28.06.2013 Views

Presentation - Computational Optics Group

Presentation - Computational Optics Group

Presentation - Computational Optics Group

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Dr Jasmin Smajic<br />

Simulation based design of plasmonic waveguides,<br />

waveguide bends, and surface-wave splitters<br />

1 , Prof. Christian Hafner2 , 06.07.2009<br />

1 ABB Switzerland Ltd.<br />

Corporate Research Dättwil<br />

Segelhofstrasse 1K, CH-5405 Baden-Dättwil, Switzerland<br />

jasmin.smajic@ch.abb.com<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 1<br />

2 Swiss Federal Institute of Technology (ETH)<br />

Laboratory for EM Fields and Microwave Electronics<br />

Gloriastrasse 35, CH-8092 Zürich, Switzerland<br />

Christian.hafner@ifh.ee.ethz.ch


Outline<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 2<br />

Introduction<br />

Plasmon resonance<br />

Surface plasmon polaritons<br />

Numerical methods for analysis of the plasmonic<br />

structures<br />

Waveguide structures<br />

Plasmonic slotline waveguide (PSWG)<br />

Metalic heterowaveguide (MHWG)<br />

2D eigenvalue analysis<br />

3D analysis of the waveguide<br />

Waveguide bend<br />

3D analysis of the 90º waveguide bend<br />

Plasmonic surface wave splitter<br />

2D analysis of the surface wave splitter<br />

Outlook


Introduction<br />

Plasmon Resonance<br />

Plasmon effect: the effect of collective vibrations of electrons in metal at<br />

infrared and optical frequencies<br />

Surface plasmon: the fluctuations of electron density at the metal-insulator<br />

interface<br />

Surface plasmon polariton: a surface plasmon coupled with photon<br />

The excited polariton propagates over the metal’s outer surface until it is<br />

either converted back into a photon or absorbed by the crystal lattice as a<br />

phonon<br />

Surface plasmon resonance (SPR): the excitation of the surface plasmons by<br />

external EM radiation<br />

Localized surface plasmon resonance (LSPR): metalic structure smaller than<br />

the wavelength<br />

Metal at optical and infrared frequencies: described as a homogenous<br />

domain with complex dielectric permittivity<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 3


Introduction<br />

Surface Plasmon Polaritons<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 4<br />

omega (1/s)<br />

x 1015<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

air<br />

silica<br />

surface plasmon<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

x 10 7<br />

0<br />

beta (1/m)


Introduction<br />

Surface Plasmon Polaritons<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 5<br />

Propagation length (um)<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 500 1000 1500 2000 2500<br />

wavelength (nm)


Introduction<br />

Surface Plasmon Polaritons<br />

Propagation length (um)<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 6<br />

|Ey | 0.2 m<br />

2 |Ey | 2<br />

350nm<br />

0<br />

0 500 1000 1500 2000 2500<br />

wavelength (nm)<br />

|E y | 2<br />

370nm<br />

Propagation length (um)<br />

360nm<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.2 m<br />

200 250 300 350 400 450 500<br />

wavelength (nm)<br />

0.2 m


Introduction<br />

Numerical Methods<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 7<br />

Domain Methods Boundary Methods<br />

Finite Element Method (FEM)<br />

Finite Difference<br />

Time Domain (FDTD)<br />

Multiple Multipole<br />

Program (MMP)<br />

Method of Auxiliary<br />

Sources (MAS)<br />

Meshless Boundary Integral<br />

Equation (BIE) Approach<br />

J. Smajic et al., “Comparison of Numerical Methods for the Analysis of<br />

Plasmonic Structures”, Journal of <strong>Computational</strong> and Theoretical<br />

Nanoscience, Vol. 6, No. 3, pp. 763-774, 2009.


Waveguide Structures<br />

Plasmonic slotline waveguide (PSWG)<br />

Description<br />

Geometry<br />

and materials<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 8<br />

A plasmonic slotline is an air slot in a thin silver film deposited on a<br />

silica substrate.<br />

The dimensions of the slot are much smaller than the wavelength.<br />

The goal is to find a bound optical mode supported by the slotline.<br />

50nm<br />

Silver<br />

50nm<br />

Silica<br />

Silver<br />

G. Veronis et al., “Guided subwavelength plasmonic mode supported by a<br />

slot in a thin metal film”, <strong>Optics</strong> Letters, Vol. 30, pp. 3359-3361, 2005.


Plasmonic Slotline<br />

2D Eigenvalue Analysis<br />

Analysis<br />

Modeling<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 9<br />

Assumption: The bound mode is a hybrid mode.<br />

Analysis: 2D vector elements are required.<br />

Open boundary: PML absorbing boundary conditions are needed.<br />

PML


Plasmonic Slotline<br />

2D Eigenvalue Analysis<br />

Analysis<br />

Modeling<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 10<br />

Bound mode: E x and Hy dominant (quasy-TEM, easy to excite by<br />

linearly polarized light).<br />

Significant propagation losses in silver<br />

The z-component of time-average<br />

Poynting vector is shown at 750nm.


Plasmonic Slotline<br />

2D Eigenvalue Analysis<br />

Results<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 11<br />

0.12<br />

0.11<br />

0.1<br />

0.09<br />

0.08<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

bound mode<br />

light line (air)<br />

light line (silica)<br />

0.03<br />

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35<br />

Dispersion relation of the fundamental mode<br />

of the slotline (red) is shown.


Plasmonic Slotline<br />

2D Eigenvalue Analysis<br />

Results<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 12<br />

Lpr (um)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8<br />

wavelength (um)<br />

Propagation length of the fundamental<br />

mode of the slotline is shown.


Plasmonic Slotline<br />

2D Eigenvalue Analysis<br />

Results<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 13<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

w=50nm<br />

w=25nm<br />

0<br />

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35<br />

Dispersion relation of the fundamental mode<br />

of the slotline (dark blue) is shown.


Plasmonic Slotline<br />

2D Eigenvalue Analysis<br />

Results<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 14<br />

Lpr (um)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

w=50nm<br />

w=25nm<br />

0<br />

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8<br />

wavelength (um)<br />

Propagation length of the fundamental<br />

mode of the slotline is shown.


Waveguide Structures<br />

Metalic Heterowaveguide (MHWG)<br />

Description<br />

Geometry<br />

and materials<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 15<br />

The dimensions of the structure are smaller than the wavelength.<br />

The goal is to find a bound optical mode supported by the MHWG.<br />

L. Chen et al., “High efficiency 90ºbending metal heterowaveguides for<br />

nanophotonic integration”, Applied Physics Letters, Vol. 89, pp. 243120, 2006.


Waveguide Structures<br />

Metalic Heterowaveguide (MHWG)<br />

Analysis<br />

Modeling<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 16<br />

Bound mode: E x and Hy dominant (quasy-TEM, easy to excite by<br />

linearly polarized light).<br />

Significant propagation losses in metals<br />

The z-component of time-average<br />

Poynting vector is shown at 750nm.


Waveguide Structures<br />

Metalic Heterowaveguide (MHWG)<br />

Results<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 17<br />

0.12<br />

0.11<br />

0.1<br />

0.09<br />

0.08<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

bound mode MHWG<br />

bound mode PSWG<br />

light line (air)<br />

light line (silica)<br />

0.03<br />

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35<br />

Dispersion relation of the fundamental mode<br />

of the MHWG and PSWG is shown.


Waveguide Structures<br />

Metalic Heterowaveguide (MHWG)<br />

Results<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 18<br />

Lpr (um)<br />

15<br />

10<br />

5<br />

bound mode MHWG<br />

bound mode PSWG<br />

0<br />

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8<br />

wavelength (um)<br />

Propagation length of the fundamental<br />

mode of the MHWG and PSWG is shown.


Waveguide Structures<br />

3D Waveguide<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 19<br />

Silver is modeled as a<br />

homogenous material with<br />

complex permittivity<br />

50nm<br />

50nm<br />

Silica substrate, n=1.44


Waveguide Structures<br />

3D Waveguide<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 20<br />

Losses in silver (3D) = 34.43%<br />

Losses in silver (2D) = 32.77%<br />

100%<br />

61.3%<br />

Time-average Poynting vector<br />

of the fundamental mode of the slotline is shown.


Waveguide Structures<br />

3D Waveguide<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 21<br />

The electric field confinement of the fundamental<br />

mode of the slotline is presented.


Waveguide Bend<br />

3D analysis of the 90ºwaveguide bend<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 22


Waveguide Bend<br />

3D analysis of the 90ºwaveguide bend<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 23<br />

Losses in silver (3D) = 42.98%<br />

Losses in silver (2D) = 42.30%<br />

100%<br />

23.9%<br />

Time-average Poynting vector<br />

of the fundamental mode of the slotline is shown.


Plasmonic Surface Wave Splitter<br />

2D Analysis of the Surface Wave Splitter<br />

Geometry<br />

Modeling<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 24


Plasmonic Surface Wave Splitter<br />

2D Analysis of the Surface Wave Splitter<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 25


Outlook<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 26<br />

Modern 3D simulation models are very close to reality<br />

and therefore make virtual prototyping and design<br />

optimization possible<br />

High level of spatial discretization required for<br />

accurate analysis of the plasmonic structures can be<br />

achieved today even in the case of complicated 3D<br />

structures<br />

Presented waveguide solutions (PSWG) are within the<br />

current fabrication abilities<br />

Problem of losses in metal is an important drawback


© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!