03.07.2013 Views

Impact of arterial load on the agreement between pulse pressure ...

Impact of arterial load on the agreement between pulse pressure ...

Impact of arterial load on the agreement between pulse pressure ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Critical Care<br />

This Provisi<strong>on</strong>al PDF corresp<strong>on</strong>ds to <strong>the</strong> article as it appeared up<strong>on</strong> acceptance. Copyedited and<br />

fully formatted PDF and full text (HTML) versi<strong>on</strong>s will be made available so<strong>on</strong>.<br />

<str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>agreement</strong> <strong>between</strong> <strong>pulse</strong> <strong>pressure</strong> analysis and<br />

esophageal Doppler<br />

Critical Care 2013, 17:R113 doi:10.1186/cc12785<br />

Manuel Ignacio M<strong>on</strong>ge Garcia (ignaciom<strong>on</strong>ge@gmail.com)<br />

Manuel Gracia Romero (graciaromero@hotmail.com)<br />

Anselmo Gil Cano (anselgil@gmail.com)<br />

Andrew Rhodes (andyr@sgul.ac.uk)<br />

Robert M Grounds (m.grounds@bluey<strong>on</strong>der.co.uk)<br />

Maurizio Cecc<strong>on</strong>i (mauriziocecc<strong>on</strong>i@hotmail.com)<br />

ISSN 1364-8535<br />

Article type Research<br />

Submissi<strong>on</strong> date 20 March 2013<br />

Acceptance date 4 June 2013<br />

Publicati<strong>on</strong> date 20 June 2013<br />

Article URL http://ccforum.com/c<strong>on</strong>tent/17/3/R113<br />

This peer-reviewed article can be down<str<strong>on</strong>g>load</str<strong>on</strong>g>ed, printed and distributed freely for any purposes (see<br />

copyright notice below).<br />

Articles in Critical Care are listed in PubMed and archived at PubMed Central.<br />

For informati<strong>on</strong> about publishing your research in Critical Care go to<br />

http://ccforum.com/authors/instructi<strong>on</strong>s/<br />

© 2013 M<strong>on</strong>ge Garcia et al.<br />

This is an open access article distributed under <strong>the</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Creative Comm<strong>on</strong>s Attributi<strong>on</strong> License (http://creativecomm<strong>on</strong>s.org/licenses/by/2.0),<br />

which permits unrestricted use, distributi<strong>on</strong>, and reproducti<strong>on</strong> in any medium, provided <strong>the</strong> original work is properly cited.


<str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>agreement</strong> <strong>between</strong> <strong>pulse</strong> <strong>pressure</strong><br />

analysis and esophageal Doppler<br />

Manuel Ignacio M<strong>on</strong>ge García 1,2* , Manuel Gracia Romero 1 , Anselmo Gil Cano 1 ,<br />

Andrew Rhodes 2 , Robert Michael Grounds 2 , Maurizio Cecc<strong>on</strong>i 2<br />

1 Servicio de Cuidados Intensivos y Urgencias, Hospital SAS de Jerez, Jerez de la<br />

Fr<strong>on</strong>tera, Spain.<br />

2 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Intensive Care Medicine, St. George’s Healthcare NHS Trust and St<br />

George’s University <str<strong>on</strong>g>of</str<strong>on</strong>g> L<strong>on</strong>d<strong>on</strong>, L<strong>on</strong>d<strong>on</strong>, United Kingdom.<br />

* Corresp<strong>on</strong>ding author: Manuel Ignacio M<strong>on</strong>ge García<br />

Address: Department <str<strong>on</strong>g>of</str<strong>on</strong>g> General Intensive Care, St George’s Healthcare NHS Trust and<br />

St George’s University <str<strong>on</strong>g>of</str<strong>on</strong>g> L<strong>on</strong>d<strong>on</strong>, L<strong>on</strong>d<strong>on</strong>, SW17 0QT, UK.<br />

Email: ignaciom<strong>on</strong>ge@gmail.com<br />

Tel.: +44-208-7250879<br />

Fax: +44-208-7250879<br />

Word count (3326): Abstract (354), Introducti<strong>on</strong> (362), Materials and Methods (1160);<br />

Results (993); Discussi<strong>on</strong> (846); C<strong>on</strong>clusi<strong>on</strong>s (102); Figures: 3; Tables: 5.<br />

1


Abstract<br />

Introducti<strong>on</strong>: The reliability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>pulse</strong> <strong>pressure</strong> analysis to estimate cardiac output is<br />

known to be affected by <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> changes. However, <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each aspect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> could be substantially different. In this study, we evaluated <strong>the</strong><br />

<strong>agreement</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> eight n<strong>on</strong>-commercial algorithms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>pulse</strong> <strong>pressure</strong> analysis for estimating<br />

cardiac output (PPCO) with esophageal Doppler cardiac output (EDCO) during acute<br />

changes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g>. In additi<strong>on</strong>, we aimed to determine <strong>the</strong> optimal <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g><br />

parameter that could detect a clinically significant difference <strong>between</strong> PPCO and <strong>the</strong><br />

EDCO.<br />

Methods: Mechanically ventilated patients m<strong>on</strong>itored with a prototype esophageal<br />

Doppler (CardioQ-Combi TM , Deltex Medical, Chicester, UK) and an indwelling <str<strong>on</strong>g>arterial</str<strong>on</strong>g><br />

ca<strong>the</strong>ter who received a fluid challenge or in whom <strong>the</strong> vasoactive medicati<strong>on</strong> was<br />

introduced or modified. Initial calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PPCO was made with <strong>the</strong> baseline value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

EDCO. We evaluated several aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g>: total systemic vascular resistance<br />

(TSVR = mean <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <strong>pressure</strong> [MAP] / EDCO * 80), net <str<strong>on</strong>g>arterial</str<strong>on</strong>g> compliance (C =<br />

EDCO-derived stroke volume / <strong>pulse</strong> <strong>pressure</strong>), and effective <str<strong>on</strong>g>arterial</str<strong>on</strong>g> elastance (Ea = 0.9<br />

* systolic blood <strong>pressure</strong> / EDCO-derived stroke volume). We compared CO values<br />

with Bland-Altman analysis, four-quadrant plot and a modified polar plot (with least<br />

significant change analysis).<br />

Results: A total <str<strong>on</strong>g>of</str<strong>on</strong>g> 16,964-paired measurements in 53 patients were performed (median<br />

271; interquartile range: 180 – 415). Agreement <str<strong>on</strong>g>of</str<strong>on</strong>g> all PPCO algorithms with EDCO<br />

was significantly affected by changes in <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g>, although <strong>the</strong> impact was more<br />

pr<strong>on</strong>ounced during changes in vasopressor <strong>the</strong>rapy. When looking at different<br />

parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g>, <strong>the</strong> predictive abilities <str<strong>on</strong>g>of</str<strong>on</strong>g> Ea and C were superior to TSVR<br />

2


and MAP changes to detect a PPCO-EDCO discrepancy ≥ 10% in all PPCO algorithms.<br />

An absolute Ea change > 8.9 ± 1.7% was associated with a PPCO-EDCO discrepancy ≥<br />

10% in most algorithms.<br />

C<strong>on</strong>clusi<strong>on</strong>s: Changes in <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>oundly affected <strong>the</strong> <strong>agreement</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PPCO and<br />

EDCO, although <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> to <strong>the</strong> PPCO-EDCO<br />

discrepancies was significantly different. Changes in Ea and C mainly determined<br />

PPCO-EDCO discrepancy.<br />

Keywords: hemodynamic m<strong>on</strong>itoring · cardiac output · <strong>pulse</strong> <strong>pressure</strong> analysis · <str<strong>on</strong>g>arterial</str<strong>on</strong>g><br />

<str<strong>on</strong>g>load</str<strong>on</strong>g> · <str<strong>on</strong>g>arterial</str<strong>on</strong>g> compliance · effective <str<strong>on</strong>g>arterial</str<strong>on</strong>g> elastance · systemic vascular resistance ·<br />

esophageal Doppler<br />

3


Introducti<strong>on</strong><br />

Cardiac output (CO) is an essential comp<strong>on</strong>ent in <strong>the</strong> hemodynamic assessment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

critically ill patients and a central target for goal-directed resuscitati<strong>on</strong> in high-risk<br />

surgical patients [1]. During recent years many minimally invasive beat-to-beat<br />

methodologies have been developed to m<strong>on</strong>itor CO [2]. One <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> proposed approaches<br />

that has emerged is <strong>pulse</strong> <strong>pressure</strong> analysis (PPA) [3]. The basic physiological principle<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se techniques is that changes in <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <strong>pulse</strong> <strong>pressure</strong> directly relate to changes in<br />

stroke volume (SV), and thus, changes in CO can be c<strong>on</strong>tinuously estimated from<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>arterial</str<strong>on</strong>g> waveform. However, this relati<strong>on</strong>ship can be affected by <str<strong>on</strong>g>arterial</str<strong>on</strong>g><br />

<str<strong>on</strong>g>load</str<strong>on</strong>g> [4, 5], and <strong>the</strong>refore, if changes in <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> occur, <strong>the</strong>n <strong>the</strong> reliability <str<strong>on</strong>g>of</str<strong>on</strong>g> CO<br />

measurements by PPA techniques may be affected [6-10]. Whilst each PPA algorithm is<br />

different, <strong>the</strong>y all have to tackle similar limitati<strong>on</strong>s. For this reas<strong>on</strong>, most modern<br />

systems based <strong>on</strong> PPA use a calibrati<strong>on</strong> (internal or external) to determine <strong>the</strong> individual<br />

<str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> patient, in order to c<strong>on</strong>vert <strong>the</strong> <strong>pressure</strong> signal into a volume-based<br />

parameter. Subsequent recalibrati<strong>on</strong>s are <strong>the</strong>n required when significant variati<strong>on</strong>s in<br />

<str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> occur [6-9].<br />

Previous studies have dem<strong>on</strong>strated that changes in <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> can affect <strong>the</strong> reliability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> PPCO measurements [6-9, 11, 12], however, <strong>the</strong>se studies have <strong>on</strong>ly focused <strong>on</strong> <strong>on</strong>e<br />

aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g>, <strong>the</strong> systemic vascular resistance. This approach ignores <strong>the</strong><br />

pulsatile nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cardiovascular system and provides <strong>on</strong>ly a partial descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g>, ignoring o<strong>the</strong>r comp<strong>on</strong>ents such as <str<strong>on</strong>g>arterial</str<strong>on</strong>g> compliance or wave reflecti<strong>on</strong>s<br />

[13].<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this study was to describe <strong>the</strong> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> PPA during <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g><br />

changes when comparing it with an independent reference technique used as initial<br />

4


calibrati<strong>on</strong>. We assumed that changes in <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> would affect all PPA algorithms,<br />

although <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> may be substantially different.<br />

For this purpose, we first assessed <strong>the</strong> reliability <str<strong>on</strong>g>of</str<strong>on</strong>g> eight n<strong>on</strong>-proprietary PPA<br />

algorithms for estimating CO during <strong>the</strong> introducti<strong>on</strong> or modificati<strong>on</strong> in dose <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vasoactive medicati<strong>on</strong> or during intra-venous volume administrati<strong>on</strong>. Sec<strong>on</strong>d, we<br />

attempted to identify <strong>the</strong> optimal <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> parameter able to predict a clinically<br />

significant discrepancy <strong>between</strong> PPCO and <strong>the</strong> esophageal Doppler cardiac output<br />

(EDCO).<br />

Materials and Methods<br />

Patients<br />

This study was performed in <strong>the</strong> 17-bed multidisciplinary Intensive Care Unit <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

Hospital de SAS Jerez from September 2011 to October 212. The protocol was<br />

approved by <strong>the</strong> Instituti<strong>on</strong>al Research Ethics Committee <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Hospital del SAS de<br />

Jerez de la Fr<strong>on</strong>tera. Informed c<strong>on</strong>sent was deemed unnecessary due to <strong>the</strong><br />

observati<strong>on</strong>al nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> study and because <strong>the</strong> protocol was c<strong>on</strong>sidered to be part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> standard care.<br />

Inclusi<strong>on</strong> criteria included any patient that was already m<strong>on</strong>itored with an esophageal<br />

Doppler and indwelling <str<strong>on</strong>g>arterial</str<strong>on</strong>g> ca<strong>the</strong>ter for clinical reas<strong>on</strong>s, and for whom <strong>the</strong> attending<br />

physician decided to perform a fluid challenge or titrate <strong>the</strong> dosage <str<strong>on</strong>g>of</str<strong>on</strong>g> norepinephrine to<br />

maintain a desired level <str<strong>on</strong>g>of</str<strong>on</strong>g> mean <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <strong>pressure</strong> (MAP). Patients with known severe<br />

valvular regurgitati<strong>on</strong>, atrial fibrillati<strong>on</strong> or any c<strong>on</strong>traindicati<strong>on</strong> to <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

esophageal Doppler were excluded.<br />

5


Hemodynamic m<strong>on</strong>itoring<br />

Hemodynamic m<strong>on</strong>itoring was performed using <strong>the</strong> CardioQ-Combi esophageal<br />

Doppler m<strong>on</strong>itor (Deltex Medical, Chicester, UK). This prototype combined a standard<br />

Doppler m<strong>on</strong>itor toge<strong>the</strong>r with eight PPCO algorithms. The Doppler probe was inserted<br />

into <strong>the</strong> esophagus via <strong>the</strong> nasal or oral route and advanced until <strong>the</strong> maximal peak<br />

velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> aortic blood flow signal was achieved. The gain setting was <strong>the</strong>n adjusted to<br />

obtain <strong>the</strong> optimum outline <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> aortic velocity waveform.<br />

Pulse Pressure Analysis Algorithms<br />

All patients had an <str<strong>on</strong>g>arterial</str<strong>on</strong>g> ca<strong>the</strong>ter for c<strong>on</strong>tinuous <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <strong>pressure</strong> m<strong>on</strong>itoring. After<br />

zeroing <strong>the</strong> system to atmospheric <strong>pressure</strong>, <strong>the</strong> <str<strong>on</strong>g>arterial</str<strong>on</strong>g> waveform was carefully<br />

checked using a fast flush test in order to ensure optimal harm<strong>on</strong>ics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>arterial</str<strong>on</strong>g><br />

<strong>pressure</strong> measurement system. No evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> over/underdamping <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>arterial</str<strong>on</strong>g><br />

<strong>pressure</strong> waveform was a prerequisite for hemodynamic measurements. The <str<strong>on</strong>g>arterial</str<strong>on</strong>g><br />

<strong>pressure</strong> signal was transferred from <strong>the</strong> patient bedside m<strong>on</strong>itor to <strong>the</strong> esophageal<br />

Doppler system using a serial cable. Eight n<strong>on</strong>-proprietary PPA algorithms built-in into<br />

<strong>the</strong> CardioQ-Combi s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware and PPCO values were c<strong>on</strong>tinuously displayed in <strong>the</strong><br />

m<strong>on</strong>itor al<strong>on</strong>g with <strong>the</strong> <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> parameters. Initial calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PPCO was<br />

performed using <strong>the</strong> EDCO value before any interventi<strong>on</strong> and after stabilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heart<br />

rate and <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <strong>pressure</strong> (


measurements and o<strong>the</strong>r hemodynamic variables were averaged and recorded every 10<br />

sec<strong>on</strong>ds.<br />

Arterial <str<strong>on</strong>g>load</str<strong>on</strong>g> assessment<br />

C<strong>on</strong>sidering <strong>the</strong> pulsatile nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>arterial</str<strong>on</strong>g> blood, we evaluated different aspects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> [14]. The steady comp<strong>on</strong>ent was computed using <strong>the</strong> total systemic<br />

vascular resistance (TSVR) as MAP / EDCO * 80. The pulsatile comp<strong>on</strong>ent was<br />

calculated using <strong>the</strong> net <str<strong>on</strong>g>arterial</str<strong>on</strong>g> compliance (C) as EDCO-derived SV / <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <strong>pulse</strong><br />

<strong>pressure</strong>. Although this approach by definiti<strong>on</strong> overestimates <strong>the</strong> real compliance and<br />

violates <strong>the</strong> fundamental c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Windkessel model (since it assumes that <strong>the</strong><br />

total SV is buffered in <strong>the</strong> large elastic arteries during systole without any peripheral<br />

outflow), it has been shown to be a useful index for estimati<strong>on</strong> and detecting relative<br />

changes in compliance [15-17]. We also calculated <strong>the</strong> effective <str<strong>on</strong>g>arterial</str<strong>on</strong>g> elastance (Ea),<br />

an integrative parameter that incorporates both <strong>the</strong> steady and pulsatile comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> including resistance, compliance, characteristic impedance and cardiac<br />

cycle time intervals [14, 18, 19]. Ea was computed as 0.9 * systolic <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <strong>pressure</strong><br />

(SAP) / EDCO-derived SV, where <strong>the</strong> 90% <str<strong>on</strong>g>of</str<strong>on</strong>g> SAP was used as a surrogate <str<strong>on</strong>g>of</str<strong>on</strong>g> left<br />

ventricular end-systolic <strong>pressure</strong> [14, 18, 20].<br />

Study protocol<br />

Therapeutic interventi<strong>on</strong>s were made <strong>on</strong>ly according to <strong>the</strong> decisi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> attending<br />

physicians. Clinical care was guided by local protocols and <strong>the</strong> informati<strong>on</strong> obtained via<br />

EDCO. Subgroups were defined according to patients receiving fluid administrati<strong>on</strong> or<br />

7


introducti<strong>on</strong>/modificati<strong>on</strong> in vasoactive dose. Fluid administrati<strong>on</strong> c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> 500 mL<br />

infusi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> crystalloid over a 25-30 minute period. Vasopressor changes c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

stepwise increases or decreases in norepinephrine in 2-4 µg/min increments every 2-3<br />

minutes to maintain a desired MAP level. Supportive <strong>the</strong>rapies and ventilatory settings<br />

remained c<strong>on</strong>stant and vasopressors (if any) unchanged during fluid administrati<strong>on</strong>. All<br />

patients were under c<strong>on</strong>trolled mechanical ventilati<strong>on</strong>.<br />

Statistical Analysis<br />

Normal distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> data was tested using <strong>the</strong> D’Agostino-Pears<strong>on</strong> test. The results<br />

are expressed as mean ± standard deviati<strong>on</strong> (SD) or as median and <strong>the</strong> interquartile<br />

range (IQR), as appropriate. Bland-Altman analysis for repeated measurements was<br />

used to assess <strong>the</strong> <strong>agreement</strong> <strong>between</strong> EDCO and each PPCO algorithms [21]. Bias was<br />

defined as <strong>the</strong> mean difference <strong>between</strong> EDCO and PPCO measurements. Limits <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>agreement</strong> (LOA) were calculated as mean bias ± 1.96 SD. Percentage error (PE) was<br />

calculated for comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO as PE (%) = LOA / [(mean EDCO + mean PPCO)/2].<br />

Coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong> (CV) <str<strong>on</strong>g>of</str<strong>on</strong>g> EDCO measurements was determined during <strong>on</strong>e-<br />

minute period at baseline during stable hemodynamic c<strong>on</strong>diti<strong>on</strong>s in all patients. As<br />

suggested by Cecc<strong>on</strong>i et al. [22], <strong>the</strong> precisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> reference technique was calculated<br />

as 2 x CV, and <strong>the</strong> least significant change (LSC), <strong>the</strong> minimum change <strong>between</strong><br />

successive measurements that can be c<strong>on</strong>sidered a real change and not due to random<br />

error, as LSC = precisi<strong>on</strong> x √2.<br />

The ability to track EDCO changes by each PPCO algorithm was tested using a<br />

c<strong>on</strong>cordance analysis [23]. C<strong>on</strong>cordance was defined as <strong>the</strong> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> data in which<br />

<strong>the</strong> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> change agreed in 4-quandrant plots or as <strong>the</strong> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> data within ±<br />

8


30º radial limits <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>agreement</strong> (RLOA = θ ± 1.96SD) in polar plots, according to <strong>the</strong><br />

method proposed by Critchley et al [24]. This method accounts not <strong>on</strong>ly <strong>the</strong> directi<strong>on</strong><br />

but also <strong>the</strong> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> CO change to assess trending ability. Acceptable c<strong>on</strong>cordance<br />

was assumed when c<strong>on</strong>cordance rate was > 90% in 4-quadrant plots or when mean<br />

angular bias (i.e., <strong>the</strong> mean angle <str<strong>on</strong>g>of</str<strong>on</strong>g> all radial vectors from <strong>the</strong> polar axis) and RLOA<br />

were < ±5º and < 30%, respectively. In order to exclude random measurement error, a<br />

central exclusi<strong>on</strong> z<strong>on</strong>e was selected for analysis. We tested a new approach by<br />

implementing <strong>the</strong> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> LSC in each polar plot, by suggesting that <strong>the</strong> exclusi<strong>on</strong><br />

z<strong>on</strong>e size should be calculated using <strong>the</strong> combined LSC for EDCO and PPCO.<br />

Assuming a LSCPPCO equal to LSCEDCO, <strong>the</strong> combined LSC was calculated as<br />

2√(LSCEDCO) 2 for selecting <strong>the</strong> exclusi<strong>on</strong> z<strong>on</strong>e size [22].<br />

The relati<strong>on</strong>ship <strong>between</strong> changes in <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> parameters and discrepancy <strong>between</strong><br />

EDCO and each PPCO algorithms (discrepancy, % = PPCO – EDCO / EDCO) was<br />

assessed by a regressi<strong>on</strong> analysis. A discrepancy ≥ 10% <strong>between</strong> techniques after initial<br />

calibrati<strong>on</strong> was c<strong>on</strong>sidered clinically significant. For each PPCO algorithm, a receiver<br />

operating characteristic (ROC) curve was also c<strong>on</strong>structed for testing <strong>the</strong> ability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

absolute percentage changes <strong>on</strong> each <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> parameters to predict an absolute<br />

PPCO-EDCO discrepancy ≥10%. Areas under <strong>the</strong> ROC curves were compared using <strong>the</strong><br />

method described by DeL<strong>on</strong>g et al. Differences <strong>between</strong> groups were compared with<br />

<strong>the</strong> Mann–Whitney U test or by an independent Student’s t-test for independent<br />

samples, as appropriateA P value < 0.05 was c<strong>on</strong>sidered statistically significant. All<br />

statistical analyses were two-tailed and performed using MedCalc for Windows versi<strong>on</strong><br />

12.3.0 (MedCalc S<str<strong>on</strong>g>of</str<strong>on</strong>g>tware bvba, Mariakerke, Belgium).<br />

9


Results<br />

Fifty-three c<strong>on</strong>secutive patients were included. Patient characteristics are summarized in<br />

Table 2. Thirty five patients (66%) were septic according to standard criteria[25]. A total<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 16,964 paired measurements were performed (median 271; IQR: 180 to 415). Forty-<br />

five fluid challenges were performed in 38 patients, 19 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>m (42%) induced an<br />

EDCO increase ≥10%. The main reas<strong>on</strong> for volume administrati<strong>on</strong> was oliguria (95%).<br />

Forty-seven changes in dose or introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vasopressors were performed in 36<br />

patients. Baseline CO was 6.3 ± 2.9 L/min, heart rate 92 ± 21 beats per minute and<br />

MAP 70 ± 12 mmHg.<br />

Overall, <strong>the</strong> median EDCO value was 6.3 L/min (IQR: 4.9 to 7.2 L/min) and absolute<br />

percentage change throughout all interventi<strong>on</strong>s was 4.9% (IQR: 2.1 to 9.8%) with a<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> change from -46.9 to 57.7%. During <strong>the</strong> introducti<strong>on</strong> or modificati<strong>on</strong> in<br />

vasoactive dose <strong>the</strong> absolute percentage change for EDCO was 4.5% (IQR: 1.8% to<br />

9.7%) with a range <str<strong>on</strong>g>of</str<strong>on</strong>g> change from -46.9% to 37.7%. After volume administrati<strong>on</strong><br />

EDCO increased 9.5% (IQR: 3.8% to 16.3%).<br />

The mean CV for EDCO measurements was 2.4% ± 1.3%. The precisi<strong>on</strong> and LSC for<br />

EDCO was 4.7% and 6.7%, respectively. According to <strong>the</strong> combined LSC for both<br />

techniques, we selected a 9.5% value for central exclusi<strong>on</strong> z<strong>on</strong>e in c<strong>on</strong>cordance<br />

analysis.<br />

Reliability <str<strong>on</strong>g>of</str<strong>on</strong>g> PPA during <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> changes<br />

A detailed descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>agreement</strong> analysis <strong>between</strong> EDCO and all PPCO<br />

algorithms is shown in Table 3. Bland-Altman plots for differences <strong>between</strong> absolute<br />

10


values <str<strong>on</strong>g>of</str<strong>on</strong>g> EDCO and PPCO are presented in Figure 1. Sub-group analyses are reported<br />

in Additi<strong>on</strong>al file 1, Figures 1 and 2. The best <strong>agreement</strong> was for <strong>the</strong> Liljestrand-Zander<br />

algorithm in all c<strong>on</strong>diti<strong>on</strong>s (bias ± LOA: 0.1 ± 1.7 L/min, PE 27.2%), whereas <strong>the</strong><br />

Pressure root-mean-square algorithm performed <strong>the</strong> worst (bias ± LOA: -0.1 ± 2.5<br />

L/min; PE 40.8%). The mean bias, LOA and PE were significantly higher in<br />

vasopressor group (P < 0.01 vs. patients receiving fluid administrati<strong>on</strong>). There were no<br />

significant differences <strong>between</strong> septic and n<strong>on</strong>-septic patients in bias (-0.03 L/min vs. -<br />

0.13 L/min, P = 0.06) and PE (37.76% vs. 34.08%, P = 0.14). However, LOA was wider<br />

in <strong>the</strong> septic group (2.36 L/min vs. 1.87 L/min, P < 0.01; Additi<strong>on</strong>al file 1, Table 1).<br />

The c<strong>on</strong>cordance <strong>between</strong> changes <str<strong>on</strong>g>of</str<strong>on</strong>g> PPCO and EDCO during fluid administrati<strong>on</strong> was<br />

good for almost all algorithms according to <strong>the</strong> 4-quadrant plots (90 ± 5%), except for<br />

those based <strong>on</strong> <strong>the</strong> assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> systolic area (Table 3). The c<strong>on</strong>cordance <strong>between</strong><br />

changes <str<strong>on</strong>g>of</str<strong>on</strong>g> PPCO and EDCO during introducti<strong>on</strong> or changes in dosage <str<strong>on</strong>g>of</str<strong>on</strong>g> vasopressors<br />

was poor for all algorithms (51 ± 18%), except for <strong>the</strong> Liljestrand-Zander (95.5%).<br />

When analysing both <strong>the</strong> magnitude and <strong>the</strong> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> changes, <strong>the</strong> c<strong>on</strong>cordance<br />

decreased to 63.5 ± 4% with RLOA <str<strong>on</strong>g>of</str<strong>on</strong>g> 55.9 ± 5.2º (Table 3, Figure 2).<br />

Relati<strong>on</strong>ship <strong>between</strong> PPCO and <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> changes<br />

Changes in <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> parameters throughout different interventi<strong>on</strong>s are described in<br />

Table 4. Changes were more pr<strong>on</strong>ounced during introducti<strong>on</strong> or modificati<strong>on</strong>s in<br />

vasopressor dosage. C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ea and C changes to PPCO-EDCO differences was<br />

superior to TSVR and MAP changes in all PPA algorithms (see Additi<strong>on</strong>al 1, Figures 3,<br />

4, 5 and 6). The Liljestrand-Zander algorithm was <strong>the</strong> less influenced by <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g><br />

11


changes. An example <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> variati<strong>on</strong>s <strong>on</strong> discrepancies<br />

<strong>between</strong> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> PPCO and EDCO is shown in Figure 3.<br />

The ability <str<strong>on</strong>g>of</str<strong>on</strong>g> absolute percentage changes <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> parameters to detect an<br />

absolute PPCO-EDCO discrepancy ≥ 10% is detailed in Additi<strong>on</strong>al file 1, Table 2. ROC<br />

curves for <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> parameters <strong>on</strong> individual PPCO algorithms are shown in<br />

Additi<strong>on</strong>al file 1, Figure 7. Areas under ROC curves for each <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> parameter<br />

were significantly different in all algorithms. Overall, <strong>the</strong> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> Ea and C<br />

changes to predict a PPCO-EDCO discrepancy ≥ 10% was superior to TSVR and MAP<br />

changes in all algorithms. The performance <str<strong>on</strong>g>of</str<strong>on</strong>g> Ea changes was better in algorithms<br />

based <strong>on</strong> assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> systolic area, whereas <strong>the</strong> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> C changes to detect a<br />

significant PPCO-EDCO difference was superior in Windkessel, Herd and Pressure<br />

root-mean-square algorithms. However, <strong>the</strong> overall performance <str<strong>on</strong>g>of</str<strong>on</strong>g> Ea changes was<br />

superior to o<strong>the</strong>r <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> parameters (Table 5). As l<strong>on</strong>g as <strong>the</strong> absolute percentage<br />

Ea change was < 7-11% <strong>the</strong> EDCO-PPCO difference was < 10%.<br />

Discussi<strong>on</strong><br />

In this study, we observed that PPCO <strong>agreement</strong> with EDCO was greatly affected by<br />

changes in <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g>, although <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> to <strong>the</strong><br />

observed discrepancies was significantly different. Changes in Ea and C mainly<br />

determined PPCO-EDCO discrepancies, whereas <strong>the</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> TSVR and MAP<br />

changes was lower. In practice, changes in traditi<strong>on</strong>al indices such as TSVR or MAP<br />

fail to identify when EDCO and PPCO diverge. On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> performance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

new indices such as Ea and C is significantly better.<br />

12


To our knowledge, this is <strong>the</strong> first study to dem<strong>on</strong>strate that: 1) <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> changes<br />

during changes in vasopressor <strong>the</strong>rapy and fluid administrati<strong>on</strong> affect significantly <strong>the</strong><br />

<strong>agreement</strong> <strong>between</strong> EDCO and PPCO; 2) during fluid <str<strong>on</strong>g>load</str<strong>on</strong>g>ing <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> changes are<br />

less pr<strong>on</strong>ounced than during changes in vasopressor <strong>the</strong>rapy; 3) during fluid<br />

administrati<strong>on</strong>, EDCO and PPCO algorithms not based <strong>on</strong> systolic <strong>pressure</strong> analysis are<br />

interchangeable; 4) during vasopressor <strong>the</strong>rapy <strong>the</strong> <strong>agreement</strong> <strong>between</strong> EDCO and<br />

PPCO is severely affected; 5) precisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PPCO algorithms is more affected in septic<br />

patients; and 6) <strong>the</strong> LSC can implement <strong>the</strong> power <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> polar plot c<strong>on</strong>cordance<br />

analysis.<br />

We believe that from our study we can draw some important informati<strong>on</strong> that helps us<br />

to understand how EDCO and several PPCO algorithms perform when used at <strong>the</strong> same<br />

time. We have observed that changes in <strong>the</strong> <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> (mainly effective <str<strong>on</strong>g>arterial</str<strong>on</strong>g><br />

elastance and net <str<strong>on</strong>g>arterial</str<strong>on</strong>g> compliance) were major determinants in discrepancies<br />

<strong>between</strong> EDCO and PPCO. This is <strong>the</strong> first study to dem<strong>on</strong>strate that, during a fluid<br />

challenge, both EDCO and PPCO perform similarly as l<strong>on</strong>g as <strong>the</strong> <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> does not<br />

change. This finding brings strength to <strong>the</strong> current practice <str<strong>on</strong>g>of</str<strong>on</strong>g> using less invasive<br />

devices to m<strong>on</strong>itor changes in CO during fluid administrati<strong>on</strong> [1, 26]. However, when<br />

looking at <strong>the</strong> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> changes, <strong>the</strong> c<strong>on</strong>cordance <strong>between</strong> PPCO and EDCO<br />

decreased. In practice, while trending ability seems similar, <strong>on</strong>e should note that<br />

different techniques might measure different magnitudes <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in CO.<br />

After changes in vasopressors <strong>the</strong>rapy, <strong>the</strong> <strong>agreement</strong> <strong>between</strong> EDCO and PPCO was<br />

significantly affected. This finding can generate important research hypo<strong>the</strong>sis<br />

regarding <strong>the</strong> need <str<strong>on</strong>g>of</str<strong>on</strong>g> external calibrati<strong>on</strong>s for less invasive devices. Our study suggests<br />

that <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> changes may provide informati<strong>on</strong> about when to recalibrate a device.<br />

13


This could represent an important finding that needs to be verified with protocols<br />

aiming at recalibrating when a change in <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> has been observed.<br />

Interestingly, our results suggests that <strong>the</strong> precisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PPA is more affected in septic<br />

patients. This finding is c<strong>on</strong>sistent with recently dem<strong>on</strong>strated central-to-peripheral<br />

vascular t<strong>on</strong>e decoupling in experimental endotoxic shock[27]. Decoupling <str<strong>on</strong>g>of</str<strong>on</strong>g> aortic and<br />

radial <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <strong>pressure</strong> may be resp<strong>on</strong>sible for degrading <strong>the</strong> reliability <str<strong>on</strong>g>of</str<strong>on</strong>g> PPA in<br />

estimating CO when assessed at peripheral sites in this clinical c<strong>on</strong>diti<strong>on</strong>.<br />

In our study we arbitrarily used <strong>the</strong> EDCO as our reference technique and we performed<br />

an initial calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PPCO based <strong>on</strong> EDCO values. The poor <strong>agreement</strong> after<br />

significant changes in <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> could be explained as follows: 1) PPCO is<br />

significantly affected by <strong>the</strong>se changes and not reliable; 2) EDCO is significantly<br />

affected by <strong>the</strong>se changes and not reliable; or 3) PPCO and EDCO are both partially<br />

affected by <strong>the</strong>se changes. We believe that <strong>the</strong> third c<strong>on</strong>clusi<strong>on</strong> represents <strong>the</strong> most<br />

likely explanati<strong>on</strong>, but <strong>the</strong> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> an additi<strong>on</strong>al external calibrati<strong>on</strong> prevents us from<br />

speculating any fur<strong>the</strong>r about which technique would be affected more significantly. We<br />

argue that our findings support <strong>the</strong> recommendati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> using an external calibrati<strong>on</strong><br />

when significantly changes in <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> are suspected[28]. It would be important to<br />

test this hypo<strong>the</strong>sis by performing a similar experiment whilst using an external<br />

calibrati<strong>on</strong> (i.e. pulm<strong>on</strong>ary <strong>the</strong>rmodiluti<strong>on</strong> or transpulm<strong>on</strong>ary diluti<strong>on</strong> techniques) when<br />

assessing <strong>the</strong> <strong>agreement</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different CO m<strong>on</strong>itors after changes in vasopressor <strong>the</strong>rapy.<br />

Ano<strong>the</strong>r important finding <str<strong>on</strong>g>of</str<strong>on</strong>g> this study is that <strong>the</strong> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> LSC as suggested<br />

by Cecc<strong>on</strong>i et al. [22, 29], can be used to implement <strong>the</strong> c<strong>on</strong>cordance analysis when<br />

looking at changes in CO and <strong>agreement</strong> <strong>between</strong> different techniques. We suggest that<br />

this approach is used in fur<strong>the</strong>r studies comparing different CO m<strong>on</strong>itors.<br />

14


There are several limitati<strong>on</strong>s to our study that need to be addressed. First, our<br />

comparis<strong>on</strong> did not include any commercial PPCO algorithms. Never<strong>the</strong>less, although<br />

commercially available algorithms have significant differences, <strong>the</strong>y are based <strong>on</strong> <strong>the</strong><br />

similar assumpti<strong>on</strong>s and thus, in <strong>the</strong>ory, are susceptible to similar shortcomings[3, 5].<br />

Sec<strong>on</strong>d, we used <strong>the</strong> EDCO as our reference technique. This is a well-validated<br />

technique, although we believe that an external calibrati<strong>on</strong> would clear some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

doubts from our paper. It is also to note, though, that during rapid changes (such as a<br />

fluid challenge) <strong>the</strong>re is no external calibrati<strong>on</strong> that would allow changes to be recorded.<br />

Last, we used a processed <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <strong>pressure</strong> signal from <strong>the</strong> bedside patient m<strong>on</strong>itor<br />

which could have significantly affected <strong>the</strong> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>arterial</str<strong>on</strong>g> waveform and <strong>the</strong><br />

reliability <str<strong>on</strong>g>of</str<strong>on</strong>g> PPCO measurements. Moreover, most <str<strong>on</strong>g>of</str<strong>on</strong>g> our PPCO were c<strong>on</strong>nected to a<br />

radial <str<strong>on</strong>g>arterial</str<strong>on</strong>g> line. Although, this is <strong>the</strong> most comm<strong>on</strong> practice, we cannot exclude that<br />

<strong>the</strong> performance may have been different at o<strong>the</strong>r sites.<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

Changes in <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> during changes in vasopressor dosage or fluid administrati<strong>on</strong><br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>oundly affect <strong>the</strong> <strong>agreement</strong> <strong>between</strong> EDCO and PPCO. Arterial <str<strong>on</strong>g>load</str<strong>on</strong>g> changes are<br />

less pr<strong>on</strong>ounced during fluid <str<strong>on</strong>g>load</str<strong>on</strong>g>ing and this may explain <strong>the</strong> better <strong>agreement</strong> <strong>between</strong><br />

EDCO and PPCO after a fluid challenge. The impact in EDCO-PPCO discrepancy is<br />

not equal for all <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> parameters, being <strong>the</strong> Ea and <strong>the</strong> C <strong>the</strong> most influent<br />

variables in all studied algorithms. As l<strong>on</strong>g as <strong>the</strong> absolute Ea change is less than 7-11%<br />

<strong>the</strong> EDCO and PPCO seem interchangeable. The LSC can be used to identify <strong>the</strong> best<br />

cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f in a c<strong>on</strong>cordance analysis.<br />

15


Key messages<br />

• The <strong>agreement</strong> <strong>between</strong> all PPCO algorithms and EDCO was pr<str<strong>on</strong>g>of</str<strong>on</strong>g>oundly<br />

affected by <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> changes induced by changes in vasopressor <strong>the</strong>rapy and<br />

fluid administrati<strong>on</strong>.<br />

• Precisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PPCO algorithms was more affected in septic patients.<br />

• The c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> net <str<strong>on</strong>g>arterial</str<strong>on</strong>g> compliance and effective <str<strong>on</strong>g>arterial</str<strong>on</strong>g> elastance to <strong>the</strong><br />

EDCO-PPCO discrepancies was superior to TSVR and MAP changes in all<br />

PPCO algorithms.<br />

• An absolute Ea change >7-11% was associated with a PPCO-EDCO discrepancy<br />

≥10%.<br />

16


Abbreviati<strong>on</strong>s<br />

C: net <str<strong>on</strong>g>arterial</str<strong>on</strong>g> compliance.<br />

CO: cardiac output.<br />

CV: coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong>.<br />

Ea: effective <str<strong>on</strong>g>arterial</str<strong>on</strong>g> elastance.<br />

EDCO: esophageal Doppler-derived cardiac output.<br />

IQR: interquartile range.<br />

LOA: limits <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>agreement</strong>.<br />

LSC: least significant change.<br />

MAP: mean <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <strong>pressure</strong>.<br />

PE: percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> error.<br />

PPA: <strong>pulse</strong> <strong>pressure</strong> analysis.<br />

PPCO: <strong>pulse</strong> <strong>pressure</strong>-derived cardiac output.<br />

RLOA: radial limits <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>agreement</strong>.<br />

ROC: receiver-operating characteristic.<br />

SAP: systolic <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <strong>pressure</strong>.<br />

SD: standard deviati<strong>on</strong>.<br />

SV: stroke volume.<br />

TSVR: total systemic vascular resistance.<br />

VE: volume expansi<strong>on</strong>.<br />

17


Competing interests<br />

M.I.M.G. is c<strong>on</strong>sultant for Edwards Lifesciences and received travel expenses from<br />

Deltex. AGC has received H<strong>on</strong>oraria from Edwards Lifesciences. A.R. has received<br />

H<strong>on</strong>oraria and advisory board for LiDCO, H<strong>on</strong>oraria for Covidien, Edwards<br />

Lifesciences and Cheetah. M.C. in <strong>the</strong> last 5 years has received H<strong>on</strong>oraria and/or Travel<br />

Expenses from Edwards Lifesciences, LiDCO, Cheetah, Bmeye, Masimo and Deltex.<br />

MGR and RMG have no c<strong>on</strong>flict <str<strong>on</strong>g>of</str<strong>on</strong>g> interest to declare. Except for <strong>the</strong> esophageal<br />

Doppler m<strong>on</strong>itor, all support was provided solely from instituti<strong>on</strong>al and/or departmental<br />

sources.<br />

Authors' c<strong>on</strong>tributi<strong>on</strong>s<br />

MIMG c<strong>on</strong>ceived and designed <strong>the</strong> study, participated in <strong>the</strong> recruitment <str<strong>on</strong>g>of</str<strong>on</strong>g> patients,<br />

performed <strong>the</strong> statistical analysis, interpreted <strong>the</strong> data and wrote <strong>the</strong> manuscript. MGR<br />

participated in <strong>the</strong> study design, patient recruitment, data collecti<strong>on</strong>, provided technical<br />

support and c<strong>on</strong>tributed in <strong>the</strong> critical review <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> manuscript. AGC participated in <strong>the</strong><br />

study c<strong>on</strong>cepti<strong>on</strong> and design, interpreted data and helped draft <strong>the</strong> manuscript. AR and<br />

RMG have made substantial c<strong>on</strong>tributi<strong>on</strong>s to <strong>the</strong> analysis and interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> data,<br />

have been involved in drafting <strong>the</strong> manuscript and c<strong>on</strong>tributed in its critical review. MC<br />

c<strong>on</strong>tributed in <strong>the</strong> study design, helped in <strong>the</strong> statistical analysis, interpreted data and<br />

wrote and reviewed <strong>the</strong> manuscript. All <strong>the</strong> authors read and approved <strong>the</strong> final versi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> manuscript.<br />

18


Acknowledgements<br />

The authors would like to thank <strong>the</strong> nursing staff at <strong>the</strong> Intensive Care Unit <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

Hospital SAS de Jerez for <strong>the</strong>ir assistance with this study. We also appreciated Deltex<br />

Medical for providing CardioQ-Combi m<strong>on</strong>itor.<br />

Part <str<strong>on</strong>g>of</str<strong>on</strong>g> this study was presented in <strong>the</strong> 47 th Annual C<strong>on</strong>gress <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Sociedad Española<br />

de Medicina Intensiva, Crítica y Unidades Cor<strong>on</strong>arias (SEMICYUC, 2012, Málaga,<br />

Spain) and was awarded with <strong>the</strong> Society’s Hemodynamic M<strong>on</strong>itoring Award.<br />

19


References<br />

1. Hamilt<strong>on</strong> MA, Cecc<strong>on</strong>i M, Rhodes A: A systematic review and meta-analysis<br />

<strong>on</strong> <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> preemptive hemodynamic interventi<strong>on</strong> to improve postoperative<br />

outcomes in moderate and high-risk surgical patients. Anes<strong>the</strong>sia and<br />

analgesia 2011, 112:1392-1402.<br />

2. Nicolosi GR, Pieper HP: Nature <str<strong>on</strong>g>of</str<strong>on</strong>g> aortic smooth muscle resp<strong>on</strong>ses to changes<br />

in venous return in intact dogs. Am J Physiol 1975, 228:518-525.<br />

3. Cecc<strong>on</strong>i M, Rhodes A: Pulse <strong>pressure</strong> analysis: to make a l<strong>on</strong>g story short. Crit<br />

Care 2010, 14:175.<br />

4. St<strong>on</strong>e DN, Dujardin JP: Changes in smooth muscle t<strong>on</strong>e influence<br />

characteristic impedance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> aorta. Am J Physiol 1984, 246:H1-7.<br />

5. Cholley BP, Lang RM, Berger DS, Korcarz C, Payen D, Shr<str<strong>on</strong>g>of</str<strong>on</strong>g>f SG: Alterati<strong>on</strong>s<br />

in systemic <str<strong>on</strong>g>arterial</str<strong>on</strong>g> mechanical properties during septic shock: role <str<strong>on</strong>g>of</str<strong>on</strong>g> fluid<br />

resuscitati<strong>on</strong>. Am J Physiol 1995, 269:H375-384.<br />

6. Metzelder S, Coburn M, Fries M, Reinges M, Reich S, Rossaint R, Marx G, Rex<br />

S: Performance <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiac output measurement derived from <str<strong>on</strong>g>arterial</str<strong>on</strong>g><br />

<strong>pressure</strong> waveform analysis in patients requiring high-dose vasopressor<br />

<strong>the</strong>rapy. British journal <str<strong>on</strong>g>of</str<strong>on</strong>g> anaes<strong>the</strong>sia 2011, 106:776-784.<br />

7. Gruenewald M, Meybohm P, Renner J, Broch O, Caliebe A, Weiler N, Steinfath<br />

M, Scholz J, Bein B: Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> norepinephrine dosage and calibrati<strong>on</strong><br />

frequency <strong>on</strong> accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>pulse</strong> c<strong>on</strong>tour-derived cardiac output. Crit Care<br />

2011, 15:R22.<br />

8. Yamashita K, Nishiyama T, Yokoyama T, Abe H, Manabe M: The effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vasodilati<strong>on</strong> <strong>on</strong> cardiac output measured by PiCCO. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiothoracic<br />

and vascular anes<strong>the</strong>sia 2008, 22:688-692.<br />

9. Bein B, Meybohm P, Cavus E, Renner J, T<strong>on</strong>ner PH, Steinfath M, Scholz J,<br />

Doerges V: The reliability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>pulse</strong> c<strong>on</strong>tour-derived cardiac output during<br />

hemorrhage and after vasopressor administrati<strong>on</strong>. Anes<strong>the</strong>sia and analgesia<br />

2007, 105:107-113.<br />

10. Godje O, Hoke K, Goetz AE, Felbinger TW, Reuter DA, Reichart B, Friedl R,<br />

Hannekum A, Pfeiffer UJ: Reliability <str<strong>on</strong>g>of</str<strong>on</strong>g> a new algorithm for c<strong>on</strong>tinuous<br />

20


cardiac output determinati<strong>on</strong> by <strong>pulse</strong>-c<strong>on</strong>tour analysis during hemodynamic<br />

instability. Critical care medicine 2002, 30:52-58.<br />

11. M<strong>on</strong>net X, Anguel N, Jozwiak M, Richard C, Teboul JL: Third-generati<strong>on</strong><br />

FloTrac/Vigileo does not reliably track changes in cardiac output induced by<br />

norepinephrine in critically ill patients. British journal <str<strong>on</strong>g>of</str<strong>on</strong>g> anaes<strong>the</strong>sia 2012.<br />

12. Elef<strong>the</strong>riadis S, Galatoudis Z, Didilis V, Bougioukas I, Sch<strong>on</strong> J, Heinze H, Berger<br />

KU, Heringlake M: Variati<strong>on</strong>s in <str<strong>on</strong>g>arterial</str<strong>on</strong>g> blood <strong>pressure</strong> are associated with<br />

parallel changes in FlowTrac/Vigileo-derived cardiac output measurements:<br />

a prospective comparis<strong>on</strong> study. Crit Care 2009, 13:R179.<br />

13. Giraud R, Siegenthaler N, Bendjelid K: Pulse <strong>pressure</strong> variati<strong>on</strong>, stroke volume<br />

variati<strong>on</strong> and dynamic <str<strong>on</strong>g>arterial</str<strong>on</strong>g> elastance. Crit Care 2011, 15:414.<br />

14. Kelly RP, Ting CT, Yang TM, Liu CP, Maughan WL, Chang MS, Kass DA:<br />

Effective <str<strong>on</strong>g>arterial</str<strong>on</strong>g> elastance as index <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>arterial</str<strong>on</strong>g> vascular <str<strong>on</strong>g>load</str<strong>on</strong>g> in humans.<br />

Circulati<strong>on</strong> 1992, 86:513-521.<br />

15. Chemla D, Hebert JL, Coirault C, Zamani K, Suard I, Colin P, Lecarpentier Y:<br />

Total <str<strong>on</strong>g>arterial</str<strong>on</strong>g> compliance estimated by stroke volume-to-aortic <strong>pulse</strong> <strong>pressure</strong><br />

ratio in humans. Am J Physiol 1998, 274:H500-505.<br />

16. Fergus<strong>on</strong> JJ, 3rd, Randall OS: Hemodynamic correlates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>arterial</str<strong>on</strong>g> compliance.<br />

Ca<strong>the</strong>t Cardiovasc Diagn 1986, 12:376-380.<br />

17. Segers P, Verd<strong>on</strong>ck P, Deryck Y, Brimioulle S, Naeije R, Carlier S, Stergiopulos<br />

N: Pulse <strong>pressure</strong> method and <strong>the</strong> area method for <strong>the</strong> estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> total<br />

<str<strong>on</strong>g>arterial</str<strong>on</strong>g> compliance in dogs: sensitivity to wave reflecti<strong>on</strong> intensity. Annals <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

biomedical engineering 1999, 27:480-485.<br />

18. Sunagawa K, Maughan WL, Burkh<str<strong>on</strong>g>of</str<strong>on</strong>g>f D, Sagawa K: Left ventricular interacti<strong>on</strong><br />

with <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> studied in isolated canine ventricle. Am J Physiol 1983,<br />

245:H773-780.<br />

19. Segers P, Stergiopulos N, Westerh<str<strong>on</strong>g>of</str<strong>on</strong>g> N: Relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> effective <str<strong>on</strong>g>arterial</str<strong>on</strong>g> elastance<br />

to <str<strong>on</strong>g>arterial</str<strong>on</strong>g> system properties. American journal <str<strong>on</strong>g>of</str<strong>on</strong>g> physiology Heart and<br />

circulatory physiology 2002, 282:H1041-1046.<br />

20. Chemla D, Ant<strong>on</strong>y I, Lecarpentier Y, Nitenberg A: C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> systemic<br />

vascular resistance and total <str<strong>on</strong>g>arterial</str<strong>on</strong>g> compliance to effective <str<strong>on</strong>g>arterial</str<strong>on</strong>g><br />

elastance in humans. American journal <str<strong>on</strong>g>of</str<strong>on</strong>g> physiology Heart and circulatory<br />

physiology 2003, 285:H614-620.<br />

21


21. Bland JM, Altman DG: Agreement <strong>between</strong> methods <str<strong>on</strong>g>of</str<strong>on</strong>g> measurement with<br />

multiple observati<strong>on</strong>s per individual. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> biopharmaceutical statistics<br />

2007, 17:571-582.<br />

22. Le Manach Y, H<str<strong>on</strong>g>of</str<strong>on</strong>g>er CK, Lehot JJ, Vallet B, Goarin JP, Tavernier B, Canness<strong>on</strong><br />

M: Can Changes in Arterial Pressure be Used to Detect Changes in Cardiac<br />

Output during Volume Expansi<strong>on</strong> in <strong>the</strong> Perioperative Period? Anes<strong>the</strong>siology<br />

2012.<br />

23. Critchley LA, Lee A, Ho AM: A critical review <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous<br />

cardiac output m<strong>on</strong>itors to measure trends in cardiac output. Anes<strong>the</strong>sia and<br />

analgesia 2010, 111:1180-1192.<br />

24. Critchley LA, Yang XX, Lee A: Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> trending ability <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiac<br />

output m<strong>on</strong>itors by polar plot methodology. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiothoracic and<br />

vascular anes<strong>the</strong>sia 2011, 25:536-546.<br />

25. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal<br />

SM, Vincent JL, Ramsay G, Internati<strong>on</strong>al Sepsis Definiti<strong>on</strong>s C: 2001<br />

SCCM/ESICM/ACCP/ATS/SIS Internati<strong>on</strong>al Sepsis Definiti<strong>on</strong>s C<strong>on</strong>ference.<br />

Intensive care medicine 2003, 29:530-538.<br />

26. Pinsky MR: Both perfusi<strong>on</strong> <strong>pressure</strong> and flow are essential for adequate<br />

resuscitati<strong>on</strong>. Sepsis 2000, 4:143-146.<br />

27. Hatib F, Jansen JR, Pinsky MR: Peripheral vascular decoupling in porcine<br />

endotoxic shock. J Appl Physiol 2011, 111:853-860.<br />

28. Bendjelid K: When to recalibrate <strong>the</strong> PiCCO? From a physiological point <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

view, <strong>the</strong> answer is simple. Acta anaes<strong>the</strong>siologica Scandinavica 2009, 53:689-<br />

690.<br />

29. Cecc<strong>on</strong>i M, Daws<strong>on</strong> D, Grounds RM, Rhodes A: Lithium diluti<strong>on</strong> cardiac<br />

output measurement in <strong>the</strong> critically ill patient: determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> precisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> technique. Intensive care medicine 2009, 35:498-504.<br />

30. Erlanger J, Hooker DR: Experimental study blood-<strong>pressure</strong> <strong>pulse</strong>-<strong>pressure</strong><br />

man. Johns Hopkins Hosp Rep 1904, 12:145-378.<br />

31. Rauch H, Muller M, Fleischer F, Bauer H, Martin E, Bottiger BW: Pulse c<strong>on</strong>tour<br />

analysis versus <strong>the</strong>rmodiluti<strong>on</strong> in cardiac surgery patients. Acta<br />

anaes<strong>the</strong>siologica Scandinavica 2002, 46:424-429.<br />

22


32. Warner HR, Swan HJ, C<strong>on</strong>nolly DC, Tompkins RG, Wood EH: Quantitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

beat-to-beat changes in stroke volume from <strong>the</strong> aortic <strong>pulse</strong> c<strong>on</strong>tour in man. J<br />

Appl Physiol 1953, 5:495-507.<br />

33. Verdouw PD, Beaune J, Roelandt J, Hugenholtz PG: Stroke volume from central<br />

aortic <strong>pressure</strong>? A critical assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> various formulae as to <strong>the</strong>ir<br />

clinical value. Basic research in cardiology 1975, 70:377-389.<br />

34. Bourgeois MJ, Gilbert BK, V<strong>on</strong> Bernuth G, Wood EH: C<strong>on</strong>tinuous<br />

determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> beat to beat stroke volume from aortic <strong>pressure</strong> <strong>pulse</strong>s in<br />

<strong>the</strong> dog. Circ Res 1976, 39:15-24.<br />

35. Wesseling KH, de Wit B, Weber JAP, Ty Smith N: A simple device for <strong>the</strong><br />

c<strong>on</strong>tinuous measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiac output. Adv Cardiovasc Physiol 1983,<br />

5:16-52.<br />

36. J<strong>on</strong>es WB, Hefner LL, Bancr<str<strong>on</strong>g>of</str<strong>on</strong>g>t WH, Jr., Klip W: Velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> blood flow and<br />

stroke volume obtained from <strong>the</strong> <strong>pressure</strong> <strong>pulse</strong>. The Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> clinical<br />

investigati<strong>on</strong> 1959, 38:2087-2090.<br />

37. Herd JA, Leclair NR, Sim<strong>on</strong> W: Arterial <strong>pressure</strong> <strong>pulse</strong> c<strong>on</strong>tours during<br />

hemorrhage in anes<strong>the</strong>tized dogs. J Appl Physiol 1966, 21:1864-1868.<br />

38. Wesseling KH, Jansen JR, Settels JJ, Schreuder JJ: Computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aortic flow<br />

from <strong>pressure</strong> in humans using a n<strong>on</strong>linear, three-element model. J Appl<br />

Physiol 1993, 74:2566-2573.<br />

39. Godje O, Hoke K, Lamm P, Schmitz C, Thiel C, Weinert M, Reichart B:<br />

C<strong>on</strong>tinuous, less invasive, hemodynamic m<strong>on</strong>itoring in intensive care after<br />

cardiac surgery. The Thoracic and cardiovascular surge<strong>on</strong> 1998, 46:242-249.<br />

40. Kouchoukos NT, Sheppard LC, McD<strong>on</strong>ald DA: Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stroke volume in<br />

<strong>the</strong> dog by a <strong>pulse</strong> c<strong>on</strong>tour method. Circ Res 1970, 26:611-623.<br />

41. Liljestrand G, Zander E: Vergleichende Bestimmungen des Minutenvolumens<br />

des Herzens beim Menschen mittels der Stickoxydulmethode und durch<br />

Blutdruckmessung. Z Ges Exp Med 1928, 59:105-122.<br />

42. J<strong>on</strong>as M, D. H, Morgan J: Real-time, c<strong>on</strong>tinuous m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiac output<br />

and oxygen delivery. Inter J Intensive Care 2002, 9:33-42.<br />

43. Chantler PD, Lakatta EG, Najjar SS: Arterial-ventricular coupling: mechanistic<br />

insights into cardiovascular performance at rest and during exercise. J Appl<br />

Physiol 2008, 105:1342-1351.<br />

23


Figure titles and legends<br />

Figure 1.<br />

Title: Bland-Altman plots for <strong>the</strong> absolute values <str<strong>on</strong>g>of</str<strong>on</strong>g> PPCO vs. EDCO.<br />

Legend: Agreement <strong>between</strong> PPCO and EDCO measurements according to Bland-<br />

Altman analysis. Only <strong>on</strong>e marker for subject was represented in <strong>the</strong> graph. The marker<br />

size is relative to <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong> per subject. Solid lines represent bias (mean<br />

difference <strong>between</strong> EDCO and PPCO measurements). Dashed lines are <strong>the</strong> upper and<br />

lower limit <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>agreement</strong> (bias ± 1.96 standard deviati<strong>on</strong>).<br />

Figure 2.<br />

Title: Trending ability <str<strong>on</strong>g>of</str<strong>on</strong>g> PPCO vs. EDCO based <strong>on</strong> polar plot analysis.<br />

Legend: C<strong>on</strong>cordance analysis based <strong>on</strong> polar plots for evaluating trending ability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

PPCO vs. EDCO (<strong>agreement</strong> in directi<strong>on</strong> and magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> change). C<strong>on</strong>c: c<strong>on</strong>cordance<br />

rate, exclusi<strong>on</strong> z<strong>on</strong>e 9.5% (central white circle). The magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> polar vector (<strong>the</strong><br />

distance from <strong>the</strong> centre <str<strong>on</strong>g>of</str<strong>on</strong>g> polar plot) represents <strong>the</strong> mean change in cardiac output.<br />

The angle <str<strong>on</strong>g>of</str<strong>on</strong>g> polar vector with <strong>the</strong> horiz<strong>on</strong>tal axis (θ) is <strong>the</strong> <strong>agreement</strong> <strong>between</strong> both<br />

methods. Good trending capability was assumed when most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> data lies within ± 30º<br />

radial limits <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>agreement</strong>.<br />

25


Figure 3.<br />

Title: Example <str<strong>on</strong>g>of</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> mean <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <strong>pressure</strong>, total systemic vascular<br />

resistance, net <str<strong>on</strong>g>arterial</str<strong>on</strong>g> compliance and effective <str<strong>on</strong>g>arterial</str<strong>on</strong>g> elastance changes <strong>on</strong><br />

discrepancies <strong>between</strong> PPCO and EDCO<br />

Legend: C: net <str<strong>on</strong>g>arterial</str<strong>on</strong>g> compliance; Ea: effective <str<strong>on</strong>g>arterial</str<strong>on</strong>g> elastance; MAP: mean <str<strong>on</strong>g>arterial</str<strong>on</strong>g><br />

<strong>pressure</strong>; EDCO: esophageal Doppler cardiac output; PPCO: <strong>pulse</strong> <strong>pressure</strong>-derived<br />

cardiac output; PPCO-EDCO discrepancy (%): PPCO – EDCO / EDCO; TSVR: total<br />

systemic vascular resistance.<br />

26


Tables<br />

Table 1. Pulse <strong>pressure</strong>-derived algorithms tested [30-43].<br />

Algorithm name<br />

(Source, year)<br />

Windkessel<br />

(Erlanger and Hooker, 1904)<br />

Windkessel with RC decay<br />

(Bourgeois, 1976)<br />

Liljestrand-Zander<br />

(Liljestrand and Zander 1928)<br />

Herd<br />

(Herd, 1966)<br />

Pressure root-mean-square<br />

(J<strong>on</strong>as and Tanser, 2002)<br />

Systolic area<br />

(J<strong>on</strong>es, 1959; Verdouw, 1975)<br />

Systolic area with correcti<strong>on</strong><br />

(Warner, 1954, Kouchoukos, 1970)<br />

Algorithm descripti<strong>on</strong><br />

k * (SBP – DBP) * HR<br />

k * (MAP / T) * ln(SBP/DBP) * HR<br />

k * (SBP – DBP) / (SBP + DBP) * HR<br />

k * (MAP – DBP) * HR<br />

k * ABP t MAP dt * HR<br />

k ∗ ABP dt ∗ HR<br />

k ∗ ABP dt ∗ 1 Tsys<br />

Tdia<br />

∗ HR<br />

Corrected impedance<br />

(Wesseling, 1983, Rauch, 2002) k ∗ 163 HR 0.48 ∗ MAP ∗ ABP dt ∗ HR<br />

ABP: <str<strong>on</strong>g>arterial</str<strong>on</strong>g> blood <strong>pressure</strong>; DBP: diastolic blood <strong>pressure</strong>; HR: heart rate; k: calibrati<strong>on</strong> factor<br />

obtained from esophageal Doppler cardiac output; MAP: mean <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <strong>pressure</strong>; SBP: systolic blood<br />

<strong>pressure</strong>; T: durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiac cycle (T =√HR/60); Tdia: durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diastole (Tdia = T – Tsys); Tsys:<br />

durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> systole (estimated as a 30% <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiac cycle time).<br />

27


Table 2. Characteristics and demographics data <str<strong>on</strong>g>of</str<strong>on</strong>g> study populati<strong>on</strong>.<br />

Age (years) 60.1 ± 15.2<br />

Gender (M/F) 37/16<br />

Weight (kg) 80 (70 to 90)<br />

Height (cm) 169.6 ± 8.3<br />

ICU mortality rate, n (%) 14 (26.4)<br />

Vasoactive agents at inclusi<strong>on</strong> time, n; dose (µg kg -1 min -1 )<br />

Norepinephrine 38 (0.16; 0.09 to 0.28)<br />

Dobutamine 5 (8.33; 7.18 to 9.59)<br />

Analgesia and sedative drugs<br />

Fentanyl, n; dose (µg kg -1 h -1 ) 40 (1.44; 1.07 to 2)<br />

Remifentanil, n; dose (µg kg -1 min -1 ) 8 (0.09; 0.08 to 0.12)<br />

Morphine, n; dose (mg h -1 ) 2 (2 to10)<br />

Midazolam, n; dose (mg kg -1 h -1 ) 42; 0.09 ± 0.03<br />

Prop<str<strong>on</strong>g>of</str<strong>on</strong>g>ol, n; dose (mg kg -1 min -1 ) 6 (0.92; 0.59 to 1.54)<br />

Ventilator settings<br />

Tidal volume, mL/Kg predicted body weight 7.9 (7.2 to 8.8)<br />

Respiratory rate, b.p.m. 18.6 ± 1.6<br />

Total PEEP, cm H2O 6 (6 to 8)<br />

FiO2, % 66.5 ± 17.8<br />

SaO2, % 99 (97 to 99)<br />

Arterial ca<strong>the</strong>ter site (radial/femoral) 46/7<br />

ARDS, n 6<br />

Reas<strong>on</strong> for admissi<strong>on</strong>, n<br />

Sepsis/Septic shock<br />

Abdominal 22<br />

Pulm<strong>on</strong>ary 10<br />

Urological 2<br />

Neurological 1<br />

Cardiogenic shock 5<br />

Hemorrhagic shock 6<br />

Mesenteric thrombosis 1<br />

Acute cerebrovascular disease 4<br />

Polytrauma 3<br />

ARDS: acute respiratory distress syndrome; F: female; FiO2: inspired oxygen fracti<strong>on</strong>; ICU: intensive<br />

care unit; M: male; PEEP: positive end-expiratory <strong>pressure</strong>; SaO2: <str<strong>on</strong>g>arterial</str<strong>on</strong>g> oxygen saturati<strong>on</strong>. Values are<br />

expressed as mean ± SD, median (25 th to 75 th percentile) or absolute numbers, as appropriate.<br />

28


Table 3. Agreement and c<strong>on</strong>cordance analyses <strong>between</strong> esophageal Doppler and <strong>pulse</strong> <strong>pressure</strong>-derived<br />

algorithms for estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiac output and tracking EDCO changes.<br />

PPCO algorithm<br />

Mean<br />

CO<br />

(L/min)<br />

Bias ± LOA<br />

(L/min)<br />

PE<br />

(%)<br />

4-quadrant<br />

plot<br />

C<strong>on</strong>cordance<br />

(%)<br />

C<strong>on</strong>cordance<br />

(%)<br />

Polar plot<br />

Mean θ (º) ±<br />

RLOA (º)<br />

Windkessel 6.40 -0.11 ± 2.50 40.2 76.8 63.8 12.5 ± 52.7<br />

Fluid administrati<strong>on</strong> 6.30 -0.01 ± 1.67 27.0 93.4 74.9 6.5 ± 47.5<br />

Vasopressor change 6.59 -0.29 ± 3.15 49.8 51.8 44.7 22.9 ± 55.1<br />

Windkessel with RC decay 6.41 -0.12 ± 2.42 38.9 77.2 64.9 12.0 ± 52.5<br />

Fluid administrati<strong>on</strong> 6.31 -0.02 ± 1.68 27.2 93.6 76.8 6.5 ± 46.7<br />

Vasopressor change 6.60 -0.31 ± 2.99 47.3 51.0 43.4 21.9 ± 57.5<br />

Liljestrand-Zander 6.16 0.13 ± 1.66 27.2 92.3 70.5 -5.6 ± 48.8<br />

Fluid administrati<strong>on</strong> 6.07 0.22 ± 1.55 25.5 91.4 64.0 -3.9 ± 53.4<br />

Vasopressor change 6.32 -0.03 ± 1.70 27.5 94.1 84.4 -9.2 ± 35.9<br />

Herd 6.45 -0.16 ± 2.47 39.6 76.1 59.5 13.1 ± 55.4<br />

Fluid administrati<strong>on</strong> 6.35 -0.06 ± 1.89 30.6 91.7 64.5 9.9 ± 49.1<br />

Vasopressor change 6.63 -0.34 ± 2.91 46.0 48.2 39.2 19.4 ± 64.4<br />

Pressure root-mean-square 6.42 -0.13 ± 2.54 40.8 75.6 63.9 13.6 ± 52.6<br />

Fluid administrati<strong>on</strong> 6.31 -0.02 ± 1.69 27.4 92.1 77.7 7.2 ± 44.8<br />

Vasopressor change 6.63 -0.34 ± 3.21 50.7 45.7 40.1 24.5 ± 57.9<br />

Systolic area 6.37 -0.08 ± 2.29 36.9 66.6 59.9 6.1 ± 62.7<br />

Fluid administrati<strong>on</strong> 6.19 0.10 ± 1.49 24.4 88.5 75.1 -3.9 ± 50.7<br />

Vasopressor change 6.69 -0.39 ± 2.88 45.3 36.6 35.3 22.2 ± 67.1<br />

Systolic area with correcti<strong>on</strong> 6.34 -0.05 ± 2.27 36.7 66.3 61.5 4.9 ± 62.5<br />

Fluid administrati<strong>on</strong> 6.17 0.12 ± 1.55 25.3 86.1 74.7 -3.7 ± 51.2<br />

Vasopressor change 6.66 -0.37 ± 2.78 43.8 38.4 35.8 19.2 ± 69.1<br />

Corrected impedance 6.27 0.02 ± 2.10 34.1 65.4 60.2 -1.8 ± 60.3<br />

Fluid administrati<strong>on</strong> 6.10 0.19 ± 1.50 24.7 80.3 70.4 -8.5 ± 50.9<br />

Vasopressor change 6.60 -0.31 ± 2.48 39.2 44.9 41.9 10.2 ± 68.3<br />

CO: cardiac output; C<strong>on</strong>cordance: percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>agreement</strong> <strong>between</strong> changes <strong>between</strong> esophageal Doppler cardiac output (EDCO)<br />

and <strong>pulse</strong>-<strong>pressure</strong> derived cardiac output (PPCO) measurements (exclusi<strong>on</strong> z<strong>on</strong>e = 9.5%, obtained from <strong>the</strong> combined LSC for<br />

EDCO and PPCO); LOA: limits <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>agreement</strong>; mean θ: mean angle <str<strong>on</strong>g>of</str<strong>on</strong>g> all radial vectors from <strong>the</strong> polar axis; PE: percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> error<br />

= 2SD/mean <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>pulse</strong> <strong>pressure</strong>-derived and esophageal Doppler cardiac output measurements; PPCO: <strong>pulse</strong> <strong>pressure</strong>-derived<br />

cardiac output; RLOA: radial limits <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>agreement</strong>.<br />

29


Table 4. Changes <strong>on</strong> <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> parameters and mean <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <strong>pressure</strong><br />

throughout different interventi<strong>on</strong>s.<br />

Absolute percentage<br />

change (%)<br />

Range <str<strong>on</strong>g>of</str<strong>on</strong>g> change (%)<br />

Mean <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <strong>pressure</strong><br />

Fluid administrati<strong>on</strong> 4.29 (1.7 to 8.3) -18.3 – 44.8<br />

Vasopressor change 11.6 (3.3 to 16.5) * -30.9 – 61.6<br />

Total systemic vascular resistance<br />

Fluid administrati<strong>on</strong> 5.5 (2.5 to 9.9) -31.1 – 59.7<br />

Vasopressor change 12.1 (5.2 to 24.5) * -38.1 – 132.1<br />

Net <str<strong>on</strong>g>arterial</str<strong>on</strong>g> compliance<br />

Fluid administrati<strong>on</strong> 6.1 (2.7 to 11.3) -46.5 – 57.6<br />

Vasopressor change 11.4 (5.1 to 21.4) * -47.4 – 102.2<br />

Effective <str<strong>on</strong>g>arterial</str<strong>on</strong>g> elastance<br />

Fluid administrati<strong>on</strong> 4.9 (2.4 to 9.4) -34.4 – 79.6<br />

Vasopressor change 10.3 (4.1 to 20.8) * -43.7 – 86.2<br />

Data are expressed as median (25 th to 75 th interquartile range) or as range. * P < 0.0001 vs. fluid<br />

administrati<strong>on</strong>.<br />

30


Table 5. Pooled predictive performance <str<strong>on</strong>g>of</str<strong>on</strong>g> absolute percentage changes in <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> parameters <strong>on</strong> all<br />

PPCO algorithms to detect an absolute PPCO-EDCO discrepancy ≥10%.<br />

Pooled AUC<br />

(95% CI)<br />

Pooled Sensitivity<br />

(95% CI)<br />

Pooled Specificity<br />

(95% CI)<br />

Pooled optimal<br />

cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

Pooled<br />

Youden index<br />

∆MAP 0.77 (0.75 – 0.77) 65.2% (63.9 – 66.4) 76.8% (76.0 – 77.6) 7.4 ± 1.1% 0.42 ± 0.06<br />

∆TSVR 0.79 (0.78 – 0.79) 63.1% (61.9 – 64.1) 82.1% (81.3 – 82.8) 10.6 ± 1.3% 0.45 ± 0.14<br />

∆C 0.83 (0.83 – 0.84) 72.6% (71.4 – 73.7) 82.5% (81.8 – 83.2) 10.3 ± 0.9% 0.55 ± 0.12<br />

∆Ea 0.86 (0.85 – 0.86) 75.1% (73.9 – 76.2) 83.3 % (82.6 – 83.9) 8.9 ± 0.6% 0.58 ± 0.14<br />

AUC: area under <strong>the</strong> ROC curve; C: net <str<strong>on</strong>g>arterial</str<strong>on</strong>g> compliance; Ea: effective <str<strong>on</strong>g>arterial</str<strong>on</strong>g> elastance; MAP: mean <str<strong>on</strong>g>arterial</str<strong>on</strong>g> <strong>pressure</strong>; PPCO: <strong>pulse</strong><br />

<strong>pressure</strong>-derived cardiac output; TSVR: total systemic vascular resistance.<br />

31


Additi<strong>on</strong>al files provided with this submissi<strong>on</strong>:<br />

Additi<strong>on</strong>al file 1: Additi<strong>on</strong>al file.docx, 6571K<br />

http://ccforum.com/imedia/1416232661102180/supp1.docx

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!