28.06.2013 Views

Determination of spiral orbits with constant tangential velocity - English

Determination of spiral orbits with constant tangential velocity - English

Determination of spiral orbits with constant tangential velocity - English

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

vT=r d<br />

(θ) (4)<br />

dt<br />

Inserting the above equations (1) and (2) yields<br />

vT=r 0( t<br />

B<br />

d<br />

)<br />

t0 dt (θ 0( t<br />

A<br />

) ) (5)<br />

t 0<br />

v T=r 0<br />

t B<br />

t 0<br />

B A θ 0<br />

v T= A r 0θ 0<br />

t A−1<br />

A (6)<br />

t 0<br />

A+ B−1<br />

t<br />

A+B (7)<br />

t 0<br />

In order to satisfy the required condition, namely the constancy <strong>of</strong> vT, the exponent <strong>of</strong> t must be<br />

zero.<br />

A+ B−1=0 (8)<br />

Using this result, for a given exponent A, the exponent B can now be determined.<br />

B=1−A (9)<br />

In the above equations (1) and (2)<br />

θ=θ 0( t<br />

A<br />

)<br />

t 0<br />

r=r 0( t<br />

B<br />

)<br />

t 0<br />

B can now be inserted<br />

r=r 0( t<br />

1− A<br />

)<br />

t 0<br />

whereby the constraint ensures that r is not <strong>constant</strong> as well. Dissolved after time t this equation<br />

gives<br />

t=t 0( r<br />

)<br />

r0 (10)<br />

(11)<br />

(12)<br />

1<br />

1− A<br />

(13)<br />

and inserted into (1 / 10), finally yields the desired <strong>spiral</strong><br />

A<br />

θ=θ 0( r 1−A ) ; A≠1 (14)<br />

r 0<br />

The resulting functions r(t) and θ(t) show for the following ranges different behaviors <strong>with</strong><br />

increasing t:

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!