<br />

sylvaine.coulibaly@nunhems.com<br />

Cuartero, Jesus E.E. LaMayora- CSIC, Plant Breeding Dept., Algarrobo-Costa,<br />

Malaga, SPAIN, 297<strong>60</strong> rfern@eelm.csic.es<br />

deHoop, Simon Jan East West Seed Co. Ltd, PO Box 3, Bang Bua Thong,<br />

Nonthaburi, THAILAND, 11110 simon.dehoop@eastwestseed.com<br />

Dick, Jim <strong>Tomato</strong> Solutions, 23264 Mull Rd, Chatham, Ontario, CANADA, N7M 5J4<br />

jimdick@netrover.com<br />

Fernandez-Munoz, Rafael E.E. LaMayora- CSIC, Plant Breeding Dept,<br />

Algarrobo-Costa, Malaga, SPAIN, 29750 rfern@eelm.csic.es<br />

Fisher, Dr. Dave K. Fisher Farms, 48244 Wesley Chapel Rd, Richfield, NC,<br />

USA, 28137 fisherfarms1933@earthlink.net<br />

Foolad, Majid Penn State <strong>University</strong>, Dept. <strong>of</strong> Horticulture, 102 Tyson Blvd.,<br />

<strong>University</strong> Park, PA, USA, 16802 mrf5@psu.edu<br />

Fowler, C. Wayne, 2840 70th St SW, Naples, FL, USA, 34105 c_w_fowler@msn.com<br />

Frank A. Lee Library, NYS Agriculture Experimental Station, 630 W. North St, Geneva,<br />

NY, USA, 14456-1371<br />

Georgiev, Hristo Atanasov Urbanizacion, COSTA JARDIN,<br />

Residencial LA GRACIOSA, C/. LA NUBE 20, Telde, SPAIN, 35215<br />

eliedi1003@yahoo.es<br />

Gorin, Anthony Technisem, 7 au du Gargliano, Zac des Gatines, FRANCE, 91<strong>60</strong>0<br />

anthony.gorin@technisem.com<br />

Grazzini, Rick Garden<strong>Genetics</strong> LLC, 131 Mendels Way, Bellefonte, PA, USA,<br />

16823 rick@gardengenetics.com<br />

Hanson, Peter AVRDC, PO Box 42, Shanhua, Tainan, TAIWAN,<br />

REPUBLIC <strong>of</strong> CHINA, 741 hansp@netra.avrdc.org.tw<br />

Hayashi, Masako Yaguchi Asahi Industries, Biol.Engineering Lab, 222 Watarase,<br />

Kamikawa, Kodama-gun, Saitama-ken, JAPAN, 367-0394<br />

m.hayashi@asahi-kg.co.jp<br />

Hernandez, Rogelio Harris Moran, 2092 Mission Drive, Naples, FL, USA, 34109<br />

r.hernandez@harrismoran.com<br />

102


Hoogstraten, Jaap Seminis Veg Seeds, Postbus 97, 6700 AB Wageningen,<br />

THE NETHERLANDS jaap.hoogstraten@seminis.com<br />

Hotzev, Amit AB-SEEDS, ltd., P.O. Box 1, Teradion Ind. Zone, D.N. MISGAV,<br />

ISRAEL, 20179 amit.hotzev@ab-seeds.com<br />

Hutton, Sam <strong>University</strong> <strong>of</strong> <strong>Florida</strong>, Gulf Coast Research and Education Center,<br />

14625 County Rd 672, Wimuama, FL, USA, 33598 sfhutton@ufl.edu<br />

Ignatova, Svetlana Box 15, Moscow E-215, RUSSIA, 105215 sril@bk.ru<br />

Inai, Shuji Nippon Del Monte Corp., Research and Development, 3748 Shimizu-Cho<br />

Numata-shi, Gunma-ken, JAPAN, 378-0016 sinai@delmonte.co.jp<br />

Indian Institute <strong>of</strong> Horticultural Research, Bangalore, INDIA<br />

Jahrmann, Torben Semillas Fito, Centre de biotecnologia, Riera d/Agell, 11,<br />

Cabrera de Mar, Barcelona, SPAIN, 8349 tjahrmann@semillasfito.com<br />

Johnston, Rob Johnny's Selected Seeds, 955 Benton Ave, Winslow, ME, USA,<br />

4901 rjohnston@johnnyseeds.com<br />

Kuehn , Michael Harris-Moran Seed Co, 25757 County Rd 21A, Esparto, CA, USA,<br />

95627 m.kuehn@harrismoran.com<br />

Lewis, Mark Sakata Seed America, 105 Boronda Rd, Salinas, CA, USA, 93907<br />

mlewis@sakata.com<br />

Liao, Charle Farmer Seed and Ag Co., Ltd., P.O. Box 45, Siu Swei, TAIWAN,<br />

504 farmerseeds2000@yahoo.com.tw<br />

Liedl, Barbara WVSU, 201 ACEOP Admin Bldg, PO Box 1000, Institute, WV,<br />

USA 25112-1000 liedlbe@wvstateu.edu<br />

Majde, Mansour Gautier Semences, Route d' Avignon, Eyragues, FRANCE, 13630<br />

mansour.majde@gautiersemences.com<br />

Maris, Paul DeRuiter Seeds, R&D NL BV, Leeuwenhoekweg 52, Bergschenhoek,<br />

THE NETHERLANDS, 2661CZ carla.schoonus@deruiterseeds.com<br />

Massoudi, Mark Ag Biotech Inc., P.O. Box 1325, San Juan Bautista, CA, USA,<br />

95045 info@agbiotech.net<br />

Maxwell, Douglas P. <strong>University</strong> <strong>of</strong> WI, Madison, 7711 Midtown Rd, Verona, WI,<br />

USA, 53593 douglas.maxwell08@gmail.com<br />

103


McCaslin, Mark FLF <strong>Tomato</strong>es, 18591 Mushtown Rd, Prior Lake, MN, USA, 55372<br />

mccaslin@integra.net<br />

McGlasson, Barry <strong>University</strong> <strong>of</strong> Western Sydney, Centre for Plant and Food Science,<br />

Locked Bag 1797, Penrith South DC, NSW, AUSTRALIA, 1797<br />

b.mcglasson@uws.edu.au<br />

McGuire, Cate Arcadia Biosciences, Inc. , 220 Cousteau Pl Ste #105, Davis, CA,<br />

USA, 95618<br />

Merk, Heather Penn State <strong>University</strong>., Dept <strong>of</strong> Horticulture, 103 Tyson Building,<br />

<strong>University</strong> Park, PA, USA, 16802 hlml192@psu.edu<br />

Min, Chai Beijing Vegetable Research Center (BVRC), PO Box 2443, Beijing,<br />

PEOPLES REPUBLIC <strong>of</strong> CHINA, 100089 chaimin@nercv.com<br />

Myers, Jim Oregon State <strong>University</strong>, Dept. <strong>of</strong> Horticulture, rm 4017, Ag & Life Sci<br />

Bldg., Corvallis, OR, USA, 97331 myersja@hort.oregonstate.edu<br />

Nadal, Michael Danson Seed Co, 10851 Woodbine St, Los Angeles, CA, USA,<br />

90034-7675<br />

Nakamura, Kosuke Kagome Co. Ltd., 17 Nishitomiyama, Nasushiobarashi,<br />

Tochigi, JAPAN, 329-2762 Kosuke_Nakamura@kagome.co.jp<br />

North Carolina State <strong>University</strong>, NCSU Library, Campus Box 7111, Raleigh, NC, USA,<br />

27695-0001<br />

Ouyang, Wei Magnum Seeds, Inc., 5825 Sievers Road, Dixon, CA, USA, 95620<br />

weiouyang1@yahoo.com<br />

Ozminkowski , Richard Heinz N.A., PO Box 57, Stockton, CA, USA, 95201<br />

Rich.Ozminkowski@us.hjheinz.com<br />

Panthee, Dilip R. N.C. State U., Mountain Hort Crops Res & Ext Center,<br />

455 Research Dr, Mills River, NC, USA, 28759 dilip_panthee@ncsu.edu<br />

Peters , Susan Nunhems USA, 7087 E. Peltier Rd., Acampo, CA, USA, 95220<br />

susan.peters@nunhems.com<br />

Picard, Madame Florence Vilmorin, Service documentation, Route du Manoir,<br />

La Menitre, FRANCE, 49250<br />

Purdue <strong>University</strong> Library TSS, Unit Serials, 504 W. State St, West Lafayette, IN, USA,<br />

47907-2058<br />

104


Randhawa, Parm California Seed and Plant Lab, 7877 Pleasant Grove Rd,<br />

Elverta, CA, USA, 95626 randhawa@calspl.com<br />

Rascle, Christine Clause Tezier, Domaine de Maninet, Route de Beaumont, Valence,<br />

FRANCE, 2<strong>60</strong>00 christine.rascle@clausetezier.com<br />

Saito, Atsushi National Institute <strong>of</strong> Vegetable and Tea Science, 3<strong>60</strong> Kusawa, Ano,<br />

Tsu, JAPAN, 514-2392 ashin@affrc.go.jp<br />

Sasaki, Seiko Plant Breeding Station <strong>of</strong> Kaneko Seeds, 50-12,<br />

Furuichi-machi 1-chome, Maebashi City,Gunma, JAPAN, 371-0844<br />

Scott, Jay <strong>University</strong> <strong>of</strong> <strong>Florida</strong>, Gulf Coast Research and Education Center, 14625<br />

County Rd 672, Wimuama, FL, USA, 33598 jwsc@ufl.edu<br />

Semences, Gautier Gautier Semences, BP1, 13630, EYRAGUES, FRANCE<br />

recherche@gautiergraines.fr<br />

Semillas Fito c/ Selva de Mar 111, Barcelona, SPAIN, 8019<br />

info@semillasfito.com<br />

Seno, Akiyoshi American Takii Inc., 11492 S. Ave D, Yuma, AZ, USA, 85365<br />

aseno@takii.com<br />

Sharma, R.P. <strong>University</strong> <strong>of</strong> Hyderabad, Dept. <strong>of</strong> Plant Sciences, School <strong>of</strong> Life<br />

Sciences, Hyderabad, INDIA, 500 046 rpssl@uohyd.ernet.in<br />

Shintaku, Yurie 2-10-2, Shimizu, Suginami-ku, Tokyo, JAPAN, 167-0033<br />

Shupert, David Syngenta Seeds, 10290 Greenway Rd, Naples, FL, USA, 34114<br />

david.shupert@syngenta.com<br />

Stack, Stephen Colorado State <strong>University</strong>., Biology, 1878 Campus Delivery, Fort<br />

Collins, CO, USA, 80523-1878 sstack@lamar.colostate.edu<br />

Stamova, Liliana 1632 Santa Rosa St., Davis, CA, USA, 95616<br />

listamova@yahoo.com<br />

Stamova, Boryana 2825 Bidwell St, Apt 4, Davis, CA, USA, 95618<br />

Stevens, Mikel Brigham Young <strong>University</strong>, 275 Widtsoe Bldg, PO. Box 25183,<br />

Provo, UT, USA, 84<strong>60</strong>2 mikel_stevens@byu.edu<br />

Stoeva-Popova, Pravda Winthrop <strong>University</strong>, Department <strong>of</strong> Biology, 202 Life<br />

Sciences Building, Rock Hill, SC, USA, 29732 stoevap@winthrop.edu<br />

105


Stommel, John USDA-ARS, Genetic Improvement Fruits & Vegetables Laboratory,<br />

Bldg. 010A, BARC-West, 10300 Baltimore Ave., Beltsville, MD, USA, 20705<br />

john.stommel@ars.usda.gov<br />

Takizawa, Kimiko Japan Horticultural Production and Research Inst., 2-5-1 Kamishiki<br />

Matsudo-shi, Chiba, JAPAN, 270-2221 takizawa@enken.or.jp<br />

Thomas, Paul 4 Juniper Court, Woodland, CA, USA, 95695<br />

Thome, Catherine United <strong>Genetics</strong> Seeds Co., 764 Carr Ave., Aromas, CA, USA,<br />

65004 cathy@unitedgenetics.com<br />

Tong, Nankui Campbell's Soup Co, Veg. Research & Dev Center, 28<strong>60</strong>5 County<br />

Road 104, Davis, CA, USA, 95691 Nankui_Tong@Campbellsoup.com<br />

<strong>University</strong> <strong>of</strong> California Riverside, Serv/Serials Technical, PO Box 5900, Riverside, CA,<br />

USA, 92517-5900<br />

<strong>University</strong> <strong>of</strong> New Hampshire Library, Serials Unit, 18 Library Way, Durham, NH, USA,<br />

03824-3520<br />

<strong>University</strong> <strong>of</strong> Wisconsin, Steenbock Library, 550 Babcock Dr, Madison, WI, USA, 53706<br />

mquigley@library.wisc.edu<br />

van Schriek, Marco Keygene N.V., P.O. Box 216, Wageningen,<br />

THE NETHERLANDS, 6700AE marco.van_schriek@keygene.com<br />

Vecchio, Franco Nunhems Italy SRL, Via Ghiarone 2, Sant' Agata, Bolognese (BO),<br />

ITALY, 40019<br />

Verbakel, Henk Nunhems Netherlands BV, R& D Library, PO Box 4005, Haelen,<br />

THE NETHERLANDS, <strong>60</strong>80 AA S.vanRoy@nunhems.com<br />

Vinals, Fernando Nuez COMAV, Ciudad Politecnica de la Innovacion, Edificio 8-E.,<br />

Excalera J. 3a Planta, Camino de Vera S/N, Valencia, SPAIN, 4<strong>60</strong>22<br />

fnuez@btc.upv.es<br />

Volin, Ray Western Seed Americas, Inc., 15165 Dulzura Ct, Rancho Murieta, CA,<br />

USA, 95683-9120 ray@westernseed.com<br />

Wang, Wendy Xi'an Jinpeng seeds co. ltd., A803 <strong>of</strong> YuDao Hua Cheng,<br />

No. 8 Feng Cheng 1 road, Xi'an City, Shaan'xi, PR CHINA, 710018<br />

MASTER@JINPENGSEED.COM<br />

WA State <strong>University</strong> Libraries, SEA Serial record, 100 Diary Rd, Pullman, WA, USA<br />

99164-0001<br />

106


AUTHOR INDEX<br />

Chetelat, R. T. 66<br />

Daunay M.C. 6<br />

Fulladolsa, Ana Cristina 41<br />

García, Brenda E. 41<br />

Gilberston, R. L. 54<br />

Hanson P 54<br />

Laterrot H. 54<br />

L<strong>of</strong>ty, Christopher 58<br />

Maxwell, Douglas P. 41, 54<br />

Mejía, Luis 41, 54<br />

Melgar, Sergio 41<br />

Méndez, Luis 41,54<br />

Rivera, V.V. 54<br />

Sánchez, Amilcar 54<br />

Scott, J.W. 6<br />

Secor, G.A. 54<br />

Smith, Julian 58<br />

Stoeva-Popova, Pravda 58<br />

Teni, Rudy E. 41<br />

Wang J.-F 6<br />

107

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!