28.06.2013 Views

Presentation - Computational Optics Group

Presentation - Computational Optics Group

Presentation - Computational Optics Group

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Dr Jasmin Smajic<br />

Simulation based design of plasmonic waveguides,<br />

waveguide bends, and surface-wave splitters<br />

1 , Prof. Christian Hafner2 , 06.07.2009<br />

1 ABB Switzerland Ltd.<br />

Corporate Research Dättwil<br />

Segelhofstrasse 1K, CH-5405 Baden-Dättwil, Switzerland<br />

jasmin.smajic@ch.abb.com<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 1<br />

2 Swiss Federal Institute of Technology (ETH)<br />

Laboratory for EM Fields and Microwave Electronics<br />

Gloriastrasse 35, CH-8092 Zürich, Switzerland<br />

Christian.hafner@ifh.ee.ethz.ch


Outline<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 2<br />

Introduction<br />

Plasmon resonance<br />

Surface plasmon polaritons<br />

Numerical methods for analysis of the plasmonic<br />

structures<br />

Waveguide structures<br />

Plasmonic slotline waveguide (PSWG)<br />

Metalic heterowaveguide (MHWG)<br />

2D eigenvalue analysis<br />

3D analysis of the waveguide<br />

Waveguide bend<br />

3D analysis of the 90º waveguide bend<br />

Plasmonic surface wave splitter<br />

2D analysis of the surface wave splitter<br />

Outlook


Introduction<br />

Plasmon Resonance<br />

Plasmon effect: the effect of collective vibrations of electrons in metal at<br />

infrared and optical frequencies<br />

Surface plasmon: the fluctuations of electron density at the metal-insulator<br />

interface<br />

Surface plasmon polariton: a surface plasmon coupled with photon<br />

The excited polariton propagates over the metal’s outer surface until it is<br />

either converted back into a photon or absorbed by the crystal lattice as a<br />

phonon<br />

Surface plasmon resonance (SPR): the excitation of the surface plasmons by<br />

external EM radiation<br />

Localized surface plasmon resonance (LSPR): metalic structure smaller than<br />

the wavelength<br />

Metal at optical and infrared frequencies: described as a homogenous<br />

domain with complex dielectric permittivity<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 3


Introduction<br />

Surface Plasmon Polaritons<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 4<br />

omega (1/s)<br />

x 1015<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

air<br />

silica<br />

surface plasmon<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

x 10 7<br />

0<br />

beta (1/m)


Introduction<br />

Surface Plasmon Polaritons<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 5<br />

Propagation length (um)<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 500 1000 1500 2000 2500<br />

wavelength (nm)


Introduction<br />

Surface Plasmon Polaritons<br />

Propagation length (um)<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 6<br />

|Ey | 0.2 m<br />

2 |Ey | 2<br />

350nm<br />

0<br />

0 500 1000 1500 2000 2500<br />

wavelength (nm)<br />

|E y | 2<br />

370nm<br />

Propagation length (um)<br />

360nm<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0.2 m<br />

200 250 300 350 400 450 500<br />

wavelength (nm)<br />

0.2 m


Introduction<br />

Numerical Methods<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 7<br />

Domain Methods Boundary Methods<br />

Finite Element Method (FEM)<br />

Finite Difference<br />

Time Domain (FDTD)<br />

Multiple Multipole<br />

Program (MMP)<br />

Method of Auxiliary<br />

Sources (MAS)<br />

Meshless Boundary Integral<br />

Equation (BIE) Approach<br />

J. Smajic et al., “Comparison of Numerical Methods for the Analysis of<br />

Plasmonic Structures”, Journal of <strong>Computational</strong> and Theoretical<br />

Nanoscience, Vol. 6, No. 3, pp. 763-774, 2009.


Waveguide Structures<br />

Plasmonic slotline waveguide (PSWG)<br />

Description<br />

Geometry<br />

and materials<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 8<br />

A plasmonic slotline is an air slot in a thin silver film deposited on a<br />

silica substrate.<br />

The dimensions of the slot are much smaller than the wavelength.<br />

The goal is to find a bound optical mode supported by the slotline.<br />

50nm<br />

Silver<br />

50nm<br />

Silica<br />

Silver<br />

G. Veronis et al., “Guided subwavelength plasmonic mode supported by a<br />

slot in a thin metal film”, <strong>Optics</strong> Letters, Vol. 30, pp. 3359-3361, 2005.


Plasmonic Slotline<br />

2D Eigenvalue Analysis<br />

Analysis<br />

Modeling<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 9<br />

Assumption: The bound mode is a hybrid mode.<br />

Analysis: 2D vector elements are required.<br />

Open boundary: PML absorbing boundary conditions are needed.<br />

PML


Plasmonic Slotline<br />

2D Eigenvalue Analysis<br />

Analysis<br />

Modeling<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 10<br />

Bound mode: E x and Hy dominant (quasy-TEM, easy to excite by<br />

linearly polarized light).<br />

Significant propagation losses in silver<br />

The z-component of time-average<br />

Poynting vector is shown at 750nm.


Plasmonic Slotline<br />

2D Eigenvalue Analysis<br />

Results<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 11<br />

0.12<br />

0.11<br />

0.1<br />

0.09<br />

0.08<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

bound mode<br />

light line (air)<br />

light line (silica)<br />

0.03<br />

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35<br />

Dispersion relation of the fundamental mode<br />

of the slotline (red) is shown.


Plasmonic Slotline<br />

2D Eigenvalue Analysis<br />

Results<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 12<br />

Lpr (um)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8<br />

wavelength (um)<br />

Propagation length of the fundamental<br />

mode of the slotline is shown.


Plasmonic Slotline<br />

2D Eigenvalue Analysis<br />

Results<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 13<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

w=50nm<br />

w=25nm<br />

0<br />

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35<br />

Dispersion relation of the fundamental mode<br />

of the slotline (dark blue) is shown.


Plasmonic Slotline<br />

2D Eigenvalue Analysis<br />

Results<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 14<br />

Lpr (um)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

w=50nm<br />

w=25nm<br />

0<br />

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8<br />

wavelength (um)<br />

Propagation length of the fundamental<br />

mode of the slotline is shown.


Waveguide Structures<br />

Metalic Heterowaveguide (MHWG)<br />

Description<br />

Geometry<br />

and materials<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 15<br />

The dimensions of the structure are smaller than the wavelength.<br />

The goal is to find a bound optical mode supported by the MHWG.<br />

L. Chen et al., “High efficiency 90ºbending metal heterowaveguides for<br />

nanophotonic integration”, Applied Physics Letters, Vol. 89, pp. 243120, 2006.


Waveguide Structures<br />

Metalic Heterowaveguide (MHWG)<br />

Analysis<br />

Modeling<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 16<br />

Bound mode: E x and Hy dominant (quasy-TEM, easy to excite by<br />

linearly polarized light).<br />

Significant propagation losses in metals<br />

The z-component of time-average<br />

Poynting vector is shown at 750nm.


Waveguide Structures<br />

Metalic Heterowaveguide (MHWG)<br />

Results<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 17<br />

0.12<br />

0.11<br />

0.1<br />

0.09<br />

0.08<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

bound mode MHWG<br />

bound mode PSWG<br />

light line (air)<br />

light line (silica)<br />

0.03<br />

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35<br />

Dispersion relation of the fundamental mode<br />

of the MHWG and PSWG is shown.


Waveguide Structures<br />

Metalic Heterowaveguide (MHWG)<br />

Results<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 18<br />

Lpr (um)<br />

15<br />

10<br />

5<br />

bound mode MHWG<br />

bound mode PSWG<br />

0<br />

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8<br />

wavelength (um)<br />

Propagation length of the fundamental<br />

mode of the MHWG and PSWG is shown.


Waveguide Structures<br />

3D Waveguide<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 19<br />

Silver is modeled as a<br />

homogenous material with<br />

complex permittivity<br />

50nm<br />

50nm<br />

Silica substrate, n=1.44


Waveguide Structures<br />

3D Waveguide<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 20<br />

Losses in silver (3D) = 34.43%<br />

Losses in silver (2D) = 32.77%<br />

100%<br />

61.3%<br />

Time-average Poynting vector<br />

of the fundamental mode of the slotline is shown.


Waveguide Structures<br />

3D Waveguide<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 21<br />

The electric field confinement of the fundamental<br />

mode of the slotline is presented.


Waveguide Bend<br />

3D analysis of the 90ºwaveguide bend<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 22


Waveguide Bend<br />

3D analysis of the 90ºwaveguide bend<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 23<br />

Losses in silver (3D) = 42.98%<br />

Losses in silver (2D) = 42.30%<br />

100%<br />

23.9%<br />

Time-average Poynting vector<br />

of the fundamental mode of the slotline is shown.


Plasmonic Surface Wave Splitter<br />

2D Analysis of the Surface Wave Splitter<br />

Geometry<br />

Modeling<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 24


Plasmonic Surface Wave Splitter<br />

2D Analysis of the Surface Wave Splitter<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 25


Outlook<br />

© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 26<br />

Modern 3D simulation models are very close to reality<br />

and therefore make virtual prototyping and design<br />

optimization possible<br />

High level of spatial discretization required for<br />

accurate analysis of the plasmonic structures can be<br />

achieved today even in the case of complicated 3D<br />

structures<br />

Presented waveguide solutions (PSWG) are within the<br />

current fabrication abilities<br />

Problem of losses in metal is an important drawback


© ABB <strong>Group</strong><br />

July 8, 2009 | Slide 27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!