02.07.2013 Views

Making the case for Cauchy transforms

Making the case for Cauchy transforms

Making the case for Cauchy transforms

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms<br />

William T. Ross<br />

University of Richmond<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 1 / 42


Prolog<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 2 / 42


<strong>Cauchy</strong> trans<strong>for</strong>m of a measure µ<br />

dµ(ζ)<br />

ζ − z<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 3 / 42


Theorem (<strong>Cauchy</strong> - 1831)<br />

If f is analytic on {|z| < 1} and continuous on {|z| 1}, <strong>the</strong>n<br />

f (z) =<br />

2π<br />

0<br />

f (eiθ )<br />

1 − e−iθ dθ<br />

z 2π .<br />

f (z) = 1<br />

<br />

f (ζ)<br />

2πi |ζ|=1 ζ − z dζ<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 4 / 42


Theorem (<strong>Cauchy</strong> - 1831)<br />

If f is analytic on {|z| < 1} and continuous on {|z| 1}, <strong>the</strong>n<br />

f (z) =<br />

2π<br />

0<br />

f (eiθ )<br />

1 − e−iθ dθ<br />

z 2π .<br />

f (z) = 1<br />

<br />

f (ζ)<br />

2πi |ζ|=1 ζ − z dζ<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 4 / 42


2π<br />

f (z) =<br />

0<br />

f (eiθ )<br />

1 − e−iθ dθ<br />

z 2π<br />

Privalov, Morera, Plemelj, and Sokhotski considered<br />

(Kµ)(z) =<br />

2π<br />

0<br />

1<br />

1 − e −iθ z dµ(θ),<br />

where µ is a measure on [0, 2π]. Actually, <strong>the</strong>y considered<br />

(Kµ)(z) =<br />

2π<br />

0<br />

1<br />

1 − e−iθ dF (θ), F ∈ BV [0, 2π].<br />

z<br />

K = {Kµ : µ is a measure on [0, 2π]}<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 5 / 42


2π<br />

f (z) =<br />

0<br />

f (eiθ )<br />

1 − e−iθ dθ<br />

z 2π<br />

Privalov, Morera, Plemelj, and Sokhotski considered<br />

(Kµ)(z) =<br />

2π<br />

0<br />

1<br />

1 − e −iθ z dµ(θ),<br />

where µ is a measure on [0, 2π]. Actually, <strong>the</strong>y considered<br />

(Kµ)(z) =<br />

2π<br />

0<br />

1<br />

1 − e−iθ dF (θ), F ∈ BV [0, 2π].<br />

z<br />

K = {Kµ : µ is a measure on [0, 2π]}<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 5 / 42


2π<br />

f (z) =<br />

0<br />

f (eiθ )<br />

1 − e−iθ dθ<br />

z 2π<br />

Privalov, Morera, Plemelj, and Sokhotski considered<br />

(Kµ)(z) =<br />

2π<br />

0<br />

1<br />

1 − e −iθ z dµ(θ),<br />

where µ is a measure on [0, 2π]. Actually, <strong>the</strong>y considered<br />

(Kµ)(z) =<br />

2π<br />

0<br />

1<br />

1 − e−iθ dF (θ), F ∈ BV [0, 2π].<br />

z<br />

K = {Kµ : µ is a measure on [0, 2π]}<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 5 / 42


Example<br />

µ = δ0 (point mass at θ = 0).<br />

δ0(A) =<br />

(Kδ0)(z) =<br />

2π<br />

0<br />

1, if 0 ∈ A;<br />

0, if 0 ∈ A.<br />

1<br />

1 − e−iθ z dδ0 = 1<br />

1 − z<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 6 / 42


Example<br />

µ = δ0 (point mass at θ = 0).<br />

δ0(A) =<br />

(Kδ0)(z) =<br />

2π<br />

0<br />

1, if 0 ∈ A;<br />

0, if 0 ∈ A.<br />

1<br />

1 − e−iθ z dδ0 = 1<br />

1 − z<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 6 / 42


Example<br />

µ = δ0 (point mass at θ = 0).<br />

δ0(A) =<br />

(Kδ0)(z) =<br />

2π<br />

0<br />

1, if 0 ∈ A;<br />

0, if 0 ∈ A.<br />

1<br />

1 − e−iθ z dδ0 = 1<br />

1 − z<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 6 / 42


Example<br />

µ = ∞<br />

j=1 cjδθj where ∞<br />

j=1 |cj| < ∞. Then<br />

Kµ(z) =<br />

∞<br />

j=1<br />

cj<br />

1 − e −iθj z .<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 7 / 42


What I am going to talk about:<br />

Boundary values of Kµ<br />

Mapping properties of <strong>the</strong> trans<strong>for</strong>mation µ → Kµ<br />

Which analytic functions f can be written as f = Kµ?<br />

Distribution function <strong>for</strong> Kµ, i.e., m(|Kµ| > y)<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 8 / 42


What I am going to talk about:<br />

Boundary values of Kµ<br />

Mapping properties of <strong>the</strong> trans<strong>for</strong>mation µ → Kµ<br />

Which analytic functions f can be written as f = Kµ?<br />

Distribution function <strong>for</strong> Kµ, i.e., m(|Kµ| > y)<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 8 / 42


What I am going to talk about:<br />

Boundary values of Kµ<br />

Mapping properties of <strong>the</strong> trans<strong>for</strong>mation µ → Kµ<br />

Which analytic functions f can be written as f = Kµ?<br />

Distribution function <strong>for</strong> Kµ, i.e., m(|Kµ| > y)<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 8 / 42


What I am going to talk about:<br />

Boundary values of Kµ<br />

Mapping properties of <strong>the</strong> trans<strong>for</strong>mation µ → Kµ<br />

Which analytic functions f can be written as f = Kµ?<br />

Distribution function <strong>for</strong> Kµ, i.e., m(|Kµ| > y)<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 8 / 42


What I am going to talk about:<br />

Boundary values of Kµ<br />

Mapping properties of <strong>the</strong> trans<strong>for</strong>mation µ → Kµ<br />

Which analytic functions f can be written as f = Kµ?<br />

Distribution function <strong>for</strong> Kµ, i.e., m(|Kµ| > y)<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 8 / 42


What I’m not going to talk about:<br />

<strong>Cauchy</strong> trans<strong>for</strong>ms of measures in <strong>the</strong> plane<br />

Topologies on K<br />

Multipliers of K (gKµ = Kν)<br />

Operators on K<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 9 / 42


What I’m not going to talk about:<br />

<strong>Cauchy</strong> trans<strong>for</strong>ms of measures in <strong>the</strong> plane<br />

Topologies on K<br />

Multipliers of K (gKµ = Kν)<br />

Operators on K<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 9 / 42


What I’m not going to talk about:<br />

<strong>Cauchy</strong> trans<strong>for</strong>ms of measures in <strong>the</strong> plane<br />

Topologies on K<br />

Multipliers of K (gKµ = Kν)<br />

Operators on K<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 9 / 42


What I’m not going to talk about:<br />

<strong>Cauchy</strong> trans<strong>for</strong>ms of measures in <strong>the</strong> plane<br />

Topologies on K<br />

Multipliers of K (gKµ = Kν)<br />

Operators on K<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 9 / 42


What I’m not going to talk about:<br />

<strong>Cauchy</strong> trans<strong>for</strong>ms of measures in <strong>the</strong> plane<br />

Topologies on K<br />

Multipliers of K (gKµ = Kν)<br />

Operators on K<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 9 / 42


Boundary values<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 10 / 42


2π 1<br />

(Kµ)(z) =<br />

0 1 − e−itz dµ(t)<br />

lim<br />

r→1−(Kµ)(reiθ ) =??<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 11 / 42


(Kµ)(z) =<br />

=<br />

(1 − r)(Kµ)(re it ) =<br />

µ = c1δθ1 + c2δθ2 + · · · + cnδθn<br />

2π<br />

1<br />

0 1 − e−iθ z dµ(θ)<br />

c1 c2<br />

cn<br />

1 − e−iθ1z +<br />

1 − e−iθ2z + · · · +<br />

1 − e−iθnz (1 − r)c1<br />

1 − e<br />

(1 − r)c2<br />

(1 − r)cn<br />

−iθ1re<br />

+ it −iθ2re<br />

+ · · · + it −iθnreit 1 − e<br />

1 − e<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 12 / 42


(Kµ)(z) =<br />

=<br />

(1 − r)(Kµ)(re it ) =<br />

µ = c1δθ1 + c2δθ2 + · · · + cnδθn<br />

2π<br />

1<br />

0 1 − e−iθ z dµ(θ)<br />

c1 c2<br />

cn<br />

1 − e−iθ1z +<br />

1 − e−iθ2z + · · · +<br />

1 − e−iθnz (1 − r)c1<br />

1 − e<br />

(1 − r)c2<br />

(1 − r)cn<br />

−iθ1re<br />

+ it −iθ2re<br />

+ · · · + it −iθnreit 1 − e<br />

1 − e<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 12 / 42


(Kµ)(z) =<br />

=<br />

(1 − r)(Kµ)(re it ) =<br />

µ = c1δθ1 + c2δθ2 + · · · + cnδθn<br />

2π<br />

1<br />

0 1 − e−iθ z dµ(θ)<br />

c1 c2<br />

cn<br />

1 − e−iθ1z +<br />

1 − e−iθ2z + · · · +<br />

1 − e−iθnz (1 − r)c1<br />

1 − e<br />

(1 − r)c2<br />

(1 − r)cn<br />

−iθ1re<br />

+ it −iθ2re<br />

+ · · · + it −iθnreit 1 − e<br />

1 − e<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 12 / 42


(Kµ)(z) =<br />

=<br />

(1 − r)(Kµ)(re it ) =<br />

µ = c1δθ1 + c2δθ2 + · · · + cnδθn<br />

2π<br />

1<br />

0 1 − e−iθ z dµ(θ)<br />

c1 c2<br />

cn<br />

1 − e−iθ1z +<br />

1 − e−iθ2z + · · · +<br />

1 − e−iθnz (1 − r)c1<br />

1 − e<br />

(1 − r)c2<br />

(1 − r)cn<br />

−iθ1re<br />

+ it −iθ2re<br />

+ · · · + it −iθnreit 1 − e<br />

1 − e<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 12 / 42


(1 − r)(Kµ)(re it ) =<br />

Thus<br />

(1 − r)c1<br />

1 − re<br />

(1 − r)c2<br />

(1 − r)cn<br />

+ + · · · +<br />

i(t−θ1) 1 − rei(t−θ2) 1 − rei(t−θn) lim<br />

r→1−(1 − r)(Kµ)(reit <br />

cj, if t = θj;<br />

) =<br />

0, o<strong>the</strong>rwise.<br />

lim<br />

r→1 − |(Kµ)(reit )| = +∞ if t = θj<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 13 / 42


(1 − r)(Kµ)(re it ) =<br />

Thus<br />

(1 − r)c1<br />

1 − re<br />

(1 − r)c2<br />

(1 − r)cn<br />

+ + · · · +<br />

i(t−θ1) 1 − rei(t−θ2) 1 − rei(t−θn) lim<br />

r→1−(1 − r)(Kµ)(reit <br />

cj, if t = θj;<br />

) =<br />

0, o<strong>the</strong>rwise.<br />

lim<br />

r→1 − |(Kµ)(reit )| = +∞ if t = θj<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 13 / 42


(1 − r)(Kµ)(re it ) =<br />

Thus<br />

(1 − r)c1<br />

1 − re<br />

(1 − r)c2<br />

(1 − r)cn<br />

+ + · · · +<br />

i(t−θ1) 1 − rei(t−θ2) 1 − rei(t−θn) lim<br />

r→1−(1 − r)(Kµ)(reit <br />

cj, if t = θj;<br />

) =<br />

0, o<strong>the</strong>rwise.<br />

lim<br />

r→1 − |(Kµ)(reit )| = +∞ if t = θj<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 13 / 42


For a general measure µ,<br />

lim<br />

r→1−(1 − r)(Kµ)(reit ) = lim<br />

r→1− Thus, by taking µ =<br />

<br />

∞<br />

2 −n δθn , θn dense in [0, 2π]<br />

n=1<br />

on a dense subset of <strong>the</strong> circle.<br />

lim<br />

r→1− |(Kµ)(reit )| = +∞<br />

1 − r<br />

dµ(θ) = µ({t})<br />

1 − rei(t−θ) William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 14 / 42


For a general measure µ,<br />

lim<br />

r→1−(1 − r)(Kµ)(reit ) = lim<br />

r→1− Thus, by taking µ =<br />

<br />

∞<br />

2 −n δθn , θn dense in [0, 2π]<br />

n=1<br />

on a dense subset of <strong>the</strong> circle.<br />

lim<br />

r→1− |(Kµ)(reit )| = +∞<br />

1 − r<br />

dµ(θ) = µ({t})<br />

1 − rei(t−θ) William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 14 / 42


For a general measure µ,<br />

lim<br />

r→1−(1 − r)(Kµ)(reit ) = lim<br />

r→1− Thus, by taking µ =<br />

<br />

∞<br />

2 −n δθn , θn dense in [0, 2π]<br />

n=1<br />

on a dense subset of <strong>the</strong> circle.<br />

lim<br />

r→1− |(Kµ)(reit )| = +∞<br />

1 − r<br />

dµ(θ) = µ({t})<br />

1 − rei(t−θ) William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 14 / 42


f (z) =<br />

∞<br />

j=1<br />

cj<br />

1 − e −iθj z ,<br />

∞<br />

|cj| < ∞<br />

In a way Poincaré knew about this behavior back in 1883 while creating<br />

non-continuable functions.<br />

..... but needed a longer proof since <strong>the</strong> Lebesgue dominated convergence<br />

<strong>the</strong>orem was not discovered yet.<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 15 / 42<br />

j=1


Theorem (Smirnov - 1929)<br />

For almost every (Lebesgue measure) t ∈ [0, 2π],<br />

Kµ(e it ) = lim<br />

r→1 −(Kµ)(reit )<br />

exists and is finite. Moreover, <strong>for</strong> each 0 < p < 1,<br />

and in fact 2π<br />

0<br />

2π<br />

|Kµ(e<br />

0<br />

it )| p dt < ∞<br />

|Kµ(e it )| p dt = O( 1<br />

1 − p ).<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 16 / 42


Theorem (Smirnov - 1929)<br />

For almost every (Lebesgue measure) t ∈ [0, 2π],<br />

Kµ(e it ) = lim<br />

r→1 −(Kµ)(reit )<br />

exists and is finite. Moreover, <strong>for</strong> each 0 < p < 1,<br />

and in fact 2π<br />

0<br />

2π<br />

|Kµ(e<br />

0<br />

it )| p dt < ∞<br />

|Kµ(e it )| p dt = O( 1<br />

1 − p ).<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 16 / 42


Theorem (Smirnov - 1929)<br />

For almost every (Lebesgue measure) t ∈ [0, 2π],<br />

Kµ(e it ) = lim<br />

r→1 −(Kµ)(reit )<br />

exists and is finite. Moreover, <strong>for</strong> each 0 < p < 1,<br />

and in fact 2π<br />

0<br />

2π<br />

|Kµ(e<br />

0<br />

it )| p dt < ∞<br />

|Kµ(e it )| p dt = O( 1<br />

1 − p ).<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 16 / 42


Theorem (Fatou - 1906)<br />

For almost every (Lebesgue measure) t ∈ [0, 2π],<br />

lim<br />

r→1−(Kµ)(reit ) − lim<br />

r→1−(Kµ)(1r eit ) = Dµ(t)<br />

µ([t − h, t + h])<br />

Dµ(t) = lim<br />

h→0 2h<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 17 / 42


Theorem (Fatou - 1906)<br />

For almost every (Lebesgue measure) t ∈ [0, 2π],<br />

lim<br />

r→1−(Kµ)(reit ) − lim<br />

r→1−(Kµ)(1r eit ) = Dµ(t)<br />

µ([t − h, t + h])<br />

Dµ(t) = lim<br />

h→0 2h<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 17 / 42


Theorem (Privalov - 1919)<br />

For almost every (Lebesgue measure) t ∈ [0, 2π],<br />

lim<br />

r→1−(Kµ)(reit ) + lim<br />

r→1−(Kµ)(1r eit 2π 1<br />

) = 2P.V .<br />

dµ(θ).<br />

0 1 − ei(θ−t) <br />

<br />

1<br />

dµ(ζ), |z| < 1<br />

ζ − z<br />

1<br />

dµ(ζ), |ξ| = 1<br />

ζ − ξ<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 18 / 42


Theorem (Privalov - 1919)<br />

For almost every (Lebesgue measure) t ∈ [0, 2π],<br />

lim<br />

r→1−(Kµ)(reit ) + lim<br />

r→1−(Kµ)(1r eit 2π 1<br />

) = 2P.V .<br />

dµ(θ).<br />

0 1 − ei(θ−t) <br />

<br />

1<br />

dµ(ζ), |z| < 1<br />

ζ − z<br />

1<br />

dµ(ζ), |ξ| = 1<br />

ζ − ξ<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 18 / 42


Theorem (Privalov - 1919)<br />

For almost every (Lebesgue measure) t ∈ [0, 2π],<br />

lim<br />

r→1−(Kµ)(reit ) + lim<br />

r→1−(Kµ)(1r eit 2π 1<br />

) = 2P.V .<br />

dµ(θ).<br />

0 1 − ei(θ−t) <br />

<br />

1<br />

dµ(ζ), |z| < 1<br />

ζ − z<br />

1<br />

dµ(ζ), |ξ| = 1<br />

ζ − ξ<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 18 / 42


Mapping properties<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 19 / 42


There are a multitude of results which talk about <strong>the</strong> mapping properties<br />

of µ → Kµ.<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 20 / 42


Theorem (M. Riesz - 1927)<br />

If 1 < p < ∞ and g(θ) ∈ L p [0, 2π] and<br />

<strong>the</strong>n<br />

f (z) =<br />

2π<br />

0<br />

g(θ)<br />

1 − e−iθ dθ<br />

z 2π ,<br />

2π<br />

sup |f (re<br />

0


Theorem (M. Riesz - 1927)<br />

If 1 < p < ∞ and g(θ) ∈ L p [0, 2π] and<br />

<strong>the</strong>n<br />

f (z) =<br />

2π<br />

0<br />

g(θ)<br />

1 − e−iθ dθ<br />

z 2π ,<br />

2π<br />

sup |f (re<br />

0


We began this talk with <strong>the</strong> <strong>Cauchy</strong> integral <strong>for</strong>mula<br />

f (z) =<br />

2π<br />

0<br />

f (eiθ )<br />

1 − e−iθ dθ<br />

z 2π<br />

f analytic on {|z| < 1} and continuous on {|z| 1}.<br />

Theorem (M. Riesz - 1931)<br />

If f is analytic on {|z| < 1} and<br />

2π<br />

sup |f (re<br />

0


We began this talk with <strong>the</strong> <strong>Cauchy</strong> integral <strong>for</strong>mula<br />

f (z) =<br />

2π<br />

0<br />

f (eiθ )<br />

1 − e−iθ dθ<br />

z 2π<br />

f analytic on {|z| < 1} and continuous on {|z| 1}.<br />

Theorem (M. Riesz - 1931)<br />

If f is analytic on {|z| < 1} and<br />

2π<br />

sup |f (re<br />

0


An extension of <strong>the</strong> CIF<br />

f (z) =<br />

2π<br />

Ul’yanov (1956), Aleksandrov (1981):<br />

0<br />

f (eiθ )<br />

1 − e−iθ dθ<br />

z 2π<br />

<br />

f (e<br />

f (z) = lim<br />

A→∞ |f |


An extension of <strong>the</strong> CIF<br />

f (z) =<br />

2π<br />

Ul’yanov (1956), Aleksandrov (1981):<br />

0<br />

f (eiθ )<br />

1 − e−iθ dθ<br />

z 2π<br />

<br />

f (e<br />

f (z) = lim<br />

A→∞ |f |


An extension of <strong>the</strong> CIF<br />

f (z) =<br />

2π<br />

Ul’yanov (1956), Aleksandrov (1981):<br />

0<br />

f (eiθ )<br />

1 − e−iθ dθ<br />

z 2π<br />

<br />

f (e<br />

f (z) = lim<br />

A→∞ |f |


Distribution function<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 24 / 42


We know that <strong>the</strong> function<br />

is defined <strong>for</strong> almost every θ.<br />

(Kµ)(e iθ ) = lim<br />

r→1 −(Kµ)(reiθ )<br />

What can we say about <strong>the</strong> distribution function<br />

y → m(|Kµ| > y)?<br />

m(|Kµ| > y) = 1<br />

2π Leb. meas. of {θ : |(Kµ)(eiθ )| > y}<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 25 / 42


We know that <strong>the</strong> function<br />

is defined <strong>for</strong> almost every θ.<br />

(Kµ)(e iθ ) = lim<br />

r→1 −(Kµ)(reiθ )<br />

What can we say about <strong>the</strong> distribution function<br />

y → m(|Kµ| > y)?<br />

m(|Kµ| > y) = 1<br />

2π Leb. meas. of {θ : |(Kµ)(eiθ )| > y}<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 25 / 42


We know that <strong>the</strong> function<br />

is defined <strong>for</strong> almost every θ.<br />

(Kµ)(e iθ ) = lim<br />

r→1 −(Kµ)(reiθ )<br />

What can we say about <strong>the</strong> distribution function<br />

y → m(|Kµ| > y)?<br />

m(|Kµ| > y) = 1<br />

2π Leb. meas. of {θ : |(Kµ)(eiθ )| > y}<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 25 / 42


For any f (θ) ∈ L 1 [0, 2π], we have<br />

Note that<br />

m(|f | > y) 1<br />

2π<br />

|f (θ)|<br />

y 0<br />

dθ<br />

2π<br />

yχ |f |>y |f |<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 26 / 42


Example<br />

|Kδ0(e iθ )| =<br />

1<br />

|1 − e iθ |<br />

1 1<br />

=<br />

2 | sin(θ/2)|<br />

m(|Kδ0| > y) = 2<br />

π sin−1 ( 1 1<br />

) = O(<br />

2y y )<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 27 / 42


Example<br />

|Kδ0(e iθ )| =<br />

1<br />

|1 − e iθ |<br />

1 1<br />

=<br />

2 | sin(θ/2)|<br />

m(|Kδ0| > y) = 2<br />

π sin−1 ( 1 1<br />

) = O(<br />

2y y )<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 27 / 42


Boole’s idea:<br />

Suppose c1, · · · , cn > 0 and a1 < a2 < · · · < an. Define<br />

g(x) = c1<br />

+<br />

x − a1<br />

c2<br />

+ · · · +<br />

x − a2<br />

cn<br />

x − an<br />

m1(g > y) =?<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 28 / 42


Boole’s idea:<br />

Suppose c1, · · · , cn > 0 and a1 < a2 < · · · < an. Define<br />

g(x) = c1<br />

+<br />

x − a1<br />

c2<br />

+ · · · +<br />

x − a2<br />

cn<br />

x − an<br />

m1(g > y) =?<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 28 / 42


g(x) = c1<br />

+<br />

x − a1<br />

c2<br />

+ · · · +<br />

x − a2<br />

cn<br />

x − an<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 29 / 42


Theorem (Boole - 1857)<br />

Suppose c1, · · · , cn > 0, a1 < a2 < · · · < an and<br />

Then<br />

g(x) = c1<br />

+<br />

x − a1<br />

c2<br />

+ · · · +<br />

x − a2<br />

cn<br />

.<br />

x − an<br />

m1(g > y) = 1<br />

y (c1 + c2 + · · · + cn)<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 30 / 42


Proof of Boole’s <strong>the</strong>orem (not <strong>the</strong> original):<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 31 / 42


g(x) = c1<br />

+<br />

x − a1<br />

c2<br />

+ · · · +<br />

x − a2<br />

cn<br />

x − an<br />

m1(g > y) = (s1 − a1) + (s2 − a2) + · · · + (sn − an)<br />

Consider <strong>the</strong> polynomial<br />

p(x) =<br />

n<br />

<br />

(x − aj) 1 − g(x)<br />

<br />

y<br />

j=1<br />

The roots of this poly are s1, s2, · · · , sn.<br />

p(x) = x n ⎛<br />

n<br />

− ⎝ aj + 1<br />

y<br />

j=1<br />

Viète’s <strong>for</strong>mula ⇒<br />

n<br />

sj =<br />

j=1<br />

n<br />

j=1<br />

cj<br />

n<br />

j=1<br />

⎞<br />

⎠ x n−1 + · · ·<br />

aj + 1<br />

y<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 32 / 42<br />

n<br />

j=1<br />

cj


g(x) = c1<br />

+<br />

x − a1<br />

c2<br />

+ · · · +<br />

x − a2<br />

cn<br />

x − an<br />

m1(g > y) = (s1 − a1) + (s2 − a2) + · · · + (sn − an)<br />

Consider <strong>the</strong> polynomial<br />

p(x) =<br />

n<br />

<br />

(x − aj) 1 − g(x)<br />

<br />

y<br />

j=1<br />

The roots of this poly are s1, s2, · · · , sn.<br />

p(x) = x n ⎛<br />

n<br />

− ⎝ aj + 1<br />

y<br />

j=1<br />

Viète’s <strong>for</strong>mula ⇒<br />

n<br />

sj =<br />

j=1<br />

n<br />

j=1<br />

cj<br />

n<br />

j=1<br />

⎞<br />

⎠ x n−1 + · · ·<br />

aj + 1<br />

y<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 32 / 42<br />

n<br />

j=1<br />

cj


g(x) = c1<br />

+<br />

x − a1<br />

c2<br />

+ · · · +<br />

x − a2<br />

cn<br />

x − an<br />

m1(g > y) = (s1 − a1) + (s2 − a2) + · · · + (sn − an)<br />

Consider <strong>the</strong> polynomial<br />

p(x) =<br />

n<br />

<br />

(x − aj) 1 − g(x)<br />

<br />

y<br />

j=1<br />

The roots of this poly are s1, s2, · · · , sn.<br />

p(x) = x n ⎛<br />

n<br />

− ⎝ aj + 1<br />

y<br />

j=1<br />

Viète’s <strong>for</strong>mula ⇒<br />

n<br />

sj =<br />

j=1<br />

n<br />

j=1<br />

cj<br />

n<br />

j=1<br />

⎞<br />

⎠ x n−1 + · · ·<br />

aj + 1<br />

y<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 32 / 42<br />

n<br />

j=1<br />

cj


g(x) = c1<br />

+<br />

x − a1<br />

c2<br />

+ · · · +<br />

x − a2<br />

cn<br />

x − an<br />

m1(g > y) = (s1 − a1) + (s2 − a2) + · · · + (sn − an)<br />

Consider <strong>the</strong> polynomial<br />

p(x) =<br />

n<br />

<br />

(x − aj) 1 − g(x)<br />

<br />

y<br />

j=1<br />

The roots of this poly are s1, s2, · · · , sn.<br />

p(x) = x n ⎛<br />

n<br />

− ⎝ aj + 1<br />

y<br />

j=1<br />

Viète’s <strong>for</strong>mula ⇒<br />

n<br />

sj =<br />

j=1<br />

n<br />

j=1<br />

cj<br />

n<br />

j=1<br />

⎞<br />

⎠ x n−1 + · · ·<br />

aj + 1<br />

y<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 32 / 42<br />

n<br />

j=1<br />

cj


g(x) = c1<br />

+<br />

x − a1<br />

c2<br />

+ · · · +<br />

x − a2<br />

cn<br />

x − an<br />

m1(g > y) = (s1 − a1) + (s2 − a2) + · · · + (sn − an)<br />

Consider <strong>the</strong> polynomial<br />

p(x) =<br />

n<br />

<br />

(x − aj) 1 − g(x)<br />

<br />

y<br />

j=1<br />

The roots of this poly are s1, s2, · · · , sn.<br />

p(x) = x n ⎛<br />

n<br />

− ⎝ aj + 1<br />

y<br />

j=1<br />

Viète’s <strong>for</strong>mula ⇒<br />

n<br />

sj =<br />

j=1<br />

n<br />

j=1<br />

cj<br />

n<br />

j=1<br />

⎞<br />

⎠ x n−1 + · · ·<br />

aj + 1<br />

y<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 32 / 42<br />

n<br />

j=1<br />

cj


g(x) = c1<br />

+<br />

x − a1<br />

c2<br />

+ · · · +<br />

x − a2<br />

cn<br />

x − an<br />

m1(g > y) = (s1 − a1) + (s2 − a2) + · · · + (sn − an)<br />

Consider <strong>the</strong> polynomial<br />

p(x) =<br />

n<br />

<br />

(x − aj) 1 − g(x)<br />

<br />

y<br />

j=1<br />

The roots of this poly are s1, s2, · · · , sn.<br />

p(x) = x n ⎛<br />

n<br />

− ⎝ aj + 1<br />

y<br />

j=1<br />

Viète’s <strong>for</strong>mula ⇒<br />

n<br />

sj =<br />

j=1<br />

n<br />

j=1<br />

cj<br />

n<br />

j=1<br />

⎞<br />

⎠ x n−1 + · · ·<br />

aj + 1<br />

y<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 32 / 42<br />

n<br />

j=1<br />

cj


Theorem (Kolmogorov - 1925)<br />

m(|Kµ| > y) = O<br />

<br />

1<br />

, y → ∞.<br />

y<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 33 / 42


Kolmogorov says<br />

lim sup ym(|Kµ| > y) < ∞.<br />

y→∞<br />

Theorem (Hruschev-Vinogradov - 1981)<br />

Theorem (Poltoratski - 1996)<br />

1<br />

lim ym(|Kµ| > y) =<br />

y→∞ π µs<br />

yχ |Kµ|>y · m → 1<br />

π µs weak-* as y → ∞<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 34 / 42


Kolmogorov says<br />

lim sup ym(|Kµ| > y) < ∞.<br />

y→∞<br />

Theorem (Hruschev-Vinogradov - 1981)<br />

Theorem (Poltoratski - 1996)<br />

1<br />

lim ym(|Kµ| > y) =<br />

y→∞ π µs<br />

yχ |Kµ|>y · m → 1<br />

π µs weak-* as y → ∞<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 34 / 42


Kolmogorov says<br />

lim sup ym(|Kµ| > y) < ∞.<br />

y→∞<br />

Theorem (Hruschev-Vinogradov - 1981)<br />

Theorem (Poltoratski - 1996)<br />

1<br />

lim ym(|Kµ| > y) =<br />

y→∞ π µs<br />

yχ |Kµ|>y · m → 1<br />

π µs weak-* as y → ∞<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 34 / 42


Geometric conditions<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 35 / 42


Q: If f is analytic on D = {|z| < 1}. When is f = Kµ?<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 36 / 42


Theorem (Herglotz - 1911)<br />

If f (D) is contained in a half-plane, <strong>the</strong>n f = Kµ.<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 37 / 42


Theorem (Cima-Bourdon - 1986)<br />

If f (D) is contained in a region which omits two oppositely pointing rays,<br />

<strong>the</strong>n f = Kµ.<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 38 / 42


Example<br />

f (z) = 2z 1<br />

=<br />

1 − z2 1 − z<br />

− 1<br />

1 + z = K(δ0 − δπ)(z)<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 39 / 42


Example<br />

f (z) = 2z 1<br />

=<br />

1 − z2 1 − z<br />

− 1<br />

1 + z = K(δ0 − δπ)(z)<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 39 / 42


Example<br />

f (z) = 2z 1<br />

=<br />

1 − z2 1 − z<br />

− 1<br />

1 + z = K(δ0 − δπ)(z)<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 39 / 42


The normalized <strong>Cauchy</strong> trans<strong>for</strong>m<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 40 / 42


Consider <strong>the</strong> normalized <strong>Cauchy</strong> trans<strong>for</strong>m<br />

K(fdµ)<br />

K(dµ)<br />

lim<br />

r→1− K(fdµ)(reiθ )<br />

K(dµ)(reiθ = lim<br />

) r→1− (1 − r)K(fdµ)(reiθ )<br />

(1 − r)K(dµ)(reiθ )<br />

= f (eiθ )µ({θ})<br />

µ({θ})<br />

= f (e iθ )<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 41 / 42


Consider <strong>the</strong> normalized <strong>Cauchy</strong> trans<strong>for</strong>m<br />

K(fdµ)<br />

K(dµ)<br />

lim<br />

r→1− K(fdµ)(reiθ )<br />

K(dµ)(reiθ = lim<br />

) r→1− (1 − r)K(fdµ)(reiθ )<br />

(1 − r)K(dµ)(reiθ )<br />

= f (eiθ )µ({θ})<br />

µ({θ})<br />

= f (e iθ )<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 41 / 42


Theorem (Poltoratski - 1993)<br />

lim<br />

r→1− K(fdµ)(reiθ )<br />

K(dµ)(reiθ ) = f (eiθ ) µs-a.e. θ.<br />

William T. Ross (University of Richmond) <strong>Making</strong> <strong>the</strong> <strong>case</strong> <strong>for</strong> <strong>Cauchy</strong> trans<strong>for</strong>ms 42 / 42

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!