30.06.2013 Views

The Evolution & Structure of Pulsar Wind Nebulae

The Evolution & Structure of Pulsar Wind Nebulae

The Evolution & Structure of Pulsar Wind Nebulae

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>Evolution</strong> & <strong>Structure</strong> <strong>of</strong><br />

2007-01-18<br />

<strong>Pulsar</strong> <strong>Wind</strong> <strong>Nebulae</strong><br />

Gaensler, B. M., & Slane P.O.<br />

ARA&A, 2006, 44:17


References<br />

•Observational Observational : Gaensler, B. M., &<br />

Slane P.O. ARA&A, 2006, 44:17<br />

•<strong>The</strong>oretical <strong>The</strong>oretical : Reynolds & Chevalier,<br />

1984, ApJ, 278:630 (RC84)<br />

•Swaluw, et al., 2004, A&A, 420:937;<br />

Chevalier, 2005, ApJ, 619:839


• SNR => pulsar-driven SNR => PWN<br />

• Prototype: Crab


<strong>The</strong> Prototype— Prototype Crab nebula<br />

• SN 1054<br />

• Central star 16m pulsar<br />

• P=33 ms<br />

• Pdot=36 ns/day<br />

• Edot~5*10^38 erg/s<br />

• L~3*10^38 erg/s<br />

• <strong>Pulsar</strong>-driven wind nebula


<strong>The</strong>oretically <strong>The</strong>oreticall<br />

• Marvelous testing ground for studying<br />

– Relativistic flows and their<br />

interactions with surrounding<br />

– Shocks<br />

– <strong>Pulsar</strong> itself<br />

– Mechanisms <strong>of</strong> high v birth kicks <strong>of</strong><br />

pulsars<br />

– etc.


<strong>The</strong>ory <strong>of</strong> pulsar & radiation<br />

• Spin-down<br />

– Edot<br />

– n<br />

– Age<br />

– B<br />

• <strong>Evolution</strong><br />

– P(t)<br />

– Edot(t)<br />

• Crab<br />

(Manchester & Taylor 1973)<br />

(Pacini & Salvati 1973)


<strong>Pulsar</strong> <strong>Wind</strong>-magnetodynamic<br />

<strong>Wind</strong> magnetodynamic<br />

• Goldreich & Julian 1969<br />

• Kennel & Coroniti 1984a,b<br />

• Bogovalov & Khangoulyan 2002<br />

• Bogovalov et al. 2005


Emission & Spectra <strong>of</strong> nebulae<br />

• Synchrotron<br />

S<br />

ν<br />

ν −<br />

∝<br />

(Ginzburg & Syrovatskii, et al., 1965)<br />

α<br />

• Radio:<br />

• X-ray:


Emission & Spectra <strong>of</strong> nebulae<br />

• <strong>The</strong> nature <strong>of</strong> this spectral steepening is not<br />

understood; theory above is based on a simple<br />

pow-law assumption.<br />

• Rapid decline <strong>of</strong> injection (inherent<br />

spectrum deviate from power-law?),<br />

modifications from discrete acceleration<br />

sites, all contribute to a complicated<br />

integrated spectrum.<br />

• “As a result, the interpretation <strong>of</strong> spectral<br />

steepening as being due to synchrotron losses<br />

can lead to drastically wrong conclusions<br />

about PWN properties.”<br />

1


Observationally<br />

• Detailed structrues: Crab especially<br />

• 40-50 PWN<br />

• Category:<br />

– Composite (with a shell-like SNR)<br />

– Crab-like<br />

– Cometary (pulsar with high v, few)<br />

• <strong>Evolution</strong><br />

1


<strong>Evolution</strong><br />

• Phase I – Expanding into Unshocked<br />

Ejecta<br />

• Phase II – Interact with SNR Reverse<br />

Shock<br />

• Phase III – Inside a Sedov Shock<br />

• Phase IV – <strong>Pulsar</strong> in Interstellar Gas<br />

1


Phase I – Expanding into<br />

Unshocked Ejecta<br />

1


Phase I<br />

1


•Chevalier, 1977<br />

•RC84<br />

1


Torus, Jet, Wisp & Filament<br />

2


Jet<br />

• <strong>The</strong>ory: Invisible in standard model<br />

• Observation: visible!<br />

• kink instabilities in the toroidal field<br />

accelerate particles<br />

• limit collimation curved jets<br />

• a wide variation in fraction <strong>of</strong> Edot<br />

considerable differences in the<br />

additional acceleration efficiency<br />

2


• G54.1+0.3: luminosity, geometry<br />

(Lu et al., 2002)<br />

Puzzles<br />

2


G320.4-1.2<br />

2


Wisp<br />

ACIS-S3<br />

(11/3/2000-<br />

4/6/2001)<br />

v ~ 0.5c<br />

(Heter et al.<br />

2002)<br />

(Koji Mori,<br />

2002)<br />

2


Wisp<br />

• Variation nature: unveiled<br />

– Synchrotron instabilities<br />

– Cmpression <strong>of</strong> e/e + pair plasma (~0.15 pc)<br />

• Radio structures (VLA) similar to<br />

optical/X-ray accelerate in the same<br />

region as for the X-ray emitting<br />

population (Bietenholz et al. 2004)<br />

2


• Optical:<br />

Filaments<br />

– R-T instabilities as the<br />

expanding relativistic<br />

bubble sweeps up and<br />

accelerates slower<br />

moving ejecta (Hester<br />

et al. 1996)<br />

– simulation 60-75%<br />

mass concerntration<br />

(eg.,Jun 1998)<br />

2


• Radio:<br />

Filaments<br />

– Expanding PWN<br />

encounters filaments,<br />

compress & increase n &<br />

B enhance<br />

synchrotron emission<br />

(Jun 1998, Bucciantini et<br />

al. 2004)<br />

• No X-ray:<br />

– High energy electron<br />

suffer synchrotron<br />

loss<br />

3


Filaments<br />

• X-ray filaments <strong>of</strong> 3C58: associated with radio,<br />

not with optical<br />

different mechanism<br />

-magnetic loops torn<br />

from the toroial field<br />

by kink instabilities<br />

3


Phase II – Interact with<br />

SNR Reverse Shock<br />

3


Phase II<br />

Phase III<br />

3


Phase III – Inside a Sedov<br />

Shock<br />

3


Phase II<br />

Phase III<br />

3


Phase IV – <strong>Pulsar</strong> in<br />

Interstellar Gas<br />

3


Phase III<br />

Phase IV<br />

3


Bow shock & Cometary PWN<br />

• V PSR ~ 400-500 km/s, 1000 km/s<br />

3


Other & Recent results<br />

• Very young pulsar & PWN<br />

– Crab, 3C58(1181?), SN1987A, SN1986J<br />

• <strong>Wind</strong>s from highly magnetized NS<br />

• TeV Observations <strong>of</strong> PWN<br />

– Crab (Weekes et al. 1989, etc.)<br />

• <strong>Pulsar</strong> <strong>Wind</strong>s in Binary Systems<br />

– Double pulsar PSR J0737-3039<br />

– PSR B1957+20, PSR B1259-63<br />

3


Thank you for your attention!<br />

4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!