03.07.2013 Views

2 - CERN Accelerator School

2 - CERN Accelerator School

2 - CERN Accelerator School

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Introduction<br />

Emittance mittance growth in single-<br />

passage systems<br />

Sources of emittance<br />

growth<br />

M. Giovannozzi<br />

<strong>CERN</strong>- <strong>CERN</strong> AB Department<br />

Summary:<br />

Scattering through thin foils<br />

Emittance growth in multi-<br />

passage systems<br />

Injection process<br />

Scattering processes<br />

Others<br />

Emittance manipulation<br />

Longitudinal<br />

Transverse<br />

Acknowledgements:<br />

D. Brandt and D. Möhl<br />

hl<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 1


Introduction - I<br />

The starting point is the well-known well known Hill’s Hill s<br />

equation<br />

x ″ (s) + K(s)<br />

x(s)<br />

=<br />

Such an equation has an invariant (the so-<br />

called Courant-Snyder Courant Snyder invariant)<br />

2<br />

A = γ x + 2α x x′<br />

+ β x′<br />

Parenthetically: in in a bending-free bending bending-free free region<br />

the following dispersion invariant exists<br />

2<br />

A = γ<br />

D + 2α D D′<br />

+ β D′<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 2<br />

2<br />

2<br />

0


Introduction - II<br />

In the case of a beam, i.e. an ensemble of<br />

particles:<br />

Emittance: Emittance:<br />

value of the Courant-Snyder<br />

Courant Snyder<br />

invariant corresponding to a given fraction of<br />

particles.<br />

Example: rms emittance for Gaussian beams.<br />

Why emittance can grow?<br />

Hill equation is linear -> > in the presence of<br />

nonlinear conserved.<br />

effects emittance is no more<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 3


Introduction - III<br />

Why emittance growth is an issue?<br />

Machine performance is reduced, e.g. in the<br />

case of a collider the luminosity (i.e. the rate<br />

of collisions per unit time) is reduced.<br />

It can lead to beam losses.<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 4


Introduction - IV<br />

Filamentation is one of the key concepts for<br />

computing emittance growth<br />

Due to the presence of nonlinear imperfections,<br />

the rotation frequency in phase space is amplitude-<br />

dependent.<br />

After a certain time the initial beam distribution is<br />

smeared out to fill a phase space ellipse.<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 5


Typical situation:<br />

Incident<br />

beam<br />

Scattering through thin foil - I<br />

Vacuum window between the transfer line and a target (in<br />

case of fixed target physics)<br />

Vacuum window to separate standard vacuum in transfer line<br />

from high vacuum in circular machine<br />

Emerging<br />

beam<br />

The beam receives an<br />

angular kick<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 6


x<br />

p<br />

i<br />

xi<br />

Multiple Coulomb scattering<br />

due to beam-matter<br />

beam matter<br />

interaction is described by<br />

means of the rms<br />

scattering angle:<br />

14 MeV / c L<br />

θ = q 1 +<br />

rms<br />

p<br />

pβ<br />

L<br />

Downstream of the foil the<br />

transformed coordinates<br />

are given by<br />

→<br />

→<br />

x<br />

i<br />

p<br />

xi<br />

=<br />

+<br />

A<br />

p<br />

io<br />

Δ<br />

sin( ψ<br />

p<br />

=<br />

A<br />

i<br />

io<br />

)<br />

Scattering through thin foil - II<br />

rad<br />

cos( ψ<br />

( ε )<br />

i<br />

corr<br />

) + β θ<br />

Normalised coordinate<br />

= α x + β x′<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 7<br />

p x<br />

α = 0 at the<br />

location of the foil


By assuming that:<br />

Scattering through thin foil -<br />

III<br />

Scattering angle and betatronic phase are uncorrelated<br />

Averaging of the phase, i.e. assuming filamentation in the<br />

transfer line or the subsequent machine<br />

2<br />

i<br />

2<br />

i<br />

2<br />

xi<br />

Therefore the final result is<br />

Taking into account the statistical definition of emittance<br />

π<br />

ε rms ( θ<br />

2<br />

= Δ<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 8<br />

rms<br />

2<br />

)<br />

2<br />

i0<br />

A = x + p = A + β θ<br />

2<br />

x<br />

2<br />

x0<br />

2σ =<br />

2σ<br />

+ β θ rms<br />

2<br />

β<br />

2<br />

2<br />

2<br />

i


Scattering through thin foil -<br />

IV<br />

Few remarks<br />

A special case with α = 0 at the location of the<br />

thin foil is discussed -> > it can be generalised.<br />

The correct way of treating this problem is (see<br />

next slides):<br />

Compute all three second-order second order moments of the beam<br />

distribution downstream of the foil<br />

Evaluate the new optical parameters and emittance using<br />

the statistical definition<br />

The emittance function!<br />

growth depends on the beta-<br />

THE SMALLER THE VALUE OF THE BETA- BETA<br />

FUNCTION AT THE LOCATION OF THE FOIL<br />

THE SMALLER THE EMITTANCE GROWTH<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 9


Scattering through thin foil -<br />

V<br />

Correct computation (always for α=0): =0):<br />

x<br />

=<br />

x′<br />

=<br />

−<br />

A<br />

o<br />

A<br />

o<br />

β<br />

o<br />

1/<br />

β<br />

o<br />

By squaring and averaging over the beam distribution<br />

Using the relation<br />

cos( ψ )<br />

o<br />

sin( ψ ) + θ = − A<br />

o 1<br />

2<br />

2 < A0<br />

><br />

< x > =<br />

2<br />

′ 2 < A > 0<br />

< x > =<br />

2β<br />

2<br />

0<br />

β<br />

0<br />

1/<br />

β<br />

1<br />

cos( ψ )<br />

1<br />

sin( ψ<br />

1<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 10<br />

+<br />

ε rms =<br />

π<br />

θ<br />

=<br />

2<br />

rms<br />

=<br />

A<br />

1<br />

1<br />

β<br />

1<br />

< A2<br />

><br />

2<br />

1<br />

β<br />

1<br />

< A 2 > 1 =<br />

2β<br />

2<br />

A<br />

2<br />

)


The solution of the system is<br />

Scattering through thin foil -<br />

VI<br />

This can be solved exactly, or by assuming that the<br />

relative emittance growth is small, then<br />

emittance growth is now only half<br />

π<br />

Δε<br />

rms = θ 2β<br />

rms 0<br />

4<br />

1, β1<br />

Twiss<br />

⎡<br />

⎤<br />

⎢ π θ 2 ⎥<br />

β = β ⎢1−<br />

rms<br />

1 0<br />

⎥<br />

⎢ 4 ε ⎥<br />

⎢⎣<br />

rms ⎥⎦<br />

NB: NB: the the emittance<br />

growth is now only half<br />

of of the the previous estimate!<br />

Downstream of of the the foil foil the the transfer line<br />

line<br />

should be be matched using the the new new Twiss<br />

parameters α1, α1, β1<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 11<br />

A<br />

β1<br />

β<br />

0<br />

2<br />

1<br />

2<br />

=<br />

−<br />

A<br />

2<br />

0<br />

A<br />

A<br />

A<br />

2<br />

0<br />

2<br />

0<br />

2<br />

1<br />

2<br />

=<br />

2β<br />

0<br />

θ<br />

2<br />

rms


70<br />

50<br />

30<br />

10<br />

-10<br />

β H<br />

Stripper location<br />

D V<br />

Example: ion stripping for LHC<br />

lead beam between PS and SPS<br />

β V<br />

D H<br />

0 50 100 150 200 250 300<br />

Courtesy M. M. Martini - <strong>CERN</strong><br />

Pb 54+ -> > Pb 82+<br />

A low-beta low beta<br />

insertion is<br />

designed (beta<br />

reduced by a<br />

factor of 5)<br />

Stripping foil,<br />

0.8 mm thick<br />

Al, is located in<br />

the low-beta low beta<br />

insertion<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 12


Exercises…<br />

Exercises<br />

Compute the Twiss parameters and emittance<br />

growth for a THICK foil<br />

Compute the Twiss parameters and emittance<br />

growth for a THICK foil in a quadrupolar field<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 13


Two sources of errors:<br />

Injection process - I<br />

Steering errors.<br />

Optics errors (Twiss ( Twiss parameters and dispersion).<br />

In case the incoming beam has an energy<br />

error, then the next effect will be a<br />

combination of the two.<br />

In all cases filamentation, filamentation,<br />

i.e. nonlinear<br />

imperfection in the ring, is the source of<br />

emittance growth.<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 14


Steering errors:<br />

Injection process - II<br />

Injection conditions, i.e. position and angle, do not<br />

match position and angle of the closed orbit.<br />

Consequences:<br />

The beam performs betatron oscillations around the<br />

closed orbit. The emittance grows due to the<br />

filamentation<br />

Solution:<br />

Change the injection conditions, either by steering<br />

in the transfer line or using the septum and the<br />

kicker.<br />

In practice, slow drifts of settings may require<br />

regular tuning. In this case a damper (see course<br />

on feedback systems) is the best solution.<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 15


Analysis in normalised phase<br />

space (i ( stands for injection<br />

m for machine):<br />

x<br />

p<br />

m<br />

m<br />

=<br />

=<br />

r<br />

r<br />

i<br />

i<br />

cosψ<br />

sinψ<br />

Squaring and averaging gives<br />

<<br />

<<br />

r<br />

r<br />

2<br />

m<br />

2<br />

m<br />

><br />

><br />

=<br />

=<br />

<<br />

<<br />

After filamentation<br />

2<br />

x<br />

r<br />

2<br />

i<br />

i<br />

2<br />

m<br />

2<br />

i<br />

+ Δr<br />

cosψ<br />

Injection process - III<br />

+ Δr<br />

cosψ<br />

+<br />

p<br />

2<br />

m<br />

> + Δr<br />

< x > = 1 < rm<br />

> = 1 < ri<br />

> + 1 Δr<br />

2<br />

2<br />

2<br />

><br />

2<br />

2<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 16<br />

σ<br />

2<br />

= σ<br />

2<br />

i<br />

+<br />

1 2<br />

Δr<br />

2


Example of beam<br />

distribution<br />

generated by<br />

steering errors<br />

and filamentation.<br />

filamentation<br />

The beam core is<br />

displaced -> > large<br />

effect on<br />

emittance growth<br />

Injection process - IV<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 17


Dispersion mismatch:<br />

analysis is similar to<br />

that for steering errors.<br />

In this case<br />

Δr<br />

2<br />

⎡<br />

= ⎢ΔD<br />

⎣<br />

2<br />

+<br />

1<br />

2<br />

( β ΔD′<br />

+ α ΔD)<br />

The final result is<br />

ε<br />

after fil.<br />

rms<br />

= ε<br />

rms<br />

Injection process - V<br />

2<br />

⎤ ⎛ σ<br />

⎥<br />

⎜<br />

⎦<br />

⎜<br />

⎝ p<br />

p<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 18<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

⎧<br />

2<br />

⎪ 1 [ ( ) ]<br />

2<br />

2 ⎛ σ p ⎞<br />

⎨1<br />

+ ΔD<br />

+ β ΔD′<br />

+ α ΔD<br />

⎜ ⎟<br />

⎜ ⎟<br />

/ σ 0<br />

⎪⎩<br />

2<br />

⎝ p ⎠<br />

2<br />

⎫<br />

⎪<br />

⎬<br />

⎪⎭


Optics errors:<br />

Optical parameters (Twiss ( Twiss and<br />

dispersion) of the transfer line<br />

at the injection point are<br />

different from those of the ring<br />

Consequences:<br />

The beam performs quadrupolar<br />

oscillations (size changes on a<br />

turn-by turn by-turn turn basis). The<br />

emittance grows due to the<br />

filamentation<br />

Solution:<br />

Tune transfer line to match<br />

optics of the ring<br />

Injection process - VI<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 19<br />

x’<br />

Ring ellipse<br />

Transfer<br />

line ellipse<br />

x


Injection process - VII<br />

In normalised phase space (that of the ring) the<br />

injected beam will fill an ellipse due to the<br />

mismatch of the optics…<br />

optics<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 20


ε<br />

after fil.<br />

rms<br />

=<br />

ε<br />

rms<br />

⎛<br />

⎜<br />

⎝<br />

l<br />

i<br />

Injection process - VIII<br />

Given the initial condition of the beam end of the transfer<br />

line<br />

x = A b / a sinψ<br />

, p = A a / b cosψ<br />

b / a<br />

2<br />

<<br />

2 2<br />

ri >= < Ai<br />

+ a / b<br />

⎞<br />

⎟<br />

⎠<br />

i<br />

By squaring and averaging over the particles’ particles distribution<br />

><br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 21<br />

l<br />

i<br />

( b / a + a / b)<br />

The emittance after filamentation is given by<br />

ε<br />

F<br />

2<br />

after fil.<br />

rms<br />

=<br />

=<br />

ε<br />

rms<br />

1<br />

⎛<br />

⎜ β l<br />

2 ⎜ β m ⎝<br />

+<br />

F<br />

β m<br />

β<br />

l<br />

i<br />

⎛ α<br />

+<br />

⎜<br />

⎝ β<br />

m<br />

m<br />

αl<br />

⎞<br />

−<br />

⎟<br />

β l ⎠<br />

2<br />

β<br />

m<br />

⎞<br />

β<br />

⎟<br />

l ⎟<br />


Scattering processes - I<br />

Two main categories considered:<br />

Scattering on residual gas -> > similar to scattering<br />

on a thin foil (the gas replaces the foil…) foil<br />

Δε<br />

kσ<br />

=<br />

2<br />

2 2 14 MeV / c β pc<br />

t<br />

k q p<br />

β<br />

2 pβ<br />

⎟<br />

p Lrad<br />

⎟<br />

⎛<br />

⎞<br />

⎜<br />

⎝<br />

⎠<br />

π<br />

NB: βpct ct represents the<br />

scatterer length until time t<br />

NB: β p ct represents the<br />

where<br />

average beta<br />

Intra-beam Intra beam scattering, i.e. Coulomb scattering<br />

between charged particles in the beam.<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 22<br />

β<br />

This is is why good<br />

vacuum is is necessary!


Intra-beam Intra beam scattering<br />

Multiple (small angle)<br />

Coulomb scattering<br />

between particles.<br />

charged<br />

Single scattering<br />

events lead to<br />

Touscheck effect.<br />

All three degrees of<br />

freedom are affected.<br />

Scattering processes - II<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 23


Scattering processes - III<br />

How to compute IBS?<br />

Transform momenta of colliding particles into their centre<br />

of mass system.<br />

Rutherford cross-section cross section is used to compute change of<br />

momenta. momenta<br />

Transform the new momenta back to the laboratory<br />

system.<br />

Calculate the change of the emittances due to the change<br />

of momenta at the given location of the collision.<br />

1. For each scattering event compute average over all<br />

possible scattering angles (impact parameters from the<br />

size of the nucleus to the beam radius).<br />

2. Take the average over momenta and transverse position of<br />

the particles at the given location on the ring<br />

circumference (assuming Gaussian distribution in all phase<br />

space planes.<br />

3. Compute the average around the circumference, including<br />

lattice functions, to determine the change per turn.<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 24


Scattering processes - IV<br />

Features of IBS<br />

For constant lattice functions and below<br />

transition energy, the sum of the three<br />

emittances is constant.<br />

Above transition the sum of the emittances<br />

always grows.<br />

In any strong focusing lattice the sum of the<br />

emittances always grows.<br />

Even though the sum grows from the<br />

theoretical point of view emittance reduction<br />

in one plane predicted by simulations, but<br />

were never observed.<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 25


Scattering processes - V<br />

Scaling laws of IBS<br />

Accurate computations can be performed only with<br />

numerical tools.<br />

However, scaling laws can be derived.<br />

Assuming<br />

1 1<br />

=<br />

Then<br />

1/<br />

τ0<br />

=<br />

( 4/<br />

2<br />

π<br />

*<br />

x<br />

*<br />

y<br />

τ<br />

2<br />

2<br />

2⎛q<br />

⎞<br />

Nbr0<br />

⎜<br />

A ⎟<br />

⎝ ⎠<br />

) γ ε ε ε / E<br />

*<br />

l<br />

x,<br />

y,<br />

l<br />

0<br />

τ<br />

∝<br />

0<br />

F x,<br />

y,<br />

l<br />

2 ⎛q<br />

⎞<br />

Nb<br />

⎜<br />

A ⎟<br />

⎝ ⎠<br />

γ ε ε ε<br />

*<br />

x<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 26<br />

*<br />

y<br />

2<br />

*<br />

l<br />

Strong charge<br />

dependence on<br />

on<br />

ε x,y,l* x,y,l*<br />

are x,y,l* are<br />

emittances<br />

normalised<br />

N b of b of particles/bunch<br />

r 0 classical 0 classical proton radius


Diffusive phenomena:<br />

Others<br />

Resonance crossings<br />

Ripple in the power converters<br />

Collective effects<br />

Space charge (soft part of Coulomb interactions<br />

between charged particles in the beam) -> > covered<br />

by a specific course. course<br />

Beam-beam<br />

Beam beam -> > covered by a specific course. course<br />

Instabilities -> > covered by a specific course.<br />

course<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 27


Emittance manipulation<br />

Emittance is (hopefully) conserved…<br />

conserved<br />

Sometimes, it is necessary to manipulate the<br />

beam so to reduce its emittance.<br />

emittance<br />

Standard techniques: electron cooling, stochastic<br />

cooling.<br />

Less standard techniques: longitudinal or transverse<br />

emittance splitting.<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 28


PS ejection:<br />

72 bunches<br />

in 1 turn<br />

Acceleration<br />

to 25 GeV<br />

PS injection:<br />

2+4 bunches<br />

in 2 batches<br />

320 ns beam gap<br />

Quadruple splitting<br />

at 25 GeV<br />

Triple splitting<br />

at 1.4 GeV<br />

Longitudinal manipulation:<br />

LHC beam in PS machine - I<br />

Empty<br />

bucket<br />

72 bunches<br />

on h=84<br />

18 bunches<br />

on h=21<br />

6 bunches<br />

on h=7<br />

0.35 eVs (bunch)<br />

1.1 × 10 11 ppb<br />

1 eVs (bunch)<br />

4.4 × 10 11 ppb<br />

1.4 eVs (bunch)<br />

13.2 × 10 11 ppb<br />

40 %<br />

Blow-up<br />

(pessimistic)<br />

115 %<br />

Blow-up<br />

(voluntary)<br />

Courtesy R. R. Garoby - <strong>CERN</strong><br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 29


Courtesy R. R. Garoby - <strong>CERN</strong><br />

Longitudinal manipulation:<br />

LHC beam in PS machine -<br />

II<br />

Measurement results<br />

obtained at at the <strong>CERN</strong><br />

Proton Synchrotron<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 30


Transverse manipulation:<br />

novel multi-turn multi turn extraction –<br />

I<br />

The main ingredients of the novel extraction:<br />

The beam splitting is not performed using a<br />

mechanical device, thus avoiding losses. Indeed, the<br />

beam is separated in the transverse phase space<br />

using<br />

Nonlinear magnetic elements (sextupoles ad<br />

octupoles) to create stable islands. islands<br />

Slow (adiabatic ( adiabatic) ) tune-variation tune variation to cross an<br />

appropriate resonance.<br />

NB: third-order third third-order order extraction is is based on<br />

separatrices (see O. Brüning Br Brüning ning lecture)<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 31


1<br />

X’<br />

(a)<br />

-1<br />

-1 X<br />

1<br />

Four islands<br />

require<br />

tune = 0.25<br />

Transverse manipulation: novel<br />

multi-turn multi turn extraction – II<br />

Left: initial phase<br />

space topology. No<br />

islands.<br />

Right: intermediate<br />

phase space topology.<br />

Islands are created<br />

near the centre.<br />

1<br />

X’<br />

-1<br />

-1 X<br />

1<br />

-1<br />

-1 X<br />

1<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 32<br />

(c)<br />

1<br />

X’<br />

(b)<br />

Bottom: final phase<br />

space topology.<br />

Islands are separated<br />

to allow extraction.


Tune variation<br />

Phase space<br />

portrait<br />

Transverse manipulation:<br />

novel multi-turn multi turn extraction –<br />

III<br />

Simulation<br />

parameters:<br />

Hénon non-like like<br />

map (i.e. 2D<br />

polynomial –<br />

degree 3 -<br />

mapping)<br />

representing<br />

a FODO cell<br />

with<br />

sextupole and<br />

octupole<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 33


A movie to show the evolution of<br />

beam distribution<br />

A series of<br />

horizontal beam<br />

profiles have been<br />

taken during the<br />

capture process.<br />

Measurement results<br />

obtained at the <strong>CERN</strong><br />

Proton Synchrotron<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 34


Some references<br />

D. Edwards, M. Syphers: Syphers:<br />

An introduction to the<br />

physics of high energy accelerators, J. Wiley & Sons,<br />

NY 1993.<br />

P. Bryant, K. Johnsen: Johnsen:<br />

The principles of circular<br />

accelerators and storage rings, Cambridge University<br />

press, 1993.<br />

P. Bryant: Beam transfer lines, <strong>CERN</strong> yellow rep. 94- 94<br />

10 (CAS, Jyvaskyla, Jyvaskyla,<br />

Finland , 1992).<br />

J. Buon: Buon:<br />

Beam phase space and emittance, emittance,<br />

<strong>CERN</strong><br />

yellow rep. 91-04 91 04 (CAS, Julich, Julich,<br />

Germany, 1990).<br />

A. Piwinski: Piwinski:<br />

Intra-beam Intra beam scattering, <strong>CERN</strong> yellow rep.<br />

85-19 85 19 (CAS, Gif-sur Gif sur-Yvette, Yvette, France 1984).<br />

A. H. Sorensen: Sorensen:<br />

Introduction to intra-beam<br />

intra beam<br />

scattering, <strong>CERN</strong> yellow rep. 87-10 87 10 (CAS, Aarhus, Aarhus,<br />

Denmark 1986).<br />

Massimo Giovannozzi CAS - 2-14 14 October 2005 35

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!