30.06.2013 Views

Diet of forest elephants and their role in seed dispersal in the ...

Diet of forest elephants and their role in seed dispersal in the ...

Diet of forest elephants and their role in seed dispersal in the ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Diet</strong> <strong>of</strong> <strong>forest</strong> <strong>elephants</strong> <strong>and</strong> <strong><strong>the</strong>ir</strong> <strong>role</strong> <strong>in</strong> <strong>seed</strong> <strong>dispersal</strong><br />

<strong>in</strong> <strong>the</strong> Bossematié Forest Reserve, Ivory Coast<br />

by J. THEUERKAUF 1 , W. E. WAITKUWAIT 2 , Y. GUIRO 2 , H. ELLENBERG 3<br />

<strong>and</strong> S. POREMBSKI 4<br />

1 Department <strong>of</strong> Biology, Philipps University, 35032 Marburg, Germany<br />

2 Projet <strong>forest</strong>ier SODEFOR-GTZ, B.P. 878, Abengourou, Côte d’Ivoire<br />

3 Institute for World Forestry, Federal Research Centre for Forestry <strong>and</strong> Forest Products,<br />

Leuschnerstr. 91, 21031 Hamburg, Germany<br />

4 Institute for Biodiversity Research, Department <strong>of</strong> Botany, University <strong>of</strong> Rostock,<br />

Wismarsche Str. 8, 18051 Rostock, Germany<br />

Present address <strong>of</strong> correspond<strong>in</strong>g author :<br />

Jörn Theuerkauf, Am Schäperkamp 3, 27711 Osterholz-Scharmbeck, Germany<br />

e-mail : Theuerkauf.Joern@t-onl<strong>in</strong>e.de<br />

Abstract. – We followed fresh tracks <strong>of</strong> <strong>forest</strong> <strong>elephants</strong> (Loxodonta africana cyclotis Matschie,<br />

1900) <strong>in</strong> <strong>the</strong> heavily exploited semi-deciduous Bossematié Forest Reserve (sou<strong>the</strong>astern<br />

Ivory Coast) <strong>and</strong> documented <strong>the</strong> <strong>elephants</strong>’ diet. The aim was to learn which ecological types <strong>of</strong><br />

plants <strong>elephants</strong> eat <strong>in</strong> <strong>the</strong> very disturbed <strong>forest</strong>, as well as estimate <strong>the</strong> <strong>role</strong> <strong>of</strong> <strong>forest</strong> <strong>elephants</strong> <strong>in</strong><br />

<strong>the</strong> <strong>dispersal</strong> <strong>of</strong> <strong>seed</strong>s <strong>in</strong> <strong>the</strong> study area. When compar<strong>in</strong>g <strong>the</strong> 147 food plants with <strong>the</strong> flora <strong>of</strong><br />

<strong>the</strong> study area, it appeared that <strong>elephants</strong> selected trees (P < 0.001) <strong>and</strong> avoided shrubs (P <<br />

0.001) as well as herb <strong>and</strong> grass species (P = 0.002). In contrast to results <strong>of</strong> studies <strong>in</strong> more<br />

natural <strong>forest</strong>s, <strong>the</strong> <strong>elephants</strong> preferred shade tolerant (P = 0.024) <strong>and</strong> avoided light tolerant species<br />

(P = 0.008). They preferred <strong>the</strong> fruits (P = 0.043) <strong>and</strong> bark (P < 0.001) <strong>of</strong> shade tolerant<br />

species <strong>and</strong> avoided <strong>the</strong> bark <strong>of</strong> light tolerant species (P = 0.008). We estimated that <strong>in</strong> our study<br />

area <strong>elephants</strong> dispersed <strong>seed</strong>s at a mean distance <strong>of</strong> 5 to 12 km <strong>and</strong> were responsible for <strong>the</strong> <strong>dispersal</strong><br />

<strong>of</strong> at least 66 species (more than 10 % <strong>of</strong> identified spermatophytes <strong>in</strong> <strong>the</strong> <strong>forest</strong>).<br />

Résumé. –Dans la Forêt Classée de Bossematié (sud-est de la Côte d’Ivoire), une forêt<br />

dense humide semi-décidue et fortement exploitée, nous avons suivi des traces fraîches d’éléphants<br />

de forêt (Loxodonta africana cyclotis Matschie, 1900) et documenté le régime alimentaire<br />

des éléphants. Le but était de découvrir les types écologiques des plantes que les éléphants<br />

consomment dans la forêt très ouverte et d’évaluer le rôle des éléphants dans la dissém<strong>in</strong>ation<br />

des gra<strong>in</strong>es sur l’aire de la forêt. Si l’on compare les 147 espèces de plantes fourragères avec la<br />

flore du terra<strong>in</strong> d’étude, les éléphants ont préféré les arbres (P < 0,001) et évité les arbustes<br />

(P < 0,001) et les herbacées et gram<strong>in</strong>ées (P = 0,002). En contraste avec les résultats de<br />

recherches dans des forêts plus naturelles, les éléphants ont préféré les espèces sciaphiles<br />

(P = 0,024) et évité les espèces héliophiles (P = 0,008). Ils ont préféré les fruits (P = 0,043) et<br />

l’écorce (P < 0,001) des espèces sciaphiles et évité l’écorce des espèces héliophiles (P = 0,008).<br />

Nous avons estimé une distance de dissém<strong>in</strong>ation des gra<strong>in</strong>es de 5 à 12 km en moyenne. Les éléphants<br />

dissém<strong>in</strong>ent dans la forêt étudiée au mo<strong>in</strong>s 66 espèces (plus que 10 % des spermatophytes<br />

déterm<strong>in</strong>és dans la forêt).<br />

KEY WORDS : Loxodonta africana cyclotis, Ivory Coast, food choice, <strong>forest</strong> regeneration,<br />

germ<strong>in</strong>ation.<br />

___________<br />

Mammalia, t. 64, n° 2, 2000 : 447-459.


448<br />

MAMMALIA<br />

INTRODUCTION<br />

Forest <strong>elephants</strong> are reported to prefer secondary to primary parts <strong>of</strong> ra<strong>in</strong> <strong>forest</strong>s<br />

(Barnes et al. 1991 ; Pr<strong>in</strong>s <strong>and</strong> Reitsma 1989 ; Struhsaker et al. 1996). Exploited<br />

<strong>forest</strong>s can bear a higher elephant density than primary <strong>forest</strong>s (Barnes et al. 1991 ;<br />

Ekobo 1993) provided that <strong>elephants</strong> are not disturbed by human activity (Barnes et al.<br />

1991 ; Hall et al. 1997). The selection <strong>of</strong> secondary <strong>forest</strong>s should be reflected <strong>in</strong> <strong>the</strong><br />

<strong>elephants</strong>’ diet, thus <strong>elephants</strong> should prefer light tolerant to shade tolerant plant species.<br />

However, this was never tested <strong>in</strong> <strong>the</strong> studies that documented <strong>the</strong> diet <strong>of</strong> ele-<br />

phants (Alex<strong>and</strong>re 1978 ; Merz 1981 ; Short 1981 ; Mart<strong>in</strong> 1982 ; Tchamba <strong>and</strong> Seme<br />

1993 ; White et al. 1993 ; Feer 1995 ; Maurois et al. 1997). In West African <strong>forest</strong>s<br />

where <strong>the</strong>re are usually no large clear<strong>in</strong>gs with grass, <strong>elephants</strong> feed ma<strong>in</strong>ly on trees<br />

<strong>and</strong> eat <strong>the</strong> fruits <strong>of</strong> 55-72 species (Alex<strong>and</strong>re 1978 ; Short 1981 ; Mart<strong>in</strong> 1982 ; White<br />

et al. 1993 ; Feer 1995). In regions where <strong>forest</strong> <strong>elephants</strong> eat ma<strong>in</strong>ly grass, <strong>the</strong> number<br />

<strong>of</strong> fruit species eaten is much lower at 22-33 species (Tchamba <strong>and</strong> Seme 1993 ; Maurois<br />

et al. 1997). Therefore, primary <strong>forest</strong> parts with many fruit<strong>in</strong>g trees may be more<br />

important <strong>in</strong> West African <strong>forest</strong>s. We tested this hypo<strong>the</strong>sis <strong>in</strong> <strong>the</strong> heavily exploited<br />

Bossematié Forest Reserve (Sou<strong>the</strong>ast Ivory Coast) where, because <strong>of</strong> past timber<br />

extractions, <strong>the</strong> canopy cover is much more open than <strong>in</strong> <strong>the</strong> <strong>forest</strong>s where <strong>the</strong> above<br />

mentioned studies on habitat selection were conducted.<br />

Forest <strong>elephants</strong> disperse <strong>seed</strong>s <strong>of</strong> many species (e.g. Alex<strong>and</strong>re 1978 ; Merz<br />

1981 ; Gautier-Hion et al. 1985 ; Lieberman et al. 1987). The transit through <strong>the</strong> elephant<br />

<strong>in</strong>test<strong>in</strong>e can even <strong>in</strong>crease <strong>the</strong> germ<strong>in</strong>ation rate <strong>of</strong> <strong>seed</strong>s, as found for Balanites<br />

wilsoniana (Chapman et al. 1992). However, probably only few species completely<br />

depend on elephant <strong>dispersal</strong> (Hawthorne <strong>and</strong> Parren 2000). Besides <strong>seed</strong> <strong>dispersal</strong>,<br />

<strong>elephants</strong> also <strong>in</strong>fluence <strong>the</strong> <strong>forest</strong> structure by brows<strong>in</strong>g <strong>and</strong> trampl<strong>in</strong>g, especially <strong>in</strong><br />

<strong>forest</strong>s that have been exploited (Struhsaker et al. 1996). To evaluate <strong>the</strong> effect <strong>of</strong> <strong>seed</strong><br />

<strong>dispersal</strong> on <strong>forest</strong> regeneration, it is essential to know about <strong>the</strong> germ<strong>in</strong>ation success<br />

<strong>and</strong> <strong>the</strong> survival rate <strong>of</strong> <strong>seed</strong>l<strong>in</strong>gs <strong>in</strong> <strong>the</strong> elephant dropp<strong>in</strong>gs. Brahmachary (1980) <strong>and</strong><br />

Lieberman et al. (1987) studied <strong>the</strong> germ<strong>in</strong>ation success <strong>of</strong> <strong>seed</strong>s <strong>in</strong> elephant dung <strong>in</strong><br />

cultivated plots. It is however not known if <strong>the</strong> germ<strong>in</strong>ation success under artificial<br />

conditions is representative <strong>of</strong> natural conditions <strong>and</strong> could be used to evaluate <strong>the</strong> <strong>role</strong><br />

<strong>of</strong> <strong>forest</strong> <strong>elephants</strong> <strong>in</strong> <strong>the</strong> rehabilitation <strong>of</strong> <strong>forest</strong>s.<br />

The objectives <strong>of</strong> this article are to study (1) which ecological type <strong>of</strong> food species<br />

<strong>forest</strong> <strong>elephants</strong> prefer <strong>in</strong> <strong>the</strong> heavily exploited study area, (2) if <strong>the</strong> germ<strong>in</strong>ation<br />

success under artificial conditions is representative <strong>of</strong> natural conditions, <strong>and</strong> (3) <strong>the</strong><br />

importance <strong>of</strong> <strong>forest</strong> <strong>elephants</strong> as <strong>seed</strong> <strong>dispersal</strong> agents <strong>in</strong> <strong>the</strong> regeneration <strong>of</strong> <strong>the</strong> Bossematié<br />

Forest Reserve.<br />

METHODS<br />

Study area<br />

The Bossematié Forest Reserve (220 km²) is a heavily exploited moist<br />

semi-deciduous ra<strong>in</strong> <strong>forest</strong> <strong>in</strong> <strong>the</strong> lowl<strong>and</strong> zone <strong>of</strong> sou<strong>the</strong>astern Ivory Coast reach<strong>in</strong>g<br />

from 3°24’ to 3°35’ W <strong>and</strong> from 6°22’ to 6°33’ N. The annual distribution <strong>of</strong> ra<strong>in</strong>fall is<br />

bimodal with peaks <strong>in</strong> September-October <strong>and</strong> April-July. August <strong>and</strong> December to<br />

February are dry. Mean annual ra<strong>in</strong>fall for 1961-1990 was 1330 mm but varied significantly<br />

from year to year (Schroth 1992). The nor<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> Bossematié is classi-


DISPERION DES GRAINES PAR LES ELEPHANTS DE FORET<br />

fied as « Celtis spp. <strong>forest</strong> with Triplochiton scleroxylon » whereas <strong>the</strong> sou<strong>the</strong>rn part is a<br />

moister « variant with Nesogordonia papaverifera <strong>and</strong> Khaya ivorensis » (Guillaumet<br />

<strong>and</strong> Adjanohoun 1971). When we undertook this research, 526 species <strong>of</strong> spermatophytes<br />

were identified <strong>in</strong> <strong>the</strong> Bossematié Forest Reserve (Mühlenberg et al. 1993 <strong>and</strong><br />

this study). For <strong>the</strong> 30 years up to 1988, <strong>the</strong> <strong>forest</strong> was exploited several times for timber,<br />

result<strong>in</strong>g <strong>in</strong> a mosaic <strong>of</strong> degraded <strong>forest</strong> with few old fruit trees <strong>and</strong> many small<br />

clear<strong>in</strong>gs, which are ma<strong>in</strong>ly covered by <strong>the</strong> neophytic Asteraceae Chromolaena odorata<br />

(Wöll 1992). Only 16 % <strong>of</strong> <strong>the</strong> <strong>forest</strong> has a canopy cover over 30 %, <strong>the</strong> canopy cover<br />

<strong>in</strong> 60 % <strong>of</strong> <strong>the</strong> <strong>forest</strong> is between 10 % <strong>and</strong> 30 %, <strong>and</strong> about 8 % <strong>of</strong> its surface are mostly<br />

illegal cocoa <strong>and</strong> c<strong>of</strong>fee plantations (Wöll 1992). Elephant poach<strong>in</strong>g was commonplace<br />

<strong>in</strong> <strong>the</strong> 1980’s until 1990, but when a rehabilitation project for <strong>the</strong> Bossematié Forest<br />

Reserve was implemented, elephant poachers were arrested <strong>and</strong> poach<strong>in</strong>g stopped.<br />

Elephant diet<br />

On 28 days from August to December 1993, we followed fresh tracks <strong>of</strong> <strong>forest</strong><br />

<strong>elephants</strong> to identify from which plant species <strong>the</strong> <strong>elephants</strong> ate fruits, bark, leaves or<br />

twigs. Their feed<strong>in</strong>g signs permitted us to identify or collect <strong>the</strong> plants <strong>the</strong>y had eaten.<br />

We classified <strong>the</strong> 526 known spermatophytes <strong>of</strong> <strong>the</strong> Bossematié Forest Reserve accord<strong>in</strong>g<br />

to <strong><strong>the</strong>ir</strong> life forms <strong>and</strong> light requirements as done by Hutch<strong>in</strong>son <strong>and</strong> Dalziel<br />

(1954-1972) <strong>and</strong> Aubréville (1959). We <strong>the</strong>n calculated <strong>the</strong> percentage <strong>of</strong> species <strong>of</strong> a<br />

given life form or light requirement for <strong>the</strong> study area (expected values), which we<br />

compared to percentages <strong>in</strong> <strong>the</strong> <strong>elephants</strong>’ diet.<br />

Seed germ<strong>in</strong>ation <strong>in</strong> elephant dung<br />

In order to quantify <strong>the</strong> success <strong>of</strong> germ<strong>in</strong>ation <strong>in</strong> elephant dropp<strong>in</strong>gs under different<br />

conditions, we observed <strong>seed</strong>l<strong>in</strong>gs <strong>in</strong> 90 elephant dropp<strong>in</strong>gs <strong>of</strong> a known age. These<br />

dropp<strong>in</strong>gs had been excreted by a group <strong>of</strong> 6 <strong>elephants</strong> dur<strong>in</strong>g 12 hours on <strong>the</strong><br />

18/9/1993 <strong>and</strong> by a group <strong>of</strong> 5 <strong>elephants</strong> dur<strong>in</strong>g 6 hours on <strong>the</strong> 5/10/1993. We assumed<br />

that <strong>the</strong> diversity <strong>and</strong> abundance <strong>of</strong> <strong>seed</strong>s <strong>in</strong> <strong>the</strong> different dropp<strong>in</strong>gs were comparable<br />

as elephant groups fed toge<strong>the</strong>r. We took 30 <strong>of</strong> <strong>the</strong> dropp<strong>in</strong>gs to a clear<strong>in</strong>g overgrown<br />

with Chromolaena odorata <strong>in</strong> which we had cut 1-m wide strips. We cleared <strong>the</strong> vegetation<br />

around 10 dropp<strong>in</strong>gs monthly, around 10 dropp<strong>in</strong>gs every two months <strong>and</strong> never<br />

cleared around <strong>the</strong> last 10 dropp<strong>in</strong>gs. We pooled <strong>the</strong> data for artificial conditions,<br />

because <strong>the</strong> clear<strong>in</strong>g <strong>of</strong> vegetation had no effect on <strong>the</strong> germ<strong>in</strong>ation success (one-wayanova,<br />

P = 0.448). We left ano<strong>the</strong>r 60 dropp<strong>in</strong>gs where <strong>the</strong>y had fallen (30 <strong>in</strong> <strong>the</strong> shade<br />

<strong>and</strong> 30 <strong>in</strong> <strong>the</strong> sun) as a control <strong>of</strong> germ<strong>in</strong>ation under natural conditions. We controlled<br />

all dropp<strong>in</strong>gs once a month until April 1994, counted <strong>the</strong> number <strong>of</strong> <strong>seed</strong>l<strong>in</strong>gs <strong>and</strong><br />

determ<strong>in</strong>ed <strong>the</strong> species when possible. We added data about germ<strong>in</strong>ation <strong>of</strong> <strong>seed</strong>s <strong>in</strong><br />

elephant dropp<strong>in</strong>gs obta<strong>in</strong>ed by Mühlenberg et al. (1993), who collected dropp<strong>in</strong>gs<br />

monthly <strong>in</strong> 1992. They spread <strong>the</strong> dropp<strong>in</strong>gs on beds <strong>in</strong> clear<strong>in</strong>gs were <strong>the</strong>y kept <strong>the</strong><br />

dropp<strong>in</strong>gs free <strong>of</strong> <strong>in</strong>vad<strong>in</strong>g vegetation <strong>and</strong> counted <strong>the</strong> total number <strong>and</strong> species <strong>of</strong><br />

<strong>seed</strong>l<strong>in</strong>gs that germ<strong>in</strong>ated.<br />

RESULTS<br />

Forest <strong>elephants</strong> <strong>in</strong> <strong>the</strong> Bossematié Forest ate <strong>the</strong> leaves or twigs <strong>of</strong> 112 species,<br />

<strong>the</strong> bark <strong>of</strong> 21, <strong>the</strong> fruits <strong>of</strong> 54 <strong>and</strong> <strong>the</strong> bulbs <strong>of</strong> 3 species, which accounts for a total <strong>of</strong><br />

449


450<br />

MAMMALIA<br />

147 plants eaten (Table 1). These 147 plants represented 30 % <strong>of</strong> <strong>the</strong> 526 spermatophytes<br />

identified <strong>in</strong> <strong>the</strong> Bossematié Forest.<br />

TABLE 1. – Frequency <strong>of</strong> food plants <strong>in</strong> <strong>the</strong> diet <strong>and</strong> frequency <strong>of</strong> germ<strong>in</strong>ation <strong>in</strong> elephant dropp<strong>in</strong>gs <strong>of</strong> <strong>the</strong><br />

Bossematié Forest Reserve (1 : rarely; 2 : mean; 3 : <strong>of</strong>ten; <strong>in</strong> brackets <strong>seed</strong>s <strong>in</strong> dropp<strong>in</strong>g but germi-<br />

nation not observed ; * : only found by Mühlenberg et al. (1993) ; + : w<strong>in</strong>d distributed species that germ<strong>in</strong>ated<br />

<strong>in</strong> elephant dropp<strong>in</strong>gs). Scientific names follow<strong>in</strong>g Hutch<strong>in</strong>son <strong>and</strong> Dalziel (1954-1972).<br />

Trees <strong>of</strong> <strong>forest</strong>ry <strong>in</strong>terest<br />

Leaves/<br />

Bark Tubers<br />

twigs<br />

Fruits<br />

Seedl<strong>in</strong>gs Light<br />

<strong>in</strong> dropp<strong>in</strong>g requirements<br />

Life<br />

form<br />

Albizia ferrug<strong>in</strong>ea 3 light tree<br />

Albizia zygia 3 light tree<br />

Alstonia boonei 1 + <strong>in</strong>termediate tree<br />

An<strong>in</strong>geria robusta 3 shade tree<br />

Antiaris africana 1 <strong>in</strong>termediate tree<br />

Bombax brevicuspe 3 <strong>in</strong>termediate tree<br />

Ceiba pent<strong>and</strong>ra 1 + light tree<br />

Celtis adolfi-friderici 1 1* shade tree<br />

Celtis mildbraedii 3 1 1 <strong>in</strong>termediate tree<br />

Celtis zenkeri 3 <strong>in</strong>termediate tree<br />

Chlorophora excelsa et regia 3 3* both shade. trees<br />

Chrysophyllum subnudum 1 <strong>in</strong>termediate tree<br />

Chrysophyllum sp. 1 (1) tree<br />

Combretedendron macrocarpum 1 3 shade tree<br />

Copaifera salikounda 1 shade tree<br />

Detarium senegalense 1 (1) light tree<br />

Discoglypremna caloneura 3 1 1* light tree<br />

Distemonanthus benthamianus 1 shade tree<br />

Ent<strong>and</strong>rophragma angolense 1 1 shade tree<br />

Fagara macrophylla 1 <strong>in</strong>termediate tree<br />

Funtumia africana 1 + <strong>in</strong>termediate tree<br />

Guarea cedrata 2 shade tree<br />

Guibourtia ehie 3 shade tree<br />

Homalium aylmeri 1 shade tree<br />

Khaya antho<strong>the</strong>ca 1 1 shade tree<br />

Khaya gr<strong>and</strong>ifoliola 1 1 shade tree<br />

Khaya ivorensis 1 1 shade tree<br />

Kla<strong>in</strong>edoxa gabonensis 3 (1) shade tree<br />

Lannea welwitschii 1 3 1 1 light tree<br />

Lovoa trichilioides 1 shade tree<br />

Nesogordonia papaverifera 3 + <strong>in</strong>termediate tree<br />

Par<strong>in</strong>ari excelsa 3 3* shade tree<br />

Parkia bicolor 3 shade tree<br />

Piptadeniastrum africanum 2 1 shade tree<br />

Pterygota macrocarpa 2 <strong>in</strong>termediate tree<br />

Pycnanthus angolensis 3 1 (1) <strong>in</strong>termediate tree<br />

Ric<strong>in</strong>odendron heudelotii 3 3 2 light tree<br />

Sterculia oblonga 1 shade tree<br />

Sterculia rh<strong>in</strong>opetala 1 (1) <strong>in</strong>termediate tree<br />

Sterculia tragacantha 3 <strong>in</strong>termediate tree<br />

Term<strong>in</strong>alia ivorensis 1 3 shade tree<br />

Term<strong>in</strong>alia superba 2 1 + shade tree<br />

Tieghemella heckelii 1 1 (1) shade tree<br />

Triplochiton scleroxylon + tree


DISPERION DES GRAINES PAR LES ELEPHANTS DE FORET<br />

Trees without <strong>forest</strong>ry <strong>in</strong>terest Leaves/<br />

Bark Tubers<br />

twigs<br />

Fruits<br />

Seedl<strong>in</strong>gs<br />

<strong>in</strong> dropp<strong>in</strong>g<br />

Light<br />

requirements<br />

Life<br />

form<br />

Albizia adianthifolia 3 1 light tree<br />

Alchornea cordifolia 3 light tree<br />

Anthocleista nobilis 1 light tree<br />

Antiaris welwitschii 1 <strong>in</strong>termediate tree<br />

Antrocaryon micraster 1 <strong>in</strong>termediate tree<br />

Balanites wilsoniana 1 3 3* <strong>in</strong>termediate tree<br />

Baphia nitida 2 light tree<br />

Blighia sapida 1 <strong>in</strong>termediate tree<br />

Blighia unijugata 2 <strong>in</strong>termediate tree<br />

Bosqueia angolensis 1 1 shade tree<br />

Breviea leptosperma 1 3 1* <strong>in</strong>termediate tree<br />

Bridelia gr<strong>and</strong>is 3 3 <strong>in</strong>termediate tree<br />

Calpocalyx brevibracteatus 1 <strong>in</strong>termediate tree<br />

Carapa procera 2 1 light tree<br />

Cecropia peltata 3 light tree<br />

Cleistopholis patens 3 1 1* light tree<br />

Cola gigantea 1 1* <strong>in</strong>termediate tree<br />

Craterispermum caudatum 3 shade tree<br />

Diospyros viridicans 1 <strong>in</strong>termediate tree<br />

Duboscia viridiflora 3 3 shade tree<br />

Elaeis gu<strong>in</strong>uensis 1 1 light tree<br />

Erythr<strong>in</strong>a mildbraedii 1 light tree<br />

Ficus capensis 3 light tree<br />

Ficus exasperata 3 3 1 1* light tree<br />

Ficus goliath 1 1* tree<br />

Ficus mucuso 3 3 1* tree<br />

Grewia malacocarpa 2 light tree<br />

Grewia sp. 1 (1) tree<br />

Guarea thompsonii 2 shade tree<br />

Hannoa kla<strong>in</strong>eana 1 <strong>in</strong>termediate tree<br />

Hymenostegia afzelii 3 light tree<br />

Hymenostegia aubrevillei 1 tree<br />

Irv<strong>in</strong>gia gabonensis 3 2 shade tree<br />

Irv<strong>in</strong>gia gr<strong>and</strong>ifolia 3 (3) shade tree<br />

Kigelia africana 1 1* light tree<br />

Macaranga sp<strong>in</strong>osa 3 light tree<br />

Maesobotrya barteri 1 light tree<br />

Maesopsis em<strong>in</strong>ii 1 1* light tree<br />

Majidea fosteri 1 <strong>in</strong>termediate tree<br />

Mammea africana 2 (2) shade tree<br />

Microdesmis keayana 1 shade tree<br />

Musanga cecropioides 2 2 1 1 light tree<br />

Myrianthus arboreus 3 3 3 light tree<br />

Omphalocarpum elatum 1 1 (1) <strong>in</strong>termediate tree<br />

P<strong>and</strong>a oleosa 2 (3) shade tree<br />

Placodiscus boya 3 light tree<br />

Tetrapleura tetraptera 3 3 3 light tree<br />

Treculia africana 3 3 shade tree<br />

Trichilia mart<strong>in</strong>eaui 1 <strong>in</strong>termediate tree<br />

Trichilia megalantha 1 <strong>in</strong>termediate tree<br />

Trichilia monadelpha 2 light tree<br />

Xylopia qu<strong>in</strong>tasii 1 light tree<br />

451


452<br />

MAMMALIA<br />

O<strong>the</strong>r plants<br />

Leaves/<br />

Bark Tubers<br />

twigs<br />

Fruits<br />

Seedl<strong>in</strong>gs Light<br />

<strong>in</strong> dropp<strong>in</strong>g requirements<br />

Life<br />

form<br />

Acacia pennata 3 1 light shrub<br />

Aframomum exscapum 1 1 light herb<br />

Aframomum sceptrum 1 1 light herb<br />

Ancistrophyllum secundiflorum 1 light liana<br />

Caloncoba gilgiana 1 light shrub<br />

Calycobolus africanus 1 light liana<br />

Capsicum frutescens 1 1* light herb<br />

Carica papaya 3 3 1 light herb<br />

Cephaelis peduncularis 1 light shrub<br />

Chromolaena odorata 1 light herb<br />

Cissus sp. 1 2 liana<br />

Clerodendrum formicarum 1 light liana<br />

Cola caricaefolia 1 <strong>in</strong>termediate shrub<br />

Commel<strong>in</strong>a capitata 1 light herb<br />

Cordia vignei 1 1* shade shrub<br />

Costus afer 2 2 1 light herb<br />

Cucumis sp. 1 3 3 3 liana<br />

Cucumis sp. 2 1 1 liana<br />

Desplatsia chrysochlamys 3 3 light shrub<br />

Dioscorea m<strong>in</strong>utiflora 3 light liana<br />

Dioscorea praehensilis 1 <strong>in</strong>termediate liana<br />

Dioscorea preussii 1 light liana<br />

Griffonia simplicifolia 3 light shrub<br />

Hippocratea vignei 3 light liana<br />

Lagenaria breviflora 1 3 3 light liana<br />

L<strong>and</strong>olphia hirsuta 2 1 1* light liana<br />

Mallotus oppositifolius 2 light shrub<br />

Maranthochloa leucanta 1 light herb<br />

Massularia acum<strong>in</strong>ata 1 light shrub<br />

Mezoneurum benthamianum 1 3 light liana<br />

Millettia zechiana 1 shrub<br />

Momordica angustisepala 1 light liana<br />

Musa sp. 3 3 herb<br />

Onc<strong>in</strong>otis gracilis 1 light liana<br />

Palisota hirsuta 3 light herb<br />

Parquet<strong>in</strong>a nigrescens 1 light liana<br />

Paull<strong>in</strong>ia p<strong>in</strong>nata 2 light liana<br />

Phyllanthus discoideus 3 light shrub<br />

Platysepalum hirsutum 1 light liana<br />

Premna angolensis 2 light shrub<br />

Salacia erecta 1 light shrub<br />

Solanum erianthum 2 1 1 herb<br />

Solanum torvum 1 light herb<br />

Sorghum arund<strong>in</strong>aceum 1 1 1 light grass<br />

Strophanthus gratus 1 <strong>in</strong>termediate liana<br />

Strophanthus hispidus 1 light liana<br />

Strychnos aculeata 1 light liana<br />

Strychnos sp. 1 1 liana<br />

Telfairia occidentalis 1 (1) <strong>in</strong>termediate liana<br />

Trema orientalis 3 3 3 3 light shrub<br />

Urera obovata 1 light liana


DISPERION DES GRAINES PAR LES ELEPHANTS DE FORET<br />

Elephants <strong>in</strong> <strong>the</strong> Bossematié Forest Reserve selected leaves or twigs, fruits, <strong>and</strong><br />

bark from trees <strong>and</strong> avoided <strong>the</strong>se parts from shrubs (Fig. 1). They also consumed<br />

leaves or stems from herbs <strong>and</strong> grass less than expected whereas <strong>the</strong>y did not prefer or<br />

avoid lianas. The <strong>elephants</strong> only consumed one species <strong>of</strong> grass (Sorghum arund<strong>in</strong>aceum),<br />

probably because <strong>the</strong> 20 grass species <strong>in</strong> our study area do not cover extensive<br />

areas. The plants from which <strong>elephants</strong> ate <strong>the</strong> bulbs were light tolerant liana species<br />

(Table 1). Light tolerant species dom<strong>in</strong>ate <strong>in</strong> <strong>the</strong> Bossematié Forest Reserve but <strong>forest</strong><br />

<strong>elephants</strong> ate more fruits <strong>and</strong> bark <strong>of</strong> shade tolerant species than <strong><strong>the</strong>ir</strong> occurrence <strong>in</strong> <strong>the</strong><br />

<strong>forest</strong> led us to expect (Fig. 2). However, we found no selection or avoidance <strong>of</strong> leaves<br />

or twigs <strong>of</strong> shade tolerant or light tolerant species.<br />

Percentage <strong>of</strong> species<br />

80%<br />

60%<br />

40%<br />

20%<br />

0%<br />

P


454<br />

Percentage <strong>of</strong> species<br />

60%<br />

40%<br />

20%<br />

0%<br />

P=0.604<br />

P=0.043<br />

P


Seedl<strong>in</strong>gs per dropp<strong>in</strong>g<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

DISPERION DES GRAINES PAR LES ELEPHANTS DE FORET<br />

0 2 4 6 8<br />

Age <strong>of</strong> dropp<strong>in</strong>g <strong>in</strong> months<br />

artificial sunny natural sunny natural shady<br />

Fig. 3. – Mean numbers <strong>of</strong> <strong>seed</strong>l<strong>in</strong>gs per elephant dropp<strong>in</strong>g under artificial sunny conditions,<br />

natural sunny conditions <strong>and</strong> natural shady conditions <strong>in</strong> relation to <strong>the</strong> age <strong>of</strong> a dropp<strong>in</strong>g.<br />

There is a seasonal pattern <strong>in</strong> <strong>the</strong> number <strong>of</strong> species that germ<strong>in</strong>ate <strong>in</strong> <strong>elephants</strong><br />

dropp<strong>in</strong>gs (Fig. 4), which seems to follow more <strong>the</strong> pattern <strong>of</strong> precipitation than <strong>the</strong><br />

pattern <strong>of</strong> trees that fruit <strong>in</strong> each month. Most species germ<strong>in</strong>ate <strong>in</strong> dropp<strong>in</strong>gs that <strong>elephants</strong><br />

excreted <strong>in</strong> March-May <strong>and</strong> September. As most <strong>seed</strong>l<strong>in</strong>gs germ<strong>in</strong>ate 2 months<br />

after <strong>the</strong> excretion <strong>of</strong> dropp<strong>in</strong>gs, <strong>the</strong> maximum germ<strong>in</strong>ation was from May-July <strong>and</strong> <strong>in</strong><br />

November, just after <strong>the</strong> months <strong>of</strong> maximal precipitation.<br />

Number <strong>of</strong> species<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec<br />

Month<br />

plants dispersed ra<strong>in</strong>fall fruit<strong>in</strong>g trees<br />

Fig. 4. – Seasonal distribution <strong>of</strong> <strong>seed</strong>l<strong>in</strong>g germ<strong>in</strong>ation <strong>in</strong> elephant dropp<strong>in</strong>gs <strong>in</strong> relation to <strong>the</strong><br />

monthly numbers <strong>of</strong> trees fruit<strong>in</strong>g <strong>and</strong> <strong>the</strong> monthly precipitation for 1992 <strong>and</strong> 1993 (pooled<br />

data <strong>of</strong> Mühlenberg et al. (1993) <strong>and</strong> this study).<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Mean ra<strong>in</strong>fall <strong>in</strong> mm<br />

455


456<br />

MAMMALIA<br />

DISCUSSION<br />

It is generally admitted that <strong>forest</strong> <strong>elephants</strong> prefer secondary to primary parts <strong>of</strong><br />

ra<strong>in</strong> <strong>forest</strong>s (Pr<strong>in</strong>s <strong>and</strong> Reitsma 1989 ; Barnes et al. 1991 ; Struhsaker et al. 1996). In<br />

our heavily exploited study area, however, <strong>elephants</strong> selected shade tolerant trees from<br />

primary <strong>forest</strong>s for <strong><strong>the</strong>ir</strong> diet, probably because <strong>of</strong> <strong>the</strong> shortage <strong>of</strong> primary <strong>forest</strong> species,<br />

which provide fruits. These results suggest that <strong>the</strong> Bossematié Forest Reserve<br />

<strong>of</strong>fered a higher proportion <strong>of</strong> light tolerant species than that sought by <strong>the</strong> <strong>forest</strong> <strong>elephants</strong>.<br />

Vanleeuwe <strong>and</strong> Gautier-Hion (1998) also observed that <strong>forest</strong> <strong>elephants</strong> <strong>in</strong>tensively<br />

used <strong>forest</strong> parts with a closed canopy <strong>and</strong> a high density <strong>of</strong> fruit trees whereas<br />

<strong>the</strong>y avoided Marantaceae <strong>forest</strong>s with an open canopy <strong>and</strong> low numbers <strong>of</strong> fruit trees.<br />

It <strong>the</strong>refore appears that <strong>the</strong> canopy cover <strong>in</strong> <strong>the</strong> Bossematié Forest Reserve was too<br />

open for <strong>the</strong> needs <strong>of</strong> <strong>forest</strong> <strong>elephants</strong>. The assumption that <strong>forest</strong> <strong>elephants</strong> would<br />

always prefer secondary <strong>forest</strong> may not be valid for all parts <strong>of</strong> Africa. We assume that<br />

<strong>in</strong> West African <strong>forest</strong>s, where <strong>elephants</strong> eat considerably more fruit species than <strong>in</strong><br />

Central Africa (Alex<strong>and</strong>re 1978 ; Short 1981 ; Mart<strong>in</strong> 1982 ; Tchamba <strong>and</strong> Seme 1993 ;<br />

White et al. 1993 ; Feer 1995 ; Maurois et al. 1997), <strong>elephants</strong> would select primary<br />

<strong>forest</strong> parts more than <strong>the</strong>y do <strong>in</strong> Central Africa. The effect <strong>of</strong> logg<strong>in</strong>g <strong>and</strong> habitat fragmentation<br />

may <strong>the</strong>refore be more detrimental to <strong>forest</strong> elephant populations <strong>in</strong> West<br />

than <strong>in</strong> Central Africa. Barnes (1999) predicted that West African <strong>elephants</strong> would<br />

soon only survive <strong>in</strong> protected areas. This emphasises <strong>the</strong> need to protect <strong>and</strong> support<br />

<strong>the</strong> natural regeneration <strong>of</strong> West African <strong>forest</strong>s <strong>in</strong> which <strong>elephants</strong> still live.<br />

Our study <strong>of</strong> <strong>the</strong> germ<strong>in</strong>ation success under natural conditions was small scale, so<br />

its results can only provide some h<strong>in</strong>ts. The germ<strong>in</strong>ation rate under natural conditions<br />

<strong>in</strong> our study was lower than under artificial conditions <strong>in</strong> o<strong>the</strong>r studies : 14.5 young<br />

plants per dropp<strong>in</strong>g <strong>in</strong> Ghana (Lieberman et al. 1987) <strong>and</strong> 6.2 young plants per drop-<br />

p<strong>in</strong>g <strong>in</strong> Zaire (Brahmachary 1980). We expect that predation <strong>of</strong> <strong>the</strong> <strong>seed</strong>s by rodents<br />

<strong>and</strong> o<strong>the</strong>r animals is an important factor <strong>in</strong> <strong>the</strong> <strong>forest</strong> (especially <strong>in</strong> <strong>the</strong> dense, shady<br />

<strong>forest</strong>). In addition, under natural conditions, <strong>the</strong> numbers <strong>of</strong> species were lower than<br />

under artificial conditions, maybe because <strong>seed</strong>s became exposed to light dur<strong>in</strong>g <strong>the</strong><br />

transport <strong>of</strong> <strong>the</strong> dropp<strong>in</strong>gs. We conclude that artificial conditions should not be used to<br />

estimate a natural germ<strong>in</strong>ation rate.<br />

The germ<strong>in</strong>ation rate was higher under sunny conditions than under shady conditions.<br />

We expect <strong>the</strong>refore that <strong>the</strong> more open a <strong>forest</strong> is, <strong>the</strong> higher <strong>the</strong> germ<strong>in</strong>ation<br />

success should be. In <strong>the</strong> Bossematié Forest, <strong>the</strong> number <strong>of</strong> species germ<strong>in</strong>at<strong>in</strong>g <strong>in</strong> elephant<br />

dropp<strong>in</strong>gs is at its highest <strong>in</strong> dropp<strong>in</strong>gs excreted <strong>in</strong> March-May <strong>and</strong> September<br />

(Fig. 4) <strong>and</strong> <strong>the</strong> number <strong>of</strong> young plants <strong>in</strong> <strong>the</strong> dropp<strong>in</strong>gs is higher <strong>in</strong> April <strong>and</strong> September<br />

than dur<strong>in</strong>g o<strong>the</strong>r months (Mühlenberg et al. 1993). The germ<strong>in</strong>ation rate found<br />

dur<strong>in</strong>g our study should <strong>the</strong>refore be similar to that found <strong>in</strong> dropp<strong>in</strong>gs left between<br />

March <strong>and</strong> May. The survival rate <strong>of</strong> <strong>the</strong> young plants was low after 9 months (9 %)<br />

because <strong>of</strong> <strong>the</strong> long dry season dur<strong>in</strong>g our study. Seedl<strong>in</strong>gs <strong>of</strong> species that fruit from<br />

March to May after <strong>the</strong> dry season probably have higher survival rates. Each <strong>of</strong> <strong>the</strong><br />

estimated 30 <strong>forest</strong> <strong>elephants</strong> <strong>in</strong> <strong>the</strong> Bossematié Forest Reserve (Theuerkauf et al.<br />

2000) produces 17.5 dropp<strong>in</strong>gs per day (Theuerkauf <strong>and</strong> Ellenberg 2000), amount<strong>in</strong>g to<br />

about 200,000 dropp<strong>in</strong>gs per year <strong>in</strong> <strong>the</strong> study area (220 km²). When us<strong>in</strong>g <strong>the</strong> germ<strong>in</strong>ation<br />

rates found <strong>in</strong> this study <strong>of</strong> 0.9 <strong>seed</strong>l<strong>in</strong>gs per dropp<strong>in</strong>g <strong>in</strong> <strong>the</strong> shade <strong>and</strong> 4.8 <strong>seed</strong>l<strong>in</strong>gs<br />

per dropp<strong>in</strong>g <strong>in</strong> <strong>the</strong> sun, about 800-4200 <strong>seed</strong>l<strong>in</strong>gs per km² would germ<strong>in</strong>ate per<br />

year <strong>in</strong> elephant dropp<strong>in</strong>gs. The digestion <strong>of</strong> African <strong>elephants</strong> lasts between 21 <strong>and</strong><br />

46 hours (Rees 1982) <strong>and</strong> its daily movements <strong>in</strong> <strong>the</strong> Bossematié Forest are about 6 km


DISPERION DES GRAINES PAR LES ELEPHANTS DE FORET<br />

(Theuerkauf <strong>and</strong> Ellenberg 2000), which allows us to estimate a maximal distance <strong>of</strong><br />

<strong>seed</strong> <strong>dispersal</strong> <strong>of</strong> 5 to 12 km. Van Hoven et al. (1981) discovered that grass has a faster<br />

transit time <strong>in</strong> <strong>the</strong> <strong>in</strong>test<strong>in</strong>e than leaves. We assume that <strong>the</strong> distance over which <strong>elephants</strong><br />

disperse <strong>seed</strong>s <strong>in</strong> Bossematié is longer as <strong>the</strong>y eat little grass. As <strong>the</strong> reserve is<br />

small (diameter is about 15 km), it is likely that <strong>the</strong> <strong>elephants</strong> are able to disperse <strong>seed</strong>s<br />

<strong>in</strong> all areas <strong>of</strong> <strong>the</strong> <strong>forest</strong>. Provided enough <strong>seed</strong>l<strong>in</strong>gs survive, this would accelerate <strong>the</strong><br />

natural regeneration <strong>of</strong> <strong>the</strong> heavily exploited <strong>forest</strong>.<br />

Although only 39 identified species germ<strong>in</strong>ated <strong>in</strong> elephant dropp<strong>in</strong>gs <strong>in</strong> <strong>the</strong> Bossematié<br />

Forest Reserve, we assume that <strong>the</strong> <strong>elephants</strong> can dissem<strong>in</strong>ate at least 66 species.<br />

This assumption is based on <strong>the</strong> fact that <strong>the</strong> <strong>seed</strong>s <strong>of</strong> 12 species, known to germ<strong>in</strong>ate<br />

<strong>in</strong> elephant dropp<strong>in</strong>gs from o<strong>the</strong>r <strong>forest</strong>s, were present <strong>in</strong> elephant dropp<strong>in</strong>gs<br />

(Table 1) <strong>and</strong> that ano<strong>the</strong>r 15 undeterm<strong>in</strong>ed species germ<strong>in</strong>ated <strong>in</strong> elephant dropp<strong>in</strong>gs<br />

(Mühlenberg et al. 1993). These 66 species, potentially dispersed by <strong>the</strong> <strong>elephants</strong> <strong>in</strong><br />

<strong>the</strong> Bossematié Forest, represent more than 10 % <strong>of</strong> spermatophytes identified <strong>in</strong> <strong>the</strong><br />

study area. Forest <strong>elephants</strong> can even disperse 30-50 % <strong>of</strong> fruit bear<strong>in</strong>g plant species<br />

(Alex<strong>and</strong>re 1978 ; Gautier-Hion et al. 1985 ; Feer 1995). Feer (1995) assumed that <strong>the</strong><br />

<strong>forest</strong> <strong>elephants</strong> are <strong>the</strong> exclusive disperser <strong>of</strong> ten species. Many species, which are dispersed<br />

by <strong>forest</strong> <strong>elephants</strong>, are also dispersed by o<strong>the</strong>r animal groups like birds, monkeys<br />

or rodents (Gautier-Hion et al. 1985). It may be that only a few species would<br />

disappear from a <strong>forest</strong> as direct consequence <strong>of</strong> <strong>the</strong> loss <strong>of</strong> <strong>elephants</strong> (Hawthorne <strong>and</strong><br />

Parren 2000). However, <strong>elephants</strong> play an irreplaceable <strong>role</strong> as no o<strong>the</strong>r species dis-<br />

perse as many plant species <strong>in</strong> such large quantities. The <strong>role</strong> <strong>of</strong> <strong>elephants</strong> <strong>in</strong> <strong>the</strong> study<br />

area should now be even greater as <strong>the</strong> <strong>elephants</strong> population grew <strong>in</strong> <strong>the</strong> five years<br />

after this study at a rate <strong>of</strong> 13-21 % yearly (Theuerkauf et al. 2000). We <strong>the</strong>refore<br />

consider <strong>the</strong> <strong>forest</strong> elephant as important <strong>in</strong> <strong>the</strong> speed<strong>in</strong>g up <strong>of</strong> natural regeneration <strong>and</strong><br />

rehabilitation <strong>of</strong> rare species <strong>in</strong> <strong>the</strong> Bossematié Forest Reserve.<br />

ACKNOWLEDGEMENTS<br />

This study was part <strong>of</strong> <strong>the</strong> pilot project « Réhabilitation de la Forêt Classée de Bossematié »<br />

under <strong>the</strong> programme « Réhabilitation des forêts à l’est de la Côte d’Ivoire », a collaboration between<br />

<strong>the</strong> « Société de Développement des Plantations Forestières (SODEFOR)», <strong>the</strong> « Deutsche<br />

Gesellschaft für Technische Zusammenarbeit (GTZ) » <strong>and</strong> <strong>the</strong> « Kreditanstalt für Wiederaufbau<br />

(KfW)». We thank H. J. Wöll, H. Fick<strong>in</strong>ger, N. Seabé <strong>and</strong> <strong>the</strong> SODEFOR team who took care <strong>of</strong><br />

f<strong>in</strong>ancial <strong>and</strong> logistical aspects, P. Ehouman, V. Bamba, K. K<strong>of</strong>fi, A. K<strong>of</strong>fi Kouamé <strong>and</strong><br />

J. Somda for identify<strong>in</strong>g some <strong>of</strong> <strong>the</strong> plants, L. Aké Assi (University <strong>of</strong> Abidjan) for confirm<strong>in</strong>g<br />

doubtful identifications, M. Mühlenberg, J. Slowik, H. Plachter <strong>and</strong> <strong>the</strong> late H. Remmert for cooperation,<br />

<strong>and</strong> S. Rouys for pro<strong>of</strong>read<strong>in</strong>g.<br />

BIBLIOGRAPHY<br />

ALEXANDRE, D.Y., 1978. – Le rôle dissém<strong>in</strong>ateur des éléphants en forêt de Taï, Côte d’Ivoire.<br />

Terre et Vie, 32 : 47-72.<br />

AUBREVILLE, A., 1959. – La flore <strong>forest</strong>ière de la Côte d’Ivoire. 3 Vols. C.T.F.T.. Nogent-sur-<br />

Marne.<br />

457


458<br />

MAMMALIA<br />

BARNES, R.F.W., 1999. – Is <strong>the</strong>re a future for <strong>elephants</strong> <strong>in</strong> West Africa? Mammal Review, 29 :<br />

175-199.<br />

BARNES, R.F.W., K.L. BARNES, M.P.T. ALERS <strong>and</strong> A. BLOM, 1991. – Man determ<strong>in</strong>es <strong>the</strong> distribution<br />

<strong>of</strong> <strong>elephants</strong> <strong>in</strong> <strong>the</strong> ra<strong>in</strong> <strong>forest</strong>s <strong>of</strong> nor<strong>the</strong>astern Gabon. Afr. J. Ecol., 29 : 54-63.<br />

BRAHMACHARY, R.L., 1980. – On <strong>the</strong> germ<strong>in</strong>ation <strong>of</strong> <strong>seed</strong>s <strong>in</strong> <strong>the</strong> dung balls <strong>of</strong> <strong>the</strong> African elephant<br />

<strong>in</strong> <strong>the</strong> Virunga National Park. Rev. Ecol. (Terre Vie), 34 : 139-142.<br />

CHAPMAN, L.J., C.A. CHAPMAN <strong>and</strong> R.W. WRANGHAM, 1992. – Balanites wilsoniana : elephant<br />

dependent <strong>dispersal</strong>? J. Trop. Ecol., 8 : 275-283.<br />

EKOBO, A., 1993. – The status <strong>of</strong> <strong>forest</strong> <strong>elephants</strong> <strong>in</strong> <strong>the</strong> south east <strong>of</strong> <strong>the</strong> Republic <strong>of</strong> Cameroon.<br />

Pachyderm, 16 : 84.<br />

FEER, F., 1995. – Morphology <strong>of</strong> fruits dispersed by African <strong>forest</strong> <strong>elephants</strong>. Afr. J. Ecol., 33 :<br />

279-284.<br />

GAUTIER-HION, A., J.-M. DUPLANTIER, R. QURIS, F. FEER, C. SOURD, J.-P. DECOUX, G. DUBOST,<br />

L. EMMONS, C. ERARD, P. HECKETSWEILER, A. MOUNGAZI, C. ROUSSILHON <strong>and</strong> J.-M.<br />

THIOLLAY, 1985. – Fruit characters as a basis <strong>of</strong> fruit choice <strong>and</strong> <strong>seed</strong> <strong>dispersal</strong> <strong>in</strong> a tropical<br />

<strong>forest</strong> vertebrate community. Oecologia, 65 : 324-337.<br />

GUILLAUMET, J.-L. <strong>and</strong> E. ADJANOHOUN, 1971. – La végétation de la Côte d’Ivoire. Mém.<br />

O.R.S.T.O.M., 50 : 157-263.<br />

HALL, J.S., B.I. INOGWABINI, E.A WILLIAMSON, I. OMARI, C. SIKUBWABO <strong>and</strong> L.J.T. WHITE,<br />

1997. – A survey <strong>of</strong> <strong>elephants</strong> (Loxodonta africana) <strong>in</strong> <strong>the</strong> Kahuzi-Biega National Park<br />

lowl<strong>and</strong> sector <strong>and</strong> adjacent <strong>forest</strong> <strong>in</strong> eastern Zaire. Afr. J. Ecol., 35 : 213-223.<br />

HAWTHORNE, W.D. & M.P.E. PARREN, 2000. – How important are <strong>forest</strong> <strong>elephants</strong> to <strong>the</strong> survi-<br />

val <strong>of</strong> woody plant species <strong>in</strong> Upper Gu<strong>in</strong>ean <strong>forest</strong>s? J. Trop. Ecol., 16 : 133-150.<br />

HUTCHINSON, J. <strong>and</strong> J.M. DALZIEL, 1954-1972. – Flora <strong>of</strong> West Tropical Africa. Crown Agents.<br />

London.<br />

LIEBERMAN, D., M. LIEBERMAN <strong>and</strong> C. MARTIN, 1987. – Notes on <strong>seed</strong>s <strong>in</strong> elephant dung from<br />

Bia National Park, Ghana. Biotropica, 19 : 365-369.<br />

MARTIN, C., 1982. – Management plan for <strong>the</strong> Bia Conservation Areas. IUCN/WWF.<br />

MAUROIS, C., C. CHAMBERLAN <strong>and</strong> C. MARECHAL, 1997. – Aperçu du régime alimentaire de<br />

l’éléphant de forêt, Loxodonta africana cyclotis, dans le Parc National d’Odzala, République<br />

du Congo. Mammalia, 61 : 127-130.<br />

MERZ, G., 1981. – Recherches sur la biologie de nutrition et les habitats préférés de l’éléphant de<br />

forêt, Loxodonta africana cyclotis Matschie, 1900. Mammalia, 45 : 299-312.<br />

MÜHLENBERG, M., J. SLOWIK <strong>and</strong> W.E. WAITKUWAIT, 1993. – Waldrehabilitierung <strong>in</strong> der Ostregion<br />

der Côte d’Ivoire. Bericht über die ökologischen Begleitmaßnahmen <strong>in</strong> der Projektphase<br />

1991-1993. Deutsche Gesellschaft für Technische Zusammenarbeit.<br />

PRINS, H.H.T. <strong>and</strong> J.M. REITSMA, 1989. – Mammalian biomass <strong>in</strong> an African equatorial ra<strong>in</strong><br />

<strong>forest</strong>. J. Anim. Ecol., 58 : 851-861.<br />

REES, P.S., 1982. – Gross assimilation efficiency <strong>and</strong> food passage time <strong>in</strong> <strong>the</strong> African elephant.<br />

Afr. J. Ecol., 20 : 193-198.<br />

SCHROTH, G., 1992. – Rapport de mission pour le projet « Stabilisation des systèmes de production<br />

agricole dans la région d'Abengourou ». Deutsche Gesellschaft für Technische<br />

Zusammenarbeit.<br />

SHORT, J., 1981. – <strong>Diet</strong> <strong>and</strong> feed<strong>in</strong>g behaviour <strong>of</strong> <strong>the</strong> <strong>forest</strong> elephant. Mammalia, 45 : 177-185.<br />

STRUHSAKER, T.T., J.S. LWANGA <strong>and</strong> J.M. KASENENE, 1996. – Elephants, selective logg<strong>in</strong>g <strong>and</strong><br />

<strong>forest</strong> regeneration <strong>in</strong> <strong>the</strong> Kibale Forest, Ug<strong>and</strong>a. J. Trop. Ecol., 12 : 45-64.<br />

TCHAMBA, M.N. <strong>and</strong> P.M. SEME, 1993. – <strong>Diet</strong> <strong>and</strong> feed<strong>in</strong>g behaviour <strong>of</strong> <strong>the</strong> <strong>forest</strong> elephant <strong>in</strong> <strong>the</strong><br />

Santchou Reserve, Cameroon. Afr. J. Ecol., 31 : 165-171.<br />

THEUERKAUF, J. <strong>and</strong> H. ELLENBERG, 2000. – Movements <strong>and</strong> defaecation <strong>of</strong> <strong>forest</strong> <strong>elephants</strong> <strong>in</strong><br />

<strong>the</strong> moist semi-deciduous Bossematié Forest Reserve, Ivory Coast. Afr. J. Ecol., 38 :<br />

258-261.


DISPERION DES GRAINES PAR LES ELEPHANTS DE FORET<br />

THEUERKAUF, J., H. ELLENBERG <strong>and</strong> Y. GUIRO, 2000. – Group structure <strong>of</strong> <strong>forest</strong> <strong>elephants</strong> <strong>in</strong> <strong>the</strong><br />

Bossematié Forest Reserve, Ivory Coast. . Afr. J. Ecol., 38 : 262-264.<br />

VAN HOVEN, W., R.A. PRINS <strong>and</strong> A. LANKHORT, 1981. – Fermentive digestion <strong>in</strong> <strong>the</strong> African elephant.<br />

S. Afr. J. Wildl. Res., 11 : 78-86.<br />

VANLEEUWE, H. <strong>and</strong> A. GAUTIER-HION, 1998. – Forest elephant paths <strong>and</strong> movements at <strong>the</strong><br />

Odzala National Park, Congo: <strong>the</strong> <strong>role</strong> <strong>of</strong> clear<strong>in</strong>gs <strong>and</strong> Marantaceae <strong>forest</strong>s. Afr. J. Ecol.,<br />

36 : 174-182.<br />

WHITE, L.J.T., C.E.G. TUTIN <strong>and</strong> M. FERNANDEZ, 1993. – Group composition <strong>and</strong> diet <strong>of</strong> <strong>forest</strong><br />

<strong>elephants</strong>, Loxodonta africana cyclotis Matschie 1900, <strong>in</strong> <strong>the</strong> Lopé Reserve, Gabon. Afr.<br />

J. Ecol., 31 : 181-199.<br />

WÖLL, H.J., 1992. – Le projet « Rehabilitation de la Forêt Classée de Bossematié », Côte<br />

d’Ivoire, région d’Abengourou. Tropenbos Series, 1 : 163-179.<br />

459

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!