02.07.2013 Views

Silicate melt inclusions in mantle xenolith

Silicate melt inclusions in mantle xenolith

Silicate melt inclusions in mantle xenolith

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Significance of fluid, silicate and sulfide <strong>melt</strong><br />

<strong><strong>in</strong>clusions</strong> <strong>in</strong> <strong>mantle</strong> <strong>xenolith</strong>s from the<br />

Carpathian-Pannonian Region<br />

Csaba Szabó<br />

Lithosphere Fluid Research Laboratory (LRG), Eötvös University<br />

(ELTE), Budapest, Hungary<br />

with contribution of Márta Berkesi, Károly Hidas, Enikő Bali, Tibor<br />

Guzmics, Kálmán Török, László Aradi, Bob Bodnar, Jean Dubessy<br />

11 th Pan-American Current Research On Fluid Inclusions<br />

(PACROFI XI)<br />

W<strong>in</strong>dsor, Canada<br />

18-20 June, 2012<br />

http://lrg.elte.hu


Carpathian-Pannonian region – upper <strong>mantle</strong> <strong>xenolith</strong>s


<strong>Silicate</strong> <strong>melt</strong> <strong>in</strong>clusion<br />

- Nógrád-Gömör Volcanic Field<br />

- Bakony – Balaton Highland Volcanic Field


<strong>Silicate</strong> <strong>melt</strong> <strong><strong>in</strong>clusions</strong> <strong>in</strong> <strong>mantle</strong> <strong>xenolith</strong> - pyroxenite<br />

Cpx<br />

Opx<br />

Incl<br />

Opx<br />

Cpx<br />

0.25 cm<br />

Quartz (Qz) and CO 2 -bear<strong>in</strong>g silicate <strong>melt</strong> <strong><strong>in</strong>clusions</strong><br />

(Smi) <strong>in</strong> pyroxenite <strong>xenolith</strong><br />

Opx-orthopyroxene, Cpx-cl<strong>in</strong>opyroxene, Incl-silicate <strong>melt</strong><br />

<strong><strong>in</strong>clusions</strong> (photomicrographs, 1N)<br />

Smi petrography:<br />

- primary and secondary<br />

- glass and CO 2 bubble<br />

Q<br />

Qz<br />

Opx<br />

CO 2<br />

Gl<br />

Smi<br />

250 m<br />

200 m


<strong>Silicate</strong> <strong>melt</strong> <strong><strong>in</strong>clusions</strong> <strong>in</strong> <strong>mantle</strong> <strong>xenolith</strong> - pyroxenite<br />

Heat<strong>in</strong>g experiments of smi Raman spectroscopy spectroscopy<br />

of CO 2<br />

~960 °C <strong>melt</strong><strong>in</strong>g temperature<br />

Density=0.87-1.18 g/cm 3<br />

Depth of the present day uppemost <strong>mantle</strong><br />

Entrapment pressure >1.1 GPa


<strong>Silicate</strong> glass composition - major elements


<strong>Silicate</strong> glass composition - major elements<br />

qz-opx+cpx+amp(?)<br />

fractionation from a<br />

silicic hybrid <strong>melt</strong><br />

formed on peridotiteslab<br />

<strong>melt</strong> <strong>in</strong>terface


<strong>Silicate</strong> <strong>melt</strong> <strong>in</strong>clusion composition (bulk)- trace elements<br />

rutile<br />

plagioclase?<br />

apatite?<br />

garnet<br />

Rutile+plagioclase(?)+garnet <strong>in</strong> the source subducted oceanic crust?<br />

Ni-content <strong>in</strong> SMI 140-635 ppm; Cr-content <strong>in</strong> SMI 185-850 ppm <br />

reaction with peridotite


cpx<br />

ol<br />

1 mm<br />

1 mm<br />

ol<br />

ol<br />

amp smp<br />

opx<br />

opx<br />

amp<br />

amp<br />

cpx<br />

cpx<br />

amp<br />

a<br />

b<br />

<strong>Silicate</strong> <strong>melt</strong> <strong><strong>in</strong>clusions</strong> <strong>in</strong> <strong>mantle</strong> <strong>xenolith</strong> -<br />

peridotite<br />

Two equigranular, modally metasomatized<br />

sp<strong>in</strong>el lherzolites (Szg07, Szg08)<br />

Ol-oliv<strong>in</strong>e, Opx-orthopyroxene, Cpx-cl<strong>in</strong>opyroxene,<br />

Spl-sp<strong>in</strong>el, Amp-amphibole (photomicrographs, 1N)


<strong>Silicate</strong> <strong>melt</strong> <strong><strong>in</strong>clusions</strong> <strong>in</strong> <strong>mantle</strong> <strong>xenolith</strong> - peridotite<br />

SMI <strong>in</strong> Cpx SMI <strong>in</strong> Opx<br />

Primary silicate <strong>melt</strong> <strong><strong>in</strong>clusions</strong> (smi) <strong>in</strong> cl<strong>in</strong>opyroxene (cpx) and secondary silicate <strong>melt</strong><br />

<strong><strong>in</strong>clusions</strong> <strong>in</strong> orthopyroxene (opx) from the same lherzolite <strong>xenolith</strong>s)<br />

Smi phases: products of post-entra<strong>in</strong>ment crystallization, glass (gl), mica, fluid bubble


<strong>Silicate</strong> glass composition - major elements<br />

The same evolved <strong>melt</strong><br />

(high volatile content)<br />

The same process <br />

fractionation


<strong>Silicate</strong> <strong>melt</strong> <strong>in</strong>clusion composition (bulk) - trace elements<br />

Mantle/<strong>melt</strong> <strong>in</strong>teraction occurred at <strong>mantle</strong> temperature resulted <strong>in</strong> <strong>melt</strong><strong>in</strong>g of cl<strong>in</strong>opyroxene.<br />

This <strong>melt</strong><strong>in</strong>g was <strong>in</strong>duced by a reagent <strong>melt</strong> with hydrous mafic nature resembl<strong>in</strong>g<br />

compositionally the host alkal<strong>in</strong>e basalts, which mixed with <strong>melt</strong> of the partially fused<br />

cl<strong>in</strong>opyroxene. Rims of cl<strong>in</strong>opyroxene crystallized from this mixture <strong>melt</strong> simultaneously<br />

entrapp<strong>in</strong>g drops of <strong>melt</strong> as primary silicate <strong>melt</strong> <strong><strong>in</strong>clusions</strong>.<br />

Amphibole formation?


Fluid <strong>in</strong>cluions<br />

- Nógrád-Gömör Volcanic Field<br />

- Bakony – Balaton Highland Volcanic Field<br />

- Persany Mounta<strong>in</strong>s Volcanic Field


Carpathian-Pannonian region – upper <strong>mantle</strong> <strong>xenolith</strong>s


Fluid <strong><strong>in</strong>clusions</strong> <strong>in</strong> <strong>mantle</strong> <strong>xenolith</strong> - peridotite<br />

Two equigranular, modally metasomatized sp<strong>in</strong>el<br />

peridotites (Szigliget)<br />

Five coarse-gra<strong>in</strong>ed, orthopyroxene-rich sp<strong>in</strong>el<br />

peridotites. The peridotites were formed most<br />

probably by a SiO 2 and MgO-rich <strong>melt</strong>/peridotite<br />

wall rock <strong>in</strong>teraction (Tihany).<br />

Ol-oliv<strong>in</strong>e, Opx-orthopyroxene, Cpx-cl<strong>in</strong>opyroxene, Spl-sp<strong>in</strong>el,<br />

Amp-amphibole (photomicrographs, 1N)


Fluid <strong><strong>in</strong>clusions</strong> <strong>in</strong> <strong>mantle</strong> <strong>xenolith</strong> – peridotite (Szigliget)<br />

FI <strong>in</strong> Cpx<br />

FI <strong>in</strong> Opx)<br />

Melt mix<strong>in</strong>g -> cpx <strong>melt</strong><strong>in</strong>g and crystallization -> fluid/<strong>melt</strong> immiscibility


Fluid <strong><strong>in</strong>clusions</strong> <strong>in</strong> <strong>mantle</strong> <strong>xenolith</strong> – peridotite (Tihany)<br />

FI <strong>in</strong> Opx FI <strong>in</strong> Opx<br />

FI <strong>in</strong> Cpx<br />

FI <strong>in</strong> Opx<br />

Opx-orthopyroxene,<br />

Cpx-cl<strong>in</strong>opyroxene,<br />

L-liquid phase,<br />

Mgs-carbonate<br />

(photomicrograph, 1N)<br />

mostly <strong>in</strong> orthopyroxene, rarely <strong>in</strong> cl<strong>in</strong>opyroxene; primary or pseudosecondary<br />

negative crystal shape with size rang<strong>in</strong>g from 3 to 100 μm;<br />

dom<strong>in</strong>antly one liquid phase at room temperature<br />

rarely visible solid phases with<strong>in</strong> the fluid <strong><strong>in</strong>clusions</strong>


Fluid <strong><strong>in</strong>clusions</strong>: high density CO 2 -rich fluids<br />

- Microthermometry of FI and fluid bubble of SMI<br />

Homogenization T <strong>in</strong> fluid bubble of SMI could not be observed<br />

(probably low density vapor at room T)


– Raman spectroscopy of FI<br />

High density CO 2 -rich fluid <strong><strong>in</strong>clusions</strong> that show no evidence for H 2 O


– Raman spectroscopy of FI


– Raman spectroscopy of FI<br />

Raman spectroscopy at low and/or high temperature is able to detect small<br />

amounts of H 2 O


CO 2+H 2O±H 2S fluids (C-O-H-S system) <strong>in</strong> the<br />

fluid <strong><strong>in</strong>clusions</strong> regardless location<br />

– Raman spectroscopy of FI


– Raman spectroscopy for determ<strong>in</strong>ation of bulk composition of FI (Tihany)<br />

Raman spectroscopy<br />

at high temperature<br />

(from 75 to 200 o C):<br />

bulk composition:<br />

- 89-98 mol % CO 2<br />

- 2-11 mol % H 2 O<br />

- 0.3-1.0 mol % H 2 S<br />

Solid phases (detected by Raman):<br />

carbonates, quartz step-daughter phases


Raman microspectroscopy – step-daughter phases (Tihany)<br />

Orthopyroxene–hosted fluid <strong>in</strong>clusion:<br />

• Magnesite, α-Quartz<br />

MgSiO 3 (enstatite)+CO 2 =<br />

MgCO 3 (magnesite)+SiO 2 (quartz)


Raman microspectroscopy – step-daughter phases (Tihany)<br />

Cl<strong>in</strong>opyroxene–hosted fluid<br />

<strong>in</strong>clusion:<br />

• Dolomite<br />

CaMgSi 2 O 6 (diopside) + 2CO 2<br />

= CaMg(CO 3 ) 2 (dolomite) +<br />

2SiO 2 (quartz)


Carbonation post-entrapment reaction<br />

Pl – plagioclase, Spl – sp<strong>in</strong>el, Grt – garnet, Px – pyroxene, Qtz - quartz<br />

Carbonation reaction at<br />

around 400 – 600 o C<br />

Trommsdorff and<br />

Connolly (1990);<br />

Holland and Powell<br />

(1990); Koziol and<br />

Newmann (1995)


Magnesite<br />

Opx-orthopyroxene<br />

Focused Ion Beam – Scann<strong>in</strong>g Electron Microscopy (FIB-SEM)<br />

Opx<br />

Quartz<br />

Th<strong>in</strong> glass film on<br />

the wall


Opx – orthopyroxene, Mgs – magnesite, GCM – Gallium contam<strong>in</strong>ated material<br />

Focused Ion Beam – Scann<strong>in</strong>g Electron Microscopy (FIB-SEM)<br />

The glass, represent<strong>in</strong>g silicate<br />

components that were formerly<br />

dissolved <strong>in</strong> the fluid, started<br />

to precipitate later or<br />

simultaneously with the<br />

magnesite and quartz daughter<br />

phases.<br />

The glass film seems to be<br />

play<strong>in</strong>g great role <strong>in</strong> preserv<strong>in</strong>g<br />

the CO 2 fluid <strong>in</strong> <strong>mantle</strong> fluid<br />

<strong><strong>in</strong>clusions</strong>.


- IR hyperspectral images of FI+SMI (Szigliget)


SMI:<br />

fluid bubble: CO 2<br />

solid phases (glass) : H 2 O<br />

FI: CO 2 +H 2 O<br />

<strong>Silicate</strong> <strong>melt</strong> <strong>in</strong>clusion (SMI)<br />

and fluid <strong>in</strong>clusion (FI)<br />

<strong>in</strong> orthopyroxene<br />

Opx: ~200 wt ppm H 2 O<br />

- IR hyperspectral images of FI+SMI (Szigliget)


– Traces of fluid metasomatism (Tihany)<br />

Cryptic metasomatism


- trace element distributions similar<br />

to the silicate <strong>melt</strong> <strong><strong>in</strong>clusions</strong><br />

- small amount of dissolved silicate<br />

<strong>melt</strong> <strong>in</strong> the fluid <strong><strong>in</strong>clusions</strong><br />

– Trace element composition of SMI and FI (Szigliget)


Opx – orthopyroxene, Mgs – magnesite, GCM – Gallium contam<strong>in</strong>ated material<br />

Focused Ion Beam – Scann<strong>in</strong>g Electron Microscopy (FIB-SEM)<br />

The glass, represent<strong>in</strong>g silicate<br />

components that were formerly<br />

dissolved <strong>in</strong> the fluid, started<br />

to precipitate later or<br />

simultaneously with the<br />

magnesite and quartz daughter<br />

phases.<br />

The glass film seems to be<br />

play<strong>in</strong>g great role <strong>in</strong> preserv<strong>in</strong>g<br />

the CO 2 fluid <strong>in</strong> <strong>mantle</strong> fluid<br />

<strong><strong>in</strong>clusions</strong>.


Carpathian-Pannonian region – upper <strong>mantle</strong> <strong>xenolith</strong>s


Classification of sulfides<br />

• Inclusions (blebs, enclosed phases)<br />

primary and/or secondary<br />

• Interstitial phases<br />

• One- or multiphase<br />

Abundances: pyroxenites >< peridotites


Petrography of the sulfides: enclosed sulfide<br />

Microscopy image:<br />

(reflected & transmitted<br />

light, 1N)<br />

ol<br />

100 m<br />

po<br />

+pn<br />

sec<br />

cpx<br />

cp<br />

po<br />

cp<br />

pr<br />

pr<br />

100 m<br />

cpx<br />

po po<br />

200 m<br />

d.<br />

pr<br />

- pentlandite (pn),<br />

- chalcopyrite (cp),<br />

- pyrrhotite (po),<br />

- pyrite (py),<br />

-MSS<br />

pr r & sec<br />

200 m<br />

cpx<br />

sulfide blebs<br />

cpx


Petrography of the sulfides: Interstitial sulfide<br />

Microscopy image:<br />

(reflected light, 1N)<br />

MSS<br />

cp<br />

- pentlandite (pn),<br />

- chalcopyrite (cp),<br />

- pyrrhotite (po),<br />

- pyrite (py),<br />

- monosulfide solide solution (MSS)<br />

X-Ray mapp<strong>in</strong>g:<br />

pn<br />

SE image:<br />

Microscopy image:<br />

(reflected light, 1N)<br />

cp<br />

py<br />

pn


Bulk major and m<strong>in</strong>or element compositions of the sulfides<br />

PMVF


Sulfide – silicate equilibrium <strong>in</strong> peridotites<br />

Fe/Ni exchange between coexist<strong>in</strong>g ol & sulfide<br />

Kd 3 = X sulf NiS*X ol Fe 2 SiO 4 / X sulf FeS*X ol Ni 2 SiO 4<br />

experimental values Kd 3 = 22 – 41<br />

<strong>mantle</strong> <strong>xenolith</strong>s from the Carpathian-Pannonian region<br />

(31 samples):<br />

W-SBVF: 2 +, 5 <<br />

C-BBHV: - +, 6 <<br />

N-NGVF: 5 +, 6 <<br />

E-PMVF: 3 +, 4


Bulk trace element compositions of the sulfides


Conclusions<br />

The fluid <strong><strong>in</strong>clusions</strong> are CO 2-rich, but also conta<strong>in</strong> small amounts of H 2O<br />

and silicate <strong>melt</strong> <strong>in</strong>dicat<strong>in</strong>g that the presence of water and silicate <strong>melt</strong> <strong>in</strong><br />

deep-seated fluid <strong><strong>in</strong>clusions</strong> is not a special feature, but rather reflects the<br />

general component of any fluid <strong><strong>in</strong>clusions</strong> from a sub-cont<strong>in</strong>ental<br />

lithospheric sett<strong>in</strong>g.<br />

These fluids/<strong>melt</strong>s trapped, as potential metasomatic agents, could be<br />

responsible for <strong>mantle</strong> metasomatism and also resulted <strong>in</strong> post-entrapment<br />

reaction with the <strong>mantle</strong>.<br />

The PGE patterns show high and variable abundances of Os, Ir, Ru and Rh,<br />

with decreas<strong>in</strong>g abundances of Pd and a strong negative Pt anomaly. The<br />

PGE abundance is expla<strong>in</strong>ed by different degrees of <strong>melt</strong><strong>in</strong>g and<br />

metasomatism <strong>in</strong> the CPR <strong>mantle</strong>, however the texture is not necessarily<br />

correlated with PGE patterns.


Thanks for your attention!<br />

http://lrg.elte.hu<br />

The European Union and the European Social Fund have provided<br />

f<strong>in</strong>ancial support to the project under the grant agreement no.<br />

TÁMOP 4.2.1./B-09/KMR-2010-0003<br />

This work has partly done <strong>in</strong> the framework of of the<br />

REG_KM_INFRA_09 Gábor Baross Programme (contract nr.<br />

OMFB-0038/2010).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!