03.07.2013 Views

Topic 3 Dielectric Waveguides and Optical Fibers 2-1 Symmetric ...

Topic 3 Dielectric Waveguides and Optical Fibers 2-1 Symmetric ...

Topic 3 Dielectric Waveguides and Optical Fibers 2-1 Symmetric ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

901 37500 光電導論<br />

901 37500 光電導論<br />

<strong>Topic</strong> 3<br />

<strong>Dielectric</strong> <strong>Waveguides</strong> <strong>and</strong><br />

<strong>Optical</strong> <strong>Fibers</strong><br />

Kasap Chapter 2<br />

2-1 <strong>Symmetric</strong> Planar <strong>Dielectric</strong><br />

Slab Waveguide<br />

1<br />

3<br />

Contents (Kasap Chapter 2)<br />

1 <strong>Symmetric</strong> Planar <strong>Dielectric</strong> Slab Waveguide<br />

2 Modal <strong>and</strong> Waveguide Dispersion in the Planar Waveguide<br />

3 Step Index Fiber<br />

4 Numerical Aperture<br />

5 Dispersion in Single Mode <strong>Fibers</strong><br />

6 Bit Rate, Dispersion, Electrical <strong>and</strong> <strong>Optical</strong> B<strong>and</strong>width<br />

7 The Graded Index (GRIN) <strong>Optical</strong> Fiber<br />

8 Light Absorption <strong>and</strong> Scattering<br />

9 Attenuation in <strong>Optical</strong> <strong>Fibers</strong><br />

10 Fiber Manufacture<br />

901 37500 光電導論<br />

n2 cladding<br />

Light<br />

Light<br />

n2 n1 > n core<br />

2<br />

A planar dielectric waveguide has a central rectangular region of<br />

higher refractive index n1 than the surrounding region which has<br />

a refractive index n2. It is assumed that the waveguide is<br />

infinitely wide <strong>and</strong> the central region is of thickness 2a. It is<br />

illuminated at one end by a monochromatic light source.<br />

901 37500 光電導論<br />

Light<br />

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

2<br />

Ligh<br />

4


TIR at B & C<br />

k1 (AB+BC) + phase change due to TIR = m(2π)<br />

κ<br />

E<br />

λ<br />

θ<br />

θ θ<br />

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

901 37500 光電導論<br />

k 1<br />

A<br />

β<br />

B<br />

C<br />

n 2<br />

Light<br />

n 1<br />

n 2<br />

d = 2a<br />

A light ray travelling in the guide must interfere constructively with itself to<br />

propagate successfully. Otherwise destructive interference will destroy the<br />

wave.<br />

1<br />

E<br />

901 37500 光電導論<br />

2<br />

θ<br />

A<br />

k 1<br />

θ<br />

A′<br />

C<br />

n 2<br />

π−2θ<br />

n 1<br />

n 2<br />

B′<br />

2θ−π/2<br />

Two arbitrary waves 1 <strong>and</strong> 2 that are initially in phase must remain in phase<br />

after reflections. Otherwise the two will interfere destructively <strong>and</strong> cancel each<br />

other.<br />

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

B<br />

θ<br />

2a<br />

y<br />

x<br />

1<br />

y<br />

x<br />

z<br />

z<br />

5<br />

7<br />

901 37500 光電導論<br />

Waveguide Condition<br />

k = kn =<br />

1<br />

1<br />

2 1<br />

π n / λ<br />

For constructive interference, the phase difference between A<br />

<strong>and</strong> C must be a multiple of 2π<br />

Δφ(<br />

AC ) = k ( AB + BC ) − 2φ<br />

= m(<br />

2π<br />

)<br />

1<br />

1<br />

d<br />

BC = AB = BC cos( 2θ<br />

)<br />

cosθ<br />

2<br />

AB + BC = BC cos( 2θ<br />

) + BC = BC[(<br />

2cos<br />

θ −1)<br />

+ 1]<br />

= 2d<br />

cosθ<br />

[ 2d<br />

cosθ<br />

] − 2φ<br />

m(<br />

2π<br />

)<br />

→ k =<br />

Dividing (2) by 2 we obtain the waveguide condition<br />

901 37500 光電導論<br />

⎡<br />

⎢<br />

⎣<br />

πn<br />

( 2a)<br />

⎤<br />

θm<br />

− φm<br />

= mπ<br />

λ ⎥ cos<br />

⎦<br />

2 1<br />

(1)<br />

(2)<br />

(3)<br />

Resolve the wavevector k 1 into two propagation constants,<br />

β <strong>and</strong> κ, along <strong>and</strong> perpendicular to the the guide axis z<br />

m<br />

⎛ 2πn1<br />

⎞<br />

βm = k1 sinθ<br />

m = ⎜ ⎟sinθ m<br />

⎝ λ ⎠<br />

⎛ 2πn1<br />

⎞<br />

κ m = k1 cosθ<br />

m = ⎜ ⎟cosθ m<br />

⎝ λ ⎠<br />

Φ = k φ ( a − y)<br />

cosθ<br />

−φ<br />

( 1AC<br />

− m)<br />

− k1A'<br />

C = 2k1<br />

Φ<br />

m<br />

= Φ<br />

m<br />

y<br />

( y) = mπ<br />

− ( mπ<br />

+ φm<br />

)<br />

a<br />

m<br />

m<br />

6<br />

8


Φm = ( k1AC −φm<br />

) − k1A'<br />

C = 2k1(<br />

a − y)<br />

cosθ<br />

m −φm<br />

y<br />

Φ m = Φ m(<br />

y) = mπ<br />

− ( mπ<br />

+ φm<br />

)<br />

a<br />

E y,<br />

z,<br />

t)<br />

= E cos( ωt<br />

− β z + κ y + Φ<br />

1( 0<br />

m m m<br />

E2 m<br />

( y,<br />

z,<br />

t)<br />

= E0<br />

cos( ωt − βm<br />

z −κ<br />

y)<br />

Guide center<br />

1<br />

E<br />

2<br />

θ<br />

A<br />

k<br />

θ<br />

n2 C<br />

A′<br />

a y<br />

Interference of waves such as 1 <strong>and</strong> 2 leads to a st<strong>and</strong>ing wave pattern along the ydirection<br />

which propagates along z.<br />

9<br />

901 37500 光電導論<br />

?1999 S O K O l i (P ti H ll)<br />

Field of guided wave<br />

Field of evanescent wave<br />

(exponential decay)<br />

E(y)<br />

m = 0<br />

a−y<br />

y<br />

π−2θ<br />

E y,<br />

z,<br />

t)<br />

= 2E<br />

1<br />

1<br />

cos( κ m y + Φ m)<br />

cos( ωt<br />

− βm<br />

z + Φ<br />

2<br />

2<br />

( y,<br />

z,<br />

t)<br />

= 2E<br />

( y)<br />

cos( ωt − β z)<br />

( 0 m<br />

E m<br />

m<br />

901 37500 光電導論<br />

?1999 S O K Ot l t i (P ti H ll)<br />

y<br />

n 2<br />

Light<br />

n 1<br />

n 2<br />

x<br />

)<br />

E(y,z,t) = E(y)cos(ωt ? β 0 z)<br />

The electric field pattern of the lowest mode traveling wave along the<br />

guide. This mode has m = 0 <strong>and</strong> the lowest θ. It is often referred to as the<br />

glazing incidence ray. It has the highest phase velocity along the guide. 11<br />

z<br />

)<br />

E y,<br />

z,<br />

t)<br />

= E cos( ωt<br />

− β z + κ y + Φ<br />

1( 0<br />

m m m<br />

E2( y,<br />

z,<br />

t)<br />

= E0<br />

cos( ωt − βm<br />

z −κ<br />

m y)<br />

E y,<br />

z,<br />

t)<br />

= 2E<br />

1<br />

1<br />

cos( κ m y + Φ m)<br />

cos( ωt<br />

− βm<br />

z + Φ<br />

2<br />

2<br />

( 0 m<br />

E m<br />

m<br />

( y,<br />

z,<br />

t)<br />

= 2E<br />

( y)<br />

cos( ωt − β z)<br />

901 37500 光電導論<br />

E(y)<br />

901 37500 光電導論<br />

St<strong>and</strong>ing wave along y<br />

y<br />

n 2<br />

Cladding<br />

)<br />

Traveling wave along z<br />

m = 0 m = 1 m = 2<br />

Core<br />

2a<br />

n 1<br />

n 2<br />

Cladding<br />

The electric field patterns of the first three modes (m = 0, 1, 2)<br />

traveling wave along the guide. Notice different extents of field<br />

penetration into the cladding.<br />

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

10<br />

12<br />

)


• mode of propagation<br />

• mode number<br />

• high order mode<br />

θm smaller, more bouncing, more penetration<br />

• lowest order mode (m=0) : fundamental mode<br />

θm ~90 deg., travels axially<br />

Intensity<br />

0<br />

Light pulse<br />

t<br />

Cladding<br />

Core<br />

High order mode<br />

Axial<br />

Low order mode<br />

Broadened<br />

light pulse<br />

Intensity<br />

Spread, Δτ<br />

Schematic illustration of light propagation in a slab dielectric waveguide. Light pulse<br />

entering the waveguide breaks up into various modes which then propagate at different<br />

group velocities down the guide. At the end of the guide, the modes combine to<br />

constitute the output light pulse which is broader than the input light pulse.<br />

13<br />

901 37500 光電導論<br />

?1999 S O K Ot l t i (P ti H ll)<br />

O<br />

y<br />

B //<br />

B z<br />

z<br />

x (into paper)<br />

901 37500 光電導論<br />

B y<br />

(a) TE mode<br />

E ⊥<br />

θ<br />

θ<br />

E //<br />

E z<br />

(b) TM mode<br />

E y<br />

B ⊥<br />

θ θ<br />

Possible modes can be classified in terms of (a) transelectric field (TE)<br />

<strong>and</strong> (b) transmagnetic field (TM). Plane of incidence is the paper.<br />

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

15<br />

t<br />

TIR condition<br />

From (3)<br />

mode number<br />

Single <strong>and</strong> Multimode <strong>Waveguides</strong><br />

sinθ > sinθ<br />

m<br />

≤ V<br />

m 2<br />

−φ<br />

π<br />

V< π/2, m=0 is the only possibility <strong>and</strong> only the fundamental mode (m=0)<br />

Propagates along the dielectric slab waveguide, which is then termed<br />

single mode planar waveguide.<br />

14<br />

At λc that leads to V= π/2: cutoff wavelength<br />

901 37500 光電導論<br />

c<br />

2 πa<br />

2 2 /<br />

V = ( n1<br />

− n2<br />

)<br />

λ<br />

V-number<br />

= V-parameter<br />

= normalized thickness<br />

= normalized frequency<br />

1 2<br />

For given λ, V depends on the waveguide parameters a, n1 , n2 .<br />

V that makes m=0 single mode<br />

901 37500 光電導論<br />

⎡<br />

⎢<br />

⎣<br />

2 1<br />

TE <strong>and</strong> TM modes<br />

TEm modes,<br />

transverse electric field modes<br />

<br />

E = E⊥<br />

= Exxˆ<br />

TMm modes,<br />

transverse magnetic field modes<br />

E = E = E yˆ + E zˆ<br />

// y z<br />

<br />

φ<br />

πn<br />

( 2a)<br />

⎤<br />

θm<br />

− φm<br />

= mπ<br />

λ ⎥ cos<br />

⎦<br />

The phase change that accompanies TIR depends<br />

on the polarization <strong>and</strong> is different for E <strong>and</strong> E<br />

⊥<br />

//<br />

However for n1<br />

− n2<br />


Example 2.1.1: Waveguide modes<br />

Consider a planar dielectric guide with a core thickness 20μm,<br />

n 1 = 1.455, n 2 = 1.440, light wavelength of 900nm. Given the<br />

waveguide condition in Eq(3) <strong>and</strong> the expression for φ in TIR<br />

for the TE mode,<br />

901 37500 光電導論<br />

⎡<br />

⎢<br />

⎣<br />

πn<br />

( 2a)<br />

⎤<br />

θm<br />

− φm<br />

= mπ<br />

λ ⎥ cos<br />

⎦<br />

2 1<br />

using a graphical solution, find angles θ m for all the modes.<br />

What is your conclusion?<br />

Example 2.1.2: V-number <strong>and</strong> the number of modes<br />

Using Eq. (9), mode number =<br />

901 37500 光電導論<br />

≤ V<br />

m 2<br />

−φ<br />

estimate the number of modes that can be supported in a planar<br />

dielectric waveguide that is 100μm wide <strong>and</strong> has n 1 = 1.490, n 2 =<br />

1.470 at the free-space source wavelength λ = 1μm. Compare your<br />

estimation with the formula:<br />

M = Int(2V/π) + 1 Int(x): integer function<br />

π<br />

17<br />

19<br />

901 37500 光電導論<br />

tan(ak 1 cosθ m − mπ/2)<br />

10<br />

5<br />

0<br />

θ c<br />

m = 1, odd<br />

m = 0, even<br />

82° 84° 86° 88° 90°<br />

f(θ m)<br />

89.17°<br />

88.34°<br />

87.52°<br />

86.68°<br />

Modes in a planar dielectric waveguide can be determined by<br />

plotting the LHS <strong>and</strong> the RHS of eq. (11).<br />

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

Example 2.1.3: Mode field width (MFD), 2w 0<br />

The field distribution along y penetrates into the cladding as depicted<br />

in the following figure<br />

The extent of the electric field across the guide is therefore more than<br />

2a. Within the core, the field distribution is harmonic whereas from<br />

the boundary into the cladding, the field decays exponentially:<br />

901 37500 光電導論<br />

E cladding (y’) = E cladding (0) exp (-α cladding y’)<br />

Find the mode field width (MFD) 2w 0 = 2a + 2δ, where δ = 1/ α cladding<br />

θ m<br />

18<br />

20


2-2 Modal <strong>and</strong> Waveguide<br />

Dispersion in the Planar Waveguide<br />

901 37500 光電導論<br />

901 37500 光電導論<br />

Waveguide Dispersion Diagram<br />

4/9/2009<br />

• What is important is the group velocity along the<br />

guide, the velocity at which the energy or information<br />

is transported.<br />

• The higher modes penetrate more into the cladding<br />

where the refractive index is smaller <strong>and</strong> the waves<br />

travel faster.<br />

• Waveguide condition<br />

⎡2πn<br />

1(<br />

2a)<br />

⎤<br />

⎢<br />

θm<br />

− φm<br />

= mπ<br />

λ ⎥ cos<br />

⎣ ⎦<br />

21<br />

23<br />

901 37500 光電導論<br />

ω cut-off<br />

ω<br />

Slope = c/n 2<br />

TE 2<br />

TE 1<br />

TE 0<br />

Slope = c/n 1<br />

Schematic dispersion diagram, ω vs. β for the slab waveguide for various TEm. modes.<br />

ωcut ff corresponds to V = π/2. The group velocity vg at any ω is the slope of the ω vs. β<br />

curve at that frequency.<br />

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

901 37500 光電導論<br />

Waveguide Dispersion Diagram<br />

The ω vs. βm characteristics<br />

The slope dω<br />

at frequency ω is the group velocity vg dβ<br />

m<br />

The group velocity at one frequency changes from<br />

one mode to another.<br />

For a given mode the group velocity changes with the<br />

frequency.<br />

The cutoff frequency ωcut−off<br />

corresponds to the cutoff<br />

condition λ = λ when V<br />

= π<br />

c<br />

2<br />

β m<br />

22<br />

24


901 37500 光電導論<br />

ω cut-off<br />

ω<br />

Slope = c/n 2<br />

TE 2<br />

TE 1<br />

TE 0<br />

Slope = c/n 1<br />

Schematic dispersion diagram, ω vs. β for the slab waveguide for various TEm. modes.<br />

ωcut ff corresponds to V = π/2. The group velocity vg at any ω is the slope of the ω vs. β<br />

curve at that frequency.<br />

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

Fig. 10<br />

E(y)<br />

901 37500 光電導論<br />

Intramodal Dispersion<br />

λ 1 > λ c<br />

v g1<br />

y<br />

ω 1 < ω cut-off<br />

Cladding<br />

Core<br />

Cladding<br />

λ 2 > λ 1<br />

ω 2 < ω 1<br />

β m<br />

y<br />

v g2 > v g1<br />

The electric field of TE0 mode extends more into the<br />

cladding as the wavelength increases. As more of the field<br />

is carried by the cladding, the group velocity increases.<br />

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

25<br />

27<br />

901 37500 光電導論<br />

Intermodal Dispersion<br />

Modal dispersion<br />

L L<br />

Δτ = −<br />

v v<br />

Δτ n<br />

≈<br />

L<br />

g min g max<br />

n<br />

c<br />

1 −<br />

Example: n 1 = 1.48, n 2 = 1.46<br />

τ1/2<br />

2<br />

V g,min = c/n 1<br />

V g,max = c/n 2<br />

Δτ<br />

≈ 67ns<br />

/ km<br />

L<br />

Δ Half intensity points that is smaller than the full width<br />

901 37500 光電導論<br />

Intramodal Dispersion<br />

Waveguide Dispersion<br />

Material Dispersion: n = n(λ) or n(ω)<br />

Dispersion in WG<br />

- Intermodal dispersion: for multimode waveguide<br />

- Intramodal dispersion:<br />

waveguide dispersion<br />

material dispersion<br />

Intermodal dispersion >> Intramodal dispersion<br />

26<br />

28


901 37500 光電導論<br />

901 37500 光電導論<br />

2-3 Step Index Fiber<br />

1<br />

1<br />

Fiber axis<br />

Along the fiber<br />

Meridional ray<br />

2<br />

Fiber axis<br />

3<br />

Skew ray<br />

Ray path along the fiber<br />

2<br />

4<br />

5<br />

3<br />

5<br />

1, 3<br />

4<br />

1<br />

2<br />

Ray path projected<br />

on to a plane normal<br />

to fiber axis<br />

2<br />

3<br />

29<br />

(a) A meridiona<br />

ray always<br />

crosses the fibe<br />

axis.<br />

(b) A skew ray<br />

does not have<br />

to cross the<br />

fiber axis. It<br />

zigzags around<br />

the fiber axis.<br />

Illustration of the difference between a meridional ray <strong>and</strong> a skew ray.<br />

Numbers represent reflections of the ray.<br />

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

HE <strong>and</strong> EH<br />

Hybrid modes<br />

31<br />

y<br />

n 2 n 1<br />

901 37500 光電導論<br />

n<br />

Cladding<br />

Core<br />

φ<br />

r z Fiber axis<br />

The step index optical fiber. The central region, the core, has greater refractive<br />

index than the outer region, the cladding. The fiber has cylindrical symmetry. We<br />

use the coordinates r, φ, z to represent any point in the fiber. Cladding is<br />

normally much thicker than shown.<br />

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

Linear polarized modes<br />

Core<br />

Cladding<br />

(a) The electric field<br />

of the fundamental<br />

mode<br />

E 01<br />

901 37500 光電導論<br />

E<br />

(b) The intensity in<br />

the fundamental<br />

mode LP 01<br />

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

r<br />

ELP = Elm(<br />

r,<br />

ϕ) exp j(<br />

ωt<br />

− βlmz)<br />

The electric field distribution of the fundamental mod<br />

in the transverse plane to the fiber axis z. The light<br />

intensity is greatest at the center of the fiber. Intensity<br />

patterns in LP 01, LP 11 <strong>and</strong> LP 21 modes.<br />

y<br />

(c) The intensity<br />

in LP 11<br />

30<br />

(d) The intensity<br />

in LP 21<br />

32


Normalized index difference<br />

Linear polarized modes<br />

Normalized frequency or<br />

V-number<br />

Normalized index difference<br />

Single mode cutoff frequency<br />

Number of modes<br />

901 37500 光電導論<br />

n1 − n<br />

Δ =<br />

n<br />

1<br />

2<br />

ELP = Elm(<br />

r,<br />

ϕ) exp j(<br />

ωt<br />

− βlmz)<br />

V<br />

2πa<br />

λ<br />

2πa<br />

λ<br />

2 2 1/<br />

2<br />

= ( n1<br />

− n2<br />

) = ( 2n1<br />

n<br />

n1 − n n − n<br />

Δ =<br />

n<br />

V<br />

Normalized propagation constant<br />

cut−off<br />

Example 2.3.1: A multimode fiber<br />

2<br />

V<br />

2 2<br />

2 1 2 ≈ 2<br />

1 2n1<br />

2πa 2 2 1/<br />

2<br />

( n1<br />

− n2<br />

)<br />

λc<br />

=<br />

M ≈<br />

2<br />

2<br />

( / k)<br />

− n<br />

b =<br />

n − n<br />

β<br />

2<br />

1<br />

typical Δ


Example 2.3.4: Group velocity <strong>and</strong> delay<br />

Consider a single mode fiber with core <strong>and</strong> cladding indices of 1.448<br />

<strong>and</strong> 1.440, core radius of 3μm, operating at 1.5μm. Given that<br />

we can approximate the fundamental mode normalized<br />

propagation constant b by<br />

901 37500 光電導論<br />

b ≈ (1.1428 – 0.996 / V ) 2 1.5 < V < 2.5<br />

(1) Calculate the propagation constant β.<br />

(2) Change the operating wavelength to λ’ by a small amount,<br />

0.01%, <strong>and</strong> then recalculate the new propagation constant β’.<br />

(3) Then determine the group velocity v g of the fundamental mode at<br />

1.5μm, <strong>and</strong> the group delay τ g over 1 km of fiber.<br />

αα max<br />

n 0<br />

901 37500 光電導論<br />

n 2<br />

n 1<br />

θ < θ c<br />

Fiber axis<br />

Lost<br />

B<br />

θ > θ c<br />

Cladding<br />

Core<br />

©1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

Propagates<br />

A<br />

37<br />

Maximumacceptance angle<br />

α max is that which just gives<br />

totalinternalreflectionatthe<br />

core-cladding interface, i.e.<br />

when α=α maxthen θ=θ c.<br />

Rays with α>α max (e.g. ray<br />

B) become refracted <strong>and</strong><br />

penetrate the cladding <strong>and</strong> are<br />

eventually lost.<br />

39<br />

901 37500 光電導論<br />

Snell’s law --><br />

Numerical Aperture<br />

901 37500 光電導論<br />

2-4 Numerical Aperture<br />

Maximum acceptance<br />

angle α max<br />

sinα<br />

max n<br />

=<br />

<br />

sin( 90 −θ ) n<br />

sinα<br />

max<br />

=<br />

c<br />

1<br />

0<br />

2 2 ( n − n )<br />

1<br />

n<br />

0<br />

( ) 2 / 1 2 2<br />

n n<br />

NA = −<br />

sinα<br />

max<br />

1<br />

=<br />

0<br />

2<br />

NA<br />

n<br />

2πa<br />

V = NA<br />

λ<br />

1/<br />

2<br />

2<br />

38<br />

40


Example 2.4.1: A multimode fiber <strong>and</strong> total acceptance angle<br />

A step index fiber has a core diameter of 100μm <strong>and</strong> a refractive index<br />

of 1.48. The cladding has a refractive index of 1.460. Calculate<br />

(a) the numerical aperture of the fiber,<br />

(b) acceptance angle from air,<br />

(c) number of modes sustained<br />

when the source wavelength is 850nm.<br />

Example 2.4.2: A single mode fiber<br />

A typical single mode optical fiber has a core of diameter 8μm <strong>and</strong> a<br />

refractive index of 1.46. The normalized index difference is 0.3%. The<br />

cladding diameter is 125μm.<br />

(a) Calculate the numerical aperture of the fiber<br />

(b) Calculate the acceptance angle of the fiber<br />

2-5 Dispersion in Single Mode<br />

<strong>Fibers</strong><br />

(c) What is the single mode cut-off wavelength λc of the fiber? 41<br />

42<br />

901 37500 光電導論<br />

901 37500 光電導論<br />

Intensity Intensity Intensity<br />

λ 1<br />

Spectrum, λ<br />

λ o<br />

901 37500 光電導論<br />

Emitter<br />

Very short<br />

light pulse<br />

λ 2<br />

Input<br />

λ<br />

0<br />

Cladding<br />

vg (λ1 )<br />

Core<br />

vg (λ2 )<br />

t<br />

Output<br />

τ<br />

Spread, τ<br />

All excitation sources are inherently non-monochromatic <strong>and</strong> emit within a<br />

spectrum, λ, of wavelengths. Waves in the guide with different free space<br />

wavelengths travel at different group velocities due to the wavelength dependence<br />

of n 1. The waves arrive at the end of the fiber at different times <strong>and</strong> hence result in<br />

a broadened output pulse.<br />

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

43<br />

t<br />

Material Dispersion<br />

Material Dispersion<br />

Coefficient<br />

Fundamental Mode<br />

group delay time<br />

901 37500 光電導論<br />

Material Dispersion<br />

Δτ<br />

=<br />

L<br />

Dm<br />

Δλ<br />

2<br />

λ ⎛ d n ⎞<br />

− ⎜<br />

⎟<br />

c ⎝ dλ<br />

⎠<br />

Dm ≈ 2<br />

τ<br />

g<br />

=<br />

1 dβ01<br />

=<br />

dω<br />

v g<br />

44


Dispersion coefficient (ps km<br />

30<br />

-1 nm-1 )<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

1.1<br />

901 37500 ?1999 光電導論 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

λ 0<br />

Dm<br />

Dm + Dw<br />

D w<br />

1.2 1.3 1.4 1.5 1.6<br />

λ (μm)<br />

Material dispersion coefficient (D m) for the core material (taken as<br />

SiO 2), waveguide dispersion coefficient (D w) (a = 4.2 μm) <strong>and</strong> the<br />

total or chromatic dispersion coefficient D ch (= D m + D w) as a<br />

function of free space wavelength, λ.<br />

901 37500 光電導論<br />

Chromatic Dispersion or Total Dispersion<br />

Chromatic Dispersion<br />

Chromatic Dispersion<br />

Coefficient<br />

Δτ<br />

= | D<br />

L<br />

m<br />

+ D | Δλ<br />

w<br />

D D D + =<br />

m<br />

Dispersion Shifted Fiber (DSF): to design the waveguide dispersion to<br />

shift the zero (material) dispersion from 1330 nm to 1550 nm<br />

by reducing the core radius <strong>and</strong> increasing the core doping<br />

Dispersion flattened Fiber: to use multiple clad fiber to control the<br />

total chromatic dispersion that is flattened between two wavelength<br />

DFF<br />

w<br />

45<br />

47<br />

Waveguide Dispersion<br />

Waveguide Dispersion<br />

Coefficient<br />

901 37500 光電導論<br />

20<br />

10<br />

-10<br />

-20<br />

-30<br />

Waveguide Dispersion<br />

Δτ<br />

=<br />

L<br />

D<br />

w<br />

Dw<br />

901 37500 光電導論<br />

?1999 S O K Ot l t i (P ti H ll)<br />

Δλ<br />

1.<br />

984N<br />

≈ − 2<br />

( 2πa)<br />

2cn<br />

Dispersion coefficient (ps km -1 nm -1 )<br />

30<br />

0<br />

λ 1<br />

D w<br />

D m<br />

λ 2<br />

1.1 1.2 1.3 1.4 1.5 1.6 1.7<br />

λ (μm)<br />

g 2<br />

2<br />

2<br />

D ch = D m + D w<br />

n<br />

r<br />

46<br />

Thin layer of cladding<br />

with a depressed index<br />

Dispersion flattened fiber example. The material dispersion coefficient (Dm) for the<br />

core material <strong>and</strong> waveguide dispersion coefficient (Dw) for the doubly clad fiber<br />

result in a flattened small chromatic dispersion between λ1 <strong>and</strong> λ2. 48


Profile Dispersion: dispersion due to Δ=Δ(λ)<br />

901 37500 光電導論<br />

Polarization Modal Dispersion (PMD)<br />

Δτ<br />

=<br />

L<br />

Dp<br />

Δλ<br />

(originates from material dispersion)<br />

Polarization Dispersion: dispersion due to an-isotropy, n 1x-n 1y<br />

Due to anisotropic composition, geometry, strain …<br />

Different group delays even with monochromatic source<br />

Example 2.5.1: Material dispersion<br />

By convention , the width Δλ of the wavelength spectrum of the<br />

source <strong>and</strong> the dispersion Δτ refer to half-power widths <strong>and</strong> not<br />

widths from one extreme end to the other.<br />

Δλ1/2: width of intensity vs. wavelength spectrum between the half<br />

intensity points (i.e. linewidth)<br />

Δτ1/2: width of the output light intensity vs. time signal between the<br />

half-intensity points<br />

(a) Estimate the material dispersion effect per km of silica fiber<br />

operated from a light emitting diode (LED) emitting at 1.55μm<br />

with a linewidth of 100nm.<br />

(b) What is the material dispersion effect per km of silica fiber<br />

operated from a laser diode emitting at the same wavelength with<br />

a linewidth of 2nm?<br />

901 37500 光電導論<br />

49<br />

51<br />

Polarization modal dispersion<br />

n 1 x // x<br />

901 37500 光電導論<br />

t<br />

n 1 y // y<br />

E<br />

Input light pulse<br />

E y<br />

Output light pulse<br />

z<br />

Core<br />

E x<br />

E y<br />

Intensity<br />

E x<br />

Δτ<br />

Δτ = Pulse spread<br />

Suppose that the core refractive index has different values along two orthogonal<br />

directions corresponding to electric field oscillation direction (polarizations). We can<br />

take x <strong>and</strong> y axes along these directions. An input light will travel along the fiber with E x<br />

<strong>and</strong> E y polarizations having different group velocities <strong>and</strong> hence arrive at the output at<br />

different times<br />

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

Example 2.5.2: Material, waveguide, <strong>and</strong> chromatic dispersion<br />

Consider a single mode optical fiber with a core of SiO2- 13.5%GeO2 for which the<br />

material <strong>and</strong> waveguide dispersion coefficients are shown in the following figure.<br />

Suppose the fiber is excited from a 1.5μm laser source with a linewidth Δλ1/2 of 2 nm.<br />

(a) What is the dispersion per km of fiber if the core diameter 2a is 8 μm?<br />

(b) What should be the core diameter for zero chromatic dispersion at λ = 1.5μm?<br />

901 37500 光電導論<br />

Dispersion coefficient (ps km -1 nm -1 )<br />

20<br />

10<br />

0<br />

–10<br />

SiO 2 -13.5%GeO 2<br />

–20<br />

1.2 1.3 1.4 1.5 1.6<br />

λ (μm)<br />

D w<br />

D m<br />

a (μm)<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

t<br />

50<br />

52


2-6 Bit Rate, Dispersion,<br />

Electrical <strong>and</strong> <strong>Optical</strong> B<strong>and</strong>width<br />

901 37500 光電導論<br />

RZ<br />

Information<br />

Digital signal<br />

t<br />

Emitter<br />

Input<br />

Photodetector<br />

Information<br />

Output<br />

Input Intensity<br />

Output Intensity<br />

² τ1/2<br />

Very short<br />

light pulses<br />

901 37500 光電導論<br />

0<br />

T<br />

Fiber<br />

t<br />

0<br />

~2Δτ1/2 An optical fiber link for transmitting digital information <strong>and</strong> the effect of<br />

dispersion in the fiber on the output pulses.<br />

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

53<br />

55<br />

t<br />

Bit rate capacity B (bits/sec) is related to the dispersion characteristics.<br />

The dispersion is measured by the pulse spread:<br />

Full width at half power (FWHP) Δτ1/<br />

2<br />

Full width at half maximum (FWHM)<br />

There is no inter-symbol interference<br />

peak-to-peak separation 2 Δτ<br />

1/<br />

2<br />

the maximum bit rate<br />

Intuitive return-to-zero (RZ) bite rate (or data rate)<br />

Non-return to zero (NRZ) bite rate 2B<br />

901 37500 光電導論<br />

NRZ<br />

−1<br />

/ 2<br />

=<br />

Output optical power<br />

1<br />

0.61<br />

0.5<br />

Bit Rate <strong>and</strong> Dispersion<br />

e 0.<br />

607 Δτ<br />

2σ<br />

2σ<br />

rms =<br />

Δτ1/2<br />

T = 4σ<br />

901 37500 ?1999 S.O. 光電導論 Kasap, Optoelectronics (Prentice Hall)<br />

0.<br />

5<br />

B ≈<br />

Δτ<br />

A Gaussian output light pulse <strong>and</strong> some tolerable intersymbol<br />

interference between two consecutive output light pulses (y-axis in<br />

relative units). At time t = σ from the pulse center, the relative<br />

magnitude is e-1/2 = 0.607 <strong>and</strong> full width root mean square (rms)<br />

spread is Δτrms = 2σ.<br />

1/<br />

2<br />

t<br />

54<br />

56


For a Gaussian pulse,<br />

Root-mean-square deviation or<br />

Root-mean-square (rms) dispersion<br />

Full-width rms time spread: between the rms points of the pulse<br />

Maximum RZ bit rate <strong>and</strong> rms dispersion<br />

Maximum bit rate X distance<br />

Total rms dispersion<br />

901 37500 光電導論<br />

901 37500 光電導論<br />

σ<br />

τ 2σ<br />

rms<br />

0.<br />

25 0.<br />

59<br />

B ≈ =<br />

σ Δτ1<br />

2<br />

= Δ<br />

0.<br />

25L<br />

0.<br />

25<br />

BL ≈ =<br />

σ | D |<br />

2<br />

2<br />

1 −t<br />

2<br />

σ<br />

ht = e 2<br />

()<br />

σ = 0. 425Δτ<br />

1 2<br />

2<br />

intermodal<br />

2 ( 2πσ<br />

)<br />

σ = σ + σ<br />

f op<br />

0.<br />

19<br />

≈ 0. 75B<br />

≈<br />

σ<br />

12<br />

ch<br />

σ λ<br />

2<br />

intramodal<br />

57<br />

59<br />

Sinusoidal signal<br />

Emitter<br />

t<br />

f = Modulation frequency<br />

P i = Input light power<br />

0<br />

<strong>Optical</strong> <strong>and</strong> Electrical B<strong>and</strong>width<br />

<strong>Optical</strong> b<strong>and</strong>width for Gaussian dispersion<br />

t<br />

f op<br />

<strong>Optical</strong><br />

Input<br />

0.<br />

19<br />

≈ 0. 75B<br />

≈<br />

σ<br />

Fiber<br />

0<br />

<strong>Optical</strong><br />

Output<br />

P o = Output light power<br />

Photodetector<br />

Sinusoidal electrical signal<br />

An optical fiber link for transmitting analog signals <strong>and</strong> the effect of dispersion 58in<br />

the<br />

901 fiber 37500 on the 光電導論 b<strong>and</strong>width, fop. Example 2.6.1: Bit rate <strong>and</strong> dispersion<br />

t<br />

Electrical signal (photocurrent)<br />

1<br />

0.707<br />

1 kHz 1 MHz 1 GHz<br />

fel Po / Pi 0.1<br />

0.05<br />

1 kHz 1 MHz 1 GHz<br />

fop Consider an optical fiber with a chromatic dispersion coefficient<br />

8 ps km-1 nm-1 at an operation wavelength of 1.5μm. Calculate<br />

(a) the bit rate × distance product (BL),<br />

(b) the optical <strong>and</strong> electrical b<strong>and</strong>widths<br />

for a 10km fiber if a laser diode source with a FWHP linewidth Δλ 1/2<br />

of 2 nm is used.<br />

901 37500 光電導論<br />

60<br />

f<br />

f


2-7 The Graded Index (GRIN)<br />

<strong>Optical</strong> Fiber<br />

901 37500 光電導論<br />

B'<br />

nc c We can visualize a graded index<br />

fiber by imagining a stratified<br />

B<br />

θB' c/nb<br />

θB' A<br />

Ray 2<br />

B''<br />

nb b<br />

medium with the layers of refractive<br />

indices na > nb > nc ... Consider two<br />

close rays 1 <strong>and</strong> 2 launched from O<br />

O<br />

2 θB<br />

1 c/na θA M<br />

Ray 1<br />

na a<br />

O'<br />

at the same time but with slightly<br />

different launching angles. Ray 1<br />

just suffers total internal reflection.<br />

Ray 2 becomes refracted at B <strong>and</strong><br />

reflected at B'.<br />

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

901 37500 光電導論<br />

61<br />

63<br />

O<br />

O<br />

901 37500 光電導論<br />

O' O''<br />

3<br />

2<br />

1<br />

3<br />

2<br />

1<br />

2<br />

3<br />

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

(a) TIR (b)<br />

TIR<br />

n decreases step by step from one layer<br />

to next upper layer; very thin layers.<br />

901 37500 光電導論<br />

n 2<br />

n 2<br />

n 2<br />

n 1<br />

n 1<br />

n<br />

n<br />

(a) Multimode step<br />

index fiber. Ray paths<br />

are different so that<br />

rays arrive at different<br />

times.<br />

(b) Graded index fiber.<br />

Ray paths are different<br />

but so are the velocities<br />

along the paths so that<br />

all the rays arrive at the<br />

same time.<br />

Continuous decrease in n gives a ray<br />

path changing continuously.<br />

(a) A ray in thinly stratifed medium becomes refracted as it passes from one<br />

layer to the next upper layer with lower n <strong>and</strong> eventually its angle satisfies TIR<br />

(b) In a medium where n decreases continuously the path of the ray bends<br />

continuously.<br />

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

62<br />

64


The profile index<br />

The coefficient of index grating<br />

The intermodal dispersion is<br />

minimum when<br />

Dispersion in graded-index fiber<br />

901 37500 光電導論<br />

γ ⎡ ⎛ r ⎞ ⎤<br />

n = n1<br />

⎢1−<br />

2Δ⎜<br />

⎟ ⎥<br />

⎢⎣<br />

⎝ a ⎠ ⎥⎦<br />

n = n<br />

2<br />

4 + 2Δ<br />

γ = ≈ 2 1<br />

2 + 3Δ<br />

σ<br />

intermode<br />

L<br />

1/<br />

2<br />

( − Δ)<br />

n1<br />

≈ Δ<br />

20 3c<br />

2<br />

; r < a<br />

; r = a<br />

Example 2.7.1: Dispersion in a graded-index fiber <strong>and</strong> bit rate<br />

Consider a graded index fiber whose core has a diameter of 50μm <strong>and</strong><br />

a refractive index of n 1 = 1.480. The cladding has n 2 = 1.460. If this<br />

fiber is used at 1.30μm with a laser diode that has a vary narrow<br />

linewidth, what will the bit rate × distance produce be?<br />

Evaluate the BL product if this were a multimode step index fiber<br />

given that the light output is nearly rectangular so that σ≈0.29 Δτ in<br />

which Δτ is the full spread.<br />

901 37500 光電導論<br />

65<br />

67<br />

901 37500 光電導論<br />

901 37500 光電導論<br />

2-8 Light Absorption <strong>and</strong><br />

Scattering<br />

66<br />

68


E<br />

901 37500 光電導論<br />

Medium<br />

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

901 37500 光電導論<br />

Incident wave<br />

k<br />

z<br />

Attenuation of light in the<br />

direction of propagation.<br />

A dielectric particle smaller than wavelength<br />

Scattered waves<br />

Through wave<br />

Rayleigh scattering involves the polarization of a small dielectric<br />

particle or a region that is much smaller than the light wavelength.<br />

The field forces dipole oscillations in the particle (by polarizing it)<br />

which leads to the emission of EM waves in "many" directions so<br />

that a portion of the light energy is directed away from the incident<br />

beam.<br />

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

69<br />

71<br />

E x<br />

901 37500 光電導論<br />

A solid with ions<br />

Light direction<br />

k<br />

Lattice absorption through a crystal. The field in the wave<br />

oscillates the ions which consequently generate "mechanical"<br />

waves in the crystal; energy is thereby transferred from the wave<br />

to lattice vibrations.<br />

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

Ionic polarization<br />

usu. IR region<br />

high absorption<br />

Generates lattice waves<br />

Others:<br />

microwave oven<br />

molecule vibration<br />

2-9 Attenuation in <strong>Optical</strong> <strong>Fibers</strong><br />

901 37500 光電導論<br />

z<br />

70<br />

72


901 37500 光電導論<br />

10<br />

5<br />

1.0<br />

0.5<br />

0.1<br />

0.05<br />

(2.8/3 μm)<br />

Rayleigh<br />

scattering<br />

OH - absorption peaks<br />

(1/(2/2.8+1/9) μm) 1550 nm Si-O<br />

1310 nm<br />

Lattice<br />

absorption<br />

(9 μm)<br />

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0<br />

Wavelength (痠) μm<br />

Illustration of a typical attenuation vs. wavelength characteristics<br />

of a silica based optical fiber. There are two communications<br />

channels at 1310 nm <strong>and</strong> 1550 nm.<br />

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

10<br />

5<br />

1.0<br />

0.5<br />

0.1<br />

0.05<br />

901 37500 光電導論<br />

Rayleigh<br />

scattering<br />

(2.8/2 μm)<br />

OH - absorption peaks<br />

1310 nm<br />

Lattice<br />

absorption<br />

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0<br />

Wavelength (痠) μm<br />

Illustration of a typical attenuation vs. wavelength characteristics<br />

of a silica based optical fiber. There are two communications<br />

channels at 1310 nm <strong>and</strong> 1550 nm.<br />

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

1550 nm<br />

73<br />

75<br />

901 37500 光電導論<br />

4/23/2009<br />

901 37500 光電導論<br />

Attenuation coefficient<br />

Attenuation coefficient<br />

in dB/length<br />

Rayleigh scattering<br />

in silica<br />

Field distribution<br />

θ θ<br />

Pout in<br />

1<br />

α = −<br />

P<br />

dP<br />

dx<br />

⎛ P<br />

=<br />

⎜<br />

L ⎝ P<br />

ln<br />

1<br />

α<br />

in<br />

out<br />

⎞<br />

⎟<br />

⎠<br />

= P exp( −αL)<br />

1 ⎛ P ⎞ in<br />

α =<br />

⎜<br />

⎟<br />

dB 10log<br />

L ⎝ Pout<br />

⎠<br />

10<br />

α dB = α = 4.<br />

34α<br />

ln( 10)<br />

Cladding<br />

Core<br />

3<br />

8π<br />

α R ≈ 4<br />

3λ<br />

2 2<br />

( n −1)<br />

βT<br />

kBT<br />

f<br />

θ<br />

θ > θc θ′<br />

R<br />

Microbending<br />

θ′ < θ<br />

74<br />

Escaping wave<br />

Sharp bends change the local waveguide geometry that can lead to waves<br />

escaping. The zigzagging ray suddenly finds itself with an incidence<br />

angle θ′ that gives rise to either a transmitted wave, or to a greater<br />

cladding penetration; the field reaches the outside medium <strong>and</strong> some light<br />

energy is lost.<br />

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

76


α B (m -1 ) for 10 cm of bend<br />

10 2<br />

10 −1<br />

10 −2<br />

10 −3<br />

901 37500 光電導論 ?1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

901 37500 光電導論<br />

10<br />

1<br />

λ = 633 nm<br />

V ≈ 2.08<br />

λ = 790 nm<br />

V ≈ 1.67<br />

0 2 4 6 8 10 12 14 16 18<br />

Radius of curvature (mm)<br />

Measured microbending loss for a 10 cm fiber bent by different amounts of radius of<br />

curvature R. Single mode fiber with a core diameter of 3.9 μm, cladding radius 48 μm,<br />

Δ = 0.004, NA = 0.11, V ≈ 1.67 <strong>and</strong> 2.08 (Data extracted <strong>and</strong> replotted with Δ correction<br />

from, A.J. Harris <strong>and</strong> P.F. Castle, IEEE J. Light Wave Technology, Vol. LT14, pp. 34-<br />

40, 1986; see original article for discussion of peaks in αB vs. R at 790 nm).<br />

77<br />

Example 2.9.1: Rayleigh scattering limit<br />

What is the attenuation due to Rayleigh scattering at around the<br />

λ = 1.55μm window given that pure silica (SiO 2 ) has the following<br />

properties: T f = 1730°C (softening temperature);<br />

β T = 7 x 10 -11 m 2 N -1 (at high temperatures);<br />

n = 1.4446 at 1.5μm.<br />

α<br />

≈<br />

3<br />

=<br />

R<br />

8π<br />

≈<br />

3λ<br />

3<br />

4<br />

2 ( n −1)<br />

3<br />

8π<br />

2 2 −11<br />

−23<br />

( 1.<br />

4446 −1)<br />

( 7×<br />

10 )( 1.<br />

38×<br />

10 )( 1.<br />

730 + 273)<br />

−6<br />

4<br />

( 1.<br />

55×<br />

10 )<br />

3.<br />

27×<br />

10<br />

−5<br />

Attenuation<br />

α<br />

dB<br />

= 4.<br />

34α<br />

m<br />

R<br />

−1<br />

=<br />

2<br />

=<br />

β<br />

T<br />

k<br />

B<br />

T<br />

3.<br />

27×<br />

10<br />

f<br />

−2<br />

km<br />

−1<br />

−2<br />

−1<br />

−1<br />

( 4.<br />

34)(<br />

3.<br />

27×<br />

10 km ) = 0.<br />

142dBkm<br />

79<br />

Example 2.9.1: Rayleigh scattering limit<br />

What is the attenuation due to Rayleigh scattering at around the<br />

λ = 1.55μm window given that pure silica (SiO 2) has the following<br />

properties: T f = 1730°C (softening temperature);<br />

β T = 7 x 10 -11 m 2 N -1 (at high temperatures);<br />

n = 1.4446 at 1.5μm.<br />

901 37500 光電導論<br />

Example 2.9.2: Attenuation along an optical fiber<br />

The optical power launched into a single-mode fiber from a laser<br />

diode is approximately 1 mW. The photodetector at the output<br />

required a minimum power of 10 nW to provide a clear signal (above<br />

noise). The fiber operates at 1.3μm <strong>and</strong> has an attenuation coefficient<br />

of 0.4 dB km -1 . What is the maximum length of fiber that can be used<br />

without inserting a repeater (to regenerate the signal)?<br />

α<br />

dB<br />

1<br />

L =<br />

α<br />

901 37500 光電導論<br />

1 ⎛ P<br />

= 10log<br />

L ⎜<br />

⎝ P<br />

dB<br />

in<br />

out<br />

⎛ P<br />

10log<br />

⎜<br />

⎝ P<br />

in<br />

out<br />

⎞<br />

⎟<br />

⎠<br />

−3<br />

⎞ 1 ⎛10<br />

⎞<br />

⎟ = 10log<br />

= 125km<br />

8<br />

0.<br />

4 ⎜<br />

10 ⎟ −<br />

⎠ ⎝ ⎠<br />

The signal has to be amplified after a distance of about 50 ~<br />

100km, <strong>and</strong> eventually regenerated by using a repeater.<br />

78<br />

80


901 37500 光電導論<br />

n<br />

n 1<br />

n 2<br />

901 37500 光電導論<br />

2-10 Fiber Manufacture<br />

r<br />

Buffer tube: d = 1mm<br />

Protective polymerinc coating<br />

Cladding: d = 125 - 150 μm<br />

Core: d = 8 - 10 μm<br />

The cross section of a typical single-mode fiber with a tight buffer<br />

tube. (d = diameter)<br />

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

81<br />

83<br />

901 37500 光電導論<br />

Preform feed<br />

Thickness<br />

monitoring gauge<br />

Fiber Drawing<br />

Furnace 2000蚓<br />

Polymer coater<br />

Ultraviolet light or furnace<br />

for curing<br />

Take-up drum<br />

Capstan<br />

Schematic illustration of a fiber drawing tower.<br />

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

Vapors: SiCl 4 + GeCl 4 + O 2<br />

Fuel: H 2<br />

Burner<br />

Deposited Ge doped SiO 2<br />

(a)<br />

Outside Vapor Deposition (OVD)<br />

Deposited soot<br />

Target rod<br />

Rotate m<strong>and</strong>rel<br />

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)<br />

901 37500 光電導論<br />

(b)<br />

Drying gases<br />

Porous soot<br />

preform with hole<br />

Clear solid<br />

glass preform<br />

Furnace<br />

(c)<br />

Preform<br />

82<br />

84<br />

Furnace<br />

Drawn fiber<br />

Schematic illustration of OVD <strong>and</strong> the preform preparation for fiber drawing. (a)<br />

Reaction of gases in the burner flame produces glass soot that deposits on to the outside<br />

surface of the m<strong>and</strong>rel. (b) The m<strong>and</strong>rel is removed <strong>and</strong> the hollow porous soot preform<br />

is consolidated; the soot particles are sintered, fused, together to form a clear glass rod.<br />

(c) The consolidated glass rod is used as a preform in fiber drawing.


Example 2.10.1: Fiber drawing<br />

In a certain fiber production process a preform of length 110cm <strong>and</strong><br />

diameter 20 mm is used to draw a fiber. Suppose that the fiber<br />

drawing rate is 5 m/s. What is the maximum length of the fiber that<br />

can be drawn from this preform if the last 10 cm of the preform is<br />

not drawn <strong>and</strong> the fiber diameter is 125 μm? How long does it take<br />

to draw the fiber?<br />

L d<br />

L<br />

f<br />

f<br />

2<br />

f<br />

=<br />

= L d<br />

901 37500 光電導論<br />

2<br />

p p<br />

−3<br />

( 1.<br />

1−<br />

0.<br />

1m)(<br />

20×<br />

10 m)<br />

−6<br />

2<br />

( 125×<br />

10 m)<br />

rate = 5m<br />

/ s<br />

Length(<br />

km)<br />

Time(<br />

hrs)<br />

=<br />

=<br />

Rate(<br />

km / hr)<br />

2<br />

= 25600m<br />

= 25.<br />

6km<br />

25600m<br />

( 5m<br />

/ s)(<br />

60×<br />

60s<br />

/ hr)<br />

= 1.<br />

4hrs.<br />

Typical drawing rates are in the range 5 – 20m/s so that 1.4hrs would be on<br />

the long-side.<br />

85

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!