03.07.2013 Views

A One Dimensional Photonic Crystal - 台大電機系計算機中心

A One Dimensional Photonic Crystal - 台大電機系計算機中心

A One Dimensional Photonic Crystal - 台大電機系計算機中心

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 4<br />

The Multilayer Film: A <strong>One</strong><br />

<strong>Dimensional</strong> <strong>Photonic</strong> <strong>Crystal</strong><br />

台大光電所暨電機系<br />

邱奕鵬<br />

Room 617, BL Building<br />

(02) 3366-3603<br />

ypchiou@cc.ee.ntu.edu.tw<br />

<strong>Photonic</strong> Modeling and Design Lab.<br />

Graduate Institute of <strong>Photonic</strong>s and Optoelectronics &<br />

Department of Electrical Engineering<br />

National Taiwan University<br />

<strong>One</strong> <strong>Dimensional</strong> Structure - Quarter Wave Stack<br />

n − n<br />

r =<br />

n + n<br />

Dielectric mirror 1 2<br />

φ=kd+φ r<br />

R, T ?<br />

Destructive Interference<br />

Decay exponentially<br />

Theory built by Lord Rayleigh in 1887<br />

1 2<br />

r > 0, n > n<br />

r < 0, n < n<br />

1 2<br />

1 2<br />

tilt 2dcosθ=mλ<br />

λ varies => θ varies<br />

NTU GIPO & EE YPC <strong>Photonic</strong> Modeling and Design Lab.<br />

Block form:<br />

The Multilayer Film<br />

Bragg mirror Lord Rayleigh solved in 1887 and 1917<br />

: any value<br />

: restrict to a<br />

finite interval<br />

NTU GIPO & EE 2 YPC <strong>Photonic</strong> Modeling and Design Lab.<br />

1D Band Structure of A Homogeneous Material<br />

NTU GIPO & EE YPC <strong>Photonic</strong> Modeling and Design Lab.


Helmholtz eq.<br />

∂ ψ ω<br />

∂z<br />

c<br />

ω<br />

ψ1 = A1cosαx+ B1sinαx α = n1<br />

c<br />

ω<br />

ψ = A cos βx+ B sin βx β = n<br />

c<br />

2 2 2 2<br />

z = 0<br />

A1 = A2<br />

B1α= B2β<br />

'<br />

ψ1 =− A1αsinα0+ B1αcosα0<br />

'<br />

ψ =− A β sin β0+ B β cos β0<br />

2 2 2<br />

Kronig Penney Model<br />

2 2<br />

2 +<br />

2<br />

n ψ = 0<br />

2<br />

z = p (Bloch thm.)<br />

ika<br />

ψ1( x + a) = e ψ1(<br />

x)<br />

ika<br />

ψ1( p) = ψ1( − q+ a) = e ψ1(<br />

−q)<br />

' ika '<br />

ψ ( p) = e ψ ( −q)<br />

1 1<br />

⎧⎪ ψ1 = ψ 2<br />

B.C. ⎨ ' '<br />

⎪⎩ ψ1 = ψ 2<br />

across interfaces<br />

period a = p+q<br />

⎡ ika ika α ⎤<br />

⎢ e cosαq−cos β p −e sinαq− sin β p A1<br />

β ⎥⎡<br />

⎤<br />

= 0<br />

⎢ ⎥⎢ ika ika<br />

B<br />

⎥<br />

1<br />

⎢e αsinαq+ βsin β p e αcosαq−αcos β p⎥<br />

⎣ ⎦<br />

⎣ ⎦<br />

1 2<br />

det ( M ) = 0<br />

HW#2.3<br />

2 2<br />

α + β<br />

cos ka =− sinαqsinβ p + cosαqcos β p<br />

2αβ<br />

2 2<br />

n1 + n2<br />

⎛ω ⎞ ⎛ω ⎞ ⎛ ω ⎞ ⎛ ω ⎞<br />

=− sin nq 1 sin n2pcosn1 q cos n2 p<br />

2nn<br />

⎜<br />

c<br />

⎟ ⎜ +<br />

c<br />

⎟ ⎜<br />

c<br />

⎟ ⎜<br />

c<br />

⎟<br />

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠<br />

NTU GIPO & EE 5 YPC <strong>Photonic</strong> Modeling and Design Lab.<br />

The Physical Origin of <strong>Photonic</strong> Band Gaps<br />

Nearly Nearly-homogeneous homogeneous medium<br />

Smaller index difference<br />

⇒Narrow-band filter, e.g. in opt. comm.<br />

fiber Bragg grating, thin-film filter<br />

Wavelength<br />

3(a) or 3(b), otherwise<br />

violate symmetry<br />

More field in high-ε<br />

=> lower freq.<br />

more field in low-ε<br />

=> higher freq.<br />

air band<br />

dielectric band<br />

NTU GIPO & EE 7 YPC <strong>Photonic</strong> Modeling and Design Lab.<br />

The Physical Origin of <strong>Photonic</strong> Band Gaps<br />

<strong>Photonic</strong> band gap: no allowed mode regardless of k<br />

Light lines<br />

ε= 13 & 13 ε= 13 (GaAs) & 12 (AlGaAs) ε= 13 & 1<br />

NTU GIPO & EE 6 YPC <strong>Photonic</strong> Modeling and Design Lab.<br />

Simple Plane Wave Expansion Approach (1D)<br />

Helmholtz Equation<br />

2 2 2<br />

c ∂ E ∂ E 1D<br />

ε<br />

=<br />

←⎯⎯<br />

2<br />

1<br />

∂ E<br />

∇×<br />

∇×<br />

E = −<br />

2 2<br />

2<br />

( x)<br />

∂x<br />

∂t<br />

ε ( r ) ∂t<br />

( x a)<br />

ε(<br />

x)<br />

+ ( ) ∑ ∞<br />

−1<br />

ε x =<br />

m=<br />

−∞<br />

ε =<br />

ε : lossless → ε<br />

κ<br />

−m<br />

= κ<br />

*<br />

m<br />

κ<br />

κ<br />

is real<br />

−1<br />

→ κ ∝ ε<br />

m<br />

−m<br />

*<br />

m<br />

∝<br />

∝<br />

∫<br />

( x)<br />

e<br />

2π<br />

−i<br />

mx<br />

a<br />

2π<br />

κ me<br />

dx<br />

i mx<br />

−1<br />

a<br />

∫ε<br />

( x)<br />

e dx<br />

2π<br />

i mx<br />

−1<br />

*<br />

a<br />

∫ [ ε ( x)<br />

] e dx<br />

From Bloch theorem<br />

ikx −i<br />

t<br />

E(<br />

x,<br />

t)<br />

= E ( x,<br />

t)<br />

= e u ( x)<br />

e = u ( x)<br />

k<br />

u<br />

k<br />

( x)<br />

∑<br />

= m<br />

E<br />

k<br />

2π<br />

i mx<br />

a<br />

me<br />

2π<br />

i mx<br />

a<br />

( ) t kx i<br />

ωk −ωk<br />

k e<br />

( x,<br />

t)<br />

NTU GIPO & EE YPC <strong>Photonic</strong> Modeling and Design Lab.<br />

E<br />

k<br />

−<br />

ε<br />

=<br />

=<br />

( x)<br />

1<br />

∑<br />

m<br />

∑<br />

m<br />

E<br />

E<br />

2π<br />

i mx<br />

a ikx −iωt<br />

me<br />

e e<br />

⎛ 2π<br />

⎞<br />

i⎜<br />

k + m ⎟ x−iωt<br />

⎝ a ⎠<br />

me<br />

small ε difference or<br />

sinusoidal distribution<br />

∞ 2π<br />

i mx<br />

a κ me<br />

m=<br />

−∞<br />

= ∑<br />

≅ κ + κ<br />

0<br />

2π<br />

i x<br />

a<br />

1e<br />

(Cf. 1D Equations)<br />

+ κ<br />

2π<br />

−i<br />

x<br />

a<br />

−1e<br />

π<br />

h≡k− a<br />

πc<br />

ac ⎛ ⎞<br />

ω± = κ ± κ ± κ −<br />

a<br />

⎝ ⎠<br />

2<br />

2 κ1<br />

2<br />

0 1 ⎜ 0 ⎟h<br />

πκ ⎜ 1 2 ⎟


The Physical Origin of <strong>Photonic</strong> Band Gaps<br />

Higher Higher dielectric contrast<br />

1ST band are more concentrated than<br />

2nd band in high–ε region<br />

Gap occurs at center<br />

or edge of Brillouin<br />

zone<br />

Gaps always appear<br />

in 1D PhC as<br />

air band<br />

dielectric band<br />

NTU GIPO & EE 9 YPC <strong>Photonic</strong> Modeling and Design Lab.<br />

Gap max. as<br />

Quarter-wave stack (QWS)<br />

Reflective waves from each<br />

layer is exactly in phase.<br />

HW#3<br />

Dielectric contrast 13:1<br />

d1:d2 =0.5: 0.5 => Δω/ωm =51.9%<br />

d1=0.217=> Δω/ωm =76.6% (QWS)<br />

d1:d2 =0.2: 0.8 => Δω/ωm =76.3%<br />

QWS => no gap @ k=0 HW#3<br />

The Size of the Band Gap<br />

HW#3<br />

HW#3<br />

(ε1=13, d1=0.2a, ε2=1, d2=08a)<br />

NTU GIPO & EE 11 YPC <strong>Photonic</strong> Modeling and Design Lab.<br />

The Size of the Band Gap<br />

Scaling property<br />

Structure expanded by a factor s => gap size Δω/s<br />

Gap-midgap ratio Δω/ωm, ωm: freq. at the middle of the gap, generally in %<br />

Normalized (dimensionless)<br />

wavevector: ka/2π , freq. ωa/2πc = a/λ<br />

Weak periodicity Δε/ ε


No band gaps ( no scattering in y)<br />

No degeneracy (split: TMy & TEy )<br />

Approximately linear at<br />

long wavelengths<br />

for all PhC<br />

effectively homogeneous<br />

lower modes concentrate<br />

electrical energy in the<br />

higher ε-region<br />

ω TM < ω TE<br />

Off-Axis Off Axis Propagation<br />

NTU GIPO & EE 13 YPC <strong>Photonic</strong> Modeling and Design Lab.<br />

Localized Modes at Defects<br />

Defects + ω in band gap<br />

may exist localized modes<br />

0.2 a (ε=13) + 0.8a (ε=1)<br />

Like two parallel perfect mirrors<br />

discrete freq. (quantized)<br />

thicker defect => more states<br />

1.6a =<br />

2*0.8a<br />

E-field strength<br />

Quantized like particle in a box (QM) or metallic cavity (μ-wave)<br />

Defects by<br />

Increase low/high-ε thickness<br />

or lower/increase ε (same thick.)<br />

or combined<br />

Pull down/push up a sequence<br />

of discrete modes from the<br />

upper/lower bands<br />

Max. exp. decay in mid-gap<br />

Single peak associate with the defect<br />

Used in dielectric Fabry-Perot filter<br />

DOS<br />

= # states / Δω<br />

NTU GIPO & EE 15 YPC <strong>Photonic</strong> Modeling and Design Lab.<br />

Short wavelength (high freq.)<br />

Freq. difference<br />

Below light line<br />

* index guided<br />

* decay exp.<br />

* negligible overlap<br />

* small coupling<br />

Every mode become<br />

a uncoupled<br />

guided mode<br />

Off-Axis Off Axis Propagation<br />

Blue: (0, k y,0)<br />

Green: (0, k y, π/a)<br />

Red: light line<br />

NTU GIPO & EE 14 YPC <strong>Photonic</strong> Modeling and Design Lab.<br />

Localized Modes at Defects<br />

Defects by<br />

Increase low/high-ε thickness<br />

or lower/increase ε (same thick.)<br />

or combined<br />

Pull down/push up a sequence<br />

of discrete modes from the<br />

upper/lower bands<br />

Off-axis propagation<br />

Still localized in z-direction<br />

Can be guided in both<br />

High and low ε regions (even air)<br />

2D => photonic crystal fibers (PCF)<br />

NTU GIPO & EE 16 YPC <strong>Photonic</strong> Modeling and Design Lab.


May exist localized modes<br />

propagating along surface<br />

(e.g. And x-polarized )<br />

Extended (E): propagating<br />

Decaying (D): evanescent<br />

Air region: light line<br />

upper left =><br />

lower right=><br />

PhC region:<br />

w/ gap:<br />

w/o gap:<br />

Surface modes for some choice<br />

of termination (e.g. 0.1 a)<br />

Surface states<br />

0.1 a<br />

air + dielectric<br />

NTU GIPO & EE 17 YPC <strong>Photonic</strong> Modeling and Design Lab.<br />

Optimal: not quarter wave<br />

stacks but close to<br />

Reflective property dep. on<br />

translational symmetry<br />

=> Not confine a mode in 3D<br />

If the interface is not flat or<br />

an object close to,<br />

then is not conserved.<br />

=> couple to extended modes<br />

i.e. propagating<br />

transmitted<br />

Exceptions: smoothly curved<br />

and symmetry conserved<br />

Continuous rotational and<br />

spherical symmetry<br />

Omnidirectional Multilayer Mirrors<br />

Size of the omnidirectional gap<br />

ε a < ε 1 < ε 2<br />

NTU GIPO & EE 19 YPC <strong>Photonic</strong> Modeling and Design Lab.<br />

Omnidirectional Multilayer Mirrors<br />

Can reflect light wave from any<br />

angle with any polarization<br />

is conserved (far source)<br />

from air<br />

(above light line, not decay<br />

light from source can reach)<br />

Necessary conditions<br />

ω U > ω L<br />

large enough to open<br />

gap within light cone<br />

ε a < ε 1 < ε 2<br />

point B below light line<br />

ky = kasinθ a = k1sinθ1 = k2sinθ2<br />

nasinθa = n1sinθ1 = n2sinθ2<br />

n1<br />

tanθ<br />

B =<br />

n<br />

a<br />

ambient ε a<br />

Brewster’s angle line<br />

TE, yz-polarized<br />

TM, x-polarized<br />

a quarter-wave stack with ε = 13 & 2<br />

NTU GIPO & EE 18 YPC <strong>Photonic</strong> Modeling and Design Lab.<br />

Omnidirectional Multilayer Mirrors<br />

Translational Symmetry<br />

⇒Cylindrical & Spherical cases<br />

Continuous rotational and<br />

spherical symmetry<br />

Brag fiber<br />

Brag onion<br />

OL 28, 2144 (2003)<br />

(See Chap. 9 PCF)<br />

NTU GIPO & EE 20 YPC <strong>Photonic</strong> Modeling and Design Lab.


Periodic Hermitian Eigenproblems in 1d<br />

H(x) = e ikx H k (x)<br />

Consider k+2π/a: e<br />

ε 1 ε 2 ε 1 ε 2 ε 1 ε 2 ε 1 ε 2 ε 1 ε 2 ε 1 ε 2<br />

a<br />

2π<br />

i(k + ) x<br />

a H 2π<br />

k +<br />

a<br />

k is periodic:<br />

k + 2π/a equivalent to k<br />

“quasi-phase-matching”<br />

ε(x) = ε(x+a)<br />

(x) = e ikx ⎡<br />

⎢ e<br />

⎣ ⎢<br />

2π<br />

i<br />

a x<br />

H 2π<br />

k +<br />

a<br />

⎤<br />

(x) ⎥<br />

⎦ ⎥<br />

periodic!<br />

satisfies same<br />

equation as H k<br />

= H k<br />

NTU GIPO & EE YPC <strong>Photonic</strong> Modeling and Design Lab.<br />

Any 1d Periodic System has a Gap<br />

[ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of<br />

waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ]<br />

Start with<br />

a uniform (1d) medium:<br />

ω<br />

0<br />

NTU GIPO & EE YPC <strong>Photonic</strong> Modeling and Design Lab.<br />

ε 1<br />

ω = k<br />

ε 1<br />

k<br />

Periodic Hermitian Eigenproblems in 1d<br />

k is periodic:<br />

k + 2π/a equivalent to k<br />

“quasi-phase-matching”<br />

–π/a<br />

ω<br />

ε 1 ε 2 ε 1 ε 2 ε 1 ε 2 ε 1 ε 2 ε 1 ε 2 ε 1 ε 2<br />

band gap<br />

ε(x) = ε(x+a)<br />

NTU GIPO & EE YPC <strong>Photonic</strong> Modeling and Design Lab.<br />

a<br />

0 π/a<br />

irreducible Brillouin zone<br />

Any 1d Periodic System has a Gap<br />

[ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of<br />

waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ]<br />

Treat it as<br />

“artificially” periodic<br />

bands are “folded”<br />

by 2π/a equivalence<br />

–π/a<br />

ω<br />

NTU GIPO & EE YPC <strong>Photonic</strong> Modeling and Design Lab.<br />

a<br />

ε 1<br />

ε(x) = ε(x+a)<br />

k<br />

π<br />

+<br />

a e x<br />

π<br />

−<br />

a , e x<br />

→ cos<br />

0 π/a<br />

k<br />

π<br />

a x<br />

⎛ ⎞<br />

⎜ ⎟ , sin<br />

⎝ ⎠<br />

π<br />

a x<br />

⎛ ⎞<br />

⎜<br />

⎝ ⎠


ω<br />

Any 1d Periodic System has a Gap<br />

[ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of<br />

waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ]<br />

Treat it as<br />

“artificially” periodic<br />

0 π/a<br />

ω<br />

sin π<br />

a x<br />

⎛ ⎞<br />

⎜ ⎟<br />

⎝ ⎠<br />

cos π<br />

a x<br />

⎛ ⎞<br />

⎜ ⎟<br />

⎝ ⎠<br />

ε 1<br />

ε(x) = ε(x+a)<br />

NTU GIPO & EE YPC <strong>Photonic</strong> Modeling and Design Lab.<br />

band gap<br />

a<br />

x = 0<br />

Any 1d Periodic System has a Gap<br />

[ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of<br />

waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ]<br />

Add a small<br />

“real” periodicity<br />

ε 2 = ε 1 + Δε<br />

0 π/a<br />

sin π<br />

a x<br />

⎛ ⎞<br />

⎜ ⎟<br />

⎝ ⎠<br />

cos π<br />

a x<br />

⎛ ⎞<br />

⎜ ⎟<br />

⎝ ⎠<br />

Splitting of degeneracy:<br />

state concentrated in higher index (ε 2)<br />

has lower frequency<br />

NTU GIPO & EE YPC <strong>Photonic</strong> Modeling and Design Lab.<br />

a<br />

ε(x) = ε(x+a)<br />

ε 1 ε 2 ε 1 ε 2 ε 1 ε 2 ε 1 ε 2 ε 1 ε 2 ε 1 ε 2<br />

x = 0<br />

ω<br />

Any 1d Periodic System has a Gap<br />

[ Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of<br />

waves through a medium endowed with a periodic structure,” Philosophical Magazine 24, 145–159 (1887). ]<br />

Add a small<br />

“real” periodicity<br />

ε 2 = ε 1 + Δε<br />

0 π/a<br />

sin π<br />

a x<br />

⎛ ⎞<br />

⎜ ⎟<br />

⎝ ⎠<br />

cos π<br />

a x<br />

⎛ ⎞<br />

⎜ ⎟<br />

⎝ ⎠<br />

ε(x) = ε(x+a)<br />

NTU GIPO & EE YPC <strong>Photonic</strong> Modeling and Design Lab.<br />

a<br />

ε 1 ε 2 ε 1 ε 2 ε 1 ε 2 ε 1 ε 2 ε 1 ε 2 ε 1 ε 2<br />

x = 0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!