07.07.2013 Views

Quantum Trajectories in Phase Space - Center for Nonlinear Studies ...

Quantum Trajectories in Phase Space - Center for Nonlinear Studies ...

Quantum Trajectories in Phase Space - Center for Nonlinear Studies ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

<strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong><br />

Craig C. Martens<br />

Department of Chemistry<br />

University of Cali<strong>for</strong>nia, Irv<strong>in</strong>e<br />

Workshop on <strong>Quantum</strong> <strong>Trajectories</strong><br />

<strong>Center</strong> <strong>for</strong> Nonl<strong>in</strong>ear <strong>Studies</strong>, Los Alamos National Laboratory<br />

Los Alamos, NM, July 27-30, 2008<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Classical and <strong>Quantum</strong> Time Evolution<br />

Classical<br />

Hamilton’s equations<br />

˙q = ∂H<br />

∂p<br />

˙p = − ∂H<br />

∂q<br />

Classical mechanics vs. quantum mechanics<br />

Wigner representation<br />

Entangled Trajectory Molecular Dynamics<br />

<strong>Quantum</strong><br />

Schröd<strong>in</strong>ger equation<br />

i ∂ψ<br />

∂t = ˆ Hψ<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


<strong>Quantum</strong> dynamics<br />

Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Classical mechanics vs. quantum mechanics<br />

Wigner representation<br />

Entangled Trajectory Molecular Dynamics<br />

Schröd<strong>in</strong>ger Representation<br />

Ψ<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


<strong>Quantum</strong> dynamics<br />

Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Ψ<br />

Classical mechanics vs. quantum mechanics<br />

Wigner representation<br />

Entangled Trajectory Molecular Dynamics<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Classical mechanics vs. quantum mechanics<br />

Wigner representation<br />

Entangled Trajectory Molecular Dynamics<br />

<strong>Quantum</strong> dynamics <strong>in</strong> the Wigner representation<br />

Wigner Function<br />

ρ W<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Classical mechanics vs. quantum mechanics<br />

Wigner representation<br />

Entangled Trajectory Molecular Dynamics<br />

<strong>Quantum</strong> dynamics <strong>in</strong> the Wigner representation<br />

Apologies to Professor Bohm!<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Classical mechanics vs. quantum mechanics<br />

Wigner representation<br />

Entangled Trajectory Molecular Dynamics<br />

<strong>Quantum</strong> and Classical Liouville Equation<br />

The quantum Liouville equation:<br />

The classical Liouville equation:<br />

where the Poisson bracket is<br />

∂ ˆρ<br />

i<br />

∂t = [ ˆH, ˆρ]<br />

∂ρ<br />

∂t<br />

= {H, ρ}<br />

{H, ρ} = ∂H ∂ρ ∂ρ ∂H<br />

−<br />

∂q ∂p ∂q ∂p<br />

These are connected by the Correspondence Pr<strong>in</strong>ciple:<br />

[ ˆH, ˆρ] → i{ ˆH, ˆρ} + O( 3 )<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


The Wigner Function<br />

Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Classical mechanics vs. quantum mechanics<br />

Wigner representation<br />

Entangled Trajectory Molecular Dynamics<br />

A phase space representation of a quantum density operator ˆρ:<br />

ρW (q, p, t) = 1<br />

2π<br />

∞<br />

−∞<br />

< q − y<br />

y<br />

2 |ˆρ(t)|q + 2 > eipy/ dy<br />

For a pure state with wave function ψ(q, t) this becomes<br />

ρW (q, p, t) = 1<br />

2π<br />

∞<br />

−∞<br />

ψ ∗ (q + y<br />

y<br />

2 , t)ψ(q − 2 , t)eipy/ dy<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Wigner Function Equation of Motion<br />

The quantum Liouville equation aga<strong>in</strong>:<br />

Classical mechanics vs. quantum mechanics<br />

Wigner representation<br />

Entangled Trajectory Molecular Dynamics<br />

∂ ˆρ<br />

i<br />

∂t = [ ˆH, ˆρ]<br />

After some algebra, the Wigner trans<strong>for</strong>m the Liouville equation can be<br />

written as<br />

where<br />

∂ρW<br />

∂t<br />

J(q, η) = i<br />

2π2 p ∂ρW<br />

= −<br />

m ∂q +<br />

∞<br />

−∞<br />

∞<br />

−∞<br />

J(q, p − ξ)ρW (q, ξ, t)dξ<br />

y<br />

y<br />

V (q + 2 ) − V (q − 2 ) e −iηy/ dy<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Expression <strong>for</strong> the Kernel J(q, η)<br />

The kernel can be evaluated to give<br />

The result <strong>for</strong> a Gaussian barrier:<br />

Classical mechanics vs. quantum mechanics<br />

Wigner representation<br />

Entangled Trajectory Molecular Dynamics<br />

J(q, η) = 4<br />

<br />

Im ˆV (2η/)e<br />

2 −2iηq/<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-10 -5 0 5 10<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Wigner Function Equation of Motion<br />

Classical mechanics vs. quantum mechanics<br />

Wigner representation<br />

Entangled Trajectory Molecular Dynamics<br />

For a V (q) with a power series expansion J(q, p) becomes<br />

J(q, p) = −V ′ (q) δ ′ (p) + 2<br />

24 V ′′′ (q) δ ′′′ (p) + · · ·<br />

The Wigner function equation of motion is then<br />

∂ρW<br />

∂t<br />

The n th term:<br />

p ∂ρW<br />

= −<br />

m ∂q + V ′ (q) ∂ρW<br />

∂p<br />

(−1) n 2n<br />

2 2n (2n + 1)!<br />

− 2<br />

24 V ′′′ (q) ∂3ρW ∂p<br />

d 2n+1V (q)<br />

dq2n+1 ∂2n+1ρW (q, p)<br />

∂p2n+1 3 + · · ·<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Classical Liouville Equation<br />

Classical mechanics vs. quantum mechanics<br />

Wigner representation<br />

Entangled Trajectory Molecular Dynamics<br />

Classical Cont<strong>in</strong>uity <strong>in</strong> <strong>Phase</strong> <strong>Space</strong><br />

The classical Liouville equation<br />

∂ρ<br />

∂t<br />

= {H, ρ}<br />

is a cont<strong>in</strong>uity equation <strong>for</strong> <strong>in</strong>compressible flow <strong>in</strong> phase space:<br />

∂ρ<br />

∂t + ∇ ·j = 0<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

The classical cont<strong>in</strong>uity equation:<br />

where<br />

∇ =<br />

∂/∂q<br />

∂/∂p<br />

<br />

∂ρ<br />

∂t = − ∇ ·j = {H, ρ}<br />

j =<br />

∂H/∂p<br />

−∂H/∂q<br />

Classical mechanics vs. quantum mechanics<br />

Wigner representation<br />

Entangled Trajectory Molecular Dynamics<br />

<br />

ρ ∂ ˙q/∂q + ∂ ˙p/∂p = 0<br />

The current j is then the density times the phase space velocity field<br />

<br />

v = j/ρ<br />

˙q ∂H/∂p<br />

= =<br />

˙p −∂H/∂q<br />

Recover<strong>in</strong>g Hamiltion’s equations!<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Classical mechanics vs. quantum mechanics<br />

Wigner representation<br />

Entangled Trajectory Molecular Dynamics<br />

Solv<strong>in</strong>g the Classical Liouville Equation Us<strong>in</strong>g <strong>Trajectories</strong><br />

Represent the cont<strong>in</strong>uous function ρ(q, p, t) <strong>in</strong> phase space by a discrete<br />

sampl<strong>in</strong>g with N trajectories.<br />

ρ(q, p, t) = 1<br />

N<br />

N<br />

δ(q − qj(t))δ(p − pj(t))<br />

j=1<br />

where qj(t) and pj(t) is the phase space location of the j th trajectory at<br />

time t.<br />

Each member of the ensemble then evolves (<strong>in</strong>dependently) under<br />

Hamilton’s equations.<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Classical mechanics vs. quantum mechanics<br />

Wigner representation<br />

Entangled Trajectory Molecular Dynamics<br />

<strong>Quantum</strong> Liouville Equation <strong>in</strong> the Wigner Representation<br />

The Wigner function obeys the phase space equation<br />

∂ρW<br />

∂t<br />

p ∂ρW<br />

= −<br />

m ∂q + V ′ (q) ∂ρW<br />

∂p<br />

− 2<br />

24 V ′′′ (q) ∂3ρW ∂p<br />

3 + · · ·<br />

Cast as a cont<strong>in</strong>uity equation (even though ρW can be negative!):<br />

∂ρW<br />

∂t + ∇ ·jW = 0<br />

which def<strong>in</strong>es a quantum current jW :<br />

∇ ·jW = ∂<br />

<br />

p<br />

∂q m ρW<br />

<br />

+ ∂<br />

<br />

−V<br />

∂p<br />

′ (q)ρW + 2<br />

24 V ′′′ (q) ∂2ρW ∂p<br />

<br />

+ · · · 2<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

<strong>Quantum</strong> <strong>Trajectories</strong><br />

Classical mechanics vs. quantum mechanics<br />

Wigner representation<br />

Entangled Trajectory Molecular Dynamics<br />

The quantum current then def<strong>in</strong>es a vector field <strong>in</strong> phase space:<br />

v = jW /ρW<br />

These give a generalization of Hamilton’s equations:<br />

˙q = vq = p<br />

m<br />

˙p = vp = −V ′ (q) + 2<br />

24 V ′′′ (q) 1<br />

ρW<br />

A ρW –dependent Bohmesque “quantum <strong>for</strong>ce”.<br />

∂2ρW + · · ·<br />

∂p2 Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Energy Conservation<br />

Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Classical mechanics vs. quantum mechanics<br />

Wigner representation<br />

Entangled Trajectory Molecular Dynamics<br />

The quantum trajectories do not conserve energy <strong>in</strong>dividually.<br />

<br />

dH ∂H ∂H p 2 = ˙q + ˙p =<br />

dt ∂q ∂p m 24 V ′′′ (q) 1 ∂<br />

ρ<br />

2 <br />

ρ<br />

+ · · ·<br />

∂p2 Energy is conserved at the ensemble level.<br />

<br />

dH<br />

=<br />

dt<br />

ρ dH<br />

<br />

dqdp =<br />

dt<br />

<br />

p 2 m<br />

24 V ′′′ (q) ∂2ρ + · · ·<br />

∂p2 <br />

dqdp = 0<br />

This non-conservation of <strong>in</strong>dividual trajectory energy allows quantum<br />

effects to be modeled.<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Classical mechanics vs. quantum mechanics<br />

Wigner representation<br />

Entangled Trajectory Molecular Dynamics<br />

Entangled Trajectory Molecular Dynamics<br />

For the j th trajectory:<br />

˙pj = −V ′ (qj) + 2<br />

24 V ′′′ 1<br />

(qj)<br />

ρW (q1, q2, . . . , pN)<br />

∂ 2 ρW (q1, q2, . . . , pN)<br />

∂p 2<br />

The equations of motion depend not only on the Hamiltonian H(q, p) at<br />

each po<strong>in</strong>t <strong>in</strong> phase space, but on the entire state ρW . This, <strong>in</strong> turn,<br />

depends on the entire ensemble.<br />

The members of the ensemble are thus entangled with each other. The<br />

statistical <strong>in</strong>dependence of ensemble members <strong>in</strong> classical mechanics is<br />

thus lost <strong>for</strong> quantum trajectories!<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong><br />

+ · · ·


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

<strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong><br />

Classical mechanics vs. quantum mechanics<br />

Wigner representation<br />

Entangled Trajectory Molecular Dynamics<br />

Classical and <strong>Quantum</strong> <strong>Trajectories</strong><br />

p<br />

classical quantum<br />

ρ(q,p,0)<br />

ρ(q,p,t)<br />

q<br />

p<br />

ρ(q,p,0)<br />

ρ(q,p,t)<br />

Classical trajectory ensembles evolve <strong>in</strong>dependently. <strong>Quantum</strong> effects lead to<br />

an entanglement of the ensemble.<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong><br />

q


A Caveat<br />

Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Classical mechanics vs. quantum mechanics<br />

Wigner representation<br />

Entangled Trajectory Molecular Dynamics<br />

The Wigner function ρW (q, p, t) is real, but can become negative. Can its<br />

evolution be represented by an ensemble of trajectories evolv<strong>in</strong>g under<br />

these equations of motion?<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Local Gaussian Ansatz<br />

Numerical Methodology: Local Gaussian Ansatz<br />

An approximate local Gaussian ansatz <strong>for</strong> the Wigner function.<br />

ρ(q, p) = Ae −βq(q−qk) 2 −βp(p−pk) 2 +γ(q−qk)(p−pk)+αq(q−qk)+αp(p−pk)<br />

around the po<strong>in</strong>t k.<br />

Assumption: ρ is on average positive and smooth (<strong>for</strong>malize later).<br />

The parameters αq, αp, βq, βp, and γ are determ<strong>in</strong>ed locally <strong>for</strong> each<br />

member of the ensemble from the moments of the whole ensemble. Then,<br />

1 ∂<br />

ρ<br />

2ρ ∂p2 = α2 p − 2βp<br />

etc.<br />

1 ∂<br />

ρ<br />

4ρ ∂p 4 = α4 p − 12α 2 pβp + 12β 2 p<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

The Trick: Modified Moments<br />

The generator of modified moments is<br />

Ĩ =<br />

∞ ∞<br />

−∞<br />

−∞<br />

Local Gaussian Ansatz<br />

e −βqξ2 −βpη2 +γξη+αqξ+αpη<br />

φhq,hp (ξ, η) dξdη,<br />

where this <strong>in</strong>cludes a local Gaussian w<strong>in</strong>dow function φ:<br />

φhq,hp (ξ, η) = exp −hqξ 2 − hpη 2<br />

The modified m th , n th moment of ξ, η is then<br />

〈ξ ˜ mηn 〉 ≡ 〈ξmηn φ〉<br />

〈φ〉 =<br />

ξ m η n φ(ξ, η)ρ(ξ, η)dξdη<br />

φ(ξ, η)ρ(ξ, η)dξdη<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Modified Moments<br />

Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Local Gaussian Ansatz<br />

For ρ a local Gaussian, these moments are generated by derivatives of Ĩ :<br />

〈ξ ˜ mηn 〉 = 1<br />

Ĩ<br />

Generalized variances and correlation:<br />

˜σ 2 ξ<br />

= 〈ξ˜ 2 〉 − ˜ 〈ξ〉 2<br />

∂ (m+n)<br />

∂αm q ∂αn p<br />

˜σ 2 η = ˜ 〈η2 〉 − ˜ 〈η〉 2<br />

Ĩ<br />

˜σ 2 ξη<br />

The orig<strong>in</strong>al Gaussian parameters can then be reconstructed:<br />

αp =<br />

2 ˜σξ 〈η〉 ˜ 2 − σξη ˜ 〈ξ〉 ˜<br />

˜σξ 2 ˜ση 2 − σξη ˜ 4<br />

etc.<br />

βp =<br />

= ˜<br />

〈ξη〉 − ˜<br />

〈ξ〉 ˜<br />

〈η〉<br />

˜σξ 2<br />

2( ˜σξ 2 ˜ση 2 − σξη ˜ 4 )<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong><br />

− hp


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Modified Moments from Ensemble<br />

Local Gaussian Ansatz<br />

The required modified moments can be calculated easily from the evolv<strong>in</strong>g<br />

ensemble:<br />

〈ξ ˜ mηn N j=1<br />

〉 k =<br />

(qj − qk) m (pj − pk) nφ(qj − qk, pj − pk)<br />

N j=1 φ(qj − qk, pj − pk)<br />

This employs local data when determ<strong>in</strong><strong>in</strong>g the local Gaussian fit.<br />

Dist<strong>in</strong>ct parts of the ensemble will be represented by different<br />

Gaussian functions, <strong>in</strong> general.<br />

The method is stable–no NaNs.<br />

In practice, the local w<strong>in</strong>dow function φ is taken to be a m<strong>in</strong>imum<br />

uncerta<strong>in</strong>ty Gaussian. An implicit Husimi representation (see below).<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Tunnel<strong>in</strong>g Through a Barrier<br />

V(q)<br />

Tunnel<strong>in</strong>g <strong>in</strong> Cubic Potential<br />

Tunnel<strong>in</strong>g <strong>in</strong> a Cubic Potential<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

-0.01<br />

-0.02<br />

-1 -0.5 0 0.5 1 1.5<br />

q<br />

p<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong><br />

q


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

ETMD <strong>for</strong> Cubic Potential<br />

Tunnel<strong>in</strong>g <strong>in</strong> Cubic Potential<br />

V (q) = 1<br />

2 m ω2 oq 2 − 1<br />

3 bq3<br />

The quantum <strong>for</strong>ce on the j th member of the ensemble:<br />

αp =<br />

˙pj = −V ′ (qj) − 2 b<br />

12<br />

∂ 2 ρ/∂p 2 (qj, pj)<br />

ρ(qj, pj)<br />

˙pj = −V ′ (qj) − 2 b<br />

12 (α2 p,j − 2βp,j)<br />

2 ˜σξ 〈η〉 ˜ 2 − σξη ˜ 〈ξ〉 ˜<br />

˜σξ 2 ˜ση 2 − σξη ˜ 4<br />

βp =<br />

˜σξ 2<br />

2( ˜σξ 2 ˜ση 2 − σξη ˜ 4 )<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong><br />

− hp


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Classical Ensemble <strong>in</strong> <strong>Phase</strong> <strong>Space</strong><br />

p<br />

p<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

t = 0<br />

-1 -0.5 0 0.5 1 1.5<br />

q<br />

t = 750<br />

-1 -0.5 0 0.5 1 1.5<br />

q<br />

p<br />

p<br />

Tunnel<strong>in</strong>g <strong>in</strong> Cubic Potential<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

15<br />

10<br />

-5<br />

-10<br />

-15<br />

t = 250<br />

-1 -0.5 0 0.5 1 1.5<br />

q<br />

5<br />

0<br />

-1 -0.5 0 0.5 1 1.5<br />

q<br />

t = 1500 au<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Entangled Ensemble <strong>in</strong> <strong>Phase</strong> <strong>Space</strong><br />

p<br />

p<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

15<br />

10<br />

t = 0<br />

-1 -0.5 0 0.5 1 1.5<br />

q<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

t = 750<br />

-1 -0.5 0 0.5 1 1.5<br />

q<br />

p<br />

p<br />

Tunnel<strong>in</strong>g <strong>in</strong> Cubic Potential<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

15<br />

10<br />

-5<br />

-10<br />

-15<br />

t = 250<br />

-1 -0.5 0 0.5 1 1.5<br />

q<br />

5<br />

0<br />

t = 1500<br />

-1 -0.5 0 0.5 1 1.5<br />

q<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Tunnel<strong>in</strong>g <strong>in</strong> Cubic Potential<br />

Reaction Probability vs. Time: Classical and Entangled<br />

reaction probability<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

C3<br />

C2<br />

C1<br />

Q3<br />

Q2<br />

Q1<br />

E1<br />

E3<br />

E2<br />

0<br />

0 1000 2000 3000 4000<br />

time (a.u.)<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Tunnel<strong>in</strong>g Rate vs. Mean Energy<br />

rate (10 -5 a.u.)<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Tunnel<strong>in</strong>g <strong>in</strong> Cubic Potential<br />

exact quantum<br />

entangled trajectories<br />

0.0<br />

0.00 0.01 0.02 0.03 0.04 0.05<br />

energy (a.u.)<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Eckhart Barrier<br />

Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Tunnel<strong>in</strong>g <strong>in</strong> Cubic Potential<br />

The method also captures the quantum corrections to tunnel<strong>in</strong>g through<br />

the Eckhart barrier.<br />

P(t)<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Q<br />

E<br />

C<br />

E/V = 0.5<br />

o<br />

0<br />

0 500 1000 1500<br />

t / au<br />

2000 2500 3000<br />

P(t)<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Q<br />

E<br />

C<br />

E/V = 0.8<br />

o<br />

0<br />

0 500 1000 1500<br />

t / au<br />

2000 2500 3000<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong><br />

P(t)<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Q<br />

E<br />

C<br />

E/V = 1.0<br />

o<br />

0<br />

0 500 1000 1500<br />

t / au<br />

2000 2500 3000


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Husimi Distribution: Positive <strong>Phase</strong> <strong>Space</strong> Distribution<br />

The Husimi Distribution<br />

The Husimi distribution is a locally-smoothed Wigner function:<br />

ρH(q, p) = 1<br />

π<br />

∞<br />

−∞<br />

ρW (q ′ , p ′ )e − (q−q′ ) 2<br />

2σ 2 q e − (p−p′ ) 2<br />

2σ 2 p dq ′ dp ′<br />

where the smooth<strong>in</strong>g is over a m<strong>in</strong>imum uncerta<strong>in</strong>ty phase space Gaussian,<br />

σqσp = <br />

2<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Operator Formulation of Husimi Distribution<br />

The smooth<strong>in</strong>g can be represented us<strong>in</strong>g smooth<strong>in</strong>g operators ˆQ and ˆP<br />

ˆQ = e 1<br />

2 σ2 q ∂2<br />

∂q 2 ˆP = e 1<br />

2 σ2 p ∂2<br />

∂p 2<br />

The Husimi can then be written as a smoothed Wigner function as:<br />

ρH(q, p) = ˆQ ˆPρW (q, p)<br />

This is related to the <strong>in</strong>terest<strong>in</strong>g identity:<br />

e −a(x−x′ ) 2<br />

∂ 2<br />

= e 1<br />

4a ∂x2 δ(x − x ′ )<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Smooth<strong>in</strong>g and Unsmooth<strong>in</strong>g<br />

We can consider the <strong>in</strong>verse unsmooth<strong>in</strong>g operators ˆ Q −2 and ˆ P −1 :<br />

ˆQ −1 1<br />

− 2 = e σ2 q ∂2<br />

∂q2 ˆP −1 1<br />

− 2 = e σ2 p ∂2<br />

∂p2 so that the Wigner function can be written (at least <strong>for</strong>mally) as an<br />

“unsmoothed” Husimi:<br />

ρW (q, p) = ˆQ −1 ˆP −1 ρH(q, p)<br />

(Unsmooth<strong>in</strong>g is risky <strong>in</strong> practice, of course!)<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Equation of Motion <strong>for</strong> the Husimi Distribution<br />

We can then derive an equation of motion <strong>for</strong> the Husimi distribution.<br />

∂ρH 1<br />

= −<br />

∂t m ˆPp ˆP<br />

−1 ∂ρH<br />

∂q +<br />

∞<br />

ˆQJ(q, η) ˆQ −1 ρH(q, p + η, t) dξ<br />

−∞<br />

Note that there are no approximations; the Husimi representation provides<br />

and exact description of quantum dynamics.<br />

Powers of the coord<strong>in</strong>ates and momenta become differential operators:<br />

ˆQq ˆQ −1 = q + σ 2 q<br />

∂<br />

∂q<br />

ˆQq 2 Qˆ −1 2 2<br />

= q + σq + 2σ 2 qq ∂<br />

∂q + σ4 q<br />

ˆPp ˆP −1 = p + σ 2 p<br />

∂2 ∂q2 etc.<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong><br />

∂<br />

∂p


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Equation of Motion <strong>for</strong> the Husimi Distribution<br />

Wigner function equation of motion:<br />

∂ρW<br />

∂t<br />

Husimi equation of motion:<br />

∂ρH<br />

∂t<br />

where<br />

p ∂ρW<br />

= −<br />

m ∂q + (mω2 oq − bq 2 ) ∂ρW<br />

∂p + 2b 12<br />

∂ 3 ρW<br />

∂p 3<br />

1<br />

= −<br />

m ˆ Pp ˆ −1 ∂ρH<br />

P<br />

∂q + (mω2 o ˆ Qq ˆ Q −1 − b ˆ Qq 2 ˆQ −1 ) ∂ρH<br />

∂p + 2b ∂<br />

12<br />

3ρH ∂p3 ˆQq ˆQ −1 = q + σ 2 q<br />

∂<br />

∂q<br />

ˆQq 2 ˆQ −1 = q 2 + σ 2 q + 2σ 2 qq ∂<br />

∂q + σ4 q<br />

ˆPp ˆP −1 = p + σ 2 p<br />

∂2 ∂q2 Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong><br />

∂<br />

∂p


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Cont<strong>in</strong>uity <strong>in</strong> the Husimi Representation<br />

We aga<strong>in</strong> <strong>in</strong>voke cont<strong>in</strong>uity, now rigorous <strong>for</strong> a positive probability<br />

distribution.<br />

∂ρH<br />

∂t + ∇ ·jH = 0<br />

Then after a little algebra,<br />

∇ ·jH = ∂<br />

<br />

p<br />

∂q m ρH<br />

<br />

+ ∂<br />

<br />

−V<br />

∂p<br />

′ (q)ρH + b<br />

2mωo<br />

ρH + bq ∂ρH<br />

mωo ∂q + 2b 4m2ω2 ∂<br />

o<br />

2ρH ∂q2 − 2b 12<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong><br />

∂2ρH ∂p2


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

<strong>Phase</strong> <strong>Space</strong> Vector Field <strong>in</strong> the Husimi Representation<br />

The phase space vector field then becomes<br />

˙p = −V ′ (q) + b<br />

2mωo<br />

+ bq<br />

mωo<br />

1<br />

ρH<br />

˙q = p<br />

m<br />

∂ρH<br />

∂q + 2 b<br />

4m 2 ω 2 o<br />

1<br />

ρH<br />

∂2ρH ∂q2 − 2b 12<br />

The quantum <strong>for</strong>ce now conta<strong>in</strong>s additional terms not present <strong>in</strong> the<br />

Wigner representation quantum <strong>for</strong>ce. This is related to the fact that<br />

classical propagation and smooth<strong>in</strong>g do not commute.<br />

These equations of motion can be propagated as be<strong>for</strong>e.<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong><br />

1<br />

ρH<br />

∂ 2 ρH<br />

∂p 2


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Free Particle <strong>in</strong> the Husimi Representation<br />

Because of the smooth<strong>in</strong>g, the free particle motion is nonclassical!<br />

or<br />

∂ρH<br />

∂t<br />

∂ρH<br />

∂t<br />

1<br />

= −<br />

m ˆ Pp ˆ −1 ∂ρH<br />

P<br />

∂q<br />

1 ∂ρH<br />

= − p<br />

m ∂q − σ2 p ∂<br />

m<br />

2ρH ∂q∂p<br />

The extra terms due to noncommutativity of classical time evolution and<br />

smooth<strong>in</strong>g.<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Free Particle Propagation: Entangled vs. Exact<br />

p<br />

7.5<br />

5.0<br />

2.5<br />

0<br />

-2.5<br />

-5.0<br />

t = 1000<br />

(b)<br />

(a)<br />

-2 -1 0 1 2<br />

q<br />

ontour l<strong>in</strong>es of a free particle distribution function <strong>in</strong> the Husimi representation<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Solv<strong>in</strong>g the Integrodifferential Equation Directly<br />

The Wigner equation of motion:<br />

∂ρW<br />

∂t<br />

Methodology, Revisited<br />

p ∂ρW<br />

= −<br />

m ∂q +<br />

∞<br />

−∞<br />

J(q, p − ξ)ρW (q, ξ, t)dξ<br />

Write the divergence of the flux directly <strong>in</strong> this <strong>for</strong>m:<br />

∇ ·jW = ∂<br />

<br />

p<br />

∂q m ρW<br />

<br />

−<br />

∞<br />

−∞<br />

J(q, ξ − p) ρW (q, ξ, t) dξ<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Solv<strong>in</strong>g the Integrodifferential Equation Directly<br />

The momentum component:<br />

or<br />

where<br />

∂<br />

∂p jW ,p = −<br />

jW ,p = −<br />

∞<br />

−∞<br />

∞<br />

−∞<br />

Θ(q, ξ − p) ≡<br />

J(q, ξ − p) ρW (q, ξ, t) dξ<br />

Θ(q, ξ − p) ρW (q, ξ, t) dξ<br />

p<br />

−∞<br />

J(q, ξ − z) dz<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Solv<strong>in</strong>g the Integrodifferential Equation Directly<br />

This can be written explicitly <strong>in</strong> terms of the potential V (q):<br />

Θ(q, ξ − p) = 1<br />

2π<br />

∞<br />

−∞<br />

y<br />

y<br />

V (q + 2 ) − V (q − 2 ) e−i(ξ−p)y/ y<br />

Then the quantum trajectory equations of motion become<br />

<br />

1<br />

˙p = −<br />

ρW (q, p)<br />

˙q = p<br />

m<br />

Θ(q, p − ξ)ρW (q, ξ) dξ<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong><br />

dy


Numerical Approach<br />

Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

To proceed numerically, we write the Wigner function as a superposition of<br />

Gaussians:<br />

ρW (q, p, t) = 1<br />

N<br />

φ(q − qj(t), p − pj(t))<br />

N<br />

where<br />

j=1<br />

1<br />

φ(q, p) =<br />

2πσqσp<br />

<br />

exp − q2<br />

2σ2 −<br />

q<br />

p2<br />

2σ2 <br />

p<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Numerical Approach<br />

Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

After some algebra, we f<strong>in</strong>d<br />

˙p(q, p) = −<br />

N<br />

j=1 φq(q − qj)Λ(q − qj, p − pj)<br />

N<br />

j=1 φq(q − qj)φp(q − qj)<br />

where<br />

<br />

V (q + z/2) − V (q − z/2)<br />

Λ(q−qj, p−pj) =<br />

exp i<br />

z<br />

(p − pj)z<br />

<br />

This can be evaluated numerically <strong>for</strong> a given potential V (q).<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong><br />

− σ2 pz 2<br />

22 <br />

dz


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Reaction Probability vs. Time: Classical and Entangled<br />

This method gives better long-time agreement <strong>for</strong> the cubic system:<br />

Reaction probability<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Eo=2Vo<br />

Eo=1.25Vo<br />

Eo=0.75Vo<br />

0<br />

0 1000 2000<br />

Time (a.u.)<br />

3000 4000<br />

(Black=exact, red=old method, blue=new method.)<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Conclusions<br />

Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

It is possible to def<strong>in</strong>e quantum trajectories <strong>in</strong> a non-Bohmian phase<br />

space context.<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Conclusions<br />

Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

It is possible to def<strong>in</strong>e quantum trajectories <strong>in</strong> a non-Bohmian phase<br />

space context.<br />

The phase space quantum trajectory <strong>for</strong>malism can give nearly<br />

quantitative results <strong>for</strong> manifestly quantum mechanical processes such<br />

as tunnel<strong>in</strong>g <strong>in</strong> model systems.<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Conclusions<br />

Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

It is possible to def<strong>in</strong>e quantum trajectories <strong>in</strong> a non-Bohmian phase<br />

space context.<br />

The phase space quantum trajectory <strong>for</strong>malism can give nearly<br />

quantitative results <strong>for</strong> manifestly quantum mechanical processes such<br />

as tunnel<strong>in</strong>g <strong>in</strong> model systems.<br />

The methodology gives an appeal<strong>in</strong>g picture of quantum processes.<br />

For <strong>in</strong>stance, tunnel<strong>in</strong>g is accomplished by borrow<strong>in</strong>g, not by<br />

burrow<strong>in</strong>g.<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

Mortgage Crisis <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>?<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>


Acknowledgments<br />

Thanks to:<br />

Introduction<br />

Numerical Methodology<br />

Applications<br />

The Husimi Representation<br />

Methodology, Revisited<br />

⋆ Dr. Arnaldo Donoso (IVIC, Caracas, Venezuela)<br />

Prof. Yujun Zheng (Shandong University)<br />

Jacob Goldsmith<br />

Patrick Hogan<br />

Adam Van Wart<br />

Supported by the<br />

National Science Foundation<br />

Craig C. Martens <strong>Quantum</strong> <strong>Trajectories</strong> <strong>in</strong> <strong>Phase</strong> <strong>Space</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!